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Abstract. Autonomous agents reason frequently about preferences such as desires and goals. In this
paper we propose a logic of desires with a utilitarian semantics, in which we study nonmonotonic rea-
soning about desires and preferences based on the idea that desires can be understood in terms of utility
losses (penalties for violations) and utility gains (rewards for fulfillments). Our logic allows for a sys-
tematic study and classification of desires, for example by distinguishing subtly different ways to add up
these utility losses and gains. We propose an explicit construction of the agent’s preference relation from
a set of desires together with different kinds of knowledge. A set of desires extended with knowledge
induces a set of ‘distinguished’ utility functions by adding up the utility losses and gains of the individual
desires, and these distinguished utility functions induce the preference relation.
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1. Introduction

Autonomous agents reason frequently about preferences such as desires and goals.
For example, they compete as well as cooperate more efficiently and effectively if
they reason about the desires of other agents, and they therefore build up agent
profiles directly by communicating their desires or indirectly by observing each
other’s behavior. However, communicated desires are compact representations of
the agent’s preferences which lack robustness, because they are sensitive to their
exact specification. Consequently they easily lead to misinterpretation of the agent’s
preferences. Logical frameworks contribute to this problem, because they allow for
a systematic study and classification of desires by making underlying assumptions
explicit. Recently several logics for desires and goals have been proposed [2, 5, 13,
14, 23, 30, 33, 34, 39] to express preferences implicitly and compactly. For example,
Cohen and Levesque [8] explore principles governing the rational balance among
an agent’s beliefs, goals, actions and intentions, Rao and Georgeff [32] show how
different rational agents can be modeled by imposing certain conditions on the per-
sistence of an agent’s beliefs, desires or intentions (the BDI model) and work in
qualitative decision theory [1, 5, 12, 30, 36, 37] illustrates how planning agents are
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provided with goals—defined as desires together with commitments—and charged
with the task of discovering (or performing) some sequence of actions to achieve
those goals.
In this paper we propose a logic of desires with a utilitarian semantics, in which

we study nonmonotonic reasoning about desires and preferences based on the idea
that desires can be understood in terms of so-called utility losses (penalties for
violations) and utility gains (rewards for fulfillments). Like in for example [5], con-
ditional desires D�a�b� are interpreted in terms of ideal situations by “a holds in
all preferred b-worlds.” Unlike other approaches we use numerical utility functions
as our basic semantic objects, because we assume that the expression of D�a�b�
by a rational agent implies a corresponding loss of utility resulting from its viola-
tion (¬a ∧ b) and/or a gain of utility from its fulfillment (a ∧ b). Moreover we use
additive utility functions as these losses and gains of utilities are summed up (and
weighted). Conditional or context-sensitive desires are thus formalized with basic
concepts provided by decision theory [5, 9, 13]. Much of decision theory is con-
cerned with conditions under which the preference ordering is representable by an
order-preserving, real-valued value or (under uncertainty) utility function, and with
identifying regularities in preferences that justify value or utility functions with con-
venient structural properties [22]. In this paper the formalization of desires is mainly
concerned with the value and utility functions themselves, because on first approx-
imation they only have a utilitarian or preference-based semantics. For desires we
also introduce strength and polarity parameters, such that stronger desires can over-
ride weaker desires, like more specific desires override more general desires, and
gain, loss and mixed desires can be distinguished, which respectively may induce
only a gain of utility, only a loss of utility or specified combination of these two.
In particular we propose in this paper different procedures to induce from a set

of initial conditional desires, which we call the problem specification, the prefer-
ence relation of the agent. This preference relation, a partial pre-ordering on the
set of worlds, is based on the so-called ‘distinguished’ utility functions of a problem
specification, obtained by adding utility losses and gains. A world � is at least as
preferred as a world �′ if and only if for each distinguished utility function u, we
have u��� ≥ u��′�. Summarizing, a set of desires induces a set of distinguished util-
ity functions by adding up the utility losses and gains of the individual desires, and
these distinguished utility functions induce a (qualitative) partial preference order-
ing on worlds. In the most advanced procedure to induce this preference relation we
consider problem specifications that are composed of conditional desires expressing
implicit preferences and knowledge expressing world constraints. Like [38] but in
contrast to Boutilier [5] we also distinguish between factual background knowledge
telling us which worlds are physically impossible and contingent knowledge telling
us which of the physically possible worlds can be the actual state of affairs.
Our logic allows for a systematic study and classification of desires by making

underlying assumptions explicit. For example, we distinguish between subtly differ-
ent ways to add up utility losses and utility gains. Suppose that in the problem
specification there are two desires to go to the zoo, one with utility loss 2 and one
with utility loss 1. That is, the first desire states that not going to the zoo induces
a utility loss of at least 2, and the second desire states that not going to the zoo
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induces a utility loss of at least 1. One straightforward way to add up the two utility
losses is to induce from this desire specification that not going to the zoo induces a
utility loss of at least 3. Another more subtle way to combine the desires is based
on the intuition that the first desire implies the second one. In this case we induce
from this desire specification that not going to the zoo only induces a utility loss of
at least 2. The first way to add up the utility losses is based on a stronger notion
of independence of the desires in the desire specification, because in this approach
desires cannot be redundant. The different ways in which gains and losses can be
added thus reflect different notions of dependency and redundancy.
The paper is organized as follows. In Section 2 we define and illustrate the mono-

tonic and the nonmonotonic logic of desires, and in Section 3 we introduce the pro-
cedure to induce a preference relation from a desire specification. In Section 4 we
extend the framework with different types of knowledge. In Section 5 we consider
potential further extensions by discussing the extension with defaults and the use of
conditional desires as heuristic approximations of preferences in decision making
and planning. Finally, in Section 6, we discuss related research.

2. Specification of conditional desires

In this section we introduce a nonmonotonic logic of desires, and in Section 3 we
show how to induce a preference relation from a desire specification. In Section 2.1
we introduce the monotonic logic, in Section 2.2 we introduce the nonmonotonic
extension and in Section 2.3 we illustrate the logic by several benchmark examples
from reasoning with desires.

2.1. Utility models for conditional desires

We consider a propositional language � generated from a finite number of propo-
sitional variables and the standard propositional connectives ¬, ∧, ∨, →, ↔, 	
(tautology), and ⊥ (contradiction). Formulas are denoted by a� b� c� 
 
 
 , and W
denotes the set of propositional models (or worlds) associated with �, to which we
refer by ���′� 
 
 
 . We write � �= a to say that the world � satisfies the formula a,
and we set Mod�a� = �� � � �= a. On top of this language, we introduce the con-
cept of parameterized conditional desires Dp

s �b�a�. Put in a nutshell, Dp
s �b�a� states

that a ∧ b is preferred to a ∧ ¬b in a specific way determined by the parameters p
and s.

Definition 1 (conditional desires, desire specification) A conditional desire over
� is defined by a pair of formulas a� b ∈ �, a strength parameter s ∈ �≥r�>r �
r ∈ �0��, and a polarity parameter p ∈ �0� 1�. It is denoted by

Dp
s �b�a�


A desire specification over � is a finite set of conditional desires

DS = �Dp1
s1
�b1�a1�� 
 
 
 �Dpn

sn
�bn�an�
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Our basic semantic units for interpreting conditional desires and evaluating desire
specifications are extended real-valued utility functions. Similarly to [24, 25], but in
contrast to classical utility theory [43], we also include − and  in the range of
our utility functions. The discussion on the use of these extreme values is out of the
scope of this paper.

Definition 2 (utility function) A utility function u is a map from W to � ∪
�−�+. u induces a preorder ≥u defined by � ≥u �′ iff u��� ≥ u��′�. For
S ⊆ W , let max�≥u� S� be the set of those � ∈ S maximizing u, i.e. of the most desir-
able worlds in S according to u. For convenience, we abbreviate max�∈Mod�a� u���
by u�a�.

