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Abstract

In this paper we compare Beliefs-Desire-Intention sys-
tems (BDI systems) with Qualitative Decision Theory
(QDT). Our analysis based on classical decision theory
illustrates several issues where one area may profit from
research in the other area. BDI has studied how inten-
tions link subsequent decisions, whereas QDT has stud-
ied methods to calculate candidate goals from desires,
and how to derive intentions from goals. We also dis-
cuss the role of goals and norms in both approaches.

Introduction
In recent years the interest in models of decision making
for autonomous agents has increased tremendously. Dif-
ferent proposals have been made, rooted in different re-
search traditions and with different objectives. We are in-
terested in the relation between two approaches to deci-
sion making. The first is based on an abstract model of
the mental attitudes of an agent: beliefs, desires and in-
tentions (BDI) (Bratman 1987; Rao & Georgeff 1991b;
Cohen & Levesque 1990). The second is a qualitative exten-
sion of decision theory (QDT) (Pearl 1993; Boutilier 1994).
Are BDI and QDT alternative solutions to the same prob-
lem, or are they complementary? In this paper we want to
compare the two approaches, and find out what they can con-
tribute to each other.

Both approaches criticize classical decision theory, which
will therefore be our starting point in the comparison. Natu-
rally, the discussion has to be superficial and cannot do jus-
tice to the subtleties defined in each approach. We there-
fore urge the reader to read the original papers we dis-
cuss. To complicate the question, each approach has dif-
ferent versions, with different objectives. In particular, there
is a computational BDI, which is applied in software engi-
neering (Jennings 2000), and explicitly considers architec-
tures and implementations. There is also a cognitive the-
ory of BDI, which models social and cognitive concepts
in decision making (Conte & Castelfranchi 1995). Finally,
there is a logical formalization of BDI, which we will use
when we compare BDI with QDT (Rao & Georgeff 1991b;
1992). QDT developed out of models for reasoning under
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uncertainty. It is focused on theoretical models of decision
making with potential applications in planning. To restrict
the scope of our comparison, we focus on BDI work by Rao
and Georgeff, which explicitly addresses the link with deci-
sion theory (Rao & Georgeff 1991a). We use their terminol-
ogy where possible. For reasons of presentation, we restrict
ourselves to formal logics, and can not go into architectures
or into the underlying social concepts.

Consider Rao and Georgeff’s initial BDI model (Rao &
Georgeff 1991b). There are three types of data about re-
spectively beliefs (B), goals (G) and intentions (I). These
three types of data are related to each other by desires (D)
and commitments (C) relations. These relations can be con-
sidered as constraints since they reduce the contents of the
attitudes; in decision-theoretic terms they perform a kind of
conditioning. This model is illustrated in figure 1. The con-
tent of the boxes corresponds to formulas in some logical
language, with modal operatorsB,G andI. The formulas
are interpreted as propositions: sets of possible worlds. Us-
ing modal operators we can specify axioms that correspond
to particular semantic properties. For example,Bp→ Gp to
expressrealism(all potential goalsp are believed feasible).
Different combinations of axioms define different classes of
models, or different agent types.

B D−→ G C−→ I

Figure 1: Relations between beliefs, goals, and intentions.

Work in qualitative decision theory is at least as diverse as
the work on BDI, and we therefore again focus on a limited
set of papers. There are two main issues. The first concerns
the nature of thequalitative decision rule, for example to
maximize expected utility. Given probabilities (correspond-
ing to the beliefs of an agent) and valuations (corresponding
to the desires of an agent), the rule selects which action to
take. The second issue, is concerned with therole of knowl-
edgein decision making. It investigates different ways to
represent the data needed to apply a decision rule, and to
deal with potential conflicts. Often representations devel-
oped for reasoning under uncertainty are used for this pur-
pose. Looking at figure 1, we conclude that where BDI sim-
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ply assumes selection functions (for instance to be supplied
by a planning algorithm), QDT provides explicit processes.

We want to investigate how BDI and QDT are related.
The layout of this paper is therefore as follows. First we dis-
cuss a version of decision theory. Then we discuss Rao and
Georgeff’s BDI approach and its relation to decision theory.
In the third section we discuss qualitative decision theory,
focusing on decision rules and on the role of knowledge in
decision making. In the fourth section we deal with the role
of goals in these approaches. In section 5 we consider the
possibility of adding a fourth attitude, obligations.

Decision theory
There are many different ways to represent classical deci-
sion theory. Here we use a quasi-logical approach inspired
by Jeffrey’s classical logic of decision(Jeffrey 1965), which
will be useful for our future comparisons. The typical con-
struct here is the sum of products of probabilities and payoff
values. This construct can be used in two different places,
corresponding to two different sources of uncertainty. The
first concerns uncertainty about the facts, the second uncer-
tainty about what the agent desires.
• An actiona ∈ A is identified with its effects, i.e. with a

probability functionpa from worldsw ∈ W to the real
interval [0, 1] such that

∑
w∈W p(w) = 1 (reflecting that

the probability of a set of worlds is the sum of the prob-
abilities of the individual worlds). Preferences are rep-
resented by a real-valued functionv, called payoff func-
tion, on the worlds, and the utility of an action is the sum
of the products of probability and payoff of the worlds,
u(a) =

∑
w∈W pa(w)× v(w).

• Given the uncertainty about which worldv a decision
maker is in, represented by a probability distributionp on
the worlds, the utility of an action as defined above is rela-
tive to this state, i.e.u(a(v)). Now thedecision ruleof the
decision maker is to choose the action which maximizes
his expected utility, i.e.maxa∈A

∑
v∈W p(v)× u(a(v)).

It is a well-known result from decision theory that a decision
problem with both types of uncertainty can be rewritten to
a decision problem with only uncertainty about the state the
decision maker is in. The trick is to define a split each world
the decision amker may be in, into a set of worlds, one for
each possible effect of the actions.

Decision theory is an active research area within eco-
nomics, and the number of extensions and subtleties is too
large to address here. However, we do wish to note the fol-
lowing aspects:
Representability. Representation theorems, such as the

most famous one of Savage (Savage 1954), typically
prove that each decision maker obeying certain innocent
looking postulates (about weighted choices) actsas if he
applies the maximize-expected-utility decision rule with
some probability distribution and utility function. Thus,
he does not have to be aware of it, and his utility function
does not have to represent selfishness. In fact, exactly the
same is true for altruistic decision makers, they also act as
if they maximum expected utility; they just have another
utility function.

