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Multiagent Deontic Logic and its Challenges
from a Normative Systems Perspective1

GABRIELLA PIGOZZI AND LEENDERT VAN DER TORRE

ABSTRACT. This chapter gives an overview of several challenges studied in
deontic logic, with an emphasis on challenges involving agents. We start with
traditional modal deontic logic using preferences to address the challenge of
contrary-to-duty reasoning, and STIT theory addressing the challenges of non-
deterministic actions, moral luck and procrastination. Then we turn to alternative
norm-based deontic logics detaching obligations from norms to address the chal-
lenge of Jørgensen’s dilemma, including the question how to derive obligations
from a normative system when agents cannot assume that other agents comply
with their norms. We discuss also some traditional challenges from the view-
point of normative systems: when a set of norms may be termed ‘coherent’, how
to deal with normative conflicts, how to combine normative systems and tradi-
tional deontic logic, how various concepts of permission can be accommodated,
how meaning postulates and counts-as conditionals can be taken into account, and
how sets of norms may be revised and merged. The normative systems perspec-
tive means that norms, not ideality or preference, should take the central position
in deontic semantics, and that a semantics that represents norms explicitly pro-
vides a helpful tool for analysing, clarifying and solving the problems of deontic
logic. We focus on the challenges rather than trying to give full coverage of re-
lated work, for which we refer to the handbook of deontic logic and normative
systems.1

Introduction
Deontic logic [von Wright, 1951a; Gabbay et al., 2013] is the field of logic that
is concerned with normative concepts such as obligation, permission, and prohibition.
Alternatively, a deontic logic is a formal system capturing the essential logical features
of these concepts. Typically, a deontic logic uses Op to mean that it is obligatory that
p, (or it ought to be the case that p), and Pp to mean that it is permitted, or permissible,
that p. The term ‘deontic’ is derived from the ancient Greek déon, meaning that which
is binding or proper.

Deontic logic can be used for reasoning about normative multiagent systems, i.e.
about multi-agent systems with normative systems in which agents can decide whether
to follow the explicitly represented norms, and the normative systems specify how and
in which extent the agents can modify the norms [Boella et al., 2006; Andrighetto et
al., 2013]. Normative multi-agent systems need to combine normative reasoning with

1Draft, all comments appreciated. To appear in the handbook of normative multiagent systems.
1An earlier version of Section 1 and Section 5-15 of this paper appeared as a technical report of a

Dagstuhl seminar [Hansen et al., 2007]. Moreover, earlier versions of Section 2-4 have been published as
part of a review of Horty’s book on obligation and agency [Broersen and van der Torre, 2003].
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agent interaction, and thus raise the challenge to relate the logic of normative systems
to game theory [van der Torre, 2010].

Traditional (or “standard”) deontic logic is a normal propositional modal logic of
type KD, which means that it extends the propositional tautologies with the axioms
K : O(p → q) → (Op → Oq) and D : ¬(Op ∧ O¬p), and it is closed under the
inference rules modus ponens p, p → q/q and Necessitation p/Op. Prohibition and
permission are defined by Fp = O¬p and Pp = ¬O¬p. Traditional deontic logic
is an unusually simple and elegant theory. An advantage of its modal-logical setting
is that it can easily be extended with other modalities such as epistemic or temporal
operators and modal accounts of action. In this chapter we illustrate the combination
of deontic logic with a modal logic of action, called STIT logic [Horty, 2001].

Not surprisingly for such a highly simplified theory, there are many features of
actual normative reasoning that traditional deontic logic does not capture. Notori-
ous are the so-called ‘paradoxes of deontic logic’, which are usually dismissed as
consequences of the simplifications of traditional deontic logic. For example, Ross’s
paradox [Ross, 1941] is the counterintuitive derivation of “you ought to mail or burn
the letter” from “you ought to mail the letter.” It is typically viewed as a side effect of
the interpretation of ‘or’ in natural language.

In this chapter we discuss also an example of norm based semantics, called in-
put/output logic, to discuss challenges related to norms and detachment. Maybe the
most striking feature of the abstract character of traditional deontic logic is that it does
not explicitly represent the norms of the system, only the obligations and permissions
which can be detached from the norms in a given context. This is an obvious limita-
tion when using deontic logic to reason about normative multiagent systems, in which
norms are represented explicitly.

We consider the following fourteen challenges for multiagent deontic logic in this
chapter. The list of challenges is by no means final. Other problems may be con-
sidered equally important, such as how a hierarchy of norms (or of the norm-giving
authorities) is to be respected, or how general norms relate to individual obligations.
We do not consider deontic logics for specification and verification of multi-agent
systems [Broersen et al., 2003; Ågotnes et al., 2010], but we focus on normative rea-
soning within multi-agent systems.

1. Contrary-to-duty reasoning, preference and violation
2. Non-deterministic actions: ought to do vs ought to be
3. Moral luck and the driving example
4. Procrastination: actualism vs possibilism
5. Jørgensen’s dilemma and the problem of detachment
6. Multiagent detachment
7. Coherence of a normative system
8. Normative conflicts and dilemmas
9. Descriptive dyadic obligations

10. Permissive norms
11. Meaning postulates and intermediate concepts
12. Constitutive norms
13. Revision of a normative system
14. Merging normative systems
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15. Games, norms and obligations

To discuss these challenges, we repeat the basic definitions of so-called standard de-
ontic logic, dyadic standard deontic logic, deontic STIT logic, and input/output logic.
The chapter thus contains several definitions, but these are not put to work in any
theorems or propositions, for which we refer to the handbook of deontic logic and
normative systems [Gabbay et al., 2013]. The point of introducing formal definitions
in this chapter is just to have a reference for the interested reader.

Finally, we cannot do justice to the extensive deontic logic literature in a single
chapter. We have mentioned a few references for each challenge, but the interested
reader should consult the handbook of deontic logic and normative systems for a more
comprehensive description of the work done on each challenge.

1 Contrary-to-duty reasoning, preference and violation
In this section we discuss how the challenge of the contrary-to-duty paradoxes leads
to traditional modal deontic logic introduced at the end of the sixties, based on dyadic
operators and preference based semantics. Moreover, we contrast this use of prefer-
ence in deontic logic with the use of preference in decision theory.

1.1 Chisholm’s paradox
Suppose we are given a code of conditional norms, that we are presented with a con-
dition (input) that is unalterably true, and asked what obligations (output) it gives rise
to. It may happen that the condition is something that should not have been true in
the first place. But that is now water under the bridge: we have to “make the best out
of the sad circumstances” as B. Hansson [1969] put it. We therefore abstract from the
deontic status of the condition, and focus on the obligations that are consistent with
its presence. How to determine this in general terms, and if possible in formal ones, is
the well-known problem of contrary-to-duty conditions as exemplified by the notori-
ous contrary-to-duty paradoxes. Chisholm’s paradox [Chisholm, 1963] consists of the
following four sentences:

(1) It ought to be that a certain man go to the assistance of his neighbours.
(2) It ought to be that if he does go, he tell them he is coming.
(3) If he does not go then he ought not to tell them he is coming.
(4) He does not go.

Furthermore, intuitively, the sentences derive the following sentence (5):
(5) He ought not to tell them he is coming.

Chisholm’s paradox is a contrary-to-duty paradox, since it contains both a primary
obligation to go, and a secondary obligation not to call if the agent does not go. Tra-
ditionally, the paradox was approached by trying to formalise each of the sentences
in an appropriate language of deontic logic. However, it turned out that either the set
of formulas is traditionally inconsistent or inconsistent in SDL, or one formula is a
logical consequence—by traditional logic or in SDL—of another formula. Yet intu-
itively the natural-language expressions that make up the paradox are consistent and
independent from each other: this is why it is called a paradox. The problem is thus:

Challenge 1 How do we reason with contrary-to-duty obligations which are in force
only in case of norm violations?
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Though Chisholm presented his challenge as essentially a single agent decision
problem, we can as well reformulate it as a multi-agent reasoning problem:

(1) It is obligatory that i sees to it that p (i should do p).
(2) It is obligatory that j sees to it that q if i does not see to it that p

(j should sanction i if i does not do as told).
(3) It is obligatory that j does not see to it that q if i sees to it that p

(j should not sanction i if i does as told).
(4) i does not do as told.

The logic may give us the paradoxical conclusion that j should do q and he should do
not q. For example, van Benthem, Grossi and Liu [2014] give the following example,
in the formulation proposed by Åqvist [1967]:

(1) It ought to be that Smith refrains from robbing Jones.
(2) Smith robs Jones.
(3) If Smith robs Jones, he ought to be punished for robbery.
(4) It ought to be that if Smith refrains from robbing Jones he is not punished for

robbery.

We believe that every exposition of deontic logic should start with a discussion
on the contrary-to-duty paradoxes, because one cannot understand the development
of deontic logic without an exposition of this challenge. As explained in detail in
the following subsections, the development of dyadic deontic operators as well as
the introduction of temporally relative deontic logic operators can be seen as a direct
result of Chisholm’s paradox. Since the robbing takes place before the punishment, the
example can quite easily be represented once time is made explicit [van der Torre and
Tan, 1998a]. If you make time explicit or you direct obligations to different agents,
then the paradox disappears in a way. Both the fact that time and agency are present
may distract from the key point behind the example. Therefore also atemporal, a-
agency version of the paradox to really get to the issue. For example, Prakken and
Sergot [1996] consider the following variant of Chisholm’s scenario:

(1) It ought to be that there is no dog
(2) If there is a dog, there should be a sign
(3) If there is no dog, there should be no sign
(4) There is a dog

When a new deontic logic is proposed, the traditional contrary-to-duty examples are
always the first benchmark examples to be checked. It may be observed here that some
researchers in deontic logic doubt that contrary-to-duties can still be considered a
challenge, because due to extensive research by now we know pretty much everything
about them. The deontic logic literature is full of (at least purported) solutions. In
other words, these researchers doubt that deontic logic still needs more research on
contrary-to-duties. We may agree that it is difficult to make an original contribution to
this vast literature.

Finally we note that there are various kinds of scenarios which are similar to
Chisholm’s scenario, but also different. For example, there is a key difference between
CTDs proper, and reparatory obligations, because the latter cannot be a-temporal
[Prakken and Sergot, 1996].
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1.2 Monadic deontic logic
Traditional or ‘standard’ deontic logic, often referred to as SDL, was introduced by
Von Wright [1951a].

Language
Let Φ be a set of propositional letters. The language of traditional deontic logic LD is
given by the following BNF:

ϕ := ⊥ | p | ¬ϕ | (ϕ ∧ ϕ) | ©ϕ | 2ϕ

where p ∈ Φ. The intended reading of ©ϕ is “ϕ is obligatory” and the intended
reading of 2ϕ is “ϕ is necessary”. Moreover we use Pϕ, read as “ϕ is permitted”,
as an abbreviation of ¬©¬ϕ and Fϕ, “ϕ is forbidden”, as an abbreviation of©¬ϕ.
Likewise, ∨,→ and↔ are defined in the usual way.

Semantics
The semantics is based on an accessibility relation that gives all the ideal alternatives
of a world.

DEFINITION 1 A deontic relational model M = (W,R, V ) is a structure where:

• W is a nonempty set of worlds.

• R is a serial relation over W . That is, R ⊆ W ×W and for all w ∈ W , there
exist v ∈W such that Rwv.

• V is a valuation function that assigns a subset of W to each propositional let-
ter p. Intuitively, V (p) is the set of worlds in which p is true.

A formula©ϕ is true at world w when ϕ is true in all the ideal alternatives of w.

DEFINITION 2 Given a relational model M , and a world s in M , we define the
satisfaction relation M, s |= A (“world s satisfies A in M”) by induction on A using
the clauses:

• M, s � p iff s ∈ V (p).

• M, s � ¬ϕ iff not M, s � ϕ.

• M, s � (ϕ ∧ ψ) iff M, s � ϕ and M, s � ψ.

• M, s �©ϕ iff for all t, if Rst then M, t � ϕ.

• M, s � 2ϕ iff for all t ∈W , M, t � ϕ.

For a set Γ of formulas, we write M, s � Γ iff for all ϕ ∈ Γ, M, s � ϕ. For a set Γ of
formulas and a formula ϕ, we say that ϕ is a consequence of Γ (written as Γ � ϕ) if
for all models M and all worlds s ∈W , if M, s � Γ then M, s � ϕ.

Limitations
The following example is a variant of an example originally phrased by Chisholm in
1963. There is widespread agreement in the literature that, from the intuitive point of
view, this set of sentences is consistent, and its members are logically independent of
each other.
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(A) It ought to be that Jones does not eat fastfood for dinner.

(B) It ought to be that if Jones does not eat fastfood for dinner, then he does not go to
McDonalds.

(C) If Jones eats fastfood for dinner, then he ought to go to McDonalds.

(D) Jones eats fastfood for dinner.

The first attempt is inconsistent. The second attempt is redundant due to ©¬f `
©(f → m). The third attempt is redundant due to f ` ¬f →©¬m.

(Aa) ©¬f (Ab) ©¬f (Ac) ©¬f
(Ba) ©(¬f → ¬m) (Bb) ©(¬f → ¬m) (Bc) ¬f →©¬m
(Ca) f →©m (Cb) ©(f → m) (Cc) f →©m
(Da) f Db) f (Dc) f

However, it is not very hard to meet the two requirements of consistency and logical
independence. The following representation is an example. It comes with apparently
strong assumptions. B1/C1 say: my (conditional) obligations are necessary. Not
everybody would agree. For instance, Anderson argued that norms are contingent.
We make our rules; they are not (logical) necessities. Also, why is the first obligation
not defined as 2© ¬f . However, we could also say that the 2 is just part of the
definition of a strict conditional.

(A1) ©¬f
(B1) 2(¬f →©¬m)
(C1) 2(f →©m)
(D1)¬f

A drawback of the SDL representation A1 − D1 is that it does not represent that
ideally, the man does not eat fastfood and does not go to McDonalds. In the ideal
world, Jones goes to McDonald, yet he does not eat fast food. Moreover, there does
not seem to be a similar solution for the following variant of the scenario. It is a variant
of Forrester’s paradox [Forrester, 1984], also known as the gentle murderer paradox:
You should not kill, but if you kill, you should do it gently.

(AB) It ought to be that Jones does not eat fastfood and does not go to McDonalds.

(C) If Jones eats fastfood, then he ought to go to McDonalds.

(D) Jones eats fastfood for dinner.

Moreover, SDL uses a binary classification of worlds into ideal/non-non-ideal,
whereas many situations require a trade-off between violations. The challenge is to
extend the semantics of SDL in order to overcome this limitation. For example, one
can add distinct modal operators for primary and secondary obligations, where a sec-
ondary obligation is a kind of reparational obligation. From A2 − D2 we can only
derive©1m ∧©2¬m, which is perfectly consistent.

(A2) ©1¬f
(B2) ©1(¬f → ¬m)
(C2) f →©2m
(D2) f

However, it may not always be easy to distinguish primary from secondary obli-
gations, for example it may depend on the context whether an obligation is primary
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or secondary. For example, if we leave out A, then C would be a primary obligation
instead of a secondary one. Carmo and Jones [2002] therefore put as an additional
requirement for a solution of the paradox that B and C are represented in the same
way (as in A1-D1). Also, the distinction between©1 and©2 is insufficient for ex-
tensions of the paradox that seem to need also operators like©3,©4, etc, such as the
following E and F.