What are the appropriate truth conditions for conditional desires? If we ignore the
parameters, a common intuition is that the conditional desire Dp

s �b�a� tells us that
the best possible a ∧ b-worlds are strictly preferred to the best possible a ∧ ¬b-
worlds. In other words, the best a-worlds have to satisfy b, i.e. max�≥u�Mod�a�� ⊆
Mod�b�. The intuitive reading of Dp

s �b�a� is that “ideally, if a is satisfied, then b is
satisfied as well.” This evaluation rule is well-known from many conditional logics
(see for instance [5, 26]). This choice is based on the optimistic assumption that all
worlds are accessible to the agent by means of the performance of some action, in
particular those worlds which are the most desirable in the given context; in this
case, Dp

s �b�a� can be roughly interpreted as “if a is true, then it is in my interest to
achieve b.” We will come back to this issue in Section 4.2. See also [5] for further
discussion of this point and see [42] for other ways to interpret conditional desires
in this semantics.
The parameters s and p allow a more fine-grained representation of conditional

desires. The strength parameter s ∈ �≥r�>r � r ∈ �0�� fixes the minimal utility
gap between the best a ∧ b- and the best a ∧ ¬b-worlds. In other words, the con-
ditional desire Dp

s �b�a� tells us that the best possible a ∧ b-worlds are s preferred
to the best possible a ∧ ¬b-worlds. For practical reasons explained later, linked to
the applicability of minimization procedures for determining preferred utility mod-
els, our discussion mainly concentrates on ≥r . For r unequal to zero, the distinc-
tion between ≥r and >r is mainly technical, and in both cases we have that it is
implied that the best a-worlds have to satisfy b. However, for r equal to zero the
distinction between ≥0 and >0 is fundamental, because ≥0 just guarantees that no
a ∧ ¬b-world is preferred to all a ∧ b-worlds, whereas > 0 tells us that there is an
a∧ b-world which is strictly preferred to each a∧¬b-world. In other words, the for-
mer does not even express (positive) desirability in the sense that it is not implied
that the best a-worlds have to satisfy b. Dp

≥0�b�a� is a borderline case which should
not be interpreted as a desire (for b given a) but as a lack of desire (for ¬b given
a). In fact, if a does not have utility − or +, then we have u �= D

p
≥0�b�a� if

and only if u ��= Dp
>0�¬b�a�. For example, the neutral utility function, where all the

worlds have utility 0, satisfies D≥0�b�a� for all consistent a� b. The desire D≥0 still
adds substantial expressive power to our logic although it is (nearly) equivalent to a
negated desire, because our desire specifications as defined in Definition 1 do not
explicitly include negated desire statements. See also Example 1 in the Section 2.2.
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The polarity parameter p ∈ �0� 1� has a special character, because unlike s it
has no impact on the standard models of Dp

s �b�a�. However, as we explain in Sec-
tion 2.2, conditional desires not only define constraints on utility valuations, but they
also carry information about which utility models should be preferred. The polarity
parameter is involved in the choice of preferred models of Dp

s �b�a�. In other words,
it does not affect the monotonic logic of desires, but it affects the nonmonotonic
logic of desires. Consequently, parameter p does not appear in the truth conditions
in the following Definition 3.

Definition 3 (satisfaction) Let Dp
�r �b�a� with �∈ �≥�> be a conditional desire

over � and u a utility function over W . The satisfaction relation �= is defined as
follows (by convention,  ≥ + r and  > + r)

u �= Dp
�r �b�a� iff u�a ∧ b� � r + u�a ∧ ¬b�

If DS is a desire specification, then u ∈ Mod�DS� iff u �= DS iff u �= � for every
� ∈ DS. A monotonic entailment relation � for conditional desires is defined by
DS � � iff Mod�DS� ⊆Mod���. We say that DS is consistent iff Mod�DS� �= �.

It follows from the truth conditions that, on a purely formal level, there is a close
analogy between conditional desires, dyadic obligations (see Section 6.2) and default
conditionals. Dp

>0�b�a�, for instance, is axiomatized by the postulates for Lehmann’s
rational conditional logic [26]. On the other hand, Dp

�r �b�a� fails to verify rational
monotony if r > 0 (see e.g. [28] for details). In the present paper we do not discuss
the axiomatic principles and the monotonic logic of conditional desires, because
we are mainly interested in their nonmonotonic logic related to strategies to extract
preferred utility models, as explained in the following section. We also do not discuss
extreme types of desire like for example Dp

≥�b�a�, which requires either that all
the a∧¬b-worlds are infinitely disliked, i.e., have utility −, or that there must be
an infinitely or absolutely desirable a ∧ b-world.

2.2. Distinguished utility models

Most desire specifications admit countless possible utility models. In particular, they
are not specific enough to determine a unique utility distribution to be used by the
agent. However, the more models there are, the less specific preferences are to
guide and motivate the agent’s decisions. Consequently, there is a pressing need to
find reasonable strategies permitting the agent to constrain the set of utility models
in a reasonable way, picking up those which are the most “likely,” “intuitive,” or
“practical.” In what follows, we are therefore going to define and investigate several
procedures for identifying the most plausible—what we call the distinguished—
models of a given specification. To prevent confusion with the preferences encoded
by the utility functions, we avoid talking about preferred models.
How should we formalize distinguishedness? Let us start with the simplest task,

namely finding distinguished interpretations of individual conditional desires. We
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assume that different desires may be considered independent, at least as long as
they do not subsume each other, and that desires of the desire specification may
interact. The idea is to build the distinguished models of any desire specification
from the distinguished models of its elements, using some kind of additive aggre-
gation. Our approach follows several plausible desiderata. Because these principles
are not specific enough to determine a single best model, we are going to present
additional constraints, whose choice is left to the user but which may be useful in
some contexts. Without loosing too much, we focus our discussion on conditional
desires of strength ≥r .
Consider the conditional desire Dp

≥r �b�a�. How may we characterize its distin-
guished models? The basic idea is that a conditional desire does more than just for-
mulating a constraint on utility functions. It also suggests a specific way to distribute
penalties (negative utilities) and rewards (positive utilities) over worlds. Dp

≥r �b�a�
proposes that a penalty should be attached to the a∧¬b-worlds and a reward to the
a ∧ b-worlds, whereas the ¬a-worlds should stay unaffected. However, it is impor-
tant to point out that in the context of a desire specification, the exact values of
these penalties and rewards may well depend on other desires. More about this
later on.
First, it seems appropriate to ask for fairness in the sense that the process of

attaching penalties or rewards should be unbiased. That is, worlds within the same
desire context should receive equal treatment, which recalls Laplace’s indifference
principle for probabilities (see e.g. [29]). These considerations motivate our first
two desiderata for distinguished models of a single conditional desire.

1. Local uniformity. The agent should be indifferent with respect to any two a ∧ b-
worlds. Similarly for a ∧ ¬b-worlds and ¬a-worlds. In other words, the utility
values should be constant within these three propositions.

2. Neutrality. The agent should be neutral with regard to ¬a-worlds, which receive
utility 0, and neither strictly prefer ¬a-worlds to a∧ b-worlds, nor a∧¬b-worlds
to ¬a-worlds. That is, u�a ∧ ¬b� ≤ u�¬a� = 0 ≤ u�a ∧ b�.

Utility functions which verify these two requirements about common utility values
take the following form.

Definition 4 (local utility functions—ignoring polarity) Let Dp
�r �b�a� be a condi-

tional desire. Then u is called a local utility function associated with Dp
�r �b�a�

ignoring polarity iff there are �� � ≥ 0 such that

u�w� = −� if w �= a ∧ ¬b
0 if w �= ¬a
� if w �= a ∧ b

� is called the penalty or utility loss, and � the reward or utility gain for u. If
� = � = 0, u is called the null-function or void.

The local utility functions, or subclasses thereof, will become the building blocks of
our distinguished utility models. What remains to be done is to extend the above
notion to take into account the polarity parameter.
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Informally speaking, the polarity parameter p expresses the prima facie propor-
tion between the gain of utility for satisfaction, and the loss of utility for violation
of a conditional desire Dp

�r �b�a�. Accordingly, we may distinguish three types of
desires: gain, loss, and mixed desires.