Preference elicitation. Given the fact that in general the
decision maker is not aware of the probability distribu-
tion and his utility function, several techniques have been
developed to make them explicit. This is typically an iter-
ative process.

Decision rule. Several other decision rules have been inves-
tigated, including qualitative ones, such as maximin, min-
imax, minregret etc.

One shot. Classical decision theory has been extended in
several ways to deal with multiple choices and plans, such
as the well known Markov Decision Processes (MDPs).

Small Worlds. A “small world” in the sense of (1954) is
derived from the real “grand world” by neglecting some
distinctions between possible states of the world and thus
by drawing a simplified picture. Of course, the problem
of small worlds is that an analysis using one small world
may fail to agree with an analysis using a more refined
small world.

Independence.By introducing decision variables and in-
dependence assumptions the probability distribution can
be represented concisely, as studied in Bayesian networks
(Pearl 1993).

Multiple criteria. An important extension of decision the-
ory deals with conflicting objectives, which can be repre-
sented by independence assumptions on the utility func-
tion, leading to ceteris paribus preferences (Keeney &
Raiffa 1976).

Risk. Though classical decision theory is thought to incor-
porate some notion of risk (e.g. neutrality or risk averse-
ness), for handling extreme values different constructs
have been proposed.

One particular extension of interest here is decision-
theoretic planning (Boutilier, Dean, & Hanks 1999), a re-
sponse to the limitations of traditional goal-based planning.
Goals serve a dual role in most planning systems, capturing
aspects of both intentions and desires (Doyle 1980). Besides
expressing the desirability of a state, adopting a goal repre-
sents some commitment to pursuing that state. For example,
accepting a proposition as an achievement task commits the
agent to finding some way to accomplish this objective, even
if this requires adopting some subtasks that may not corre-
spond to desirable propositions themselves (Dean & Well-
man 1991). In realistic planning situations objectives can be
satisfied to varying degrees, and frequently goals cannot be
achieved. Context-sensitive goals are formalized with ba-
sic concepts from decision theory (Dean & Wellman 1991;
Doyle & Wellman 1991; Boutilier 1994). In general, goal-
based planning must be extended with a mechanism to
choose between which goals must be adopted and which
ones must be dropped.

On an abstract level, decision-making with flexible goals
has split the decision-making process in two steps. First a
decision is made which goals to adopt, and second a de-
cision is made how to reach these goals. At first sight, it
seems that we can apply classical decision theory to each of
these two sub-decisions. However, there is a caveat. The
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two sub-decisions are not independent, but closely related!
For example, to decide which goals to adopt we must know
which goals are feasible, and we thus have to take the pos-
sible actions into account. Moreover, the intended actions
constrain the candidate goals which can be adopted. Other
complications arise due to uncertainty, changing environ-
ments, etc, and we conclude here that the role of decision
theory in planning is complex, and that decision-theoretic
planning is much more complex than classical decision the-
ory.

BDI Logic

BDI logic is developed to formalize decision theoretic as-
pects of agent planning. The main advantage of BDI logic
over existing decision theories is the role of prior intentions,
which is essential for agent decision making and planning
(Bratman 1987; Cohen & Levesque 1990; Rao & Georgeff
1991b). Prior intentions, plans or goals that agents have
adopted or are committed to perform, constrain the options
for future actions. Different principles are introduced to gov-
ern the balance between prior intentions and the formation
of new intentions. For example, the principle that an agent
should only abandon an intention when the motivating goal
has become achieved or has become inachievable by some
other cause. The key notions that are essential in agent plan-
ning and that are used to formalized BDI logic are beliefs,
goals and intentions as well as time, actions, plans, proba-
bilities, and payoffs.

BDI logic as defined by Rao and Georgeff is a multi-
modal logic consisting of three modal operators: Beliefs
(B), Goals (G), and Intentions (I). The belief operatorB
denotespossible plans, the goal operatorG denotesrelevant
plans, and the intention operatorI denotesplans the agent
is committedto. These modalities are related to each other.
A plan that an agent is committed to perform should be rel-
evant (Gp → Ip), and a relevant plan should be believed as
possible (Bp→ Gp). Moreover, in the BDI logic two types
of formulae are distinguished: state and path formulae. State
formulae represent the effect of actions and path formulae
represent plans, or combination of actions. In the semantics
a so called branching time structure is imposed on states: a
state at timetn is followed by different states at timetn+1,
distinguished by different events. Path formulae then denote
paths along states in the branching time structure.

Just like in decision theory, the effects of events involve
uncertainties (determined by nature) and the effects of plans
have a degree of desirability. Uncertainties about the ef-
fects of events are represented by formulaePROB(ϕ) ≥ a
(probability of state formulaϕ is greater or equal to real
numbera). The desirability of plans is represented by for-
mulaePAY OFF (ψ) ≥ a (desirability of the planψ is
greater or equal to real valuea). Their interpretation is de-
fined in terms of beliefs and goals, respectively. In partic-
ular, given a modelM , a worldw at time t (wt ∈ M ),
an assigned probability functionP (wt), an assigned utility
functionU(wt), the setBw of belief accessible worlds from
w, and the setGw of goal accessible worlds fromw, then

M,wt |= PROB(ϕ) ≥ a ⇔
P ({w′ ∈ Bwt |M,w′t |= ϕ}) ≥ a.

M,wt |= PAY OFF (ψ) ≥ a ⇔
∀w′ ∈ Gwt ∀xi M,xi |= ψ → U(xi) ≥ a
wherexi is a full path starting fromwt.

Based on these modalities and formulae, an agent may de-
cide which plan it should commit to on the basis of a deci-
sion rule such as maximum expected utility.

Prior intentions are said to be essential. How are prior
intentions accounted for in this approach? The role of prior
intentions is established by the time structure imposed on se-
quences of worlds, combined with constraints that represent
the type of agent. An agent type determines the relationship
between intention-accessible worlds and belief and goal-
accessible worlds, at different time points. The main types
of agents areblindly-committedagents (intended plans may
not change if possible plans or relevant plans change),sin-
gle mindedagents (intended plans may change only if possi-
ble plans change), andopen mindedagents (intended plans
change if either possible plans or relevant plans change).

Given such relations between accessible worlds, intention
is then defined as follows:Ip is true in a worldw at timet if
and only ifp is true in all intention accessible worlds at time
t. Now, assuming that intention accessible worlds are related
to belief and goal accessible worlds according to the agent
type, this definition states that a plan is true if and only if it
is a continuation of an existing plan which has been started
at time pointt0 and which is determined by the beliefs and
goals according to the agent type.