(E) If Jones eats fastfood but does not go to McDonalds, then he should go to Quick.

(F) If Jones eats fastfood but does not go to McDonalds or to Quick, then he should
. . .

SDL proof system
The proof system of traditional deontic logic ΛD is the smallest set of formulas of LD
that contains all propositional tautologies, the following axioms:

K ©(ϕ→ ψ)→ (©ϕ→©ψ)

D ©ϕ→ Pϕ

and is closed under modus pones, and generalization (that is, if ϕ ∈ ΛD, then©ϕ ∈
ΛD).

For every ϕ ∈ LD, if ϕ ∈ ΛD then we say ϕ is a theorem and write ` ϕ. For a set
of formulas Γ and formula ϕ, we say ϕ is deducible form Γ (write Γ ` ϕ) if ` ϕ or
there are formulas ψ1, . . . , ψn ∈ Γ such that ` (ψ1 ∧ . . . ∧ ψn)→ ϕ.

1.3 Dyadic deontic logic
Inspired by rational choice theory in the sixties, preference-based semantics for tra-
ditional deontic logic was used by, for example, Danielsson [1968], Hansson [1969],
van Fraassen [1972], Lewis [1973], Spohn [1975]). The obligations of Chisholm’s
paradox can be represented by a preference ordering, for example:

¬f ∧ ¬m > ¬f ∧m > f ∧m > f ∧ ¬m

Extensions like E and F can be incorporated by further refining the preference relation.
The language is extended with dyadic operators©(p|q), which is true iff the preferred
q worlds satisfy p. The class of logics is called Dyadic ‘Standard’ Deontic Logic or
DSDL. The notation is inspired by the representation of conditional probability.

Language
Given a set Φ of propositional letters. The language of DSDL LD is given by the
following BNF:

ϕ := ⊥ | p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | ©(ϕ/ϕ)

The intended reading of �ϕ is “necessarily ϕ”, ©(ϕ/ψ) is “It ought to be ϕ,
given ψ”. Moreover we use P (ϕ/ψ), read as “ϕ is permitted, given ψ”, as an abbre-
viation of ¬© (¬ϕ/ψ), and ♦ϕ, read as “possibly ϕ”, as an abbreviation of ¬�¬ϕ.

Unconditional obligations are defined in terms of the conditional ones: ©p =
©(p|>), where > stands for any tautology.
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Semantics
The semantics is based on an accessibility relation that gives all better alternatives of
a world.

DEFINITION 3 A preference model M = (W,≥, V ) is a structure where:

• W is a nonempty set of worlds.

• ≥ is a reflexive, transitive relation over W satisfying the following limitedness
requirement: if ||ϕ|| 6= ∅ then {x ∈ ||ϕ|| : (∀y ∈ ||ϕ||)x ≥ y} 6= ∅. Here
||ϕ|| = {x ∈W : M,x � ϕ}.
• V is a standard propositional valuation such that for every propositional let-

ter p, V (p) ⊆W .

DEFINITION 4 Formulas of LD are interpreted in preference models.

• M, s � p iff s ∈ V (p).

• M, s � ¬ϕ iff not M, s � ϕ.

• M, s � (ϕ ∧ ψ) iff M, s � ϕ and M, s � ψ.

• M, s � �ϕ iff for all t ∈W , M, t � ϕ.

• M, s �©(ψ/ϕ) iff ∀t(((M, t � ϕ)& ∀u(M,u � ϕ)⇒ t ≥ u)⇒M, t � ψ).

Intuitively,©(ψ/ϕ) holds whenever the best ϕ-worlds are ψ-worlds.
The Chisholm scenario can be formalised in DSDL as follows:

(A3)©¬f

(B3)© (¬m|¬f)

(C3)© (m|f)

(D3)f

A challenge of both the multiple obligation solution using ©1, ©2, . . . and the
preference based semantics is to combine preference orderings, for example combin-
ing the Chisholm preferences with preferences originating from the Good Samaritan
paradox:

(AB’) A man should not be robbed

(C’) If he is robbed, he should be helped

(D’) A man is robbed.

¬r ∧ ¬h > r ∧ h > r ∧ ¬h
The main drawback of DSDL is that in a monotonic setting, we cannot detach

the obligation ©m from the four sentences. In fact, the preference based solution
represents A, B and C, but has little to say about D. So the dyadic representationA3−
D3 highlights the dilemma between factual detachment (FD) and deontic detachment
(DD). We cannot have both FD and DD, as we derive a dilemma©¬m ∧©m.

©(m|f), f

©m
FD

©(¬m|¬f),©¬f
©¬m

DD
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DSDL Proof system
The proof system of traditional deontic logic ΛD, also referred as Aqvist’s system G,
is the smallest set of formulas of LD that contains all propositional tautologies, the
following axioms. The names of the labels are taken from Parent [2008]:

S5 S5-schemata for �

COK ©(B → C/A)→ (©(B/A)→©(C/A))

Abs ©(B/A)→ �© (B/A)

CON �B →©(B/A)

Ext �(A↔ B)→ (©(C/A)↔©(C/B))

Id ©(A/A)

C ©(C/(A ∧B))→©((B → C)/A)

D ? ♦A→ (©(B/A)→ P (B/A))

S (P (B/A) ∧©((B → C)/A))→©(C/(A ∧B))

and is closed under modus ponens, and generalization (that is, if ϕ ∈ ΛD, then
�ϕ ∈ ΛD).

The use of preference in decision theory
Arrow’s condition of rational choice theory says that if C are the best alternatives
of A, and B ∩ C is nonempty, then B ∩ C are the best alternatives of A ∩ B. This
principle is reflected by the S axiom of DSDL:

(P (B/A) ∧©((B → C)/A))→©(C/(A ∧B))

Moreover, we may represent a preference or comparative operator � in the lan-
guage, and define the dyadic operator in terms of the preference logic:

O(ψ | φ) =def (φ ∧ ψ) � (φ ∧ ¬ψ)

One may wonder whether the parallel between deontic reasoning and rational choice
can be extended to utility theory, decision theory, game theory, planning, and so
on. First, consider a typical example from Prakken and Sergot’s Cottage Regulations
[Prakken and Sergot, 1996]: there should be no fence, if there is a fence there should
be a white fence, if there is a non-white fence, it should be black, if there is a fence
which is neither white nor black, then . . . . This part of the cottage regulations is re-
lated to Forrester’s paradox [Forrester, 1984]. However, note the following difference
between Forrester’s paradox and the cottage regulations. Once you kill someone, it
can no longer be undone, whereas if you build a fence, you can still remove it. The
associated preferences of the fence example are:

no fence > white fence > black fence > . . .

However, if this represents a utility ordering over states, then we miss the represen-
tation of action [Pearl, 1993]. For example, it may be preferred that the sun shines, but
we do not say that the sun should shine. As a simple model of action, one might dis-
tinguish controllable from uncontrollable propositions [Boutilier, 1994], and restrict
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obligations to controllable propositions. Moreover, we may consider actions instead
of states: we should remove the fence if there is one, we may paint the fence white,
we may paint it black, etc.

remove > paint white > paint black > . . .

We may interpret this preference ordering as an ordering of expected utility of
actions. Alternatively, the ordering may be generated by another decision rule, such as
maximin or minimal regret. Once we are working with a decision theoretic semantics,
we may represent probabilities explicitly, and model causality. For example, let n
stand for not doing homework and g for getting a good grade for a test. Then we
may have the following preference order, which does not reflect that doing homework
causes good grades:

n ∧ g > ¬n ∧ g > n ∧ ¬g > ¬n ∧ ¬g

The use of goals in planning and agent theory
We may interpretOφ orO(φ | ψ) as goals for φ, rather than obligations. This naturally
leads to the distinction between maintenance and achievement goals, and to extensions
of the logic with beliefs and intentions. Such BDI logics have been developed as
formalizations of BDI theory.

BDI theory is developed in the theory of mind and has been based on folk psychol-
ogy. In planning, more efficient alternatives to classical planning have been developed,
for example based on hierarchical or graph planning.

The following example as a more challenging variant of Chisholm’s scenario using
anankastic conditionals.

(A) It ought to be that you do not smoke

(B) If you want to smoke, then you should not buy cigarettes

(C) If you want to smoke, you should buy cigarettes

(D) You want to smoke

1.4 Defeasible Deontic Logic: detachment and constraints
Defeasible deontic logics (DDLs) use techniques developed in non-monotonic logic,
such as constrained inference [Horty, 1997; Makinson and van der Torre, 2001]. Using
these techniques, we can derive©m from only the first two sentences A and B, but not
from all four sentences A-D. Consequently, the inference relation is not monotonic.
For example, we may read O(φ|ψ) as follows: if the facts are exactly ψ, then φ is
obligatory. This implies that we no longer have that O(φ) is represented by O(φ|>).

In a similar fashion, in deontic update semantics [van der Torre and Tan, 1998b;
van der Torre and Tan, 1999; van der Torre and Y.Tan, 1999] facts are updates that
restrict the domain of the model. They make a fact ‘settled’ in the sense that it will
never change again even after future updates of the same sort. Van Benthem et al.
[2014] use Dynamic Logic to phrase such a dynamic approach within standard modal
logic including reduction axioms and standard model theory. They rehabilitate clas-
sical modal logic as a legitimate tool to do deontic logic, and position deontic logic
within the growing dynamic logic literature.
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A drawback of the use of non-monotonic techniques is that we often have that
violated obligations are no longer derived. This is known as the drowning problem.
For example, in the cottage regulations, if it is no longer derived that there should be
no fence once there is a fence, then how do we represent that a violation has occurred?

A second related drawback of this solution is that it does not give the cue for action
that the decision maker should change his mind, For example, once there is a fence, it
does not represent the obligation to remove the fence.

A third drawback of this approach is that the use of non-monotonic logic techniques
like constraints should also be used to represent exceptions, and it thus raises the chal-
lenge how to distinguish violations from exceptions. This is highlighted by Prakken
and Sergot’s cottage regulations [Prakken and Sergot, 1996].

(A”) It ought to be that there is no fence around the cottage.

(BC”) If there is a fence around the cottage, then it ought to be white.

(G”) If the cottage is close to a cliff, then there ought to be a fence.

(D”) There is a fence around the cottage, which is close to a cliff.

We will say more about defeasible deontic logic in Section 8.

1.5 Alternative approaches
Carmo and Jones [2002] point to the fact that it is the representation of the facts which
is challenging, not the norms. In their approach, depending on the formalisation of the
facts various obligations can be detached.

Another approach to Chisholm’s paradox is to detach both obligations of the dilemma
©¬m ∧ ©m, and represent them consistently using some kind of minimal deontic
logic, for example using techniques from paraconsistent logic. From a practical rea-
soning point of view, a drawback of this approach is that a dilemma is not very useful
as a moral cue for action. Moreover, intuitively it is not clear that the example presents
a true dilemma. We say more about dilemmas in Section 9.

A recent representation of Chisholm’s paradox [Parent and van der Torre, 2014a;
Parent and van der Torre, 2014b; Sun and van der Torre, 2014] is to replace deontic
detachment by so-called aggregative deontic detachment (ADD), and to derive from
A-D the obligation©(¬f ∧ ¬m) and©m, but not©¬m.

©(m|f), f

©m
FD

©(¬m|¬f),©¬f
©(¬m ∧ ¬f)

ADD

A possible drawback of these approaches is that we can no longer accept the principle
of weakening (also known as inheritance).

©(¬m ∧ ¬f |>)

©(¬m|>)
W

2 Non-deterministic actions: ought to do vs ought to be
We now turn to three specific challenges on agency and obligation, discussed in much
more detail by Horty [Horty, 2001; Broersen and van der Torre, 2003]. His textbook
is still the prime reference for the use of deontic logic for multiagent systems.

The first question Horty addresses is whether ought to do can be reduced to ought
to be. One problem is the granularity of actions in case of nondeterministic effects,
like flipping a coin or throwing a dice.
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12 Gabriella Pigozzi and Leendert van der Torre

Challenge 2 How to define obligations to perform non-deterministic actions?

At first sight, we may define an obligation to do an action as an obligation that
such an action is done, and we can thus reuse SDL or DSDL to define obligations
regarding non-deterministic actions. In other words, it may seem that we can reduce
ought-to-do to ought-to-be. However, as we discuss in this section, such a reduction
is problematic. To explain this challenge, we first introduce a logic to express non-
deterministic actions, so-called See-To-It-That or STIT logic.

2.1 Horty’s STIT logic
We give a very brief overview of the main concepts of Horty’s STIT logic. For more
details and motivation we refer to Horty’s textbook on obligation and agency [Horty,
2001]. As illustrated in Figure 1, a STIT model is a tree where each moment is a parti-
tioning of traces or histories, where the partitioning Choicemα represents the choices of
the agent at that moment. Each alternative of the choice is called an action Km

1 , Km
2 ,

etc. With each history a utility value is associated, and the higher the utility value, the
better the history.

Yes No
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1
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Figure 1. A decision tree and the corresponding utilitarian STIT-model

Formulas are evaluated with respect to moment-history pairs, which Horty calls
the ‘Ockhamist view’. Some typical formulas of Horty’s utilitarian STIT-formalism
are A, FA, [α cstit : A], and ©A for ‘the atomic proposition A’, ‘some time in
future A’, ‘agent α Sees To It That A’, and ‘it ought to be that A’, respectively.
A is true at a moment-history pair m,h if and only if it is assigned the value true in

the STIT-model, FA is true at a moment-history pair m,h if and only if there is some
future moment on the history whereA is true, [α cstit : A] is true at a moment history
pair m,h if and only if A is true at all moment-history pairs through m that belong to
the same action as m,h, and©A is true at a moment history pair m,h if and only if
there is some history h′ through m such that A is true at all pairs m,h′′ for which the
history h′′ has a utility at least as high as h′ (‘moment determinate’).

This semantic condition for the STIT-ought is a utilitarian generalization of the
standard deontic logic view (SDL) that ‘it ought to be that A’ means that A holds in
all deontically optimal worlds.

On the STIT-model of Figure 1 we haveM,m, h3 |= A (directly from the valua-
tion of atomic propositions on moment-history pairs),M,m, h3 |= F¬A (the propo-
sition ¬A is true later on, at moment n, on the history h3 through m).
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Also we have M,m, h3 |= [α cstit : A], because A holds for all histories
through m that belong to the same action as h3 (i.e. action Km

2 ). Regarding ought-
formulas we have:M,m, h3 |=©A andM,m, h3 |=©[α cstit : A].

These two propositions are true for the same reason: the history h4 through m has
the highest utility (which means that we do not have to check conditions for histories
with even higher utility) and satisfies both A and [α cstit : A] at m.

2.2 Gambling problem
Horty argues that ought-to-do statements are not just special kinds of ought-to-be
statements. In particular, he claims that ‘agent α ought to see to it that A’ cannot be
modelled by the formula©[α cstit : A] (‘it ought to be that agent α sees to it thatA’).

Justification of this claim is found in the ‘gambling example’. This example con-
cerns the situation where an agent faces the choice between gambling to double or
lose five dollar (action K1) and refraining from gambling (action K2). This situation
is sketched in the figure below.

h h h
1

A A A

h 2 3 4

0 5510

K2K 1

Choice
m

α

A

Figure 2. The gambling problem

The two histories that are possible by choosing action K1 represent ending up with
ten dollar by gaining five, and ending up with nothing by loosing all, respectively.

