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1 Introduction

Access control is a pervasive issue in security: it consists in determining whether the

principal (a key, channel, machine, user, program) that issues a request to access a

resource should be trusted on its request, i.e., if it is authorized. Authorization can

be based in the simplest case on access control lists (ACL) associated with resources

or with capabilities held by principals, but it may be complicated, for instance, by

membership of groups, roles and delegation. Thus, logics are often introduced in

access control to express policies and to enable reasoning about principals and their

requests, and other general statements.

Logical approaches to comprehend, analyse, create and verify the policies and

control mechanisms used to protect resources have been extensively studied in these

years [1,3,7,8,14,18]. The interest of the community is also underlined by a number

of research projects that have applied these logics for designing or motivating vari-

ous languages and systems [4,6,9,19]. On the other hand, as reported in [12], there

have been only few, limited efforts to study the logics themselves (e.g. [1,3,13]). In

particular, the problems of the axiomatization of the well-known says operator have

been studied only recently in [12,2]. Generally, the full expressiveness of the pro-

posed logics is reached by exploiting second-order formalisms in order to axiomatize

important concepts like the speaks-for or hand-off [3,16]. In this paper we introduce

a novel first-order multimodal logic for access control in distributed systems called

Fibred Security Language (FSL). The contribution of FSL addresses the following

research questions:

(i) How to define a general language capable to embody and extend existing access

control logics?

(ii) How to formalize a logic which provides axiomatization of security properties

that avoids undesired side effects and which at the same time ensures tractabil-

ity?

Our methodology is centered on a first-order language based on the fibring ap-

proach of Gabbay [11] and goes in the direction of having a method to integrate

different logics into a single system.

We use a multimodal approach to express axioms which in the literature have

been expressed in (computationally intractable) second-order logics within a first-

order logic. The reduction from second-order to first-order can be of practical

value in the objective of building theorem provers in support of proof-carrying

authorization mechanisms.

In this paper we focus on the expressiveness of the logic and on the advantages

in the employment of a fibred multimodal semantics. There is no space to provide

a calculus for automated theorem proving and to translate existing approaches into

FSL.

In Section 2 we briefly present FSL by showing its expressiveness. In Section

3 we list and comment the axioms of the says operator defined in [2]. Section 4 is

devoted to the introduction and formalization of the basic system FSL. In Section

5 we show how the second-order axioms introduced in Section 3 can be translated

into first-order constraints on the multimodal-kripke semantics of FSL. Section 6
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ends the paper.

2 The Fibred Security Language

From the expressivity point of view, FSL aims to extend previous logics for access

control by introducing joint responsibility between principals and groups of prin-

cipals as first-class citizen described by means of first-order formulas. Although

these properties are employed in general languages to describe policies [5], FSL is

the first logical approach which embodies these features with a coherent semantical

formalization of the well-known says operator.

In FSL, we enrich first-order logic with formulas of the kind

{x}ϕ(x) says ψ (1)

where {x}ϕ(x) is a set-binding operator which represents the group composed by all

the principals that satisfy ϕ(x), says is a modal binary operator and ψ is a general

formula.

Intuitively, we read Formula 1 as: “The group composed by all the principals

that satisfy ϕ(x) supports ψ”. In this language is then possible to let principals

jointly (as a group) support a statement, which is a desirable feature in several

access control models as underlined in [5].

Previous approaches are limited in the representation of principals, in [17] prin-

cipals are propositional atoms distributed in a lattice-based structure which can be

combined with classical meet and join operators, in [7,14] a formula can be sup-

ported by at most one principal and it is not possible to make a group of principals

jointly support a formula. In [18] groups of principals can be described by proposi-

tional atoms but their employment is limited to static and dynamic thresholds.

The proposed view on access control logics offers a general methodology to define

policies and freedom in crafting logics. In fact we can let ϕ(x) and ψ belong to two

different languages Lp and Le as language of principals and security expressions

respectively which refer to two different systems (semantics). For instance we can

think of formulas in Lp be SQL queries and formulas in Le be Delegation Logic [18]

expressions.

In order to formally specify how to evaluate expressions like 1, we formalize the

says modality by using the fibring methodology [11] which, depending on the chosen

languages (and systems), provides a formal tool to combine logics in a common

framework which is coherent and does not collapse.