BDI and decision theory
How are the issues discussed in BDI logic related to the is-
sues discussed in decision theory? Clearly most issues of
BDI logic are not discussed in classical decision theory as
presented in this paper, because they are outside its scope.
For example, prior intentions are said to be essential for
the BDI logic, but they are irrelevant for one-shot decision
theory. Instead, they are discussed in decision processes.
Likewise, plans are not discussed in decision theory, but in
decision-theoretic planning. In this section we therefore re-
strict ourselves to one aspect of BDI logics: the relation be-
tween the modal operators andPROB andPAY OFF . We
therefore consider the translation of decision trees to BDI
logic presented in (Rao & Georgeff 1991a).

Rao and Georgeff emphasize the importance of decisions
for planning agents and argue that the BDI logic can be used
to model the decision making behaviour of planning agents
by showing how some aspects of decision theory can be
modeled by the BDI logic. In particular, they argue that a
given decision tree, based on which an agent should decides
a plan, implies a set of plans that are considered to be rel-
evant and show how decision trees can be transformed into
agent’s goals. Before discussing this transformation we note
that in decision theory there are two types of uncertainties
distinguished: the uncertainty about the effect of actions and
the uncertainty about the actual world. In Rao and Georgeff
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only the first type of uncertainty is taken into account. The
fact that the decision tree is assumed to be given implies that
the uncertainty about the actual world is ignored.

A decision tree consists of two types of nodes: one type
of nodes expresses agent’s choices and the other type ex-
presses the uncertainties about the effect of actions. These
two types of nodes are indicated by square and circle in the
decision trees as illustrated in figure 2. In order to generate
relevant plans (goals), the uncertainties about the effect of
actions are removed from the given decision tree (circle in
figure 2) resulting in a number of new decision trees. The
uncertainties about the effect of actions are now assigned to
the newly generated decision trees.
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%30

%70

α ζ

%30 yes
β γ

%70 no

Figure 2: An example of a decision tree and how the uncer-
tainty about agent’s environment can be removed.

For example, consider again the decision tree illustrated
in figure 2. A possible plan is to performα followed by ei-
therβ if the effect ofα is yes or γ if the effect ofα is no
and suppose that the probability ofyes as the effect ofα
is %30 and that the probability ofno as the effect ofα is
%70. The transformation will generates two new decision
trees: one in which eventyes takes place after choosingα
and one in which eventno takes place after choosingα. The
uncertainty%30 and%70 are then assigned to the resulted
trees, respectively. Note that these new decision trees pro-
vides plansP1 = α; yes?;β andP2 = α;no?γ with proba-
bilities %30 and%70, respectively. In these plans the effects
of events are known.

The sets of plans provided by the newly generated deci-
sion trees are then considered as constituting goal accessible
worlds. Note that a certain plan can occur in more than one
goal world and that the payoffs associated with those plans
remains the same. The probability of a plan that occur in
more than one goal world is then the sum of the probabili-
ties of different goal worlds in which the plan occurs. The
agent can then decide on a plan by means of a decision rule
such as maximum expected utility.

It is important to note that the proposed transformation
is not betweendecision theoryandBDI logic, but only be-
tween adecision treeand agent’sgoal accessible worlds. As
noted, in Rao and Georgeff the uncertainty about agent’sac-
tual world is ignored by focusing only on one single decision
tree that provides allrelevantgoal accessible worlds. How-
ever, an account of the uncertainty about the actual world
implies a set of decision trees that provide a set of sets of

SSP PW−→ SP MEU−→ P

Figure 3: Relations between Beliefs (SSP ), Goals (SP ) and
Intentions (P ).

plans which in turn corresponds with a set of sets of proba-
bilities distributions as it is known in decision theory.

In fact, a set of sets of probability (SSP ) corresponds to
agent’sbeliefs. Given such a set, an agent takes only one
set of probabilities as being relevant. This can be done by
taking the second source of uncertainty into account, which
is formalized in decision theory by a probability distribution
on the worlds (PW ). The goals of an agent is then a set
of probability distributions (SP ) which correspond to a de-
cision tree. Finally, given a set of probability distributions,
an agent considers only one probability distribution (P ) as
being intended. This probability distribution is determined
by applying one decision rule such as maximum expected
utility (MEU ). The application of a decision rule results in
a plan that corresponds to agent’sintentions. This view is
illustrated in Figure 3.

Computational BDI
As we have seen, the BDI theory makes a number of claims
related to the resource-boundedness of agents. First it claims
to deal with incomplete information; this can be captured
in DT by probability distributions. Second, it claims to
deal with dynamic environments, by means of the stabiliz-
ing effect of intentions. Based on the BDI theory various
proposals have been launched to implement a rational and
resource-bounded agent that make decisions and plans (Rao
& Georgeff 1991b; 1992). The proposed BDI agent con-
sists of three data structures that represent beliefs, goals,
and intentions of the agents together with an input queue
of events. Based on these components, an interpreter is in-
troduced by means of which the BDI agent can repeatedly
observe the events from the environment, generates possible
plans, deliberate on these plans, execute some decided plans,
and evaluate its intended plans.

The decision process consists of two steps. At each step a
decision is made on the basis of a selection mechanism and
following some principles that govern the relations between
beliefs, goals, and intentions. As noted, these principles are
usually presented as constraints defined on relationship be-
tween different components.

At the first step, a BDI agent generates possible plans
based on its observations, beliefs and using means-end
analysis while it takes the previous chosen plans into ac-
count according to some principles such as ”blindly com-
mitted agents”, ”single-minded agents”, and ”open-minded
agents”. Note that this step is an implementation of deciding
relevant plans where uncertainty about actual world is taken
into consideration. This is done by observing the environ-
ment and using beliefs and prior intentions. At the second
step, a BDI agent applies some decision rules such as max-
imum expected utility to the set of possible plans that are
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generated at step one and decide a plan.

Qualitative decision theory
Qualitative decision theory developed in the area of reason-
ing about uncertainty, a sub-domain of artificial intelligence,
which mainly attracts researchers with a background in rea-
soning about defaults and beliefs. Two typical and often
cited examples are (Pearl 1993) and (Boutilier 1994). The
research is motivated as follows:

• to do decision theory, or something close to it, when not
all numbers are available.