Also for action K2, the game event causes histories to branch. But, for this action
the two branches have equal utilities because the agent is not taking part in the game,
thereby preserving his 5 dollar. Note this points to redundancy in the model represen-
tation: the two branches are logically indistinguishable, because there is no formula
whose truth value would change by dropping one of them.
©[α cstit : A] is valid at m for history h1 and for all histories with a higher utility

(i.e. none), the formula [α cstit : A] is valid. However, a reading of©[α cstit : A] as
‘agent α ought to perform action K1’ is counter-intuitive for this example. From the
description of the gambling scenario it does not follow that one action is better than
the other. In particular, without knowing the odds (the probabilities), we cannot say
anything in favor of action K1: by choosing it, we may either end up with more or
with less money then by doing K2. The only thing one may observe is that action K1

will be preferred by more adventurous agents. But that is not something the logic is
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14 Gabriella Pigozzi and Leendert van der Torre

concerned with.
This demonstrates that ‘agent α ought to see to it that A’ cannot be modelled by

©[α cstit : A]. The cause of the mismatch can be explained as follows. Adapting and
generalising the main idea behind SDL to the STIT-context, ought-to-be statements
concern truth in a set of optimal histories (‘worlds’ in SDL). Optimality is directly
determined by the utilities associated with individual histories. If ought-to-be is about
optimal histories, then ought-to-do is about optimal actions. But, since actions are
assumed to be non-deterministic, actions do not correspond with individual histories,
but with sets of histories. This means that to apply the idea of optimality to the defini-
tion of ought-to-do operators, we have to generalise the notion of optimality such that
it applies to sets of histories, namely, the sets that make up non-deterministic actions.
More specifically, we have to lift the ordering of histories to an ordering of actions.
The ordering of actions suggested by Horty is very simple: an action is strictly better
than another action if all of its histories are at least as good as any history of the other
action, and not the other way around.

Having lifted the ranking of histories to a ranking of actions, the utilitarian ought
conditions can now be applied to actions. Thus, Horty defines the new operator ‘agent
α ought to see to it that A (in formula form:

⊙
[αstit : A])’ as the condition that for

all actions not resulting in A there is a higher ranked action that does result in A, plus
that all actions that are ranked even higher also result inA. This ‘solves’ the gambling
problem. We do not have

⊙
[αstit : A] or

⊙
[αstit : ¬A] in the gambling scenario,

because in the ordering of actions, K1 is not any better or worse than K2.

3 Moral luck and the driving example
The gambling problem may be seen as a kind moral luck: whether we obtain the utility
of 10 or 0 is not due to our actions, but due to luck. The issue of moral luck is even
more interesting in the case of multiple agents, where it depends on the actions of
other agents whether you get utility 10 or 0.

Challenge 3 How to deal with moral luck in normative reasoning?

The driving example [Horty, 2001, p.119-121] is used to illustrate the difference be-
tween so-called dominance act utilitarianism and orthodox perspective on the agent’s
ought. Roughly, dominance act utilitarianism is that α ought to see to it that A just
in case the truth of A is guaranteed by each of the optimal actions available to the
agent—formally, that

⊙
[αcstit : A] should be settled true at a moment m just in

case K ⊆ |A|m for each K ∈ Optimalmα . When we adopt the orthodox perspective,
the truth or falsity of ought statements can vary from index to index. The orthodox
perspective is that α should see to it that A at a certain index just in case the truth of
A is guaranteed by each of the actions available to the agent that are optimal given the
circumstances in which he finds himself at this index.

“In this example, two drivers are travelling toward each other on a one-
lane road, with no time to stop or communicate, and with a single moment
at which each must choose, independently, either to swerve or to continue
along the road. There is only one direction in which the drivers might
swerve, and so a collision can be avoided only of the drivers swerves
and the other does not; if neither swerves, or both do, a collision occurs.
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This example is depicted in Figure 3, where α and β represent the two
drivers, K1 and K2 represent the actions available to α of swerving or
staying on the road, K3 and K4 likewise represent the swerving or con-
tinuing actions available to β, and m represents the moment at which
α and β must make their choice. The histories h1 and h3 are the ideal
outcomes, resulting when one driver swerves and the other one does not;
collision is avoided. The histories h2 and h4, resulting either when both
drivers swerve or both continue along the road, represent non-ideal out-
comes; collision occurs. The statement A, true at h1 and h2, expresses
the proposition that α swerves.” [Horty, 2001, p.119]

h h h
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A

h 2 3 4

0 011

A

K1 K2
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K
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Choice
m

m

AA

β

α

Choice

Figure 3. The driving example and moral luck

From the dominance point of view both actions available to α are classified as
optimal, written as Optimalmα = {K1,K2}. One of the optimal actions available to
α guarantees the truth of A and the other guarantees the truth of ¬A. Consequently
M,m 6|=

⊙
[αcstit : A] and M,m 6|=

⊙
[αcstit : ¬A]. From the orthodox point of

view, we have M,m, h1 |= O[αcstit : A] and M,m, h2 |= O[αcstit : ¬A]. What α
ought to do depends at an index depends on what β does.

Horty concludes that from the standpoint of intuitive adequacy, the contrast be-
tween the orthodox and dominance deontic operators provides us with another per-
spective on the issue of moral luck, the role of external factors in our moral evaluations
[Horty, 2001, p.121]. The orthodox ought is the one who after the actual event looks
back to it. For example, when there has been a collision then α might say—perhaps
while recovering from the hospital bed—that he ought to have swerved. The domi-
nance ought is looking forward. Though the agent may legitimately regret his choice,
it is not one for which he can be blamed, since either choice, at the time, could have
led to a collision.
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4 Procrastination: actualism vs possibilism
Practical reasoning is intimately related to reasoning about time. For example, if you
are obliged and willing to visit a relative, but you always procrastinate this visit, then
we may conclude that you violated this obligation. In other words, each obligation to
do an action should come with a deadline [Broersen et al., 2004; Boella et al., 2008].

Challenge 4 How to deal with procrastination in normative reasoning?

The example of Procrastinate’s choices [Horty, 2001, p. 162] illustrates the notion
of strategic oughts. A strategy is simply a sequence of choices, as they are studied in
decision trees and decision processes. A crucial new concept here is the concept of a
Field, which is basically a subtree of the STIT model which denotes that the agent’s
reasoning is limited to this range. A strategic ought is defined analogous to dominance
act utilitarianism, in which action is replaced by strategy in a field. α ought to see to
it that A just in case the truth of A is guaranteed by each of the optimal strategies
available to the agent in the field—formally, that

⊙
[αcstit : A] should be settled true

at a moment m just in case Adh(σ) ⊆ |A|m for each σ ∈ Optimalmα . Horty observes
some complications, and that a ‘proper treatment of these issues might well push us
beyond the borders of the current representational formalism’ [p.150].

Horty also uses the example of Procrastinate’s choices to distinguish between ac-
tualism and possibilism, for which he uses the strategic oughts, and in particular the
notion of a field. Roughly, actualism is the view that an agent’s current actions are to
be evaluated against the background of the actions he is actually going to perform in
the future. Possibilism is the view that an agent’s current actions are to be evaluated
against the background of the actions that he might perform in the future, the available
future actions.

The example is due to Jackson and Pargetter.

“Professor Procrastinate receives an invitation to review a book. He is
the best person to do the review, has the time, and so on. The best thing
that can happen is that he says yes, and then writes the review when the
book arrives. However, suppose it is further the case that were to say
yes, he would not in fact get around to writing the review. Not because
of incapacity or outside interference or anything like that, but because he
would keep on putting the task off. (This has been known to happen.)
This although the best thing that can happen is for Procrastinate to say
yes and then write, and he can do exactly this, what would happen in fact
were he to say yes is that he would not write the review. Moreover, we
may suppose, this latter is the worst thing which may happen.

[. . . ]

According to possibilism, the fact that Procrastinate would not write the
review were he to say yes is irrelevant. What matters is simply what is
possible for Procrastinate. He can say yes and then write; that is best; that
requires inter alia that he says yes; therefore, he ought to say yes. Ac-
cording to actualism, the fact that Procrastinate would not actually write
the review were he to say yes is crucial. It means that to say yes would be
in fact to realize the worst. Therefore, Procrastinate ought to say no.”
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Horty represents the example by the STIT model in Figure 4. Here, m1 is the
moment at which Procrastinate, represented as the agent α, chooses whether or not
to accept the invitation: K1 represents the choice of accepting, K2 the choice of de-
clining. If Procrastinate accepts the invitation, he then faces at m2 the later choice of
writing the review or not: K3 represents the choice of writing the review, K4 another
choice that results in the review not being written. For convenience, Horty also sup-
poses that at m3 Procrastinate has a similar choice whether or not to write the review:
K5 represents the choice of writing, K6 the choice of not writing. The history h1,
in which Procrastinate accepts the invitation and then writes the review, carries the
greatest value of 10; the history h2, in which Procrastinate accepts the invitation and
then neglects the task, the least value of 0; the history h4, in which he declines, such
that a less competent authority reviews the book, carries an intermediate value of 5;
and the peculiar h3, in which he declines the invitation but then reviews the book any-
way, carries a slightly lower value of 4, since he wastes his time, apart from doing
no one else any good. The statement A represents the proposition that he accepts the
invitation; the statement B represents the proposition that Procrastinate will write the
review.

α

m
Choice 1

h h
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h 2 3

K1 K 2

h 4

10 0 4 5
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A A A
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m 1

m m
2 3
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α

m
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α

Figure 4. Procrastinate’s choices

Now, in the possibilist interpretation, the background field is M = {m1,m2,m3}.
In this interpretation, Procrastinate ought to accept the invitation because this is the ac-
tion determined by the best available strategy – first accepting the invitation, and then
writing the review. Formally, OptimalMα = {σ6} with σ6 = {〈m1,K1〉, 〈m2,K3〉}.
And since Adh(σ6) ⊆ |A|m, the strategic ought statement O[αcstit : A] is set-
tled true in the field M . In the actualist interpretation, the background field may be
narrowed to the set M ′ = {m1}, which shifts from the strategic to the momentary
theory of oughts. In this case, we have O[αcstit : A] is settled false. It is as if we
choose to view he, in deciding whether to accept the invitation, is gambling on his
own later choice. However, from this perspective, this should not be viewed as a gam-
ble; an important background assumption—and the reason that he should decline the
invitation—is that he will not, in fact, write the review.

5 Jørgensen’s dilemma and the problem of detachment
A philosophical problem that has had a major impact in the development of deontic
logic is Jørgensen’s dilemma. In a nutshell, given that norms cannot be true or false,
the dilemma implies that deontic logic cannot be based on traditional truth functional
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semantics. In particular, building on a tradition of Alchourrón and Bulygin in the sev-
enties, Makinson [1999] argued that norms need to be represented explicitly. SDL,
DSDL and STIT logic represent logical relations between deontic operators, but they
do not explicitly represent a distinction between norms and obligations. The explicit
representation of norms is the basis of alternative semantics, that breaks with the idea
of traditional semantics that norms and obligations have truth values, and most impor-
tantly, that discards the main technical and conceptual tool of traditional semantics,
namely possible worlds. As an example, in this section we illustrate this alternative
semantics using input/output logic.

5.1 Jørgensen’s dilemma
While normative concepts are the subject of deontic logic, it is quite difficult to see
how there can be a logic of such concepts at all. Norms like individual imperatives,
promises, legal statutes, moral standards etc. are usually not viewed as being true
or false. E.g. consider imperative or permissive expressions such as “John, leave
the room!” and “Mary, you may enter now”: they do not describe, but demand or
allow a behavior on the part of John and Mary. Being non-descriptive, they cannot
meaningfully be termed true or false. Lacking truth values, these expressions cannot—
in the usual sense—be premise or conclusion in an inference, be termed consistent
or contradictory, or be compounded by truth-functional operators. Hence, though
there certainly exists a logical study of normative expressions and concepts, it seems
there cannot be a logic of norms: this is Jørgensen’s dilemma ([Jørgensen, 1938], cf.
[Makinson, 1999]).

Though norms are neither true nor false, one may state that according to the norms,
something ought to be (be done) or is permitted: the statements “John ought to leave
the room”, “Mary is permitted to enter”, are then true or false descriptions of the
normative situation. Such statements are sometimes called normative statements, as
distinguished from norms. To express principles such as the principle of conjunction:
O(p ∧ q) ↔ (Op ∧ Oq), with Boolean operators having truth-functional meaning at
all places, deontic logic has resorted to interpreting its formulas Op, Fp, Pp not as
representing norms, but as representing such normative statements. A possible logic
of normative statements may then reflect logical properties of underlying norms—thus
logic may have a “wider reach than truth”, as von Wright [1957] famously stated.

Since the truth of normative statements depends on a normative situation, in the way
in which the truth of the statement “John ought to leave the room” depends on whether
some authority ordered John to leave the room or not, it seems that norms must be
represented in a logical semantics that models such truth or falsity. But semantics
used to model the truth or falsity of normative statements mostly fail to include norms.
Standard deontic semantics evaluates deontic formulas with respect to sets of worlds,
in which some are ideal or better than others — Ox is then defined to be true if x is
true in all ideal or the best reachable worlds. In our view, norms, not ideality, should
provide the basis on which normative statements are evaluated. Then the following
question arises, asked by D. Makinson [1999]:

Challenge 5 How can deontic logic be reconstructed in accord with the philosophical
position that norms are neither true nor false?

In the older literature on deontic logic there has been a veritable ‘imperativist tradi-
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tion’ of authors that have, deviating from the standard approach, in one way or other,
tried to give truth definitions for deontic operators with respect to given sets of norms.
Cf. among others S. Kanger [1957], E. Stenius [1963], T. J. Smiley [1963], Z. Ziemba
[1971], B. van Fraassen [1973], Alchourrón and Bulygin [1981] and I. Niiniluoto
[1986]. The reconstruction of deontic logic as logic about imperatives has been the
project of Jörg Hansen beginning with [Hansen, 2001]. Input/output logic [Makinson
and van der Torre, 2000] is another reconstruction of a logic of norms in accord with
the philosophical position that norms direct rather than describe, and are neither true
nor false. We explain it in more detail in the next section below.

5.2 Input/output logic
To illustrate a possible answer to the dilemma, we use Makinson and van der Torre’s
input/output logic [2000; 2001; 2003a], and we therefore assume familiarity with
this approach (cf. [Makinson and van der Torre, 2003b] for a good introduction).
Input/output logic takes a very general view at the process used to obtain conclusions
(more generally: outputs) from given sets of premises (more generally: inputs). While
the transformation may work in the usual way, as an ‘inference motor’ to provide
logical conclusions from a given set of premises, it might also be put to other, perhaps
non-logical uses. Logic then acts as a kind of secretarial assistant, helping to prepare
the inputs before they go into the machine, unpacking outputs as they emerge, and, less
obviously, coordinating the two. The process as a whole is one of logically assisted
transformation, and is an inference only when the central transformation is so. This is
the general perspective underlying input/output logic. It is one of logic at work rather
than logic in isolation; not some kind of non-classical logic, but a way of using the
classical one.