In this paper, in order to show the full expressiveness of our approach, we decide

to make Lp = Le = L, where L is a classical first-order language plus the says

operator. This approach offers us to nest the says modality and to express complex

formulas in which free variables are shared between different levels of nesting of the

says. So with Lp = Le , in Formula 1, ϕ(x) and ψ can share variables and ϕ may

as well include occurrences of the says operator.

More formally, FSL formulae are defined by the following grammar

ϕ ::= ψ | (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ→ ϕ) | ∀x(ϕ) | {x}ϕ(x) says ϕ
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where

• ψ is an ordinary first-order formula 5 .

• ϕ(x) denotes an FSL formula with one free variable x.

We now briefly show how we can employ FSL to identify groups of principals. The

formula {x}ϕ(x) is used to select the set of principals making the assertion says,

to select a single principal whose name is A we write: {x}(x = A) says s

The following formula means that all the users jointly (as a group) ask to delete

file1:

{x}user(x) says delete(file1)

Since ϕ(x) and ψ can share variables, we can put restrictions on the variables

occurring in ψ. E.g., the set of all users who all own file(s) y asks to delete the

file(s) y:

α(y) = {x}(user(x) ∧ own(x, y)) says delete(y)

However, the formula above is satisfactory only in the particular situation where

we are talking about the set of all users who assert says at once as a group (com-

mittee).

We can as well express that each member of a set identified by a formula can

assert says separately. E.g., each user deletes individually the files he owns:

∀x(user(x) ∧ own(x, y)) → {z}(z = x) says delete(y)

Note that the latter formula usually implies the former but not vice versa 6 .

More generally, in FSL you have the possibility to express how the set {x|ϕ(x)holds}

says what it says. For instance, suppose we have ϕ(x) = (x = A1)∨ (x = A2)∨ (x =

A3) then if at least one of {Ai} says ψ is enough for the group to support ψ we

add:

{x}ϕ(x) says ψ ↔
∨

1≤i≤3

{x}(x = Ai) says ψ

This represents the fact that each principal in the group can speak for the whole

group.

In FSL, with features like the sharing of variables between ϕ(x) and ψ, the nest-

ing of the says and the employment of negation, we can express complex policies like

separation of duties in a compact way. For instance, we can express the following:

“A member m of the Program Committee can not accept a paper P1 in which one

of its authors says that he has published a paper with him after 2007”:

¬({m}[PC(m) ∧ {y}author of(y, P1) says ∃p(paper(p) ∧ author of(m, p) ∧

author of(y, p) ∧ year(p) ≥ 2007)] says accept(P1))

Due to space constraints, we leave to another paper the full treatment of the

expressive power of the language by introducing abstractions to write access control

policies (e.g., roles, delegation depth, thresholds).

5 For a clear description of first-order languages we refer to [10].
6 For instance, a committee may approve a paper that not all of its members would have accepted.
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3 Modality Axioms

Despite the pervasive employment of the says operator in several logics for access

control, only recently in [2] different axiomatizations of the says have been studied

and proposed. The objective is to explore the formal consequences and the security

interpretations of several possible axiomatizations, and thus to help in identifying

access control logics that are sufficiently strong but not inconsistent, degenerate, or

otherwise unreasonable.

Following we present the relevant axioms underlined in [2], notice that some of

them are second-order due to a quantification over formulas. In Section 5 we will

show how, by exploiting the multimodal approach of FSL, we can translate them as

first-order constraints on the kripke semantics. We write 2AX as an abbreviation

for {x}(x = A) says X, where X ranges over formulas.

(i) B speaks for A (notation B ⇒ A):

∀X[�BX → �AX].

This is the fundamental relation among principals in access control logics. If

B ⇒ A, then all statements supported by B are also supported by A. This

relation serves to form chains of responsibility: a program may speak for a

user, much like a key may speak for its owner, much like a channel may speak

for its remote end-point.

(ii) A controls ψ, for some specified formula ψ:

�Aψ → ψ

Intuitively it represents the direct control of A over a resource X. In this view

it is desirable not to have a principal which controls all formulas, that is why

we do not employ the universal quantifier.

(iii) Hand-off axiom:

�A(B ⇒ A) → (B ⇒ A)

Hand-off states that whenever A says that B speaks for A, then B does indeed

speaks for A. This axiom allows every principal to decide which principals

speak on its behalf, since it controls the delegation to other principals.