• to provide a framework for flexible or context-sensitive
representation of goals in planning.

Often the formalisms of reasoning about uncertainty are
re-applied in the area of decision making, and therefore use
concepts developed before. Thus, typically uncertainty is
not represented by a probability function, but by a plausibil-
ity function, a possibilistic function, Spohn-type rankings,
etc. Another consequence of this historic development is
that the area is much more mathematically oriented than the
planning community or the BDI community. The two main
proponents of QDT in the last years have been Jon Doyle and
Richmond Thomason, who wrote several papers (Thoma-
son & Horty 1996), including some survey papers (Doyle &
Thomason 1999), and who organized the AAAI 1997 spring
symposium on qualitative decision theory. The reader is ad-
vised to consult their highly interesting work.

Now we consider two research areas which are related
to the first and second step of decision making. The first
step is concerned with the construction of the decision space,
through the collection of the initial data. The data, or beliefs,
help to constrain all possible courses of action for the agent,
and implicitly select a limited number of candidate goals.
On the basis of this data, we can apply adecision rule, which
will select one or more particular actions. The research com-
munities related to these steps have a different understand-
ing of ‘qualitative’. For the first step, typical issues are non-
monotonicity of the representation formalism, and conflict
resolution. Here one often uses symbolic (non-quantitative)
representations, such as default logic. The numbers how-
ever do play a role in the semantics of these representation
formalisms. In the second step, a qualitative version of the
decision rule is applied. The decision rule can do without
the exact numbers; it only requires differences expressed as
orders of magnitude. Since this latter step also affects the
data collection, we start by explaining it in more detail.

Decision rules
As we mentioned in the section on decision theory, examples
of qualitative decision rules can already be found in decision
theory itself, where besides the quantitative MEU decision
rule also qualitative decision rules are studied. Examples are
‘minimize the worst outcome’ (pessimistic Wald criterion)
or ‘minimize your regret’. Some of these rules do not need
exact numbers, but only qualitative orders. For example, to
prevent the worst outcome we only have to know these worst
outcomes; not how much worse they are compared to other

outcomes. The same rules have been studied in qualitative
decision theory. For example (Boutilier 1994) and (Dubois
& Prade 1995) study versions of the Wald criterion.

However, there is a problem with a purely qualitative ap-
proach. It is unclear how, besides the most likely situations,
also less likely situations can be taken into account. In par-
ticular we are interested in situations which are unlikely, but
which have a high impact. i.e. an extreme high or low util-
ity. For example, the probability that your house will burn
down is not very high, but it is uncomfortable. Some people
therefore decide to take an insurance. In a purely qualitative
setting it is unknown how much expected impact such an un-
likely situation has. There is no way to compare a likely but
mildly important effect to an unlikely but important effect.
Going from quantitative to qualitative we may have gained
computational efficiency, but we lost one of the main useful
properties of decision theory.

A solution proposed in qualitative decision theory is based
on two ideas. First, the initial probabilities and utilities are
neither represented by quantitative probability distributions
and utility functions, nor by pure qualitative orders, but by
something in between. This can be calledsemi-qualitative.
Typically, one uses the representation formalisms developed
for reasoning about uncertainty, such as possibilistic func-
tions and Spohn-type rankings. Second, an assumption can
be introduced to make the two semi-qualitative functions
comparable. This has sometimes been called thecommen-
surability assumption, see e.g. (Dubois & Prade 1995). Be-
cause they are crucial for QDT, we further illustrate these
two ideas by Pearl’s (1993) proposal.

First, we introduce semi-qualitative rankings. A belief
ranking functionκ(w) is an assignment of non-negative in-
tegers to worldsw ∈ W such thatκ(w) = 0 for at least one
world. Intuitively, κ(w) represents the degree of surprise
associated with finding a worldw realized, and worlds as-
signedκ(w) = 0 are considered serious possibilities. Like-
wise, µ(w) is an integer-valued utility ranking of worlds.
Second, we make the rankings commensurable by defining
both probabilities and utilities as a function of the sameε,
which is treated as an infinitisimal quantity (smaller than
any real number). κ(w) can be considered an order-of-
magnitude approximation of a probability functionP (w) by
writing P (w) as a polynomial of some small quantityε and
taking the most significant term of that polynomial. Simi-
larly, positiveµ(w) can be considered an approximation of
a utility functionU(w).

P (w) ∼ Cεκ(w), U(w) = O(1/εµ(w))

Taking P ′(w) as the probability function that would
prevail after obtainingϕ, the expected utility criterion
U(ϕ) = Σw∈WP ′(w)U(w) shows that we can have for
example likely and moderately interesting worlds (κ(w) =
0, µ(w) = 0) or unlikely but very important worlds (κ(w) =
1, µ(w) = 1), which have become comparable since in
the second case we haveε/ε. There is one more subtlety
here, which has to do with the fact that whereasκ rankings
are positive, theµ rankings can be either positive or nega-
tive. This represents that outcomes can be either very de-
sirable or very undesirable . For negativeµ(w) we define



6

U(w) = −O(1/ε−µ(w)). Besides the representation of the
abstractions of the probability distribution and utility func-
tion there are many further issues discussed by Pearl, one of
which we discuss now.

Actions and observations
Pearl’s (1993) approach is based on two additional assump-
tions, inspired by deontic logic (the logic of obligations and
permissions, see also the section on norms below). First,
while theories of actions are normally formulated as theo-
ries of temporal changes, his logic suppresses explicit refer-
ences to time. Second, whereas actions in decision theory
are pre-designated to a few distinguished atomic variables,
he assumes that actions ‘Do(ϕ)’ are presumed applicable to
any propositionϕ. In this setting, he explains that the ex-
pected utility of a propositionϕ clearly depends on how we
came to knowϕ. For example, if we find out that the ground
is wet, it matters whether we watered the ground (action) or
we happened to find the ground wet (observation). In the
first case, findingϕ true may provide information about the
natural process that led to the observationϕ, and we should
change the current probability fromP (w) to P (w|ϕ). In
the second case, our actions may perturb the natural flow of
events, andP (w) will change without shedding light on the
typical causes ofϕ. This issue is precisely the distinction
between Lewis’ conditioning and imaging, between belief
revision and belief update, and between indicative and sub-
junctive conditionals. One of the tools Pearl uses for the
formalization of this distinction are causal networks (a kind
of Bayesian networks with actions).