— Gain desires, which have polarity p = 0, are such that—by default—their sat-
isfaction (a ∧ b) induces a reward, while their non-satisfaction (a ∧ ¬b or ¬a)
does not contribute to the overall utility function of the agent. For instance, “if I
have fish for dinner then I prefer to drink white Bourgogne wine with it” can clearly
be thought of as a purely positive desire.

— Loss desires, which have polarity p = 1, are such that—by default—their viola-
tion (a ∧ ¬b) induces a penalty, while their non-violation (a ∧ b or ¬a) leaves
the overall utility function unchanged. For instance, “if it rains then I prefer to
have an umbrella” may be seen as a purely negative desire.

— Mixed desires form a continuous realm between gain and loss desires. By default,
they induce both a reward if the desire is satisfied (a ∧ b) and a penalty if
it is violated (a ∧ ¬b), whereas the context complement ¬a stays unaffected.
Consider the desire “if I eat potatoes then I prefer them to be cooked.” It seems
natural to most (hungry, but not starving) human agents that eating a cooked
potato is better than nothing and that eating a raw potato is worse than nothing.

The polarity parameter p is meant to induce a default requirement for the gain-loss
proportion to be observed by the preferred utility models of individual conditional
desires. It does so by restricting the relative values of the penalties and rewards,
which gives us our third desideratum.

3. Gain-loss proportion. The distinguished models of a single conditional desire
should satisfy p = �/��+ �� ∈ �0� 1� if �+ � > 0 (�� � as above).

Note that we only require that p = −u�a ∧ ¬b�/�−u�a ∧ ¬b� + u�a ∧ b�� for sin-
gle desires, not for distinguished models of arbitrary desire specifications including
D
p
�r �b�a�. The reason is that we have to take into account the possible interaction

with other conditional desires. Furthermore, it is important to keep in mind that two
desires differing only with regard to their polarity still share the same monotonic
semantics, i.e., they have the same utility models. Only their preferred interpreta-
tions are different. We can now state the full definition of local utility functions.

Definition 5 (local utility functions) Let Dp
�r �b�a� be a conditional desire. Then

u is called a local utility function associated with Dp
�r �b�a� iff u is a local utility

function associated with Dp
�r �b�a� ignoring polarity, and the corresponding penalty

� and reward � satisfy �/��+ �� = p if �+ � > 0.

The first three desiderata characterize for each conditional desire Dp
�r �b�a� a class

of elementary utility functions, the local utility functions associated with Dp
�r �b�a�,

which do not necessarily satisfy Dp
�r �b�a�. From these functions we are going to

choose the distinguished utility models of Dp
�r �b�a� by adding the standard truth-

condition for conditional desires as our fourth desideratum.
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4. Semantic constraint. Penalty and reward should satisfy

� = u�a ∧ b� � r + u�a ∧ −b� = r − �
That is, we must have �+ � � r .

These four desiderata describe the weakest notion of distinguishedness for individ-
ual conditional desires.

Definition 6 (distinguished utility model—single desire) Let Dp
�r �b�a� be a condi-

tional desire. Then u is called a distinguished utility model of Dp
�r �b�a� iff u is a

local utility function associated with Dp
�r �b�a� and u satisfies Dp

�r �b�a�.
It is easy to see that each conditional desire Dp

�r �b�a� admits a whole family of
distinguished models. For instance, if u is a distinguished model, then all its multi-
ples �u, for � ≥ 1, are distinguished as well. Because p is fixed, each distinguished
model is already characterized by its penalty respectively reward. Local utility func-
tions may be seen as partial distinguished models.
For conditional desires of the form D

p
≥r �b�a�, there exists a single distinguished

model minimizing � and �, i.e., the absolute values of the utilities. It encodes the
most neutral stance—staying as close to 0 as possible—compatible with the given
utility constraints, and implements the principle of avoiding unmotivated excite-
ment. This seems to be a very natural way to strengthen distinguishedness and
to guarantee uniqueness for desires of strength ≥r . It therefore becomes our—
optional—fifth desideratum.

5. Minimality (for single desires) Penalty and reward should be minimized, i.e. � +
� = r , where possible (for ≥r).

Putting all the requirements together, the intuitively distinguished model of
D
p
≥r �b�a� then is fixed as follows.

Definition 7 (minimal distinguished utility model—single desire) Let D
p
≥r �b�a�

be a conditional desire. Then u is called a minimal distinguished utility model of
D
p
≥r �b�a� iff u is the distinguished model of Dp

≥r �b�a� with minimal � = −u�a∧¬b�
and � = u�a ∧ b�, i.e. �+ � = r .
In particular, the minimal distinguished model of Dp

≥0�b�a� is the null function. It is
clear that this approach does not work for conditional desires of the form Dp

>r�b�a�,
where minimality cannot be achieved without violating the semantic constraint. It
is therefore preferable to model desires with expressions of the form D

p
≥r �b�a�. The

following example illustrates minimality for single desires.

Example 1 (DS1 = �D0
9
≥0�p�	� and DS2 = �D0
9

≥1�p�	�) The unique minimal
distinguished utility function of DS1 is the null function, and the unique mini-
mal distinguished utility function u of DS2 is given by u��� = −0
9 iff � �= −p,
u��� = 0
1 iff � �= p, and 0 otherwise. This shows the unusual character of the
desires with strength ≥0: their minimal distinguished utility function is identical to
the minimal distinguished utility function of the empty desire specification.
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Our next task is now to generalize these notions of distinguishedness to (finite) sets
of conditional desires. The basic intuition is that conditional desires, at least if they
do not subsume each other, may be considered independent. This suggests a strat-
egy where we build the global distinguished utility models by adding the rewards
and penalties of the individual desires, but weighted in a way which reflects the
interactions between the different desires. In other words, we add some suitable
associated local utility functions. They constitute the elementary building blocks for
constructing preferred utility models of the whole desire specification. Following
this philosophy, only those models of a desire specification DS will be called distin-
guished which are representable as a sum of local utility functions associated with
conditional desires in DS.
Observe that we do not require these local utility functions to be distinguished

models of the specific desires. For instance, if one of two desires �1� �2 is logically
redundant, e.g., if �1 entails �2, we may well ignore the penalty and reward cor-
responding to �2, i.e. accept a certain redundancy. This amounts to associate the
null-function to �2, even if it fails to satisfy the desire (see also Example 5). In Def-
inition 10 we are also going to discuss stronger notions of distinguishedness where
every desire counts.

Definition 8 (distinguished utility models) Let DS = �D
p1
s1 �b1 � a1�� 
 
 
 �

D
pn
sn �bn� an� be a desire specification. A utility function u is called a distinguished

utility model of DS iff there are (possibly void) local utility functions ui associated
with Dpi

si �bi�ai� such that

1. u �= DS
2. u = u1 + · · · + un.
Modd�DS� is the set of all distinguished models of DS, and DS �∼d � iff for all
u �= DS we have u �= �.
The following two examples illustrate the distinction between models and distin-
guished models, i.e., between monotonic and nonmonotonic entailment. Both exam-
ples show that in the context of distinguished models, conditional desires stay valid
if we strengthen the condition by some types of information which is considered
irrelevant, and there are no further desires around. This doesn’t hold for arbitrary
utility models.

Example 2 (DS = �D1
≥1�a�	�) Mod�DS� = �u � u�¬a� + 1 ≤ u�a� is the set

of all its utility models. We have strengthening of the condition 	 to b only if b is
implied by a, i.e.:

DS �= D1
≥1�a�b� iff a � b

Modd�DS� = �u � u�w� = −� ≤ −1 iff w �= ¬a� u�w� = 0 iff w �= a is the set of
distinguished utility models. We have strengthening of the condition 	 to b in all
cases except when ¬b is implied by a, i.e.:

DS �∼d D1
≥1�a�b� iff a �� ¬b
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Strengthening is thus more easy to achieve, because we derive strengthening for all
irrelevant b.

Example 3 (DS = �D1
≥1�a�	��D1

≥1�b�	�).