Suppose that we have a set G (meant to be a set of conditional norms), and a set
A of formulas (meant to be a set of given facts). The problem is then: how may we
reasonably define the set of propositions x making up the output of G given A, which
we write out(G,A)? In particular, if we view the output as a collection of descriptions
of states of affairs that ought to obtain given the norms G and the facts A, what is a
reasonable output operation that enables us to define a deontic O-operator that returns
the normative statements that are true given the norms and the facts—the normative
consequences given the situation? One such definition is the following:

G,A |= Ox iff x ∈ out(G,A)

So Ox is true iff the output of G under A includes x. Note that this is rather a de-
scription of how we think such an output should or might be interpreted, whereas
‘pure’ input/output logic does not discuss such definitions. For a simple case, let G
include a conditional norm that states that if a is the case, x should obtain (we write
(a, x) ∈ G).As has become usual, an unconditional norm that commits the agent to
realizing x is represented by a conditional norm (>, x), where > means an arbitrary
tautology. If a can be inferred from A, i.e. if a ∈ Cn(A), and z is logically implied by
x, then z should be among the normative consequences of G given A. An operation
that does this is simple-minded output out1:

out1(G,A) = Cn(G(Cn(A)))

where G(B) = {y | (b, y) ∈ G and b ∈ B}. So in the given example, Oz is true given
(a, x) ∈ G, a ∈ Cn(A) and z ∈ Cn(x).
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Simple-minded output may, however, not be strong enough. Sometimes, legal ar-
gumentation supports reasoning by cases: if there is a conditional norm (a, x) that
states that an agent must bring about x if a is the case, and a norm (b, x) that states
that the same agent must also bring about x if b is the case, and a ∨ b is implied by
the facts, then we should be able to conclude that the agent must bring about x. An
operation that supports such reasoning is basic output out2:

out2(G,A) = ∩{Cn(G(V )) | v(A) = 1}
where v ranges over Boolean valuations plus the function that puts v(b) = 1 for all
formulae b, and V = {b | v(b) = 1}. It can easily be seen that now Ox is true given
{(a, x), (b, x)} ⊆ G and a ∨ b ∈ Cn(A).

This definition of out2 may give rise to a mere feeling of merely technical ade-
quacy, because of its recourse to intersection and valuations, neither of which quite
corresponds to our natural course of reasoning in such situations. However, this se-
mantics makes explicit what is present but implicit in the use of possible worlds in
conditional logics: if you want to reason by cases in the logic, you need to represent
the cases explicitly in the semantics. In addition, this is also present but even more
hidden in classical propositional logic.

It is quite controversial whether reasoning with conditional norms should support
‘normative’ or ‘deontic detachment’, i.e. whether it should be accepted that if one
norm (a, x) commands an agent to make x true in conditions a, and another norm
(x, y) directs the agent to make y true given x is true, then the agent has an obligation
to make y true if a is factually true. Some would argue that as long as the agent
has not in fact realized x, the norm to bring about y is not ‘triggered’; others would
maintain that obviously the agent has an obligation to make x ∧ y true given that a
is true. Moreover, the inference can be restricted to cases where the agent ought to
make x true instantly rather than eventually, see [Makinson, 1999; Boella et al., 2008]
If such detachment is viewed as permissible for normative reasoning, then one might
use reusable output out3 that supports such reasoning:

out3(G,A) = ∩{Cn(G(B)) | A ⊆ B = Cn(B) ⊇ G(B)}
An operation that combines reasoning by cases with deontic detachment is then reusable
basic output out4:

out4(G,A) = ∩{Cn(G(V )) : v(A) = 1 and G(V ) ⊆ V }
It may turn out that further modifications of the output operation are required in

order to produce reasonable results for normative reasoning. Also, the proposal to
employ input/output logic to reconstruct deontic logic may lead to competing solu-
tions, depending on what philosophical views as to what transformations should be
acceptable one subscribes to. All this is what input/output logic is about. However,
it should be noted that input/output logic succeeds in representing norms as entities
that are neither true nor false, while still permitting normative reasoning about such
entities.

5.3 Contrary to duty reasoning reconsidered
In the input/output logic framework, the strategy for eliminating excess output is to
cut back the set of generators to just below the threshold of yielding excess. To do
that, input/output logic looks at the maximal non-excessive subsets, as described by
the following definition:
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Definition (Maxfamilies) Let G be a set of conditional norms and A and C two sets
of propositional formulas. Then maxfamily(G,A,C) is the set of maximal subsets
H ⊆ G such that out(H,A) ∪ C is consistent.

For a possible solution to Chisholm’s paradox, consider the following output operation
out∩:

out∩(G,A) =
⋂
{out(H,A) | H ∈ maxfamily(G,A,A)}

So an output x is in out∩(G,A) if it is in output out(H,A) of all maximal norm
subsets H ⊆ G such that out(H,A) is consistent with the input A. Let a deontic
O-operator be defined in the usual way with regard to this output:

G,A |= O∩x iff x ∈ out∩(G,A)

Furthermore, tentatively, and only for the task of shedding light on Chisholm’s para-
dox, let us define an entailment relation between norms as follows:

Definition (Entailment relation) Let G be a set of conditional norms, and (a, x) be
a norm whose addition to G is under consideration. Then (a, x) is entailed by G iff
for all sets of propositions A, out∩(G ∪ {(a, x)}, A) = out∩(G,A).

So a (considered) norm is entailed by a (given) set of norms if its addition to this set
would not make a difference for any set of facts A. Finally, let us use the following
cautious definition of ‘coherence from the start’ (also called ‘minimal coherence’ or
‘coherence per se’):

A set of norms G is ‘coherent from the start’ iff ⊥ /∈ out(G,>).

Now consider a ‘Chisholm norm set’ G = {(>, x), (x, z), (¬x,¬z), }, where (>, x)
means the norm that the man must go to the assistance of his neighbors, (x, z) means
the norm that it ought to be that if he goes he ought to tell them he is coming, and
(¬x,¬z) means the norm that if he does not go he ought not to tell them he is coming.
It can be easily verified that the norm set G is ‘coherent from the start’ for all standard
output operations out(+)

n , since for these either out(G,>) = Cn({x}) or out(G,>) =
Cn({x, z}), and both sets {x} and {x, z} are consistent. Furthermore, it should be
noted that all norms in the norm set G are independent from each other, in the sense
that no norm (a, x) ∈ G is entailed by G \ {(a, x)} for any standard output operation
out

(+)
n : for (>, x) we have x ∈ out∩(G,>) but x /∈ out∩(G \ {(>, x)},>), for

(x, z) we have z ∈ out∩(G, x) but z /∈ out∩(G \ {(x, z)}, x), and for (¬x,¬z)
we have ¬z ∈ out∩(G,¬x) but ¬z /∈ out∩(G \ {(¬x,¬z)},>). Finally consider
the ‘Chisholm fact set’ A = {¬x}, that includes as an assumed unalterable fact the
proposition ¬x, that the man will not go to the assistance of his neighbors: we have
maxfamily(G,A,A) = {G \ {(>, x)}} = {{(x, z), (¬x,¬z), }} and either out(G \
{(>, x)}, A) = Cn({¬z}) or out(G \ {(>, x)}, A) = Cn({¬x,¬z}) for all standard
output operations out(+)

n , and so O∩¬z is true given the norm and fact sets G and A,
i.e. the man must not tell his neighbors he is coming. Thus:

G,A |= O∩¬z

6 Multiagent detachment
In Section 6.1 we introduce normative multiagent systems using agents and control-
lable propositions, and we introduce a challenge for detachment for multi-agent sys-
tems. In Section 6.2 we give a solution for the challenge in these formalisms.
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6.1 Challenge for multiagent detachment
Olde Loohuis [2009] argues that the assumption that other agents comply with their
norms reflects hat agents live in a responsible world. However, Makinson [1999]
observes that if all we know is that “John owes Peter $1000” and “if John pays Peter
$1000, then Peter is obliged to give John a receipt,” then we cannot detach that Peter
has to give John a receipt unconditionally based on the assumption that John will pay
Peter the money.

We assume that the normative system is known to all agents, and in this section
we assume that it does not change over time, and that each norm is directed to one
agent only. The agents reason about the consequences of the normative system, that is,
which obligations and permissions can be detached from it. With an explicit normative
system, the agents should act such that they do not violate norms. Moreover, in this
section we assume that each (instance of a) norm specifies the behavior of a single
individual agent. For example, a norm may say that an agent should drive to the right
hand side of the street, but we do not consider group norms saying that agents should
live together in harmony.

We do not assume a full action theory as in STIT logic, but we assume a min-
imal action theory: the set of propositions is partitioned into parameters (uncontrol-
lable propositions) and decision variables (controllable propositions). Boutilier [1994]
traces this idea back to discrete event systems, see also Cholvy and Garion [2001]. It
is an abstract and general approach, since we can instantiate the propositions with ac-
tion descriptions like do(action) or done(action). Note that this generality is in line
with game theory, which abstracts away sequential decisions in extensive games by
representing conditional plans as strategies as strategic games. Boutilier observes that
the theory can be extended to a full fledged action theory by, for example, introducing
a causal theory. By convention, the proposition letters p, p1, etc are parameters, a, a1,
. . . , are decision variables for agent 1, b, b1, . . . , are decision variables for agent 2, etc.
Norms are written as pairs of propositional formulas, where (p1, p2) is read as “if p1
is the case, then p2 ought to be the case,” (a1, a2) is read as “if agent 1 does a1, then
he has to do a2,” and so on. We restrict the propositional language to conjunctions of
literals (propositional atoms or their negations), so we do not consider disjunctions or
material implications.

DEFINITION 5 (Normative multi agent system, individual norms) A normative mul-
tiagent system is a tuple NMAS = 〈A,P, c,N〉 where A is a set of agents, P is a set
of atomic propositions, c : P → A is a partial function which maps the propositions
to the agents controlling them, and N is a set of pairs of conjunctions of literals built
of P , such that if (φ, ψ) ∈ N , then all propositional atoms in ψ are controlled by a
single agent.

Our action theory may be seen as a simple kind of STIT theory, in the sense that
an obligation for a proposition p controlled by agent α may be read as: “the agent α
ought to see to it that p is the case.” Though this abstracts away from the temporal
issues of STIT operators, it still has the characteristic property of STIT logics that
actions have a higher granularity than worlds.

Makinson [1999] illustrates the intricacies of temporal reasoning with norms, obli-
gations and agents by discussing the iteration of detachment, in the sense that from the
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two conditional norms “if φ, then obligatory ψ” and “if ψ, then obligatory χ” together
with the fact φ, we can derive not only that ψ is obligatory, but also that χ is oblig-
atory. Makinson’s challenge is how to detach obligations based on the principle that
agents cannot assume that other agents comply with their norms, but they assume that
they themselves comply with their norms. In other words, deontic detachment holds
only for the single agent a-temporal case.

First, Makinson argues that iteration of detachment often appears to be appro-
priate. He gives the following example, based on instructions to authors preparing
manuscripts.

EXAMPLE 6 (Manuscript [Makinson, 1999]) Let the set of norms be (25x15, 12)=“if
25x15, then obligatory 12” and (12, refs10)=“if 12, then obligatory refs10”, where
25x15 is ”The text area is 25 by 15 cm”, 12 is ”The font size for the main text is 12
points”, and refs10 is ”The font size for the list of references is 10 points”. Moreover,
consider a single agent controlling the three variables. If the facts contain 25x15, then
we want to detach not only that it is obligatory that 12, but also that it is obligatory
that refs10.

Second, he argues that iteration of detachment sometimes appears to be inappropri-
ate by discussing the following example, which he attributes to Sven Ove Hansson.

EXAMPLE 7 (Receipt [Makinson, 1999]) Let instances of the norms be
(owejp, payjp)=“if owejp, then obligatory payjp” and
(payjp, receiptpj)=“if payxy , then obligatory receiptpj”

where owejp is “John owes Peter $1000”, payjp is “John pays Peter $1000”, and
receiptpj is “Peter gives John a receipt for $1000”. Moreover, assume that the first
variable is not controlled by an agent, the second is controlled by John, and the third
is controlled by Peter. Intuitively Makinson would say that in the circumstance that
John owes Peter $1000, considered alone, Peter has no obligation to write any receipt.
That obligation arises only when John fulfils his obligation.

Makinson observes that there appear to be two principal sources of difficulty here.
One concerns the passage of time, and the other concerns bearers of the obligations.
Sven Ove Hansson’s example above involves both of these factors. “We recall that
our representation of norms abstracts entirely from the question of time. Evidently,
this is a major limitation of scope, and leads to discrepancies with real-life examples,
where there is almost always an implicit time element. This may be transitive, as when
we say “when b holds then a should eventually hold”, or “. . . should simultaneously
hold”. But it may be intransitive, as when we say “when b holds then a should hold
within a short time” or “. . . should be treated as a matter of first priority to bring
about”. Clearly, iteration of detachment can be legitimate only when the implicit time
element is either nil or transitive. Our representation also abstracts from the question
of bearer, that is, who (if anyone) is assigned responsibility for carrying out what
is required. This too can lead to discrepancies. Iteration of detachment becomes
questionable as soon as some promulgations have different bearers from others, or
some are impersonal (i.e. without bearer) while others are not. Only when the locus
of responsibility is held constant can such an operation take place.” [Makinson, 1999]
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Challenge 6 How to define detachment for multiple agents?

Broersen and van der Torre [2007] consider the temporal aspects of the example,
in this section we consider the actions of the agents. The following example extends
the discussion of the example to aggregative deontic detachment.

EXAMPLE 8 (continued) Consider again (owejp, payjp) and (payjp, receiptpj), where
the first variable is not controlled by an agent, the second is controlled by John, and
the third is controlled by Peter. In the circumstance that John owes Peter $1000,
considered alone, do we want to derive the obligation for payjp ∧ receiptpj , that is,
the obligation that “John pays Peter $1000”, and “Peter gives John a receipt for
$1000”? In many systems the obligation for payjp ∧ receiptpj implies the obliga-
tion for receiptpj , such that the answer will be negative. However, if the obligation for
payjp∧receiptpj does not imply the obligation for receiptpj , then maybe the obligation
for payjp ∧ receiptpj is not as problematic as the obligation for receiptpj . Moreover,
the obligation for payjp∧receiptpj is a compact representation of the fact that ideally,
the exchange of money and receipt takes place.

6.2 Deontic detachment for agents
As the iterative approaches seem most natural to most people, we define deontic de-
tachment of agents using these iterative approaches. The question thus arises whether
we consider sequential or iterated detachment. The following example illustrates this
question, not discussed by Makinson [1999].

EXAMPLE 9 N = {(p, a), (a, b1), (a ∧ b1, b2)} where p is a parameter, a is a deci-
sion variable of agent 1, and b1 and b2 are decision variables of agent 2. In context
F = {p, a}, do we want to detach only b1, or both b1 and b2? If we can detach b2,
then this implies that despite the fact that a and b1 are decision variable from distinct
agents we can use (a ∧ b1, b2) to detach b2.

In the above example, we believe that b2 should be derivable, because only b1 is
reused when b2 is detached, and both b1 and b2 are decision variables of the same
agent. In other words, when considering the norm (a∧ b1, b2) to detach b2, we should
not consider the norm and reject it because there is a variable in the input which refers
to another agent, but we should consider it since we have a ∈ F as a fact, and b1
already in the output, we can derive b2 too.

If b2 should not be derivable, then we could simply restrict the set of norms that
we select from N to satisfy the syntactic criterion, just like we selected the set of
norms N0. However, if b2 should be derivable, then we have to define detachment
procedures for each agent, and combine them afterwards. This is formalized in the
following detachment procedure for agents.