Boutilier (1994) introduces a very simple but elegant dis-
tinction between consequences of actions and consequences
of observations, by distinguishing between controllable and
uncontrollable propositional atoms. This seems to make his
logic less expressive but also simpler than Pearl’s (but be-
ware, there are still a lot of complications around). One of
the issues he discusses is the distinction between goals under
complete knowledge and goals under partial knowledge.

From desires to goals
In the first step we have a symbolic modal language to rea-
son implicitly about the probability distributions and proba-
bility functions (or their abstractions), and this is where con-
cepts like goals and desires come into the picture. Boutilier
uses a modalityI for Ideal. Its semantics is derived from
Hansson’s deontic logic with modal operatorO for obliga-
tion (Hansson 1969). The semantics makes use of some
minimality criterium.1 If M = 〈W,≤, V 〉 with W a
set of worlds,≤ a binary reflexive, transitive, total and
bounded relation onW andV a valuation function of the
propositional atoms at the worlds, thenM |= I(p|q) iff
∃w M,w |= p ∧ q and ∀w′ ≤ w M,w′ |= (q → p).
In other words:I(p|q) is true if all minimal q-worlds are
p-worlds. Note that the notion of minimal (or best, or pre-
ferred) can be represented by a partial order, by a ranking

1In default logic, an exception is a digression from a default
rule. Similarly, in deontic logic an offense is a digression from the
ideal.

or by a probability distribution. A similar type of seman-
tics is used by Lang (1996) for a modalityD to model de-
sire. An alternative approach represents conditional modal-
ities by so called ‘ceteris paribus’ preferences, using addi-
tional formal machinery to formalize the notion of ‘sim-
ilar circumstances’, see e.g. (Doyle & Wellman 1991;
Doyle, Shoham, & Wellman 1991; Tan & Pearl 1994a;
1994b).

The consequence of the use of a logic is that symbolic for-
mulas representing desires and goals putconstraintson the
models representing the data, i.e. the semantics. The con-
straints can either be underspecified, there are many models
satisfying the constraints, or it can be overspecified, there
are no models satisfying the constraints. Consequently, typ-
ical issues are how we can strengthen the constraints, i.e. in
logical terminology how we can use non-monotonic closure
rules, and how we can weaken the constraints, i.e. how we
can resolve conflicts.

Non-monotonic closure rules The constraints imposed
by I formulas of Boutilier (ideal) are relatively weak. Since
the semantics of theI operator is analogous to the semantics
of many default logics, Boutilier (1994) proposes to use non-
monotonic closure rules for theI operator too. In particular
he uses the well-known systemZ (Pearl 1990). Its work-
ings can be summarized as ‘gravitation towards the ideal’,
in this case. An advantage of this system is that it always
gives exactly one preferred model, and that the same logic
can be used for both desires and defaults. A variant of this
idea was developed by Lang (1996), who directly associates
penalties with the desires (based on penalty logic (Pinkas
1995)) and who does not use rankings of utility functions
but utility functions themselves. More complex construc-
tions have been discussed in (Tan & Pearl 1994b; 1994a;
van der Torre & Weydert 2000; Lang, van der Torre, & Wey-
dert 2001b).

Conflict resolution Although the constraints imposed by
the I operator are rather weak, they are still too strong
to represent certain types of conflicts. Consider conflicts
among desires. Typically desires are allowed to be inconsis-
tent, but once they are adopted and have become intentions,
they should be consistent. Moreover, in the logic proposed
in (Tan & Pearl 1994b) a specificity set likeD(p), D(¬p|q)
is inconsistent (this problem is solved in (Tan & Pearl
1994a), but the approach is criticized as ad hoc in (Bacchus
& Grove 1996)). A large set of potential conflicts between
desires, including a classification and ways to resolve it, is
given in (Lang, van der Torre, & Weydert 2001a). A radi-
cally different approach to solving conflicts is to apply Re-
iter’s default logic to create extensions. This is recently pro-
posed by Thomason (2000), and thereafter also used in the
BOID architecture which will be explained below (Broersen
et al. 2001).

Finally, an important branch of decision theory has to
do with reasoning about multiple objectives, which may
conflict, using multiple attribute utility theory: (Keeney &
Raiffa 1976). This is also the basis of the ‘ceteris paribus’
preferences mentioned above. This can be used to formal-
ize conflicting desires. Note that all the modal approaches
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above would make conflicting desires inconsistent.

Goals and planning
Now that we have introduced decision theory, planning, BDI
and QDT we want to say something about their perspective
on goals. There is a distinction between goal-based planning
and QDT. The distinction is that QDT defines the best action,
whereas goal-based planning is a heuristic to find the best
action (which may often give sub-optimal solutions). QDT
is thus like decision theory and Rao and Georgeff’s BDI ap-
proach, but unlike other BDI-like approaches like cognitive
BDI which derive their intuitions from goal-based planning.
We will also investigate how to construct goals. For this we
use an extension of Thomason’s BD logic.

What is a goal?
In the planning community a goal is simply the end-state of
an adopted plan. Therefore the notion of goals incorporates
both desirability and intention. As far as we know neither
the relation between BDI and these goals nor the relation
between QDT and these goals has been investigated. It has
been observed in BDI that their notion of goals differs from
the notion of goals in planning. This is now obvious: the first
only plays the role of desirability, not of intention, because
intention has been separated out.

QDT and goal-based planning
How can we derive intentions from desires and abilities?
With only a set of desires, even with conditional desires,
there is not much we can do. It seems therefore obvious
that we have to extend the notion of desire. Two options
have been studied: first an ordering on goals reflecting their
priority, and secondly a local payoff function with each de-
sire, representing its associated penalties (if violated) and re-
wards (if achieved). These concepts should not be taken too
literary. In this section we use the latter approach. A more
general account of penalty logic can be found in (Pinkas
1995).

Assume a set of desires with rewards (if the desire is
achieved) and penalties (when a desire is not achieved), to-
gether with a set of actions the agent can perform and their
effects. There are the following two options, depending on
the number of intermediate steps.

1. (one-step) For each action, compute the sum of all re-
wards and penalties. The intended action is the one with
the highest pay-off.

2. (two-step) First, conflicts among desires are resolved us-
ing rewards and penalties; the resulting non-conflicting
desires are called goals. Second, the intended actions are
the preferred actions of those that achieve the goals.