Mod�DS� = �u � u�¬a�+ 1 ≤ u�a�� u�¬b�+ 1 ≤ u�b�
Modd�DS� = �u � u�w� = −� ≤ −1 iff w �= b ∧ ¬a

−�′ ≤ −1 iff w �= a ∧ ¬b�
−�− �′ iff w �= ¬a ∧ ¬b� 0 otherwise


We have strengthening of the condition 	 to ¬b only in the nonmonotonic case:

DS �� D1
≥1�a�¬b�

DS �∼d D1
≥1�a�¬b� iff a �� b and b �� a

As for individual conditional desires, the resulting general distinguishedness concept
can now be strengthened or fine-tuned by restricting the choice of local utility func-
tions in some reasonable ways. We start by defining minimal distinguished models
of arbitrary desire specifications. Here the idea (minimality principle) is that each
local utility function should contribute only as much as necessary to let the whole
additive construction validate all the conditional desires. This amounts to prefer
those distinguished utility models which minimize penalties and rewards. As before,
we restrict ourselves to conditional desires of strength ≥r .

Definition 9 (minimal distinguished utility models) Let DS = �D
p1≥r1�b1�a1�� 
 
 
 �

D
pn≥rn�bn�an� be a desire specification and ui be a local utility function associated

with Dpi≥ri �bi�ai� with penalty �i and reward �i. A distinguished utility model u =
u1 + · · · + un of DS is called minimal iff there is no distinguished utility model
u′ = u′1 + · · · + u′n of DS with weights ��′i� �

′
i� such that for all i, �′i ≤ �i, �′i ≤ �i,

and �′j < �j or �
′
j < �j for some j . Modmd�DS� and �∼md are defined in the obvious

way.

This approach does not work for desires of the form D
p
>r�b�a�, because then

minimal distinguished utility functions do not exist. The present account may be
compared to Tan and Pearl’s gravitation towards indifference [33, 34], but also to
non-polarized minimality accounts in default reasoning [17, 46].
Because we get a smaller number of preferred models, or even a single one, this

approach allows us to nonmonotonically infer more conditional desires or prefer-
ences. Nevertheless, the following example shows us that the minimal distinguished
utility models are not necessarily unique (see also Example 8).

Example 4 (DS = �D1
≥1�a�	��D1

≥1�b�	��D1
≥1�a ∧ b�	�) Let ua� ub� ua∧b be the

minimal local utility models of the desires in DS. Obviously, we have � = 1 and
� = 0, i.e., penalties and no rewards. We proceed by parallel minimization of the
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penalties of all the desires. But making one smaller, while supporting the semantic
constraints, may force us to increase another one. This causes a trade-off between
the local utility functions representing the different desires, resulting in multi-
ple minimal distinguished utility models. More concretely, each sum �ua + �ub +
�1− ��ua∧b, for � ∈ �0
1�, is a minimal distinguished model of DS.

A completely different strategy for strengthening distinguishedness, which is appli-
cable to arbitrary conditional desires (>r and ≥r), is to take each conditional desire
seriously, avoiding subsumption and redundancy. This may be achieved by restrict-
ing the set of local utility functions used for building preferred utility models of DS.
We distinguish two alternatives.

— Only those local utility functions associated with � ∈ DS which are different
from the null-function (except for desires of strength ≥0).

— Only those local utility functions associated with � ∈ DS which are also distin-
guished utility models of �.

Otherwise, we proceed as before, and arrive at the following definitions.

Definition 10 ( strict / superstrict distinguished utility models ) Let DS =
�D

p1
s1 �b1� a1�� 
 
 
 �Dpn

sn �bn�an� be a desire specification. Let the ui be (possibly
void) local utility functions associated with Dpi

si �bi�ai�.
A utility function u is called a strictly distinguished utility model of DS iff u �= DS

and, for si �= “≥ 0 ”, there are nonvoid ui with u = u1 + · · · + un.
A utility function u is called a superstrictly distinguished utility model of DS

iff u �= DS and there are distinguished utility models ui of D
pi
si �bi�ai� with u =

u1 + · · · + un.
Modsd�DS��Modssd�DS�, �∼sd, and �∼ssd are defined as their counterparts.

Distinguishedness is our weakest notion of preference over utility models. Strict
distinguishedness reflects the proposal in [23]. Superstrict distinguishedness is an
even more consequent implementation of that idea. Whereas strict and superstrict
distinguishedness support stronger conclusions—by restricting the set of preferred
models—they block redundant desires, to different degrees. This is shown by the
following examples which illustrate the relations between different types of distin-
guished models. The first one clarifies the difference between distinguished and
strictly distinguished models.

Example 5 (DS = �D1
≥1�a�	��D1

≥1�a ∧ b�	�) The distinguished utility models
of D1

≥1�a ∧ b�	� are also distinguished models of DS. Therefore, through distin-
guishedness, we cannot nonmonotonically infer from DS that a ∧ ¬b-worlds are
automatically preferred to ¬a-worlds, because the worlds in ¬a∨¬b may have uni-
form utility in some distinguished model. That is, DS ��∼d D1

>0�a�¬�a ∧ b��.
On the other hand, the strictly distinguished models of D1

≥1�a ∧ b�	� are not
strictly distinguished models of DS, because in each such preferred model of DS,
the ¬a-worlds get less utility than the a ∧ ¬b-worlds. In fact, by strictness, we
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are not allowed to add the void local utility function for D1
≥1�a�	�. Consequently,

DS �∼sd D1
>0�a�¬�a ∧ b��.

The second example points at the difference between distinguished and superstrictly
distinguished models.

Example 6 (DS = �D1
≥1�a�	��D1

≥2�a�	�) The strictly distinguished utility
models of D1

≥2�a�	� are exactly the strictly distinguished models of DS. Therefore,
using strict distinguishedness, we cannot infer that the gap between a-worlds and
¬a-worlds is at least 3. For instance, u with u�w� = −2 over ¬a and u�w� = 0
over a is a strictly distinguished model of DS. That is DS ��∼sd D1

≥3�a�	�. This con-
clusion is however supported in the context of superstrict distinguishedness, i.e.
DS �∼ssd D1

≥3�a�	�, where not just local utility functions, but local distinguished
utility models are summed up.

It is up to the user to decide whether in his application, these additional assump-
tions make sense. Our favourite choice criterion is distinguishedness, respectively
minimal distinguishedness. It follows from the definition of strict distinguishedness
that it cannot be naively strengthened to minimal strict distinguishedness. Mini-
mal superstrict distinguishedness, on the other hand, doesn’t cause any problems,
at least if the loss of redundancy is accepted.

2.3. Some benchmark examples

The simple examples in the previous section have a technical flavour and illustrated
amongst others subtle distinctions between distinguished, strictly distinguished and
superstrictly distinguished utility functions. However, for many practical purposes,
these notions do not make a difference. In this section, we consider several bench-
mark examples of reasoning about desires which are analogous for all types of
distinguished utility models. The first two examples illustrate a notion of ‘overrid-
ing’ (Examples 7 and 8) and the latter two illustrate the parameters (Examples 9
and 10).
When the strengths of a desire specification are unknown, there are two ways to

proceed. First and most obviously, we may assume strength >0 for each desire of
the desire specification, though as we discussed this has the drawback that minimal
distinguished utility functions are not defined. Alternatively, we may stipulate the
same strength for all the desires. In such cases we use by convention strength ≥1 for
all desires, though any value different from 0 and  would be acceptable. In techni-
cal terms, all these are structurally indistinguishable or isomorphically exchangable.
In the following examples we concentrate on desire specifications with desires of
strength ≥1, where minimal distinguished utility functions are known to exist. On
the other hand, we pay particular attention to the desires of strength >0 which
are supported by the different kinds of distinguished utility models, i.e. which are
nonmonotonically entailed by the desire specification, because as explained in the
following section we are often primarily interested in the resulting preferences.
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In the examples in this paper, the default values for strength and polarity are
respectively >0 and 1—thus we write Ds�a�b� for D1

s �a�b�, Dp�a�b� for Dp
>0�a�b�,

and D�a�b� for D1
>0�a�b�. Let ⊂ denote strict inclusion. The first example illustrates

how more specific desires override more general conflicting desires.