DEFINITION 10 (Iterative detachment for agents.) Agent a ∈ A controls a proposi-
tional formula φ, written as c(φ) = a, if and only if for all atoms x ∈ φ we have
c(x) = a.

Na
0 = {(φ, ψ) ∈ N | F ∪ {φ} 6|= ¬ψ, c(ψ) = a}
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Eia0 = ∅. For n = 1 to ∞ do Eian+1 = {ψ | (φ, ψ) ∈ Na
0 , F ∪ Eian |= φ} if

consistent with F , Eian otherwise. outia(N,F, a) = Cn(∪Eiai ), and outia(N,F ) =
∪a∈Aoutia(N,F, a).

We leave the logical analysis of this ans related approaches to future work.

7 Coherence
Consider norms which on the one hand require you to leave the room, while on the
other requiring you not to leave the room at the same time. In such cases, we are
inclined to say that there is something wrong with the normative system. This intu-
ition is captured by the SDL axiom D : ¬(Ox∧O¬x) that states that there cannot be
co-existing obligations to bring about x and to bring about ¬x, or, using the standard
cross-definitions of the deontic modalities: x cannot be both, obligatory and forbid-
den, or: if x is obligatory then it is also permitted. But what does this tell us about the
normative system?

Since norms do not bear truth values, we cannot, in any usual sense, say that such
a set of norms is inconsistent. All we can consider is the consistency of the output of
a set of norms. We like to use the term coherence with respect to a set of norms with
consistent output. For a start, consider the notion of minimal coherence in Section 5.3:

(0) A set of norms G is minimal coherent iff ⊥ /∈ out(G, ∅).

This is clearly very weak, as for example the norms (a, x), (a,¬x) would be coher-
ent. Alternatively, we might try to define coherence as follows:

(1) A set of norms G is coherent iff ⊥ /∈ out(G,A).

However, this definition seems not quite sufficient: one might argue that one should
be able to determine whether a set of norms G is coherent or not regardless of what
arbitrary facts A might be assumed. A better definition would be (1a):

(1a) A set of norms G is coherent iff there exists a set of formulas A such
that ⊥ /∈ out(G,A).

For (1a) it suffices that there exists a situation in which the norms can be, or could
have been, fulfilled. However, consider the set of norms G = {(a, x), (a,¬x)} that
requires both x to be realized and ¬x to be realized in conditions a: it is immediate
that e.g. for all output operations out(+)

n , we have ⊥ /∈ out(+)
n (G,¬a): no conflicting

demands arise when ¬a is factually assumed. Yet something seems wrong with a
normative system that explicitly considers a fact a only to tie to it conflicting normative
consequences. The dual of (1a) would be

(1b) A set of norms G is coherent iff for all sets of formulas A, ⊥ /∈
out(G,A).

Now a set G with G = {(a, x), (a,¬x)} would no longer be termed coherent. (1b)
makes the claim that for no situation A, two norms (a, x), (b, y) would ever come into
conflict, which might seem too strong. We may wish to restrict A to sets of facts that
are consistent, or that are not in violation of the norms. The question is, basically, how
to distinguish situations that the norm-givers should have taken care of, from those
that describe misfortune or otherwise unhappy circumstances. A weaker claim than
(1b) would be (1c):

(1c) A set of norms G is coherent iff for all a with (a, x) ∈ G, ⊥ /∈
out(G, a).
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By this change, consistency of output is required just for those factual situations that
the norm-givers have foreseen, in the sense that they have explicitly tied normative
consequences to such facts. Still, (1c) might require further modification, since if a is
a foreseen situation, and so is b, then also a ∨ b or a ∧ b might be counted as foreseen
situations for which the norms should be coherent.

As one anonymous reviewer suggested, another solution consists in combining el-
ements of previous proposals:

(1d) A set of norms G is coherent iff for each A ⊆ {a | (a, x) ∈ G}, if
A is non-empty and consistent, then
⊥ /∈ out(G,A).

However, there is a further difficulty: let G contain a norm (a,¬a) that, for con-
ditions in which a is unalterably true, demands that ¬a be realized. We then have
¬a ∈ outn(G, a) for the principal output operations outn, but not ⊥ ∈ outn(G, a).
Certainly the term ‘incoherent’ should apply to a normative system that requires the
agent to accomplish what is—given the facts in which the duty arises—impossible.
But since not every output operation supports ‘throughput’, i.e. the input is not neces-
sarily included in the output, neither (1) nor its variants implies that the agent can ac-
tually realize all propositions in the output, though they might be logically consistent.
We might therefore demand that the output be not merely consistent, but consistent
with the input:

(2) A set of norms G is coherent iff out(G,A) ∪A 6|= ⊥.
But with definition (2) we obtain the questionable result that for any case of norm-
violation, i.e. for any case in which (a, x) ∈ G and (a ∧ ¬x) ∈ Cn(A), G must
be termed incoherent—Adam’s fall would only indicate that there was something
wrong with God’s commands. One remedy would be to leave aside all those norms
whose violation is entailed by the circumstances A, i.e. instead of out(G,A) consider
out({(a, x) ∈ G | (a ∧ ¬x) /∈ Cn(A)}, A)—but then a set G such that (a,¬a) ∈ G
would not be incoherent.14 It seems it is time to formally state our problem:

Challenge 7 When is a set of norms to be termed ‘coherent’?

As can be seen from the discussion above, input/output logic provides the tools to
formally discuss this question, by rephrasing the question of coherence of the norms
as one of consistency of output, and of output with input. Both notions have been
explored in the input/output framework as ‘output under constraints’:
Definition (Output under constraints) Let G be a set of conditional norms and A
and C two sets of propositional formulas. Then G is coherent in A under constraints
C when out(G,A) ∪ C is consistent.
Future study must define an output operation, determine the relevant states A, and
find the constraints C, such that any set of norms G would be appropriately termed
coherent or incoherent by this definition.

8 Normative conflicts and dilemmas
There are essentially two views on the question of normative conflicts: in the one
view, they do not exist. In the other view, conflicts and dilemmas are ubiquitous.

14Temporal dimensions are not considered here. In an approach that would consider dynamic norms,
one may argue, throughput should not be included in a definition of coherence as any change involves an
inconsistency between the way things were and the way the become.
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According to the view that normative conflicts are ubiquitous, it is obvious that we
may become the addressees of conflicting normative demands at any time. My mother
may want me to stay inside while my brother wants me to go outside with him and play
games. I may have promised to finish a paper by the end of a certain day, while for the
same day I have promised a friend to come to dinner—now it is late afternoon and I
realize I will not be able to finish the paper if I visit my friend. Social convention may
require me to offer you a cigarette when I am lighting one for myself, while concerns
for your health should make me not offer you one. Legal obligations might collide -
think of the case where the SWIFT international money transfer program was required
by US anti-terror laws to disclose certain information about its customers, while under
European law that also applied to that company, it was required not to disclose this
information. Formally, let there be two conditional norms (a, x) and (b, y): unless we
have that either (x → y) ∈ Cn(a ∧ b) or (y → x) ∈ Cn(a ∧ b) there is a possible
situation a∧b∧¬(x∧y) in which the agent can still satisfy each norm individually, but
not both norms collectively. But to assume this for any two norms (a, x) and (b, y)
is clearly absurd.Nevertheless, Lewis’s [1973; 1974] and Hansson’s [1969] deontic
semantics imply that there exists a ‘system of spheres’, in our setting: a sequence
of boxed contrary-to-duty norms (>, x1), (¬x1, x2), (¬x1 ∧¬x2, x3), ... that satisfies
this condition. So any logic about norms must take into account possible conflicts. But
standard deontic logic SDL includes D: ¬(Ox ∧ O¬x) as one of its axioms, and it is
not immediately clear how deontic reasoning could accommodate conflicting norms.

Challenge 8Challenge 8a. How can deontic logic accommodate possible conflicts of norms?

The literature on normative conflicts and dilemmas is vast. As highlighted earlier
in the chapter, here we do not aim at an exhausting literature review on the topic;
for that, the interested reader is referred to Goble’s [2013] chapter. If we accept the
view that normative conflicts not only genuinely exist but are also ubiquitous, one
classical way to deal with such conflicts consists in denying that ‘ought’ implies ‘can’,
as done by Lemmon [1962]. Another common solution is to deny the principle of
conjunction, that is, to deny that oughting to do x and y separately implies ought to do
both [Marcus, 1980; van Fraassen, 1973; Goble, 2000]. However, this solution was
challenged by Horty’s example [1994; 1997; 2003; 2012] where, from “Smith ought
to fight in the army or perform alternative national service” and “Smith ought not to
fight in the army”, we should be able to derive “Smith ought to perform alternative
national service”. By withdrawing the principle of conjunction, this argument is no
longer valid. The distribution rule states that x necessitates y implies that, if one ought
to do x, then one ought to do y. As Goble [2013] observes, although this principle
has been often criticized for its role in many deontic paradoxes, its responsibility in
connection with normative conflicts has rarely been discussed. Keeping the principle
of conjunction while removing the distribution rule would validate Horty’s argument
[Goble, 2009]. For other systems that restrict the distribution principle, see [Goble,
2005; Goble, 2009].

In an input/output setting one could say that there exists a conflict whenever ⊥ ∈
Cn(out(G,A) ∪ A), i.e. whenever the output is inconsistent with the input: then the
norms cannot all be satisfied in the given situation. There appear to be two ways to
proceed when such inconsistencies cannot be ruled out. For the concepts underlying
the ‘some-things-considered’ and ‘all-things-considered’ O-operators defined below
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cf. Horty [1997] and Hansen [2004; 2005a]. For both, it is necessary to recur to the
the notion of a maxfamily(G,A,A), i.e. the family of all maximal H ⊆ G such that
out(H,A) ∪ A is consistent. On this basis, input/output logic defines the following
two output operations out∪ and out∩:

out∪(G,A) =
⋃
{out(H,A) | H ∈ maxfamily(G,A,A)}

out∩(G,A) =
⋂
{out(H,A) | H ∈ maxfamily(G,A,A)}

Note that out∪ is a non-standard output operation that is not closed under conse-
quences, i.e. we do not generally have Cn(out∪(G,A)) = out∪(G,A). Finally we
may use the intended definition of an O-operator

G,A |= Ox iff x ∈ out(G,A)

to refer to the operations out∪ and out∩, rather than the underlying operation out(G,A)
itself, and write O∪x and O∩x to mean that x ∈ out∪(G,A) and x ∈ out∩(G,A),
respectively. Then the ‘some-things-considered’, or ‘bold’ O-operator O∪ describes
x as obligatory given the set of norms G and the facts A if x is in the output of some
H ∈ maxfamily(G,A,A), i.e. if some subset of non-conflicting norms, or: some
coherent normative standard embedded in the norms, requires x to be true. It is imme-
diate that neither the SDL axiom D : ¬(Ox ∧ O¬x) nor the agglomeration principle
C : Ox ∧ Oy → O(x ∧ y) holds for O∪, as there may be two competing standards
demanding x and ¬x to be realized, while there may be none that demands the impos-
sible x ∧ ¬x. On the other hand, the ‘all-things-considered’, or ‘sceptic’, O-operator
O∩ describes x as obligatory given the norms G and the facts A if x is in the outputs
of all H ∈ maxfamily(G,A,A), i.e. it requires that x must be realized according to
all coherent normative standards. Note that by this definition, both SDL theorems D
and C are validated.

The opposite view, that normative conflicts do not exist, appeals to the very notion
of obligation: it is essential for the function of norms—to direct human behavior—that
the subject of the norms is capable of following them. To state a norm that cannot be
fulfilled is a meaningless use of language. To state two norms which cannot both be
fulfilled is confusing the subject, not giving him or her directions. To say that a subject
has two conflicting obligations is therefore a misuse of the term ‘obligation’. So there
cannot be conflicting obligations, and if things appear differently, a careful inspection
of the normative situation is required that resolves the dilemma in favor of the one
or other of what only appeared both to be obligations. In particular, this inspection
may reveal that the apparent conflicts in reality comes from some ambiguities in the
examples, for instance where a moral ‘ought’ is not compatible with a legal ‘ought’:
thus, there is no real conflict, because the two ‘oughts’ refer to two different spheres,
and each should be represented with a different operator [Castañeda, 1981; Castañeda,
1982]. Or again, a priority ordering of the apparent obligations may help resolving
the conflict, this summarizes viewpoints prominent e.g. in Ross [1930], von Wright
[1963; 1968], and Hare [1981]. The problem that arises for such a view is then how
to determine the ‘actual obligations’ in face of apparent conflicts, or, put differently,
in the face of conflicting ‘prima facie’ obligations.

Challenge 8b. How can the resolution of apparent conflicts be semantically modeled?

Again, both the O∪ and the O∩-operator may help to formulate and solve the prob-
lem: O∪ names the conflicting prima facie obligations that arise from a set of norms
G in a given situation A, whereas O∩ resolves the conflict by only telling the agent
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to do what is required by all maximal coherent subsets of the norms: so there might
be conflicting ‘prima facie’ O∪-obligations, but no conflicting ‘all things considered’
O∩-obligations. The view that a priority ordering helps to resolve conflicts seems
more difficult to model. A good approach appears to be to let the priorities help us to
select a set P (G,A,A) of preferred maximal subsets H ∈ maxfamily(G,A,A). We
may then define theO∩-operator not with respect to the whole of maxfamily(G,A,A),
but only with respect to its selected preferred subsets P (G,A,A). Ideally, in order to
resolve all conflicts, the priority ordering should narrow down the selected sets to
card(P (G,A,A)) = 1, but this generally requires a strict ordering of the norms in G.
The demand that all norms can be strictly ordered is itself subject of philosophical dis-
pute. Some moral requirements may be incomparable: this is Sartre’s paradox, where
the requirement that Sartre’s student stays with his ailing mother conflicts with the re-
quirement that the student joins the resistance against the German occupation [Sartre,
1946]. Other moral requirements may be of equal weight, e.g. two simultaneously ob-
tained obligations towards identical twins, of which only one can be fulfilled [Marcus,
1980]. The difficult part is then to define a mechanism that determines the preferred
maximal subsets by use of the given priorities between the norms. There have been
several proposals to this effect, not all of them successful, and the reader is referred to
the discussions in Boella and van der Torre [2003] and Hansen [2005b; 2007].

9 Descriptive dyadic obligations
Dyadic deontic operators, that formalize e.g. ‘x ought to be true under conditions a’
as O(x/a), were introduced over 50 years ago by G. H. von Wright [1956]. Their in-
troduction was due to Prior’s paradox of derived obligation: often a primary obligation
Ox is accompanied by a secondary, ‘contrary-to-duty’ obligation that pronounces y
(a sanction, a remedy) as obligatory if the primary obligation is violated. At the time,
the usual formalization of the secondary obligation would have been O(¬x→ y), but
given Ox and the axioms of standard deontic logic SDL, O(¬x→ y) is derivable for
any y. A bit later, Chisholm’s paradox showed that formalizing the secondary obli-
gation as ¬x → Oy produces similarly counterintuitive results. So to deal with such
contrary-to-duty conditions, the dyadic deontic operator O(x/a) was invented. For a
historical account the reader is referred to Hilpinen and McNamara’s chapter in the
Handbook of Deontic Logic and Normative Systems [Hilpinen and McNamara, 2013].