Sometimes this axiom follows from logic rules as in [2], sometimes it is as-

sumed as an axiom. Note that the general axiom is too powerful, and thus risky

for security: for example when A represents a group: if A controls (B ⇒ A)

then any member of A can add members to A. Thus, for instance, [3] does not

adopt this axiom.

(iv) Unit:

∀X[X → �AX]

Unit is stronger than the necessitation rule. In classical logic (but not intu-

itionistic), adopting Unit implies that each principal either always says the

truth or it says the false: (A → B) ∨ (B → A). In the first case A speaks for

any other principal, in the latter any other speaks for A. The policies described

by this kind of systems are too manicheist.
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(v) Escalation:

∀X,Y [�AX → X ∨ �AY ]

Escalation is not considered as a desirable property. It amounts to “if A says ψ

then ψ orA says anything”: from A says ψ may follow a statement “much

falser” than ψ. As an example of its riskiness (see [2]), consider that from

(A controls ψ)∧(B controls ψ) we are allowed to infer that ifA says B says ψ

then ψ follows. If the logic is not able to avoid escalation, the only cumbersome

solution is to make A avoid saying that B says ψ unless he really wishes to say

ψ. Thus we must be careful that it does not follow from other properties (like

from Unit or Bind in classical logics).

According to [2] in classical logic, Unit implies Escalation. If we leave out Unit

we can rely on intermediate systems between the basic modal logic and Escalation.

For instance, one may require the standard axiom C4 from modal logic (2A2AX →

2AX) without obtaining Escalation. However, these intermediate systems appear

quite limited in their support of delegation and related concepts.

In trying to have an expressive logic without Escalation as a theorem, intuition-

ism seems to be the right semantics to employ. In fact, Abadi in [2] propose a logic

(CDD) based on second-order intuitionistic semantics in order to have a sufficiently

expressive logic without having dangerous consequences like Escalation. In Section

4.2 we present predicate FSL which extends CDD expressiveness without using a

second-order semantics.

4 The basic system FSL

This section introduces our basic system FSL step by step from a semantical point of

view. First, in Section 4.1 we introduce modalities indexed by propositional atoms,

then we take into account classical and intuitionistic models for the propositional

setting and finally, in Section 4.2, we give a fibred semantics for modalities indexed

by first-order formulas.

The FSL system can be defined with any logic L as a Fibred Security System

based on L. We will motivate the language for the cases of L = classical logic and

L = intuitionistic logic. Basically adding the says connective to a system is like

adding many modalities. So to explain and motivate FSL technically we need to

begin with examining options for adding modalities to L.

4.1 Adding modalities

We start by adding modalities to classical propositional logic. Let S be a nonempty

set of possible worlds, for every subset U ⊆ S consider a binary relation RU ⊆ S×S.

This defines a multimodal logic, containing at most 2S modalities �U , U ⊆ S.

The models are of the form (S,RU , t0, h), U ⊆ S. In this view, if U = {t|t � ϕU} for

some ϕU we get a modal logic with modalities indexed by formulas of itself. This

requires now a formal definition.

Definition 4.1 [Language] Consider (classical or intuitionistic) propositional logic

with the connectives ∧,∨,→,¬ and a binary connective �ϕψ, where ϕ and ψ are
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formulas. 7 The usual definition of wff is adopted.

Definition 4.2 We define classical Kripke models for this language.

(i) A model has the form m = (S,RU , t0, h), U ⊆ S where for each U ⊆ S,RU is a

binary relation on S. t0 ∈ S is the actual world and h is an assignment, giving

for each atomic q a subset h(q) ⊆ S.

(ii) We can extend h to all formulas by structural induction:
• h(q) is already defined, for q atomic
• h(A ∧B) = h(A) ∩ h(B)
• h(¬A) = S − h(A)
• h(A→ B) = (S − h(A)) ∪ h(B)
• h(A ∨B) = h(A) ∪ h(B)
• h(�ϕψ) = {t| for all s (tRh(ϕ)s→ s ∈ h(ψ))}

(iii) m � A iff t0 ∈ h(A).

Let us now do the same for intuitionistic logic. Here it becomes more interesting.

An intuitionistic Kripke model has the form m = (S,≤, t0, h), where (S,≤) is a

partially ordered set, t0 ∈ S and h is an assignment to the atoms such that h(q) ⊆ S.