The first approach will give the best action, but the second
is more efficient if the number of actions is much higher
than the number of desires involved. This may be the reason
that most existing planning systems work according to the
second approach. If the rewards and penalties are interpreted
as utilities and the first approach is extended in the obvious
way with probabilities, then this first approach may be called

a (qualitative) decision-theoretic approach (Boutilier 1994;
Lang 1996; Pearl 1993). The utilities can be added and the
desires are thus so-called additively independent (Keeney &
Raiffa 1976).

Role of desires
Before we give our formal details we look a bit closer into
the second approach. Here are some examples to illustrate
the two approaches.

1. First the agent has to combine desires and resolve con-
flicts between them. For example, assume that the agent
desires to be on the beach, if he is on the beach then he
desires to eat an ice-cream, he desires to be in the cinema,
if he is in the cinema then he desires to eat popcorn, and
he cannot be at the beach as well as in the cinema. Now
he has to choose one of the two combined desires, or op-
tional goals, being at the beach with ice-cream or being in
the cinema with popcorn.

2. Second, the agent has to find out which actions or plans he
can execute to reach the goal, and he has to take all side-
effects of the actions into account. For example, assume
that he desires to be on the beach, if he will quit his job
and drive to the beach, he will be on the beach, if he does
not have a job he will be poor, if he is poor then he desires
to work. The only desire and thus the goal is to be on the
beach, the only way to reach this goal is to quit his job,
but the side effect of this action is that he will be poor and
in that case he does not want to be on the beach but he
wants to work.

Now crucially, desires come into the picture two times! First
they are used to determine the goals, and second they are
used to evaluate the side-effects of the actions to reach these
goals. In extreme cases, like the example above, what
seemed like a goal may not be desirable, because the only
actions to reach these goals have negative effects with much
more impact than these goals. This shows that the balancing
philosophy of BDI could be very helpful.

Comparison
We use an extension of Thomason’s (2000) BD logic. We

havep
B→ q for ‘if p then I beliefq’, p

D→ q for ‘if a then I

desirex’ anda
B→ p for ‘if I do a thenpwill result. Note that

thea in a
B→ p is an action whereas all other propositions

are states. We do not get into details how this distinction
is formalized. Simply assume that the action is a control-
lable proposition whereas the others do not have to be so
(Boutilier 1994; Lang 1996). Otherwise think about the ac-
tion is a complex proposition likeDo(s) whereas the others
areHolds(s), or the action is a modal formula See-To-It-
That-p or STIT : p whereas the others are not.

To facilitate the examples we work with explicit rewards
for achieving a desire and penalties for not achieving a de-

sire. That is, we writea
D→ xr:p for a desirea

D→ x that
results in a reward ofr > 0 if it is achieved, i.e. if we
choose an action that results ina ∧ x, and that results in a
penaltyp < 0 if it is not achieved, i.e. if we choose an action
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that results ina ∧ ¬x. For a total plan we add the rewards
and penalties of all desires derived by it.

With these preliminaries we are ready to discuss some ex-
amples to illustrate the problem of planning with desires.
Life is full of conflicting desires. You want to be rich and
to do scientific research. You like to eat candy without be-
coming fat and wasting your teeth. You want to buy so many
things but your budget is too limited. Resolving these kinds
of conflicts is an important part of planning.

Example 1 Let S = {> D→ p3:−1,> D→ ¬p2:−1, q
D→

¬p0:−10, a
B→ p ∧ q, b B→ ¬p ∧ ¬q}.

First we only consider the desires to calculate our goals.
The only two desires which are applicable are the first two,
the optional goals arep an¬p. If we just consider the desire
then we preferp over¬p, since the first has total of 3-1=2,
whereas the latter has 2-1=1. There is only one action which
results inp, namely actiona which inducesp andq.

However, now consider the actions and their results.
There are two actions,a and b. The totals of these actions
are 3-1-10=-8 and 2-1=1, such that the second action is
much better. This action does not derivep however, but¬p.
Thus it does not derive the goal but its negation.

The example illustrates that the two stage process of first
selecting goals and thereafter actions to reach goals may lead
to inferior choices. In principle, the best way is to calculate
the expected utility of each action and select the action with
the highest utility. However, that is often too complex so we
choose ythis goal based heuristic. This is the main problem
of desire-based planning, but there are more complications.
Consider the following example.

Example 2 LetS = {> D→ p, p
D→ q, q

D→ r, a
B→ p ∧ ¬r}.

In deriving goals we can derive{p, q, r} by iteratively ap-
plying the first three desires. However, we can only see to it
thatp. The other derivations are useless.

The examples suggests that there is a trade-off between
calculating an agent’s goals from its desires, and calculating
intended actions to achieve these goals. In some applications
it is better to first calculate the complete goals and then find
actions to achieve them, in other applications it is better to
calculate partial goals first, look for ways to achieve them,
and then continue to calculate the goals. An advantage of
the second approach is that goals tend to be stable. We fi-
nally note that the approaches correspond to different types
of agent behavior. The first is more reactive because it is
action oriented whereas the second is more deliberative.

Norms and the BOID
Recently computational BDI has been extended with norms
(or obligations), see e.g. (Dignum 1999), though it is still
debated whether artificial agents need norms, and if they are
needed then for what purposes. It is also debated whether
they should be represented explicitly. Arguments for their
use have been given in the cognitive approach to BDI, in
evolutionary game theory and in the philosophical areas of
practical reasoning and deontic logic.

Norms as goal generators.The cognitive science
approach to BDI (Conte & Castelfranchi 1995;
Castelfranchi 1998) argues that norms are needed to
model social agents. Norms are important concepts for
social agents, because they are a mechanism by which
society can influence the behavior of individual agents.
This happens through the creation of normative goals,
a process which consists of four steps. First the agent
has to believe that there is a norm, then it has to believe
that this norm is applicable, then it has to decide that it
accepts this norm – the norm now leads to a normative
goal – and finally it has to decide whether it will fulfill
this normative goal.

Reciprocal norms. The argument of evolutionary game
theory (Axelrod 1984) is that reciprocal norms are needed
to establish cooperation in repeated prisoner’s dilemmas.

Norms influencing decisions.In practical reasoning, in le-
gal philosophy and in deontic logic (in philosophy as well
as in computer science) it has been studied how norms
influence behavior.