Example 7 (umbrella) (from [5])

1. I prefer not to carry an umbrella;
2. If it rains, then I prefer to carry an umbrella.

They are intuitively loss desires, thus DS = �D≥1�¬m�	��D≥1�m�r�, where m and
r stand respectively for umbrella and raining.

u¬m�	��� −�1 iff � �= m 0 otherwise
um�r ��� −�2 iff � �= r ∧ ¬m 0 otherwise

The (strict, superstrict) distinguished utility functions have the form u = u¬m�	 +
um�r :

� u��� � u���

m r −�1 ¬m r −�2
m ¬r −�1 ¬m ¬r 0

The constraints on �1 and �2 are the following:

u �= D≥1�¬m�	�⇔ max�−�2� 0� ≥ 1+max�−�1�−�1�⇔ �1 ≥ 1
u �= D≥1�m�r� ⇔ −�1 ≥ 1− �2 ⇔ �2 ≥ 1+ �1

The unique minimal (strict, superstrict) distinguished utility function u satisfying
DS is given by u�m ∧ r� = u�m ∧ ¬r� = −1, u�¬m ∧ r� = −2, u�¬m ∧ ¬r� = 0.
D≥1�m�r� takes precedence over D≥1�¬m�	�, because it is more specific.

The following example is borrowed from the literature on deontic logics [3] and
illustrates a more complex form of overriding based on specificity. In [38], two
interpretations of the Reykjavik scenario are given; here we refer to the mixed
defeasibility and violability interpretation.

Example 8 (Reykjavik scenario)

1. You should not tell the secret to Gorbachev;
2. You should not tell the secret to Reagan;
3. If you tell the secret to Reagan, you should tell it to Gorbachev too;
4. If you tell the secret to Gorbachev, you should tell it to Reagan too.
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DS = �D≥1�¬g�	��D≥1�¬r �	��D≥1�g�r��D≥1�r �g�, because intuitively they are
loss desires. Local utility functions, distinguished utility models and constraints are
as follows.

u¬g�	��� −�1 iff � �= g 0 otherwise
u¬r �	��� −�2 iff � �= r 0 otherwise
ug�r ��� −�3 iff � �= r ∧ ¬g 0 otherwise
ur �g��� −�4 iff � �= g ∧ ¬r 0 otherwise

� u��� � u���

g r −�1 − �2 ¬g r −�2 − �3
g ¬r −�1 − �4 ¬g ¬r 0

u �= D≥1�¬g�	� ⇔ 0 ≥ 1+max�−�1 − �2�−�1 − �4� ⇔ �1 + �2 ≥ 1
�1 + �4 ≥ 1

u �= D≥1�¬r �	� ⇔ 0 ≥ 1+max�−�1 − �2�−�2 − �3� ⇔ �1 + �2 ≥ 1
�2 + �3 ≥ 1

u �= D≥1�g�r� ⇔ −�1 − �2 ≥ 1− �2 − �3 ⇔ �3 ≥ 1+ �1
u �= D≥1�r �g� ⇔ −�1 − �2 ≥ 1− �1 − �4 ⇔ �4 ≥ 1+ �2

The unique minimal (strict) distinguished utility function satisfying DS is u�g ∧ r� =
−1, u�g ∧¬r� = u�¬g ∧ r� = −2, u�¬g ∧¬r� = 0. It can be established by different
values of the variables, such as �1 = �2 = 0
5 and �3 = �4 = 1
5, or �1 = 0
1,
�2 = 0
9, �3 = 1
1, and �4 = 1
9. It is a strict model, because 0 < �i for all i, and it
is not a superstrict model, because we have �1� �2 �≥ 1. In the distinguished utility
model, the desire D≥1�g�r� takes precedence over D≥1�¬g�	�, and D≥1�r �g� over
D≥1�¬r �	�, because they are more specific.

The following example taken from [33] is an extension of Example 3, with different
strengths, and illustrates the strength parameter. Stronger desires override weaker
desires in case of conflict.

Example 9 (Healthy and wealthy) Consider the desires

1. I desire to be healthy;
2. I desire to be wealthy.

DS = �D≥2�h�	��D≥1�w�	�, because the first desire is more important or stronger
than the second one. Note that for extracting preferences it does not make a dif-
ference whether we formalize these unconditional desires as loss or gain desires,
because it only results in adding a constant value to each world. In other words it
affects the absolute utility values but not the relative ones.
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uh�	��� −�1 iff � �= ¬h 0 otherwise
uw�	��� −�2 iff � �= ¬w 0 otherwise

� u��� � u���

h w 0 ¬h w −�1
h ¬w −�2 ¬h ¬w −�1 − �2

u �= D≥2�h�	� ⇔ max�0�−�2� ≥ 2 +max�−�1�−�1 − �2� ⇔ �1 ≥ 2
u �= D≥1�w�	� ⇔ max�0�−�1� ≥ 1+max�−�2�−�1 − �2� ⇔ �2 ≥ 1

The unique minimal (strict, superstrict) distinguished utility function u satisfying DS
is given by u�h ∧w� = 0, u�h ∧ ¬w� = −1, u�¬h ∧w� = −2, and u�¬h ∧ ¬w� =
−3. Thus we have the intended conclusion that healthy and not wealthy is preferred
to unhealthy and wealthy.

The following example adapted from [1, 34] illustrates the impact of the polarity
parameter.

Example 10 (Bananas) Consider the desire

1. If you are alive, then you desire bananas.

Let DS1 = �D1
≥1�b�a� (loss) and DS2 = �D0

≥1�b�a� (gain). The minimal (strict,
superstrict) distinguished utility models are as follows.

� u��� � u��� � u���

DS1 a b 0 a ¬b −1 ¬a × 0
DS2 a b 1 a ¬b 0 ¬a × 0

We can nonmonotonically derive the desire ‘to be dead if you cannot eat bananas’
from DS1 but not from DS2, because only in the former the utility of ‘being dead’
¬a is equal to the utility of ‘being alive and having bananas’ a∧ b, and consequently
dying is the only way to escape the violation of the desire.

DS1 �∼md D�¬a�¬�a ∧ b�� and DS2 ��∼md D�¬a�¬�a ∧ b��

If we extend the desire to the following more intuitive set, not discussed in [1, 34],
then we get similar answers.

1. If you are alive, then you desire bananas.
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2. You desire to be alive.

DS1 = �D1
≥1�b�a��D1

≥1�a�	� and DS2 = �D0
≥1�b�a��D1

≥1�a�	�, because intuitively
the second desire is a loss desire.

� u��� � u��� � u���

DS1 a b 0 a ¬b −1 ¬a × −1
DS2 a b 1 a ¬b 0 ¬a × −1
DS1 ��∼md D�a�¬�a ∧ b�� and DS2 �∼md D�a�¬�a ∧ b��

After the introduction of preference orders on worlds and background knowledge
we illustrate in Example 13 more complex reasoning with different polarities.
In the technical examples in Sections 2.1 and 2.2 we use the logic of desires to

derive desires from a set of desires. However, in the benchmark examples in this
section we used the logic in a different way: we used the logic to derive utility
functions from a set of desires. In other words, we are primarily interested in the
semantics of a set of desires. In the following section we define our second step, the
derivation of preference relations from a set of utility functions. This is not defined
in the logic anymore, but it is an additional definition.

3. Preference relations

In this section we show how to induce from a set of initial conditional desires the
preference relation of the agent. The problem of the logic of desires defined in
the previous section for decision making is that a desire specification induces a set
of distinguished utility functions, whereas for decision making we would prefer a
single utility function. Also for other applications like negotiation or cooperation
it is inconvenient to deal with a set of utility functions. The question thus rises
how we can summarize the information of this set of utility functions into a single
structure, which we call the agent’s preference relation. In this section we define
this preference relation as a partial pre-ordering on the set of worlds. Thus, a set of
desires induces a set of distinguished utility functions by adding up the utility losses
and gains of the individual desires, and these distinguished utility functions induce
a partial preference ordering on worlds. From a qualitative description we induce
a quantitative description, from which we induce again a qualitative description. In
Section 3.1 we define the preference ordering and in Section 3.2 we prove several
properties of our construction.