We require that h(q) is a closed set, namely x ∈ h(q) and x ≤ y ⇒ y ∈ h(q). Let D

be a set, we can add for each U ⊆ D a binary relation RU on S. This semantically

defines an intuitionistic modality, �U .

In intuitionistic models we require the following condition to hold for each for-

mula A, i.e. we want h(A) to be closed: x ∈ h(A) and x ≤ y ⇒ y ∈ h(A)

This condition holds for A atomic and propagates over the intuitionistic con-

nectives ∧,∨,→,¬,⊥. To ensure that it propagates over �U as well, we need an

additional condition on RU . To see what this condition is supposed to be, assume

t � �UA. This means that: ∀y(tRUy ⇒ y � A)

Let t ≤ s. If s 6� �UA, then for some z such that sRUz we have z 6� A. This

situation will be impossible if we require:

t ≤ s ∧ sRUz ⇒ tRUz (∗)

Put differently, if we use the notation: R′
U (x) = {y|xRUy} then

x ≤ x′ ⇒ R′
U (x) ⊇ R′

U (x′) (∗)

We now want to concentrate on what happens if U is defined by a formula ϕU ,

i.e. U = h(ϕU ). This will work only if U is closed, formally: t ∈ U ∧ t ≤ s⇒ s ∈ U

So from now on, we talk about modalities associated with closed subsets of S.

We can now define our language. This is the same as defined in Definition 4.1. We

now define the semantics.

Definition 4.3 A model has the form m = (S,≤, RU , t0, h), U ⊆ S where (S,≤) is

a partial order, t0 ∈ S, and each U ⊆ S is a closed set and so is h(q) for atomic q.

RU satisfies condition (*) above. We define the notion t � A for a wff by induction,

and then define h(A) = {t|t � A} So let’s define �:

7 There are many such connectives, e.g. ϕ says ψ,ϕ > ψ (conditional), ©(ϕ/ψ) relative obligation, etc.
The semantics given to it will determine its nature.
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• t � q iff t ∈ h(q)

• t � A ∧B iff t � A and t � B

• t � A ∨B iff t � A or t � B

• t � A→ B iff for all s, t ≤ s and s � A imply s � B

• t � ¬A iff for all s, t ≤ s implies s 6� A

• t 6� ⊥

• t � �ϕψ iff for all s such that tRh(ϕ)s we have s � ψ. We assume by induction

that h(ϕ) is known.

• m � A iff t0 � A.

It is our intention to read �ϕψ as ϕ says ψ.

4.2 Predicate FSL

Intuitively, a predicate FSL fibred model is represented by a set of models linked

together by means of a fibring function, every model has an associated domain D

of elements together with a set of formulas that are true in it. In the FSL meta-

model, the evaluation of the generic formula α = {x}ϕ(x) says ψ is carried out in

two steps, first evaluating ϕ and then ψ in two different models. Suppose m1 is our

(first-order) starting model in which we identify U ⊆ D as the set of all the elements

that satisfy ϕ. Once we have U we can access one or more worlds depending on the

fibring function f : P(D) → P(M) which goes from sets of elements in domain D

to sets of models. At this point, for every model mi ∈ f(U) we must check that ψ

is true, if this is the case then α is true in the meta-model.

The fact that in the same expression we evaluate different sub-formulas in dif-

ferent models is the core idea of the fibring methodology [11]. Think about a group

of administrators that have to set up security policies for their company. From a

semantical point of view, if we want to check if ψ holds in the depicted configuration

by the administrators, we must

(i) Identify all the admins (all the elements that satisfy admin(x)).

(ii) Access the model that all the admins as a group have depicted.

(iii) Check in that model if ψ is true or false

Let L denote classical or intuitionistic predicate logic 8 . We assume the usual

notions of variables, predicates, connectives ∧,∨,→,¬, quantifiers ∀,∃ and the no-

tions of free and bound variables.

Let L
+ be L together with two special symbols:

• A binary (modality), says

• A set-binding operator {x}ϕ(x) meaning the set of all x such that ϕ(x)

Definition 4.4 The language FSL has the following expressions:

(i) All formulas of L
+ are level 0 formulas of FSL.

8 Classical predicate logic and intuitionistic predicate logic have the same language. The difference is in
the proof theory and in the semantics.
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(ii) If ϕ(x) and ψ are formulas of L
+ then α = {x}ϕ(x) says ψ are level 1 ‘atomic’

formulas of FSL. If (x, x1, . . . , xn) are free in ϕ and y1, . . . , ym are free in ψ

then {x1, . . . , xn, y1, . . . , ym} are free in α. The variable x in ϕ gets bound by

{x}. The formula of level 1 are obtained by closure under the connectives and

quantifiers of L
+.