In Section 1.3 we have extensively discussed DSLD. The perhaps best-known se-
mantic characterization of dyadic deontic logic is B. Hansson’s [1969] system DSLD3,
axiomatized by Spohn [1975]. Hansson’s idea was that the circumstances (the condi-
tions a) are something which has actually happened (or will unavoidably happen) and
which cannot be changed afterwards. Ideal worlds in which ¬a is true are therefore
excluded. But some worlds may still be better than others, and there should then be
an obligation to make ‘the best out of the sad circumstances”. Consequently, Hansson
presents a possible worlds semantics in which all worlds are ordered by a preference
(betterness) relation. O(x/a) is then defined true if x is true in the best a-worlds.
Here, we intend to employ semantics that do not make use of any prohairetic better-
ness relation, but that model deontic operators with regard to given sets of norms and
facts.

Challenge 9 How to define dyadic deontic operators with regard to given sets of
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norms and facts?

Input/output logic assumes a set of (conditional) norms G, and a set of unalter-
able facts A. The facts A may describe a situation that is inconsistent with the out-
put out(G,A): suppose there is a primary norm (>, a) ∈ G and a secondary norm
(¬a, x) ∈ G, i.e. G = {(>, a), (¬a, x)}, and A = {¬a}. Though a ∈ out(G,A),
it makes no sense to describe a as obligatory since a cannot be realized any more in
the given situation—no crying over spilt milk. Rather, the output should include only
the consequent of the secondary obligation x—it is the best we can make out of these
circumstances. To do so, we return to the definitions of maxfamily(G,A,A) as the
set of all maximal subsets H ⊆ G such that out(H,A) ∪ A is consistent, and the
set out∩(G,A) as the intersection of all outputs from H ∈ maxfamily(G,A,A), i.e.
out∩(G,A) =

⋂
{out(H,A) | H ∈ maxfamily(G,A,A)}. We may then define:

G |= O(x/a) iff x ∈ out∩(G, {a})

Thus, relative to the set of norms G, O(x/a) is defined true if x is in the output under
a of all maximal sets H of norms such that their output under {a} is consistent with
a. In the example where G = {(>, a), (¬a, x)} we therefore obtain O(x/¬a) but
not O(a/¬a) as being true, i.e. only the consequent of the secondary obligation is
described as obligatory in conditions ¬a.

In the above definition, the antecedent a of the dyadic formula O(x/a) makes the
inputs explicit: the truth definition does not make use of any facts other than a. This
may be unwanted; one might consider an input set A of given facts, and employ the
antecedent a only to denote an additional, assumed fact. Still, the output should con-
tradict neither the given nor the assumed facts, and the output should include also the
normative consequences x of a norm (a, x) given the assumed fact a. This may be
realized by the following definition:

G,A |= O(x/a) iff x ∈ out∩(G,A ∪ {a})

So, relative to a set of norms G and a set of facts A, O(x, a) is defined true if x is in
the output under A ∪ {a} of all maximal sets H of norms such that their output under
A ∪ {a} is consistent with A ∪ {a}.

Hansson’s description of dyadic deontic operators as describing defeasible obliga-
tions that are subject to change when more specific, namely contrary-to-duty situations
emerge, may be the most prominent view, but it is by no means the only one. Earlier
authors like von Wright [1961; 1962] and Anderson [1959] have proposed more nor-
mal conditionals, which in particular support ‘strengthening of the antecedent’ SA
O(x/a) → O(x/a ∧ b). From an input/output perspective, such operators can be
accommodated by defining

G,A |= O(x/a) iff x ∈ out(G,A ∪ {a})

It is immediate that for all standard output operations out(+)
n this definition validates

SA. The properties of dyadic deontic operators that are, like the above, semantically
defined within the framework of input/output logic, have not been studied so far. The
theorems they validate will inevitably depend on what output operation is chosen, cf.
Hansen [2007] for some related conjectures.
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10 Permissive norms
In formal deontic logic, permission is studied less frequently than obligation. For a
long time, it was naively assumed that it can simply be taken as a dual of obligation,
just as possibility is the dual of necessity in modal logic. Permission is then defined
as the absence of an obligation to the contrary, and the modal operator P defined by
Px =def ¬O¬x. Today’s focus on obligations is not only in stark contrast how de-
ontic logic began, for when von Wright [1951b] started modern deontic logic in 1951,
it was the P -operator that he took as primitive, and defined obligation as an absence
of a permission to the contrary. Rather, more and more authors have come to realize
how subtle and multi-faceted the concept of permission is. Much energy was devoted
to solving the problem of ‘free choice permission’, where one may derive from the
statement that one is permitted to have a cup of tea or a cup of coffee that it is permit-
ted to have a cup of tea, and it is permitted to have a cup of coffee, or for short, that
P (x ∨ y) implies Px and Py (cf. Kamp [1973]). Von Wright, in his late work start-
ing with [von Wright, 1983], dropped the concept of inter-definability of obligations
and permissions altogether by introducing P -norms andO-norms, where one may call
something permitted only if it derives from the collective contents of some O-norms
and at most one P -norm. This concept of ‘strong permission’ introduced deontic
‘gaps’: whereas in standard deontic logic SDL, O¬x ∨ Px is a tautology, meaning
that any state of affairs is either forbidden or permitted, von Wright’s new theory
means that in the absence of explicit P -norms only what is obligatory is permitted,
and that nothing is permitted if also O-norms are missing. Perhaps most importantly,
Bulygin [1986] observed that an authoritative kind of permission must be used in the
context of multiple authorities and updating normative systems: if a higher authority
permits you to do something, a lower authority can no longer prohibit it. Summing
up, the understanding of permission is still in a less satisfactory state than the under-
standing of obligation and prohibition. Indeed, a whole chapter in the Handbook of
Deontic Logic and Normative Systems is devoted to the various forms of permission
[Hansson, 2013].

Challenge 10 How to distinguish various kinds of permissions and relate them to
obligations?

From the viewpoint of input/output logic, one may first try to define a concept
of negative permission in the line of the classic approach. Such a definition is the
following:

G,A |= P negx iff ¬x /∈ out(G,A)

So something is permitted by a code iff its negation is not obligatory according to
the code and in the given situation. As innocuous and standard as such a definition
seems, questions arise as to what output operation out may be used. Simple-minded
output out1 and basic output out2 produce counterintuitive results: consider a set of
norms G of which one norm (work, tax) demands that if I am employed then I have to
pay taxes. For the default situation A = {>} then P neg(a ∧ ¬x) is true, i.e. it is by
default permitted that I am employed and do not pay taxes. Stronger output operations
out3 and out4 that warrant reusable output exclude this result, but their use in deontic
reasoning is questionable for other reasons.

In contrast to a concept of negative permission, one may also define a concept of
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‘strong’ or ‘positive permission’. This requires a set P of explicit permissive norms,
just as G is a set of explicit obligations. As a first approximation, one may say that
something is positively permitted by a code iff the code explicitly presents it as such.
But this leaves a central logical question unanswered as to how explicitly given per-
missive and obligating norms may generate permissions that—in some sense—follow
from the explicitly given norms. Pursuing von Wright’s later approach, we may define:

G,P |= P stat(x/a) iff x ∈ out(G ∪ {(b, y)}, a) for some (b, y) ∈
P ∪ {(>,>)}

So there is a permission to realize x in conditions a if x is generated under these
conditions either by the norms in G alone, or the norms in G together with some
explicit permission (b, y) in P . We call this a ‘static’ version of strong permission. For
example, consider a set G consisting of the norm (work, tax), and a set P consisting
of the sole license (18y, vote) that permits all adults to take part in political elections.
Then all of the following are true: P stat(tax/work), P stat(vote/18y), P stat(tax/work∧
male) and also P stat(vote/¬work ∧ 18y) (so even unemployed adults are permitted to
vote).

Where negative permission is liberal, in the sense that anything is permitted that
does not conflict with ones obligations, the concept of static permission is quite strict,
as nothing is permitted that does not explicitly occur in the norms. In between, one
may define a concept of ‘dynamic permission’ that defines something as permitted
in some situation a if forbidding it for these conditions would prevent an agent from
making use of some explicit (static) permission. The formal definition reads:

G,P |= P dyn(x/a) iff ¬y ∈ out(G ∪ {(a,¬x)}, b) for some y and
conditions b such that G,P |= P stat(y/b)

Consider the above static permission P stat(vote/¬work ∧ 18y) that even the unem-
ployed adult populations is permitted to vote, generated by the sets P = {(18y, vote)}
and G = {(work, tax)}. We might also like to say, without reference to age, that
the unemployed are protected from being forbidden to vote, and in this sense are
permitted to vote, but P stat(vote/¬work) is not true. And we might like to say that
adults are protected from being forbidden to vote unless they are employed, and in
this sense are permitted to be both unemployed and take part in elections, but also
P stat(¬work ∧ vote/18y) is not true. Dynamic permissions allow us to express such
protections, and make both P dyn(vote/¬work) and P dyn(¬work ∧ vote/18y) true: if
either (¬work,¬vote) or (18y, (¬work → ¬vote)) were added to G we would obtain
¬vote as output in conditions ¬work ∧ 18y) in spite of the fact that, as we have seen,
G,P |= P stat(vote/¬work ∧ 18y).

The relation of permission and obligation can also be studied from a multi-agent
perspective. Think of two brother who are fighting for a toy or for a bike ride, and the
mother obliges the son who’s playing with the toy (or riding the bike) to permit his
brother to play as well.

There are, ultimately, a number of questions for all these concepts of permissions
that Makinson and van der Torre have further explored [Makinson and van der Torre,
2003a]. Other kinds of permissions have been discussed from an input/output perspec-
tive in the literature, too, for example permissions as exceptions of obligations [Boella
and van der Torre, 2003]. But it seems input/output logic is able to help clarify the
underlying concepts of permission better than traditional deontic semantics.
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11 Meaning postulates and intermediate concepts
To define a deontic operator of individual obligation seems straightforward if the norm
in question is an individual command or act of promising. For example, if you are the
addressee α of the following imperative sentence

(1) You, hand me that screwdriver, please.

and you consider the command valid, then what you ought to do is to hand the
screwdriver in question to the person β uttering the request. In terms of input/out-
put logic, let x be the proposition that α hands the screwdriver to β: with the set
of norms G = {(>, x)}, the set of facts A = {>}, and the truth definition Ox iff
x ∈ out(A,G): then we obtain that Ox is true, i.e. it is true that it ought to be that α
hands the screwdriver to β.

Norms that belong to a legal system are more complex, and thus more difficult to
reason about. Consider, for example

(2) An act of theft is punished by a prison sentence not exceeding 5 years or a
fine.

Things are again easy if you are a judge and you know that the accused in front of you
has committed an act of theft—then you ought to hand out a verdict that commits the
accused to pay a fine or to serve a prison sentence not exceeding 5 years. But how
does the judge arrive at the conclusion that an act of theft has been committed? ‘Theft’
is a legal term that is usually accompanied by a legal definition such as the following
one:

(3) Someone commits an act of theft if that person has taken a movable object
from the possession of another person into his own possession with the
intention to own it, and if the act occurred without the consent of the other
person or some other legal authorization.

It is noteworthy that (3) is not a norm in the strict sense—it does not prescribe or allow
a behavior—but rather a stipulative definition, or, in more general terms, a meaning
postulate that constitutes the legal meaning of theft. Such sentences are often part of
the legal code. They share with norms the property of being neither true nor false:
stipulative definitions are neither empirical statements nor descriptive statements. In
this sense we say that they are neither true nor false. However, they are held to be true
by definition. The significance of (3) is that it decomposes the complex legal term
‘theft’ into more basic legal concepts. These concepts are again the subject of further
meaning postulates, among which may be the following:

(4) A person in the sense of the law is a human being that has been born.
(5) A movable object is any physical object that is not a person or a piece of

land.
(6) A movable object is in the possession of a person if that person is able to

control the uses and the location of the object.
(7) The owner of an object is—within the limits of the law—entitled to do

with it whatever he wants, namely keep it, use it, transfer possession or
ownership of the object to another person, and destroy or abandon it.

Not all of definitions (4)-(7) may be found in the legal statutes, though they may be
viewed as belonging to the normative system by virtue of having been accepted in
legal theory and judicial reasoning. They constitute ‘intermediate concepts’: they link
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legal terms (person, movable object, possession etc.) to words describing natural facts
(human being, born, piece of land, keep an object etc.).

Any proper representation of legal norms must include means of representing mean-
ing postulates that define legal terms, decompose legal terms into more basic legal
terms, or serve as intermediate concepts that link legal terms to terms that describe
natural facts. But for deontic logic, with its standard possible worlds semantics, a
comprehensive solution to the problem of representing meaning postulates is so far
lacking (cf. Lindahl [1997]).

Challenge 11 How can meaning postulates and intermediate terms be modeled in
semantics for deontic logic reasoning?

The representation of intermediate concepts is of particular interest, since such con-
cepts arguably reduce the number of implications required for the transition from nat-
ural facts to legal consequences and thus serve an economy of expression (cf. Lindahl
and Odelstad [2006] and their recent overview chapter [Lindahl and Odelstad, 2013]).
Lindahl and Odelstad use the term ‘ownership’ as an example to argue as follows: let
F1, ..., Fp be descriptions of some situations in which a person α acquires ownership
of an object γ, e.g. by acquiring it from some other person β, finding it, building
it from owned materials, etc., and let C1, ..., Cn be among the legal consequences
of α’s ownership of γ, e.g. freedom to use the object, rights to compensation when
the object is damaged, obligations to maintain the object or pay taxes for it etc. To
express that each fact Fi has the consequence Cj , p × n implications are required.
The introduction of the term Ownership(x, y) reduces the number of required impli-
cations to p+n: there are p implications that link the facts F1, ..., Fp to the legal term
Ownership(x, y), and n implications that link the legal term Ownership(x, y) to each
of the legal consequences C1, ..., Cn. The argument obviously does not apply to all
cases: one implication (F1 ∨ ... ∨ Fp) → (C1 ∧ ... ∧ Cn) may often be sufficient
to represent the case that a variety of facts F1, ..., Fp has the same multitude of legal
consequences C1, ..., Cn. However, things may be different when norms that link a
number of factual descriptions to the same legal consequences stem from different
normative sources, may come into conflict with other norms, can be overridden by
norms of higher priority, or be subject to individual exemption by norms that grant
freedoms or licenses: in these cases, the norms must be represented individually. So it
seems worthwhile to consider ways to incorporate intermediate concepts into a formal
semantics for deontic logic.

In an input/output framework, a first step could be to employ a separate set T of
theoretical terms, namely meaning postulates, alongside the set G of norms. Let T
consists of intermediates of the form (a, x), where a is a factual sentence (e.g. that β
is in possession of γ, and that α and β agreed that α should have γ, and that β hands
γ to α), and x states that some legal term obtains (e.g. that α is now owner of γ). To
derive outputs from the set of norms G, one may then use A ∪ out(T,A) as input,
i.e. the factual descriptions together with the legal statements that obtain given the
intermediates T and the facts A.