3.1. Definitions

It seems straightforward to draw a preference relation on worlds from the dis-
tinguished utility functions of a desire specification. A world � is at least as pre-
ferred as a world �′ if and only if for each distinguished utility function u, we have
u��� ≥ u��′�. Note that obviously, ≥DS is a pre-ordering which in general is not
complete.
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However, for strict preference there are two options. Either we can say that � is
strictly preferred to �′ if w is at least as preferred as �′ but not vice versa, or we
can state that a world � is strictly preferred to a world �′ if and only if for each
distinguished utility function u, we have u��� > u��′�. Obviously the latter implies
the former, but we illustrate in Example 11 that the former does not imply the latter
and thus that the two are not equivalent. In this paper we use the first definition.
The preference relation is defined for our four types of distinguished utility func-

tions. We write � ≥xDS �′ for ‘� is preferred to �′ w.r.t. DS for criterion x’. Our
default choice for distinguishedness is the standard one, i.e., x = d. Accordingly,
we abbreviate ≥dDS (respectively >dDS , ≈dDS) by ≥DS (respectively >DS , ≈DS).
Definition 11 Let DS = �D

p1
s1 �b1�a1�� 
 
 
 �Dpn

sn �bn�an� be a consistent desire
specification and x ∈ �d�md� sd� ssd be a distinguishedness criterion.

� ≥xDS �′ iff for all x-distinguished u with respect to DS� we have � ≥u �′

� >xDS �

′ iff � ≥xDS �′ and not ��′ ≥xDS ��

� ≈xDS �′ iff � ≥xDS �′ and �′ ≥xDS �.
The following example illustrates that the induced preference relation may be dif-
ferent for the different types of distinguished utility functions, and it also illustrates
the two types of strict preference between worlds.

Example 11 (Redundancy, continued) The preference ordering induced by
DS = �D�a�	��D�a ∧ b�	� is the following, if the criterion x is not md:

�a� b�
↓

�a�¬b�
↓

�¬a� b� ≈ �¬a�¬b�

When the criterion is md the preference ordering is as follows:

�a� b�
↓

�a�¬b� ≈ �¬a� b� ≈ �¬a�¬b�

We thus have �a�¬b� >dDS �¬a� b� when we take all distinguished utility functions
into account, but �a�¬b� ≈mdDS �¬a� b� if only the minimal distinguished utility func-
tions are taken into account. That is, we loose a strict preference by reducing the
set of utility functions taken into account. This is a direct consequence of our indi-
rect definition of >DS in terms of ≥DS . If we use the alternative definition that a
world is strictly preferred to another world if it is strictly preferred in all the distin-
guished utility functions, then even for x is d we have that a ∧ ¬b is not preferred
to ¬a ∧ b.
The following example illustrates similar results for the Reykjavik example.
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Example 12 (Reykjavik, continued) Since we have no constraint between �2 +�3
and �1 + �4, the worlds �r�¬g� and �¬r� g� are not comparable for standard, strict
or superstrict distinguishedness, and the preference ordering induced by DS is in
all three cases the following:

�¬g�¬r�
↓

�g� r�
↙ ↘

�g�¬r� �¬g� r�

However, the preference ordering for x = md is as follows, given that ModmdDS is the
unique utility function given by u��¬g�¬r�� = 0, u��g� r�� = −1, and u��¬g� r�� =
u��g�¬r�� = −2.

�¬g�¬r�
↓

�g� r�
↓

�g�¬r� ≈ �¬g� r�

3.2. Properties

In this section we show several properties of ≥DS worth mentioning. For all these
results, we focus first on standard distinguishedness (x = d), for which proofs are
made in detail, and we then discuss the other types of distinguishedness.

Proposition 1 (monotonicity with respect to set inclusion) Let DS = �D
p1
s1 �b1�

a1�� 
 
 
 �D
pn
sn �bn�an� where strengths are positive (i.e., si �= �≥0�, for every i). We

abbreviate Dpi
si �bi�ai� by Di. For a world �, define NonViol���DS� = �Di ∈ DS s.t.

� �= ai → bi and Sat���DS� = �Di ∈ DS s.t. � �= ai ∧ bi. Then

(i) if DS is a set of loss desires, i.e., pi = 1 for all i, then

(a) NonViol���DS� ⊂ NonViol��′�DS� implies � <DS �′.
(b) � ≈DS �′ iff NonViol���DS� = NonViol��′�DS�;

(ii) if DS is a set of gain desires, i.e., pi = 0 for all i, then

(a) Sat���DS� ⊂ Sat��′�DS� implies � <DS �′.
(b) � ≈DS �′ iff Sat���DS� = Sat��′�DS�.

Proof:

(i)(a) Assume NonViol���DS� is strictly contained in NonViol��′�DS� and
D1
si
�bi�ai� ∈ NonViol��′�DS�\NonViol���DS�. Let u be a distinguished
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utility function for DS, then u = ∑
j uj with ui��� = 0 if � �= ai ∧ bi,

ui��� = −�i if � �= ai ∧ ¬bi. Then u��′�− u��� ≥ �i ≥ 0. Since this is true
for any distinguished u, we have � ≤DS �′ holds; now, it is always possible
to choose a non-null value for �, which prevents �′ ≤DS � from being true,
hence we have � <DS �′.

(i)(b) If NonViol���DS� = NonViol��′�DS�, the by construction any distin-
guished utility function for DS assigns the same utility to � and �′, hence
� ≈DS �′ holds. Conversely, assume NonViol���DS� �= NonViol��′�DS�
and let NonViol���DS�\ NonViol��′�DS� = �Di� i ∈ I, NonViol��′�DS�\
NonViol���DS� = �Di� i ∈ J  (at least of both sets I and J is not empty
and furthermore I ∩ J = �). Let u be a distinguished utility function for
DS. u���− u��′� =∑

i∈I �i −
∑
i∈J �i. It is always possible to choose the �i’s

such that the above quantity is different from 0, which leads to � �≈DS �′.
(ii) similar to (i). �

The converse of (i) does not hold (see Examples 7 and 8), and the converse
of (ii) does not hold either. It can be checked easily that this result still holds
with x = sd and x = ssd. It does not hold for minimal distinguishedness, as it
is shown by the following counterexample: let DS = �D0

≥1�a�	��D0
≥1�b�	�. The

minimal distinguished utility model u assigns +1 to both �a�¬b� and �¬a� b�, thus
�a�¬b� ≈mdDS �¬a� b� while Sat��a�¬b�� �= Sat��¬a� b��. Finally, for the alternative
stronger definition that a world is strictly preferred to another world if it is strictly
preferred in all the distinguished utility functions, the proposition does not hold in
general, but it holds for x = sd and x = ssd.

Proposition 2 (unconditional desires) DS = �D
p1
s1 �b1�	�� 
 
 
 �Dpn

sn �bn�	� of
desires is consistent iff ∧i=1

nbi is classically consistent, and in this case, for any two
worlds �, �′, � ≥DS �′ iff �bi � � �= bi ⊇ �bi � �′ �= bi

Proof:

1. Assume ∧i=1

nbi is consistent, then there is a �∗ �= ∧i=1

nbi. Let u be any utility
function defined by u��∗� > maxi=1

nsi and ∀� �= �∗, u��� = 0. This utility
function satisfies the constraints u�bi� ≥ u�¬bi� � si for all i, thus it satisfies DS,
which proves the consistency of the latter.

2. Assume DS is consistent, then there is a utility function u satisfying the con-
straints u�bi� ≥ u�¬bi� � si for all i. Let � be a world maximizing u, then
necessarily � �= bi for all i, therefore ∧i=1

n is consistent.