(iii) Let ϕ(x) and ψ be formulas of FSL of levels r1 and r2 resp., then α =

{x}ϕ says ψ is an ‘atomic’ formula of FSL of level r = max(r1, r2) + 1.

(iv) Formulas of level n are closed under classical logic connectives and quantifiers

of all ‘atoms’ of level m ≤ n.

Definition 4.5 [FSL classical fibred model of level n]

(i) Any classical model with domain D is a FSL model of level 0.

(ii) Let m be a classical model of level 0 with domain D and let for each subset

U ⊆ D, fn(U) be a family of models of level n (with domain D). Then (m, fn)

is a model of level n+ 1.

Definition 4.6 [Classical satisfaction for FSL] We define satisfaction of formulas

of level n in classical models of level n′ ≥ n as follows.

First observe that any formula of level n is built up from atomic predicates of

level 0 as well as ‘atomic’ formulas of the form α = {x}ϕ(x) says ψ, where ϕ and

ψ are of lower level.

We therefore first have to say how we evaluate (m, fn) � α. We assume by

induction that we know how to check satisfaction in m of any ϕ(x), which is of level

≤ n. We can therefore identify the set U = {d ∈ D | m � ϕ(d)}.

Let m′ ∈ fn(U). We can now evaluate m′ � ψ, since ψ is of level ≤ n − 1. So

we say

(m, fn) � α iff for all m′ ∈ fn(U), we have m′ � ψ

We now define intuitionistic models for FSL. This will give semantics for the

intuitionistic language.

Definition 4.7 We start with intuitionistic Kripke models which we assume for

simplicity have a constant domain. The model m has the form (S,≤, t0, h,D)

where D is the domain and (S,≤, t0) is a partial order with first point t0 and h is

an assignment function giving for each t ∈ S and each m-place atomic predicate P

a subset h(t, P ) ⊆ Dm such that t1 ≤ t2 ⇒ h(t1, P ) ⊆ h(t2, P )

We let h(P ) denote the function λt h(t, P ). For t ∈ S let

St = {s | t ≤ s}

h(t, P ) = h(P ) ↾ St

≤t=≤↾ St

Where ↾ represents the standard domain restriction.

Let mt = (St,≤t, t, ht, D). Note that a formula ϕ holds at m = (S,≤, t0, h,D)

iff t0 � ϕ according to the usual Kripke model definition of satisfaction.

(i) A model of level 0 is any model m: m = (S,≤, t0, h,D).

9
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(ii) Suppose we have defined the notion of models of level m ≤ n, (based on the

domain D).

We now define the notion of a model of level n+ 1

Let m be a model of level 0 with domain D. We need to consider not only m

but also all the models mt = (St,≤t, t, ht, D), for t ∈ S. The definitions will be

given simultaneously for all of them.

By an intuitionistic ‘subset’ of D in (S,≤, t0, h,D), we mean a function d giving

for each t ∈ S, a subset d(t) ⊆ D such that t1 ≤ t2 ⇒ d(t1) ⊆ d(t2).

Let fnt be a function associating with each dt and t ∈ S a family fnt (dt) of level

n models, such that t1 ≤ t2 ⇒ fnt1(dt1) ⊇ fnt2(dt2). Then (mt, ft) is a model of level

n+ 1 where dt = d ↾ St.

Definition 4.8 [Satisfaction in fibred intuitionistic models] We define satisfaction

of formulas of level n in models of level n′ ≥ n as follows.

Let (mt, f
n
t ) be a level n model. Let α = {x}ϕ(x) says ψ is of level n. We

assume we know how to check satisfaction of ϕ(x) in any of these models.

We can assume that

dt = {x ∈ D | t � ϕ(x) in (mt, f
n
t )}

is defined. Then t � α iff for all models m′
t in fnt (dt) we have m′

t � ψ.

5 Kripke Models for Axioms

In this section we show one advantage in employing the fibred semantics, we trans-

late the most important second-order axioms appeared in [2] into first-order con-

straints on the kripke models. This result shows how, thanks to the multimodal

semantics, second-order is not needed in dealing with axioms like speaks-for or

hand-off, this could be useful in developing calculi to do automated reasoning on

expressive access control policies.