It may be of particular interest to see that such a set of intermediates may help
resolve possible conflicts in the law. Let (>,¬dog) be a statute that forbids dogs on
the premises, but let there also be a higher order principle that no blind person may
be required to give up his or her guide dog. Of course the conflict may be solved
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by modifying the statute (e.g. add a condition that the dog in question is not a guide
dog), but then modifying a statute is usually not something a judge, faced with such
a norm, is allowed to do: the judge’s duty is solely to consider the statute, interpret it
according to the known or supposed will of the norm-giver, and apply it to the given
facts. The judge may then come to the conclusion that a fair and considerate norm-
giver would not have meant the statute to apply to guide dogs, i.e. the term “dog” in
the statute is a theoretical term whose extension is smaller than the natural term. So the
statute must be re-interpreted as reading (>,¬tdog) with the additional intermediate
(dog ∧¬guidedog, tdog) ∈ T , and thus no conflict arises for the case of blind persons
that want to keep their guide dog. While this seems to be a rather natural view of how
judicial conflict resolution works (the example is taken from an actual court case), the
exact process of creating and modifying theoretical terms in order to resolve conflicts
must be left to further study.

12 Constitutive norms
Constitutive norms like counts-as conditionals are rules that create the possibility of
or define an activity. For example, according to Searle [1995], the activity of playing
chess is constituted by action in accordance with these rules. Chess has no existence
apart from these rules. The institutions of marriage, money, and promising are like the
institutions of baseball and chess in that they are systems of such constitutive rules or
conventions. They have been identified as the key mechanism to normative reasoning
in dynamic and uncertain environments, for example to realize agent communication,
electronic contracting, dynamics of organizations, see, e.g., Boella and van der Torre
[2006a].

Challenge 12 How to define counts-as conditionals and relate them to obligations
and permissions?

For Jones and Sergot [1996], the counts-as relation expresses the fact that a state of
affairs or an action of an agent “is a sufficient condition to guarantee that the institution
creates some (usually normative) state of affairs”. They formalize this introducing a
conditional connective⇒s to express the “counts-as” connection holding in the con-
text of an institution s. They characterize the logic of⇒s as a conditional logic, with
axioms for agglomeration ((x ⇒s y) & (x ⇒s z)) ⊃ (x ⇒s (y ∧ z)), left disjunction
((x ⇒s z) & (y ⇒s z)) ⊃ ((x ∨ y) ⇒s z) and transitivity ((x ⇒s y) & (y ⇒s z)) ⊃
(x⇒sz). The flat fragment can be phrased as an input/output logic as follows [Boella
and van der Torre, 2006b].

DEFINITION 11 Let L be a propositional action logic with ` the related notion of
derivability andCn the related consequence operationCn(x) = {y | x ` y}. LetCA
be a set of pairs of L, {(x1, y1), . . . , (xn, yn)}, read as ‘x1 counts as y1’, etc. More-
over, consider the following proof rules conjunction for the output (AND), disjunction
of the input (OR), and transitivity (T) defined as follows:

(x, y1), (x, y2)

(x, y1 ∧ y2)
AND

(x1, y), (x2, y)

(x1 ∨ x2, y)
OR

(x, y1), (y1, y2)

(x, y2)
T

For an institution s, the counts-as output operator outCA is defined as the closure
operator on the set CA using the rules above together with a tacit rule that allows re-
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placement of logical equivalents in input and output. We write (x, y) ∈ outCA(CA, s).
Moreover, for X ⊆ L, we write y ∈ outCA(CA, s,X) if there is a finite X ′ ⊆ X such
that (∧X ′, y) ∈ outCA(CA, s), indicating that the output y is derived by the output
operator for the input X , given the counts-as conditionals CA of institution s. We
also write outCA(CA, s, x) for outCA(CA, s, {x}).

EXAMPLE 12 If for some institution s we have CA = {(a, x), (x, y)}, then we have
outCA(CA, s, a) = {x, y}.

The recognition that statements like “X counts as Y in context c” may have dif-
ferent meanings in different situations lead Grossi et al. [2006; 2008] to propose a
family of operators capturing four notions of counts-as conditionals. Starting from a
simple modal logic of contexts, several logics are used to define the family of opera-
tors. All logics have been proven to be sound and strongly complete. By using a logic
of acceptance, Lorini et al. [Lorini and Longin, 2008; Lorini et al., 2009] investigate
another aspect of constitutive norms, that is, the fact that agents of a society need to
accept such norms in order for them to be in force.

Considering the legal practice, Governatori and Rotolo [2008] propose a study of
constitutive norms within the framework of defeasible logic. This allows them to
capture de defeasibility of counts-as conditionals: even in presence of a constitutive
norms like “X counts as Y in context c”, the inference of Y from X can be blocked
in presence of exceptions.

There is presently no consensus on the logic of counts-as conditionals, probably
due to the fact that the concept is not studied in depth yet. For example, the adoption
of the transitivity rule T for their logic is criticized by Artosi et al. [2004]. Jones and
Sergot say that “we have been unable to produce any counter-instances [of transitiv-
ity], and we are inclined to accept it”. Neither of these authors considers replacing
transitivity by cumulative transitivity (CT): ((x⇒s y)&(x ∧ y ⇒s z))⊃ (x ⇒s z),
that characterizes operations out3, out4 of input/output logic. For a more comprehen-
sive overview on constitutive norms, the reader is referred to the chapter by Grossi
and Jones [2013].

The main issue in defining constitutive norms like counts-as conditionals is defining
their relation to regulative norms like obligations and permissions. Boella and van der
Torre [2006b] use the notion of a logical architecture combining several logics into a
more complex logical system, also called logical input/output nets (or lions).

The notion of logical architecture naturally extends the input/output logic frame-
work, since each input/output logic can be seen as the description of a ‘black box’.
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In the above figure there are boxes for counts-as conditionals (CA), institutional con-
straints (IC), obligating norms (O) and explicit permissions (P). The norm base (NB)
component contains sets of norms or rules, which are used in the other components
to generate the component’s output from its input. The figure shows that the counts-
as conditionals are combined with the obligations and permissions using iteration,
that is, the counts-as conditionals produce institutional facts, which are input for the
norms. Roughly, if we write out(CA,G,A) for the output of counts-as conditionals
together with obligations, out(G,A) for obligations as before, then out(CA,G,A) =
out(G, outCA(CA,A)).

There are many open issues concerning constitutive norms, since their logical anal-
ysis has not attracted much attention yet. How to distinguish among various kinds of
constitutive norms? How are constitutive norms (x counts as y) distinguished from
classifications (x is a y)? What is the relation with intermediate concepts?

13 Revision of a set of norms
In general, a code G of regulations is not static, but changes over time. For example, a
legislative body may want to introduce new norms or to eliminate some existing ones.
A different (but related) type of change is the one induced by the fusion of two (or
more) codes—a topic addressed in the next section. A related but different issue not
addressed here is that of how norms come about, how they propagate in the society,
and how they change over time (cf. the chapter by Frantz and Pigozzi [forthcoming]).

Little work exists on the logic of the revision of a set of norms. To the best of
our knowledge, Alchourrón and Makinson [1981; 1982] were the first to study the
changes of a legal code. The addition of a new norm n causes an enlargement of the
code, consisting of the new norm plus all the regulations that can be derived from n.
Alchourrón and Makinson distinguish two other types of change. When the new norm
is incoherent with the existing ones, we have an amendment of the code: in order to
coherently add the new regulation, we need to reject those norms that conflict with n.
Finally, derogation is the elimination of a norm n together with whatever part of G
implies n.

Alchourrón and Makinson [1981] assume a “hierarchy of regulations”. A few years
earlier, Alchourrón and Bulygin [1981] already considered the Normenordnung and
the consequences of gaps in this ordering. For example, in jurisprudence the existence
of precedents is an established method to determine the ordering among norms.

However, although Alchourrón and Makinson aim at defining change operators for
a set of norms of some legal system, the only condition they impose on G is that it is a
non-empty and finite set of propositions. In other words, a norm x is taken to be simply
a formula in propositional logic. Thus, they suggest that “the same concepts and
techniques may be taken up in other areas, wherever problems akin to inconsistency
and derogation arise” ([Alchourrón and Makinson, 1981], p. 147).

This explains how their work (together with Gärdenfors’s analysis of counterfac-
tuals) could ground that research area that is now known as belief revision. Belief
revision is the formal study of how a set of propositions changes in view of new in-
formation that may be inconsistent with the existing beliefs. Expansion, revision and
contraction are the three belief change operations that Alchourrón, Gärdenfors and
Makinson identified in their approach (called AGM) and that have a clear correspon-
dence with the changes on a system of norms we mentioned above.
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Challenge 13 How to revise a set of regulations or obligations?

Recently, AGM theory has been reconsidered as a framework for norm change.
However, beside syntactic approaches where norm change is performed directly on
the set of norms (as in AGM), there are also proposals that appeared in the dynamic
logic literature and that could be described as semantic approaches.

One example of this is the dynamic context logic proposed by Aucher et al. [2009],
where norm change is a form of model update. Point of depart is a dynamic variant
of the logic of context used to study counts-as conditionals introduced by Grossi et
al. [2008]. Context expansion and context contraction operators are defined. Con-
text expansion and context contraction represent the promulgation and the derogation
of constitutive norms respectively. One of the advantages of this approach is that it
can be used for the formal specification and verification of computational models of
interactions based on norms.

A formal account clearly rooted in the legal practice is the one proposed by Gov-
ernatori and Rotolo [2010]. In particular, the removal of norms can be performed by
annulment or by abrogation. The crucial difference between these two mechanisms
is that annulment removes a norm from the code and all its effects (past and future)
are cancelled. Abrogation, on the other hand, does not operate retroactively, and so it
leaves the effects of an abrogated norm holding in the past.

It should then be clear that, in order to capture the difference between annulment
and abrogation, the temporal dimension is pivotal. For this reason, Governatori and
Rotolo’s first attempt is to use theory revision in Defeasible Logic without temporal
reasoning is unsuccessful as it cannot capture retroactivity. They the add a temporal
dimension to Defeasible Logic to keep track of the changes in a normative system
and to deal with retroactivity. Norms are represented along two temporal dimensions:
the time of validity (when the norm enters in the normative system) and the time of
effectiveness (when the norm can produce legal effects). This leads to keep multiple
versions of a normative system are needed. If Governatori and Rotolo [2010] manage
to capture the temporal dimension that plays a role in legal modifications, the resulting
formalisation is rather complex.

To overcome such complexity without losing hold on the legal practice, Governa-
tori et al. [2013] explored three AGM-like contraction operators to remove rules, add
exceptions and revise rule priorities.

Boella et al. [2016] also use AGM theory, where propositional formulas are re-
placed by pairs of propositional formulas to represent rules, and the classical con-
sequence operator Cn is replaced by an input/output logic. Within this framework,
AGM contraction and revision of rules are studied. It is shown that results from belief
base dynamics can be transferred to rule base dynamics. However, difficulties arise
in the transfer of AGM theory change to rule change. In particular, it is shown that
the six basic postulates of AGM contraction are consistent only for some input/output
logics but not for others. Furthermore, it is shown how AGM rule revision can be
defined in terms of AGM rule contraction using the Levi identity.

When we turn to a proper representation of norms, as in the input/output logic
framework, the AGM principles thus prove to be too general to deal with the revi-
sion of a normative system. For example, one difference between revising a set of
beliefs and revising a set of regulations is the following: when a new norm is added,
coherence may be restored by modifying some of the existing norms, not necessarily
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retracting some of them. The following example will clarify this point:

Example. If we have {(>, a), (a, b)} and we have that c is an exception to the obliga-
tion to do b, then we need to retract (c, b). Two possible solutions are {(¬c, a), (a, b)}
or {(>, a), (a ∧ ¬c, b)}.

Another work that combines input/output logic and AGM theory to propose an ab-
stract model of norm change is that by Stolpe [2010]. Contraction is used to represent
the derogation of a norm, that is, the elimination of a norm together with whatever
part of the code that implies that norm. This is rendered as an AGM partial meet con-
traction with a selection function for a set of norms in input/output logic. Stolpe gives
a complete AGM-style characterisation of the derogation operation. Revision, on the
other hand, serves to study the amendment of a code, which happens when we wish to
add a new norm which is incoherent with the existing ones. Amendment is defined as
a norm revision obtained via the Levi identity.

Future research must investigate whether general patterns in the revision and con-
traction of norms exist and how to formalize them. Another open question is whether
other logics can offer a general framework for modelling norm change. Finally, more
case studies showing that formally defined operators serve for a conceptual analysis
of normative change are needed.

14 Merging sets of norms
We now turn to another type of change, that is the aggregation of regulations. This
problem has been only recently addressed in the literature and therefore the findings
are still incomplete.

The first noticeable thing is the lack of general agreement about where the norms
that are to be aggregated come from:

1. some works focus on the merging of conflicting norms that belong to the same
normative system [Cholvy and Cuppens, 1999];

2. other works assume that the regulations to be fused belong to different systems
[Booth et al., 2006]; and finally

3. some authors provide patterns of possible rules to be combined, and consider
both cases 1. and 2. above [Grégoire, 2004].

The first situation seems to be more a matter of coherence of the whole system
rather than a genuine problem of fusion of norms. However, such approaches have the
merit to reveal the tight connections between fusion of norms, non-monotonic logics
and defeasible deontic reasoning. The initial motivation for the study of belief revision
was the ambition to model the revision of a set of regulations. In contrast to this, the
generalization of belief revision to belief merging is primarily dictated by the goal
to tackle the problem—arising in computer science—of combining information from
different sources. The pieces of information are represented in a formal language and
the aim is to merge them in an (ideally) unique knowledge base. See Konieczny and
Grégoire [2006] for a survey on logic-based approaches to information fusion.
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Challenge 14 Can the belief merging framework deal with the problem of merging
sets of norms?

If, following Alchourrón and Makinson, we assume that norms are unconditional,
then we could expect to use standard merging operators to fuse sets of norms. Yet once
we consider conditional norms, as in the input/output logic framework, problems arise
again. Moreover, most of the fusion procedures proposed in the literature seem to be
inadequate for the scope.

To see why this is the case, we need to explain the merging approach in a few words.
Let us assume that we have a finite number of belief bases K1,K2, . . . ,Kn to merge.
IC is the belief base whose elements are the integrity constraints (i.e., any condition
that we want the final outcome to satisfy). Given a multi-set E = {K1,K2, . . . ,Kn}
and IC, a merging operator F is a function that assigns a belief base to E and IC.
Let FIC(E) be the resulting collective base from the IC fusion on E.

Fusion operators come in two types: model-based and syntax-based. The idea of
a model-based fusion operator is that models of FIC(E) are models of IC, which
are preferred according to some criterion depending on E. Usually the preference
information takes the form of a total pre-order on the interpretations induced by a
notion of distance d(w,E) between an interpretation w and E.

Syntax-based merging operators are usually based on the selection of some con-
sistent subsets of

⋃
E [Baral et al., 1992; Konieczny, 2000]. The bases Ki in E can

be inconsistent and the result does not depend on the distribution of the wffs over
the members of the group. Konieczny [2000] refers the term ‘combination’ to the
syntax-based fusion operators to distinguish them from the model-based approaches.

Finally, the model-based aggregation operators for bases of equally reliable sources
can be of two sorts. On the one hand, there are majoritarian operators that are based
on a principle of distance-minimization [Lin and Mendelzon, 1996]. On the other
hand, there are egalitarian operators, which look at the distribution of the distances in
E [Konieczny, 1999]. These two types of merging try to capture two intuitions that
often guide the aggregation of individual preferences into a social one. One option is
to let the majority decide the collective outcome, and the other possibility is to equally
distribute the individual dissatisfaction.

Obviously, these intuitions may well serve in the aggregation of individual knowl-
edge bases or individual preferences, but have nothing to say when we try to model
the fusion of sets of norms. Hence, for this purpose, syntactic merging operators may
be more appealing. Nevertheless, the selection of a coherent subset depends on addi-
tional information like an order of priority over the norms to be merged, or some other
meta-principles.