3. Assume DS is consistent and let �∗ �= ∧i=1

nbi. We can assume that all the bi’s
are non-tautological (otherwise the corresponding desire can be removed). The
local utility functions attached to the Di’s have the form ui��� = �i if � �= bi
and u��� = −�i if � �= ¬bi, therefore the distinguished utility functions for DS
have the form

�∗� u��� = ∑
i���=bi

�i −
∑

i���=¬bi
�i =

∑
i=1

n

�i −
∑

i���=¬bi
��i + �i�
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with pi = �i/�i + �i for all i. Let us consider the subset U of these distinguished
utility functions satisfying furthermore �i + �i � si for all i. Then, for any u ∈ U ,
the constraints u�bi� � u�¬bi�+ si are satisfied for all i, because for every i, the
constraint u�bi� � u�¬bi�+ si is equivalent to u��∗� ≥ u��i�+ si with �i being
the best world satisfying ¬bi (the existence of such a world is guaranteed by the
fact that bi is nontautological) and (*) implies that u��∗�− u��i� ≥ �i + �i � si.
Now, � ≥DS �′ implies that ∀u ∈ U , u��� ≥ u��′� which from (*) holds only if
�bi� � �= bi ⊆ �bi� �′ �= bi. The converse is a consequence of Proposition 1. �

It can be checked easily that this result still holds with x = sd and x = ssd. It does
not hold for minimal distinguishedness, as it is shown by the same counterexample
as above.

Proposition 3 (independent desires) Let DS = �D
p1
s1 �b1�a1�� 
 
 
 �Dpn

sn �bn�an�
consistent such that ∀ i �= j, ai ∧ aj is inconsistent. In this case for a given world �
there is at most one i such that � �= ai: we denote this index by i��� when it is defined.
Let us say that � is good (with respect to DS) when i��� is defined and � �= bi���,
bad when i��� is defined and � �= ¬bi��� and neutral when i��� is not defined. Then,
� ≥DS �′ holds iff one of these conditions holds:

1. � good or neutral, and �′ neutral or bad.
2. i��� = i��′�, � and �′ both good.
3. i��� = i��′�, � and �′ both bad.
4. i��� �= i��′�, � and �′ both good, pi��� < 1, pi��′� = 1.
5. i��� �= i��′�, � and �′ both bad, pi��� = 0, pi��′� > 0.

Proof: Note first that the consistency of DS is equivalent to the consistency of
ai ∧ bi for each i. In this case, for each i we can take any (�i, �i) such that pi =
�i/�i + �i and the constraints will be obviously satisfied. Thus, the distinguished
utility functions are all functions of the form





u��� = �i��� if � is good
u��� = 0 if � is neutral
u��� = −�i��� if � is bad

from which the result follows easily. �

It can be checked easily that this result still holds with x = sd and x = ssd. It does
not hold for minimal distinguishedness, as it is shown by the following counterex-
ample: let DS = �D0

≥1�a�c��D0
≥1�b�¬c�. The minimal distinguished utility model u

assigns +1 to both �a� b� c� and �a� b�¬c�, thus �a� b�¬c� ≈mdDS �a� b� c� while none
of the five conditions is satisfied: indeed, both worlds are good, their indices are
different, and point 4 is not verified by since both polarities are 0.
When introducing superstrict distinguishedness, we discussed sensitivity to rep-

etitions of conditional desires. This point is important, since the way we use to
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distinguish utility functions makes use of additions. As expected, the sensitivity to
repetition varies with the distinguishedness criterion. Namely:

Proposition 4 (redundant desires) Assume that there are two conditional desires
of same polarity, Di = D

p
s �b�a� and Dj = D

p
s′�b

′�a′� in DS such that a is logically
equivalent to a′ and a ∧ b is logically equivalent to a′ ∧ b′.

1. With standard, strict and minimal distinguishedness, DS generates the same sets of
distinguished utility models as DS∗ obtained from DS by replacing �Di�Dj by the
unique desire Dp

max�s�s′��b�a�, and as a consequence, ≥DS is identical to ≥DS∗ .
2. With superstrict distinguishedness, DS generates the same sets of distinguished util-

ity models as DS∗∗ obtained from DS by replacing �Di�Dj by the unique desire
D
p
s+s′�b�a�, and as a consequence, ≥DS is identical to ≥DS∗∗ .

Proof:

1. Assume that DS is consistent (otherwise the result is trivially satisfied) and sup-
pose without loss of generality that si ≥ sj . Let x �= ssd be the distinguishedness
criterion.

(i) Let us consider a x-distinguished utility model u = u1 + · · ·un of DS. We
have to show that u is also a x-distinguished utility model of DS∗. Let us
take u′k = uk for every k �= i� j , and u′i = ui + uj . Then u′ =

∑
k �=j u′k = u is

a x-distinguished utility model of DS∗.
(ii) Let us consider a x-distinguished utility model u′ = u′1 + · · ·u′j−1+

u′j+1 + · · · + u′n of DS∗. We have to show that u is also a x-distinguished util-
ity model of DS. Let us take uk = u′k for every k �= j , and ui = u′′j = 1

2 · u′j .
Then u =∑n

k=1 uk = u′ is a x-distinguished utility model of DS.

2. Let now consider the case of superstrict distinguishedness, i.e. x = ssd, and again
let us assume that DS is consistent (otherwise the result is trivially satisfied).
Without loss of generality, assume that i < j .

(i) Let us consider a superstrictly-distinguished utility model u = u1 + · · ·un of
DS. We have to show that u is also a superstrictly-distinguished utility model
of DS∗∗. We have

ui + uj��� =





�+ �′ iff � �= a ∧ b
0 iff � �= ¬a
−��+ �′� iff � �= a ∧ ¬b

with p = �/�+ � = �′/�′ + �′.
These last equalities yield p�� + �� = � and p��′ + �′� = �′, thus p�� + �′ +
�+ �′� = �+ �′ and therefore �+ �′ + �+ �′/��+ �′� = p. This implies easily
that a local utility function uk attached to Dp

s+s′�b�a� in DS has exactly the same
form as ui + uj with the very same constraints, the rest being equal due to the
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logical equivalences. Hence u = u1 + · · · + ui−1 + �ui + uj�+ ui+1 + · · · + uj−1 +
uj+1 + · · · + un is a superstrictly distinguished utility model of DS∗∗.

(ii) If u = u1 + · · · + ui−1 + ui�j + ui+1 + · · · + uj−1 + uj+1 + · · · + un is a
superstrictly-distinguished utility model of DS∗∗ then u can be rewritten u =
u1 + · · · + ui−1 + * · ui�j + ui+1 + · · · + �1 − *� · ui�j + uj−1 + uj+1 + · · · + un
where * = si/si + sj , which shows that u is also a superstrictly-distinguished
utility model of DS. �

For example, �D�¬g�	��D�¬r �	��D�g�r��D�r �g��D�r �g� induces the same pref-
erence relation as �D�¬g�	��D�¬r �	��D�g�r��D�r �g�.
More generally, when two logically equivalent desires with distinct polarities p

and p′ (such as p < p′ without loss of generality), coexist in DS, then p′′ =
� + �′ + � + �′/� + �′ ∈ �p� p′� and p′ tends to p when � + �/�′ + �′ tends to
+, and to p′ when �+ �/�′ + �′ tends to 0. Thus, DS behaves as if there was a
single desire with an interval polarity �p� p′�.

Proposition 5 (specificity) Let DS = �Dp
s �b�a��Dp′

s′ �c�a′� with �a′ → a� ��a →
a′, and b ∧ c inconsistent. Then, whatever s and s′, the more specific desire takes prece-
dence over the less specific one, i.e., the ≥DS-maximal worlds satisfying a ∧ a′ (i.e., a′)
satisfy c (and ¬b).

Proof: Attach ���−�� to Dp
s �b�a� and ��′�−�′� to Dp′

s′ �c�a′�; distinguished utilities
have the form:

u��� = �− �′ if � �= ¬a′ ∧ b ∧ ¬c
u��� = �′ − � if � �= ¬a′ ∧ ¬b ∧ c
u��� = −��+ �′� if � �= ¬a′ ∧ ¬b ∧ ¬c
u��� = � if � �= ¬�a ∧ ¬a′� ∧ b
u��� = −� if � �= ¬�a ∧ ¬a′� ∧ ¬b
u��� = 0 if � �= ¬a ∧ ¬a′

The constraints u�a ∧ b� � u�a ∧ ¬b� + s and u�a′ ∧ c� � u�a′ ∧ ¬c� + s′ yield
respectively � � �′ − �+ s and �′ − � � �− �′ + s′. This second inequality implies
�′ − � > �− �′, i.e., u�a′ ∧ ¬b ∧ c� > u�a′ ∧ b ∧ ¬c�. �

This result extends easily to all other types of distinguishedness.
The following proposition generalizes Example 4 in Section 3.1.