The relation between QDT and norms is completely dif-
ferent from the relation between BDI and norms. Several
papers mention formal relations between QDT and deon-
tic logic. For example, (Boutilier 1994) observes that his
ideality operatorI is equivalent to Hansson’s deontic logic,
and (Pearl 1993) gave his paper the title ‘from conditional
oughts to qualitative decision theory’. The idea here seems
to be that qualitative decision theory can be extended with
normative reasoning, but that itis a kind of normative rea-
soning. Summarizing, and rather speculative, the distinc-
tion between the role of norms in BDI and QDT is that BDI
considers norms as potential extensions, whereas QDT uses
norms in its foundation. This can be explained by the nor-
mative character of decision theory, an aspect not stressed in
BDI.

BOID architecture
Consider a BDI-like agent architecture. For environments
that are essentially social environments, the discussion
above suggests we could add a fourth component to repre-
sent obligations or norms. In that case we would get the
following four attitudes:

belief information about facts, and about effects of actions

obligation externally motivated potential goals

intention committed goals

desire internally motivated potential goals

In case we represent these attitudes by separate reasoning
components, we need principles to regulate their interaction.
The so called BOID architecture (Broersenet al. 2001) does
just that. It consists of a simple logic, an architecture and a
number of benchmark examples to try and test various prior-
ities among attitudes, resulting in different types of agents.
For example, a social agent always ranks obligations over
desires in case of a conflict. A selfish agent ranks desires
over obligations.
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How we can we specify such agent types by the BOID
logic? To explain the architecture and the logic, we mention
its main source of inspiration, Thomason’s BDP. Thoma-
son (Thomason 2000) proposes an interesting and novel ap-
proach, which is based on two ideas:

Planning. A logic of beliefs and desires is extended with
more traditional goal-based planning, where the purpose
of the beliefs and desires is to determine the goals used in
planning. Planning replaces the decision rule of QDT.

Conflict-resolution. An important idea here is that the se-
lection of goals is basically a process of conflict resolu-
tion. Thomason therefore formalizes beliefs and desires
as Reiter default rules, such that resolving a conflict be-
comes choosing an extension.

The BOID as presented in (Broersenet al. 2001) extends
Thomason’s idea in the following two directions, though in
the present state planning has not been incorporated (this is
mentioned as one issue for further development).

Norms. In the BOID architecture the obligations are just
like desires a relation between beliefs and candidate goals.

Intentions. If the intentions component commits to a desire
(or an obligation), then it is internalized in the intentions
component. Hereafter it overrides other desires during the
extension selection, i.e. the conflict resolution phase.
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Figure 4: BOID Architecture

Each component is a high level abstraction of a process, of
which only its input and output behavior are described. This
is inspired by component based approaches in agent based
software engineering, where such a component may for ex-
ample be a legacy computer system with a wrapper built
around it. The B component relates observations with their
consequences, and actions with their effects. The O com-
ponent relates observations and normative goals or obliged
actions. The D component relates observations and goals
or desired actions. The I component (which in the BDI ter-
minology should have been called the C component – but
BOCD does not sound that good) relates the goals or de-
sired/obliged actions to intended actions.

We finally note several interesting properties of the BOID.

Relation by feedback. Different subprocesses and subde-
cisions are intimately related. As a first approximation,
this is represented by the feedback loop in the architec-
ture. Idea of architecture is that different types of agents
can be represented by a single architecture, but with dif-
ferent control loops.

BDI QDT
area software engineering artificial intelligence
focus application-oriented theory-oriented
criticism resource bounded numbers unknown
intentions yes no
decision rules no yes
knowledge yes yes
desires yes yes
norms possible extension incorporated

Figure 5: Comparison

Types of agents.The same architecture can formalize dif-
ferent agent-types by formalizing different control of its
components, which results in different ways in which the
conflicts are resolved. This incorporates the distinction
made in BDI between blind and open-minded agents, as
well as the distinction between selfish and social agents
(desires override obligations or vice versa).

Logical foundations. The formal process-oriented per-
spective is based on Reiter’s default logic and its gen-
eralization in so-called input-output logic (Makinson &
van der Torre 2000; 2001). This incorporates previous
substudies in the creation and change of goals (van der
Torre 1998a; 1999; 1998b) and in the logic of obligations
(van der Torre & Tan 1999a).

Link. The logic and its architecture are relatively closely
related.

Summary
In this paper we considered how the BDI and QDT ap-
proaches are related. We started with the observation that
both are developed as criticisms on classical decision the-
ory. In particular BDI introduced intentions, to make the
decision-making process more stable. This may also be of
value in QDT.

Both BDI and QDT have split the decision-making pro-
cess into several parts. In BDI first desires are selected as
goals, and second actions are selected and goals are com-
mitted to. In QDT first the input for the decision rule is
constructed, and the decision rule is aplied. Here we noticed
several ideas developed in QDT which can be used to enrich
BDI: the use of different decision rules, the role of knowl-
edge in decision making and the granularity of actions, and
the construction process of goals from explicit (conditional)
desires. The preliminary comparison of BDI and QDT can
thus be summarized as follows.

We believe that a fruitful mutual influence and maybe
even synthesis can be achieved. One way is to start with
QDT and try to incorporate ingredients of BDI. Our BOID
is one preliminary attempt, taking the process-oriented ap-
proach from Thomason’s BDP and extending it with inten-
tions. However, most elements of QDT discussed in this
paper have not yet been incorporated in this rather abstract
approach. Another approach is to extend BDI with the ele-
ments of QDT discussed here.

Finally, the comparison here has been preliminary, and
we urge the interested reader to consult the original papers.
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One direction for further study on the relation between BDI
and QDT is the role of goals in these approaches. Another
direction for further study is the role of norms. In BDI
norms are usually understood as obligations from the so-
ciety, inspired by work on social agents, social norms and
social commitments (Castelfranchi 1998), whereas in deci-
sion theory and game theory norms are understood as re-
ciprocal norms in evolutionary game theory (Axelrod 1984;
Shoham & Tennenholtz 1997) that lead to cooperation in
iterated prisoner’s dilemmas and in general lead to an de-
crease in uncertainty and an increase in stability of a society.