The reader may wonder about the relationships between merging sets of norms and
the revision of a normative system. In particular, one may speculate that Challenge 14
is not independent of Challenge 13, and that a positive answer to Challenge 14 implies
an answer to 13. This is indeed an interesting question, but we believe that the answer
to this question is not straight-forward. Konieczny and Pino Pérez [2011] have shown
that there are close links between belief merging operators and belief revision ones. In
particular, they show that an IC merging operator is an extension of an AGM revision
operator. However, as we have seen, it is not clear whether IC merging operators could
be properly used to study the merging of norms.

An alternative approach is to generalize existing belief change operators to merging
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rules. This is the approach followed by Booth et al. [2006], where merging operators
defined using a consolidation operation and possibilistic logic are applied to the ag-
gregation of conditional norms in an input/output logic framework. However, at this
preliminary stage, it is not clear whether such methodology is more fruitful for testing
the flexibility of existing operators to tackle other problems than the ones they were
created for, or if this approach can really shed some light on the new riddle at hand.

Grégoire [2004] takes a different perspective. Here, real examples from the Belgian-
French bilateral agreement preventing double taxation are considered. These are fitted
into a taxonomy of the most common legal rules with exceptions, and the combina-
tion of each pair of norms is analyzed. Moreover, both the situations in which the
regulations come from the same system and those in which they come from different
ones are contemplated, and some general principles are derived. Finally, a merging
operator for rules with abnormality propositions is proposed. A limit of Grégoire’s
proposal is that only the aggregation of rules with the same consequence is taken into
account and, in our opinion, this neglects other sorts of conflicts that may arise, as we
see now.

The call for non-monotonic reasoning in the treatment of contradictions is also
found in Cholvy and Cuppens’ [1999], where a method for merging norms is pre-
sented. The proposal assumes an order of priority among the norms to be merged
and this order is used to resolve the incoherence. Even though this is quite a strong
assumption, Cholvy and Cuppens’s work takes into consideration a broader type of
incoherence than Grégoire [2004]. In their example, an organization that works with
secret documents has two rules. R1 is “It is obligatory that any document containing
some secret information is kept in a safe, when nobody is using this document”. R2

is “If nobody has used a given document for five years, then it is obligatory to destroy
this document by burning it”. As they observe, in order to deduce that the two rules
are conflicting, we need to introduce the constraint that keeping a document and de-
stroying it are contradictory actions. That is, the notion of coherence between norms
can involve information not given by any norms.

15 Games, norms and obligations
Deontic logic has been developed as a logic for practical reasoning, and normative
systems are used to guide, control, or regulate desired system behaviour. This raises a
number of questions. For example, how are deontic logic and the logic of normative
systems related to alternative decision and agent interaction models such as BDI the-
ory, decision theory, game theory, or social choice theory? Moreover, how can deontic
logic be extended with cognitive concepts such as beliefs, desires, goals, intentions,
and commitments? Though there have been a few efforts to base deontic logic with
a logic of knowledge to define knowledge based obligation [Pacuit et al., ], or to ex-
tend deontic logic with BDI concepts [Broersen et al., 2003], we believe that such
extensions have not been fully explored yet.

Maybe the most fundamental challenge has become apparent in this chapter. We
discussed how deontic STIT logics are based on interactions of agents in games, and
we discussed how norm based deontic logics have been developed on the basis of
detachment. However, these two approaches have not been combined yet. So this is
our final challenge in this chapter.
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Challenge 15 How can deontic logic be based on both norm and detachment, as well
as decision and game theory?

Norms and games have been related before. Lewis [1979] introduced master-slave
games and Bulygin [1986] introduced Rex-minister-subject games in a discussion on
the role of permissive norms in normative systems and deontic logic. Moreover, de-
ontic logic has been used as an element in games to partially influence the behavior
of individual agents [Boella and van der Torre, 2007]. Van der Torre [2010] proposes
games as the foundation of deontic logic. He illustrate the notion of a violation game
using a metaphor from daily life. A person faces the parental problem of letting the
son go to bed in time, or letting him make his homework. The mother is obliging her
son to eat his vegetables. As illustrated in the first drawing of Figure 15, the son did
what his mother asked him to do.

16 

Violation Game 1: Conformance 
You must empty 

your plate! 

Yes, mum! 

Deontic logic 
Violation games 
Acknowledgments 

17 

Violation Games: Problem 

Empty 
your plate! 

NO! 

Deontic logic 
Violation games 
Acknowledgments 
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Violation Game 2: Incentives 
Would you  

like a dessert? 
OK! 

Deontic logic 
Violation games 
Acknowledgments 

19 

Violation Games: Problem 

Would you  
like a dessert? 

NO! 

Deontic logic 
Violation games 
Acknowledgments 

20 

Violation Game 3: Negotiation 

Yes! 

Deontic logic 
Violation games 
Acknowledgments 

Figure 5. Conformance, violation, incentive, violation, negotiation (Drawings by Eg-
berdien van der Torre), from [van der Torre, 2010]

However, in the second drawing his behavior has changed. The son does not like
vegetables, and when the parents tell the boy to eat his vegetables, he just says “No!”
At the third drawing, when the son’s desire not to eat vegetables became stronger than
his motivation to obey his parents, the parents adapted their strategy and introduced
the use of incentives. They told their son, “if you empty your plate you will get a
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dessert”, or sometimes, “if you don’t finish your plate, you don’t get a dessert.” The
boy has a desire to eat a dessert, and this desire is stronger than the desire not to eat
vegetables, so he is eating his vegetables again. However, after some time we reach
the fourth figure where the incentive no longer works. The boy starts to protest and to
negotiate. In those cases, the parents sometimes decide that the son will get his dessert
even without eating his vegetables, for example, because the child still has eaten at
least some of them, or because it is his birthday, or simply because they are not in the
mood to argue. As visualized in the fifth figure, this makes the boy very happy. It is
precisely this aspect that characterizes a violation game. The violation does not follow
necessarily from the norm, but is subject to exceptions and negotiation.

Figure 15 models this example by a standard extensive game tree. Let’s look first
at one moment in time. The child decides first whether to eat his vegetables or not.
But in this decision, he takes the response of his parents into account. In other words,
he has a model of how the parents will respond to his behavior. In the deontic logic
we propose here, based on a violation game, it is obligatory to empty the plate when
the boy expects that not eating his vegetables leads to violation, not when a violation
logically follows. By the way, we identify the recognition of violation and the sanction
in the example for illustrative purposes, in reality usually two distinct steps can be
distinguished.

21 

O(       ) = if            , then          is expected 

Logic of Violation Games 

Ox = E (¬x →V) 
Deontic logic 
Violation games 
Acknowledgments Figure 6. Expectation, from [van der Torre, 2010]

The general definition of obligation based on violation games extends this basic
idea to behavior over periods of time. Let’s consider the three phases in the example.
Borrowing from terminology from classical game theory, we say that it is obligatory to
eat the vegetables, when not eating them and the strategy that this leads to a violation,
is an equilibrium. In the first phase in which the son eats his vegetables, the violation
is only implicit since it does not occur. In the second phase not eating the vegetables is
identified with the absence of the dessert. In the third phase, the boy may sometimes
eat his vegetables, and sometimes not. As long as the norm is in force, he will still
believe to be sanctioned most of the time when he does not eat his vegetables. When
the sanction is not applied most of the time we have reached a fourth phase, in which
we say that the norm is no longer in force.

Summarizing, norms are rules defining a violation game.
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22 

O(        ) =             with          is equilibrium 

Logic of Violation Games 

Deontic logic 
Violation games 
Acknowledgments Ox = stable (¬x : V) 

1. Conformance 2. Incentives 3. Negotiation 

V 

Figure 7. Equilibrium, from [van der Torre, 2010]

DEFINITION 13 (Violation games [van der Torre, 2010]) Violation games are social
interactions among agents to determine whether violations have occurred, and which
sanctions will be imposed for such violations. A normative system is a specification of
violation games.

Since norms do not have truth values, we cannot say that two normative systems
are logically equivalent, or that a normative system implies a norm. Therefore it has
been proposed to take equivalence of normative systems as the fundamental principle
of deontic logic. Implication is then replaced by acceptance and redundancy, which
are defined in terms of norm equivalence: a norm is accepted by a normative system if
adding it to the normative system leads to an equivalent normative system, and a norm
is redundant in a normative system if removing it from the normative system leads to
an equivalent normative system. The fundamental notion of equivalence of normative
systems can be defined in terms of violation games.

DEFINITION 14 (Equivalence of normative systems [van der Torre, 2010]) Two nor-
mative systems are equivalent if and only if they define the same set of violation games.

And finally, we can now give a more precise definition of an autonomous system.
Remember that auto means self, and nomos means norm.

DEFINITION 15 (Autonomy [van der Torre, 2010]) A system is autonomous if and
only if it can play violation games.

Violation games are the basis of normative reasoning and deontic logic, but more
complex games must be considered too. Consider for example the following situation.
If a child is in the water and there is one bystander, chances are that the bystander will
jump into the water and save the child. However, if there are one hundred bystanders,
chances are that no-one jumps in the water and the child will drown. How to reason
about such bystander effects?

Van der Torre suggests that an extension of violation games, called norm creation
games [Boella and van der Torre, 2007], may be used to analyze the situation. An
agent reasons as follows. What is the explicit norm I would like to adopt for such
situations? Clearly, if I would be in the water and I could not swim, or it is my child
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drowning in the water, then I would like prefer that someone would jump in the water.
To be precise, I would accept a norm that in such cases, the norm for each individual
would be to jump into the water. Consequently, one should act according to this norm,
and everyone should jump into the water. Norm creation games can be used to give a
more general definition of a normative system.

DEFINITION 16 (Norm creation games [van der Torre, 2010]) Norm creation games
are social interactions among agents to determine which norms are in force, whether
norm violations have occurred, and which sanctions will be imposed for such viola-
tions. A normative system is a specification of norm creation games.

There are many details to be further discussed here. For example, if there is a way
to discriminate among the people and it may be assumed that all people would follow
this discrimination, then only some people have to jump into the water (the men, the
good swimmers if they can be identified, the tall people, and so on). In general, and as
common in legal reasoning, the more that is known about the situation, the more can
be said about the protocol which leads to the norm.

For the semantics of the new deontic logic founded on violation games, one needs
a way to derive obligations from norms, as in the iterative detachment approach, or
input/output logic. The extension now is to represent the agents and their games into
the semantic structures, and derive the norms from that using game theoretic meth-
ods. As the norm creation game illustrates, also protocols for norm creation must be
represented to model more complex games.

The language of the new deontic logic founded on violation games will be richer
than most of the deontic logics studied thus far. There will be formal statements
referring to the regulative, permissive and constitutive norms, as in the input/output
logic framework, but there will also be an explicit representation of the games the
agents are playing. Many choices are possible here, and the area of game theory will
lead the way.

We need other approaches that represent norms and obligations at the same time,
since deontic logic founded on violation games has to built on it. We also also have to
study time, actions, mental modalities, permissions and constitutive norms, since they
all play a role in violation games. We also need a precise understanding of Anderson’s
idea of violation conditions which do not necessarily lead to sanctions, but to the more
abstract notion of “a bad state,” i.e. a state in which something bad has happened.
Whereas many of these deontic problems have been studied in isolation in the deontic
logic literature, I believe that violation games will work as a metaphor to bring these
problems together, and study their interdependencies.

16 Summary
The aim of this chapter is to introduce readers of the handbook to the area of deontic
logic and its challenges. The interested reader is advised to download the handbook
of deontic logic and normative systems, and should not take our chapter only as its
guidance. In particular, in this chapter we have not gone into the formal aspects of
deontic logic. If one considers only its formalisms, it is difficult to understand the area.
Deontic logicicians have developed monadic modal logics, non-monotonic ones, rule
based systems, and much more. The formalisms developed in deontic logic have also
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been adopted by a wider logic community, in particular the preference based deontic
logics have been adopted in many areas [Makinson, 1993].

One cannot understand the area of deontic logic without considering the problems
which led to its formalisms. As far as open problems are concerned, in the context
of the handbook this concerns mainly the problems of multiagent deontic logic and
problems related to normative systems. We have addressed the following challenges.

How to reconstruct the history of traditional deontic logic as a challenge to deal
with contrary to duty reasoning, violations and preference (Challenge 1)?

What are the challenges in game theoretic approach to normative reasoning (Sec-
tion 2), which is based on non-deterministic actions (Challenge 2), moral luck (Chal-
lenge 3) and procrastination (Challenge 4)?

How to reconstruct the history of modern deontic logic as a challenge to deal with
Jørgensen’s dilemma and detachment (Challenge 5), and more generally to bridge the
tradition of normative system with the tradition of modal deontic logic?

What is the challenge in multi agent detachment of obligations from norms? For
example, when detaching obligations from norms, when do agents assume that other
agents comply with their norms (Challenge 6)? In game theory, agents assume that
other agents are rational in the sense of acting in their best interest. Analogously,
multiagent deontic logic raises the question when agents assume that other agents
comply with their norms. For answering the question, we assume that every norm is
directed towards a single agent, and that the normative system does not change.

How do norm based semantics handle the traditional challenges in deontic logic?
These problems are when a set of norms may be termed ‘coherent’ (Challenge 7),
how to deal with normative conflicts (Challenge 8), how to interpret dyadic deontic
operators that formalize ‘it ought to be that x on conditions α’ as O(x/α) (Chal-
lenge 9), how various concepts of permission can be accommodated (Challenge 10),
how meaning postulates and counts-as conditionals can be taken into account (Chal-
lenge 11 and 12), and how sets of norms may be revised and merged (Challenge 13
and 14).

Finally, how can the two approaches of game based deontic logic and norm based
deontic logic be combined? (Challenge 15)
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[Ågotnes et al., 2010] Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Robust normative

systems and a logic of norm compliance. Logic Journal of the IGPL, 18(1):4–30, 2010.
[Alchourrón and Bulygin, 1981] C. E. Alchourrón and E. Bulygin. The expressive conception of norms.

In R. Hilpinen, editor, New Studies in Deontic Logic, pages pp 95–124. Reidel, Dordrecht, 1981.
[Alchourrón and Makinson, 1981] C. E. Alchourrón and D. Makinson. Hierarchies of regulations and

their logic. In R. Hilpinen, editor, New Studies in Deontic Logic, pages 125–148. Reidel, Dordrecht,
1981.

[Alchourrón and Makinson, 1982] C. E. Alchourrón and D. Makinson. On the logic of theory change:
Contraction functions and their associated revision functions. Theoria, 48:14–37, 1982.

[Anderson, 1959] A. R. Anderson. On the logic of commitment. Philosophical Studies, 19:23–27, 1959.

DRAFT



Multiagent Deontic Logic and its Challenges from a Normative Systems Perspective25 47

[Andrighetto et al., 2013] G. Andrighetto, G. Governatori, P. Noriega, and L. van der Torre, editors. Nor-
mative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2013.
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[Castañeda, 1981] H-N Castañeda. The paradoxes of deontic logic: The simplest solution to all of them
in one fell swoop. In R. Hilpinen, editor, New Studies in Deontic Logic: Norms, Actions, and the
Foundations of Ethics, pages 37–85. Springer Netherlands, Dordrecht, 1981.
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