In particular, we identify a precise mathematical relationship between well-

known security axioms and semantical properties of FSL. From the point of view of

logic engineering, it is important to see this relationship, because it helps one to un-

derstand the axioms being studied and how they affect the models of the underlying

logic. From a practical point of view, we show that important security properties

can be embodied in a decidable fragment of (multimodal) first-order logic. De-

cidability is a desirable property if we want security practitioners exploit theorem

provers for access control procedures.

Suppose to have two intuitionistic modalities �A and �B and their accessibility

relations RA and RB. So our Kripke model has the form (S,≤, RA, RB, t0, h). We

know for µ = A or µ = B that we have in the model

t ≤ s ∧ sRµz → tRµz. (∗)

What other conditions can we impose on �µ?

10
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(i) The condition for the axiom Unit X → �µX is

xRµy → x ≤ y (∗1)

(ii) The condition for the axiom C4 2A2Ax→ 2A is

xRAy ∧ yRAz → zRAy

(iii) The condition for the axiom speaks-for �BX → �AX

xRAy → xRBy (∗2)

(iv) Note that �BX → �AX is taken in (*2) as an axiom schema. If we want to

have t � ∀X(�BX → �AX) i.e. we want �Bϕ → �Aϕ to hold at the point

t ∈ S for all wff ϕ, we need to require (*2) to hold above t, i.e.

∀x, y(t ≤ x ∧ xRAy → xRBy) (∗3)t

(v) Consider now an axiom called hand-off A to B.

�A(∀X(�BX → �AX)) → ∀X(�BX → �AX)

This axiom has a second order propositional quantifier in it.

The antecedent of the axiom wants �A(∀X�BX → �AX)) to hold at t0.

This means in view of (3) above that (∗4a) needs to hold

∀t(t0RAt→ (∗3)t) (∗4a)

The axiom says that if the antecedent holds at t0 so does the consequent, i.e.

t0 � ∀X(�BX → �AX).

We know the condition for that to hold is (∗3)t0 . Thus the condition for Hand-

off A to B is

∀t[t0RAt→ (∗3)t] → (∗3)t0 (∗4)

The important point to note is that although the axiom is second order (has

∀X in it both in the antecedent and consequence), the condition on the model

is first order 9 .

(vi) Concerning Escalation �AX → X ∨ �A⊥ its condition is

∃y(xRAy) → xRAx (∗5)

To check whether we can have hand-off from A to B without escalation for

A, for some choice of RA and RB, we need to check whether we can have

(*4) without having (*5), for some wise choice of RA and RB. Thanks to a

multi-modal semantics, we can then translate the second-order axioms in [2]

into constraints on kripke models, this result show how first-order logic suffices

to axiomatize the says modality in access control logics.

9 Notice that we use first-order but we get a language more expressive than CDD[2] which is second-order.
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6 Conclusion and Future Work

We have presented a logical formalism called FSL based on multimodal first-order

logic. The proposed framework extends the expressivity of existing logics for access

control by introducing sets of principals (described by formulas) as first-class citizen

that can jointly support statements, and by permitting complex nesting of the says

modality (see Section 2). FSL is based on a general methodology (i.e. fibring)

to combine logics and use them within a unifying language [11], thanks to this

approach we offer a general logical language to embody and extends existing access

control formalisms. Thanks to the proposed semantics based on multimodalties, we

showed that second-order logics are not necessary to model common axioms for the

says like ‘speaks-for’ or ‘hand-off’.

For instance, in [2] the presented calculus for the proposed (second-order) access

control logic can not be employed in practical theorem proving due to its complexity.

On the contrary, there are works in which first-order languages are constrainted in

order to get nice computational results in the derivation time [15,18].

We studied how security axioms can be translated into first-order constraints on

kripke models by introducing a model-driven study of logics for access control as

underlined in [12].

As ongoing work we are formalizing the extension of well known logics like DL

[18], SecPAL [7], DEBAC [8] and DKAL [14] with the FSL methodology to translate

them into predicate FSL. In this view, FSL can be studied as a general framework

to compare and integrate different logics for access control.

We are also working on providing a calculus for a tractable fragment of predicate

FSL and on using FSL as a general language able to describe the many different

instances of access control models by merging them with the meta-model proposed

in [5].
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