Acknowledgments
Thanks to Jan Broersen and Zisheng Huang for many dis-
cussions on related subjects, and to the autonomous referees
of this workshop for pointing us to relevant literature

References
Axelrod, R. 1984. The evolution of cooperation. Basic
Books, New York.
Bacchus, F., and Grove, A. 1996. Utility independence in
a qualitative decision theory. InProceedings of Fifth In-
ternational Conference on Knowledge Representation and
Reasoning (KR’96), 542–552. Morgan Kaufmann.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage.JAIR11:1–94.
Boutilier, C. 1994. Towards a logic for qualitative de-
cision theory. InProceedings of the Fourth International
Conference on Knowledge Representation and Reasoning
(KR’94), 75–86. Morgan Kaufmann.
Bratman, M. E. 1987.Intention, plans, and practical rea-
son. Harvard University Press, Cambridge Mass.
Broersen, J.; Dastani, M.; Huang, Z.; Hulstijn, J.; and
van der Torre, L. 2001. The boid architecture. InProc.
AGENTS’01.
Castelfranchi, C. 1998. Modeling social agents.Artificial
Intelligence.
Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment.Artificial Intelligence42 (2-3):213–261.
Conte, R., and Castelfranchi, C. 1995. Understanding the
effects of norms in social groups through simulation. In
Gilbert, G., and Conte, R., eds.,Artificial societies: the
computer simulation of social life. London, UCL Press.
Dean, T., and Wellman, M. 1991.Planning and Control.
San Mateo: Morgan Kaufmann.
Dignum, F. 1999. Autonomous agents with norms.Artifi-
cial Intelligence and Law69–79.
Doyle, and Thomason. 1999. Background to qualitative
decision theory.AI magazine20:2:55–68.
Doyle, J., and Wellman, M. 1991. Preferential semantics
for goals. InProceedings of the Tenth National Conference
on Artificial Intelligence (AAAI’91), 698–703.
Doyle, J.; Shoham, Y.; and Wellman, M. 1991. The logic
of relative desires. InSixth International Symposium on
Methodologies for Intelligent Systems.

Doyle, J. 1980. A model for deliberation, action and in-
trospection. Technical Report AI-TR-581, MIT AI Labo-
ratory.

Dubois, D., and Prade, H. 1995. Possibility theory as a
basis for qualitative decision theory. InProceedings of the
Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI’95), 1924–1930. Morgan Kaufmann.

Hansson, B. 1969. An analysis of some deontic logics.
Nous.

Jeffrey, R. C. 1965.The Logic of Decision. McGraw-Hill,
New York.

Jennings, N. R. 2000. On agent-based software engineer-
ing. Artificial Intelligence117(2):277–296.

Keeney, R., and Raiffa, H. 1976.Decisions with Multiple
Objectives: Preferences and Value Trade-offs. New York:
John Wiley and Sons.

Lang, J.; van der Torre, L.; and Weydert, E. 2001a.
Two types of conflicts between desires (and how to resolve
them). InThis proceedings.

Lang, J.; van der Torre, L.; and Weydert, E. 2001b. Utilitar-
ian desires.Autonomous Agents and Multi Agent Systems.
To appear.

Lang, J. 1996. Conditional desires and utilities - an al-
ternative approach to qualitative decision theory. InPro-
ceedings of the Twelth European Conference on Artificial
Intelligence (ECAI’96), 318–322. John Wiley and Sons.

Makinson, D., and van der Torre, L. 2000. Input-output
logics. Journal of Philosophical Logic29:383–403.

Makinson, D., and van der Torre, L. 2001. constraints for
input-output logics.Journal of Philosophical Logic.

Pearl, J. 1990. systemz. InProceedings of the TARK’90,
121–135. Morgan Kaufmann.

Pearl, J. 1993. From conditional ought to qualitative deci-
sion theory. InProceedings of the Ninth Conference on Un-
certainty in Artificial Intelligence (UAI’93), 12–20. John
Wiley and Sons.

Pinkas, G. 1995. Reasoning, nonmonotonicity and learning
in connectionist network that capture propositional knowl-
edge.Artificial Intelligence77:203–247.

Rao, A., and Georgeff, M. 1991. . InProceedings of
UAI’91. Morgan Kaufmann.

Rao, A., and Georgeff, M. 1991. Modeling rational agents
within a bdi architecture. InProceedings of Second In-
ternational Conference on Knowledge Representation and
Reasoning (KR’91), 473–484. Morgan Kaufmann.

Rao, A., and Georgeff, M. 1992. An abstract architecture
for rational agents. InProceedings of Third International
Conference on Knowledge Representation and Reasoning
(KR’92), 439–449. Morgan Kaufmann.

Savage, L. J. 1954.The foundations of statistics. Wiley,
New York.

Shoham, Y., and Tennenholtz, M. 1997. On the emergence
of social conventions: modeling, analysis, and simulations.
Artificial Intelligence94(1-2):139–166.



11

Tan, S.-W., and Pearl, J. 1994a. Qualitative decision theory.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI’94).
Tan, S.-W., and Pearl, J. 1994b. Specification and evalu-
ation of preferences under uncertainty. InProceedings of
the Fourth International Conference on Knowledge Repre-
sentation and Reasoning (KR’94), 530–539. Morgan Kauf-
mann.
Thomason, R., and Horty, R. 1996. Nondeterministic ac-
tion and dominance: foundations for planning and quali-
tative decision. InProceedings of Theoretical Aspects of
Reasoning about Knowledge (TARK’96), 229–250. Mor-
gan Kaufmann.
Thomason, R. 2000. Desires and defaults: a framework for
planning with inferred goals. InProceedings of Seventh In-
ternational Conference on Knowledge Representation and
Reasoning (KR’2000), 702–713. Morgan Kaufmann.
van der Torre, L., and Tan, Y. 1999a. Contrary-to-duty rea-
soning with preference-based dyadic obligations.Annals
of Mathematics and Artificial Intelligence27:49–78.
van der Torre, L., and Tan, Y. 1999b. Diagnosis and
decision-making in normative reasoning.Artificial Intel-
ligence and Law51–67.
van der Torre, L., and Weydert, E. 2000. Parameters for
utilitarian desires in a qualitative decision theory.Applied
Intelligence.
van der Torre, L. 1998a. Labeled logics of goals. InPro-
ceedings of the Thirteenth European Conference on Arti-
ficial Intelligence (ECAI’98), 368–369. John Wiley and
Sons.
van der Torre, L. 1998b. Phased labeled logics of con-
ditional goals. InLogics in Artificial Intelligence. Pro-
ceedings of the 6th European Workshop on Logics in AI
(JELIA’98), 92–106. Springer, LNAI 1489.
van der Torre, L. 1999. Defeasible goals. InSymbolic and
Quantitative Approaches to Reasoning and Uncertainty.
Proceedings of the ECSQARU’99, 374–385. Springer,
LNAI 1638.