Proposition 6 (absence of drowning effect) Let DS = �D
p
s �b�a��Dp′

s′ D�c�a′��
D
p′′
s′′ �e�a� with �a′ → a, ��a → a′, and b ∧ c inconsistent. Then the ≥DS-maximal

worlds satisfying a ∧ a′ (i.e., a′) satisfy not only c but also e, thus the precedence of
D
p′
s′ �c�a′� over Dp

s �b�a� does not inhibit Dp′′
s′′ �e�a�: there is no “drowning effect” [4].

The proof (omitted) is similar to the proof of Proposition 5 and holds for all types
of distinguishedness.
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4. Desires and knowledge

Up to now, we have only considered desire specifications, concerned with ideal
worlds, and ignored the impact of knowledge about the real world. On a general,
formal level, knowledge allows us to restrict the set of possible worlds to a subset of
W . However, here it is important to distinguish between three kinds of knowledge.

— Background knowledge is meant to express which worlds are physically
impossible.

— Contingent knowledge �facts� is meant to tell us which (physically possible) worlds
do not correspond to the actual state of affairs.

— Feasibility knowledge is meant to tell us which (physically possible) worlds the
agent is able to reach.

The distinction between background knowledge and contingent knowledge is well
known from modal and default conditional logic. It has also been made by van
der Torre [38] for the treatment of violated obligations in deontic logic. Because
preference relations are usually meant to be relevant across situations, in addition to
the desire specification, only background knowledge should be taken into account
when choosing utility distributions or defining a preference relation over the set
of worlds. Contingent knowledge only comes in when the resulting preferences are
exploited for taking a decision, more precisely, when looking at the preferred worlds
among those which are feasible from the actual situation (more details are given in
Section 4.2). Computing the preference relation may therefore be seen as a kind of
“compilation,” i.e., it is the same whatever the contingent knowledge is.
The distinction between background knowledge and feasible knowledge is well

known from logic of action, because it is generally not the case that all physically
possible worlds are feasible from the actual situation. We therefore introduce in
Section 4.2 a third notion, namely feasibility (ability): from the initial situation,
there are some decisions the agent can make; each possible decision enables us
to reach another—or the same—world, which must be physically possible. Thus,
we turn the problem into a decision problem: given a set of desires inducing a
preference relation and factual knowledge specifying which worlds are feasible and
which ones are not, the agent should attempt to achieve the best feasible situation
by performing a suitable action. This is where contingent knowledge will be taken
into account.

4.1. World knowledge

Definition 12 (background knowledge, physically possible worlds) Let DS be a
desire specification and BK (the background knowledge base) a finite set of for-
mulas. Worlds satisfying BK are called physically possible. $DS�BK% is referred
to as a background specification. The semantic framework changes only insofar as
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in the context of $DS�BK%, we restrict utility functions to the physically possible
worlds, whereas the truth conditions stay unaffected. That is,

u �= $DS�BK% iff Dom�u� = �� � � �= BK and u �= DS

Local utility functions, preference relations, and all kinds of distinguishedness with
respect to BK are defined accordingly.

All results of Section 3.2 are easily generalizable to the case where background
knowledge is taken into account. We illustrate its impact by the following example,
which also shows that constraints between utility losses are not only used to resolve
conflicts (as in Example 7).

Example 13 (transitivity) Suppose, there are two desires, notably that going to
a party (p) is preferred over going to the cinema (c), and going to the cinema is
preferred over staying home (h). Intuitively, we have three variables representing
different ways to spend the evening. These are mutually exclusive and exhaustive,
which can be expressed with background knowledge.

−DS = �Dp
>0�p�p ∨ c��Dp

>0�c�c ∨ h�
−BK = �p ∨ c ∨ h�¬�p ∧ c��¬�p ∧ h��¬�c ∧ h�

The distinguished utility functions now have the following form:

� u���

p ¬c ¬h �1
¬p c ¬h �2 − �1
¬p ¬c h −�2

The constraints lead to �1 > �2 − �1 > −�2, thus p is preferred to h whatever the
polarity. If we take p = 0
5 then the constraints are equivalent to �1 > �2. Now,
let us also consider the desire that staying at home is preferred over going to work,
and encode these desires with explicit constant strength bounds.

−DS = �Dp
≥1�p�p ∨ c��Dp

≥1�c�c ∨ h��Dp
≥1�h�h ∨w�

−BK = �p ∨ c ∨ h�¬�p ∧ c��¬�p ∧ h��¬�c ∧ h�

It follows that the distinguished utility functions and the minimal distinguished util-
ity functions have the following form, which of course can be restricted further by
the strength constraints:

� u��� u����min�

p ¬c ¬h ¬w �1 �1
¬p c ¬h ¬w �2 − �1 �1 − 1
¬p ¬c h ¬w �3 − �2 �1 − 2
¬p ¬c ¬h w −�3 �1 − 3
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The polarity does not influence the construction of the preference relation on
worlds, because the relative ordering stays constant. If p = 0
5, we get �1 = 2.

More examples illustrating the polarity and strength parameter are given in [42].

4.2. Feasible worlds and preferred decisions

At this point we have to choose an action model. Since the paper focuses on pre-
ference representation rather on action theories, we prefer to stick here to a simple
action model where actions are deterministic and ramification is not handled. Our
action model is inspired from Boutilier’s [5]: the set of propositional variables Var
is partitioned into two classes: controllable variables (ContrVar), whose truth value
may be fixed or changed by the agent, and uncontrollable variables (UncontrVar),
whose truth value is fixed by the outside world. To any controllable variable x, there
exist two atomic decisions do�x� and do�¬x� whose effects are that the truth value
of x is fixed, or changed, to respectively true or false. A consistent, complete
decision &d is a set of atomic decisions

(i) containing exactly one of both atomic decisions do�x� and do�¬x� for every
x ∈ ContrVar and

(ii) consistent with BK .

Lastly, some of these consistent complete decisions may not be applicable in some
contexts: for this we introduce applicability constraints of the form

if / then � unapplicable

where � is a conjunction of atomic actions and / is any propositional formula (which
may even contain controllable variables—see the Reykjavik example further on).
This syntax is inspired by impossible � if / in action languages such as [16].
We say that a complete, consistent decision &d is available in the initial state Init

iff it is consistent with �¬� � if / then � unapplicable ∈ Constr and Init �= /.
The set of all consistent decisions available in the initial state Init w.r.t. a set of
constraints Constr is denoted by Dec�Init�Constr�.

Definition 13 (decision problem) A decision problem � consists of

• a partition (ContrVar, UncontrVar) of the propositional variables;
• a desire specification DS;
• a background knowledge base BK;
• a set Constr of applicability constraints if / then � unapplicable as above;
• a complete initial situation Init, namely, Init is a propositional formula such that
for any uncontrollable variable y, we have either Init �= y or Init �= ¬y.
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Intuitively, the initial situation Init consists of

1. a complete assignment of all uncontrollable variables, and
2. a partial assignment of the uncontrollable variables representing the choices

already made by the agent (see Examples 6 and 7).

By default, no controllable variable is initially assigned. The case where the agent
has an incomplete knowledge of the initial state of the world will not be considered
in this paper.

Definition 14 (effect of a decision on the initial state; feasible worlds) Let &d be a
consistent decision available in the initial state Init. The effect of &d on Init, denoted
Res� &d� Init�, is defined as follows:

• Res� &d� Init� assigns each controllable variable x to true if &d contains do�x� and
to false if &d contains do�¬x�;

• Res� &d� Init� assigns each uncontrollable variable as in Init, i.e., for each uncon-
trollable variable y, we have Res� &d� Init� �= y if and only if Init �= y and
Res� &d� Init� �= ¬y if and only if Init �= ¬y.

The set �Res� &d� Init� � &d ∈ Dec�Init�Constr� is called the set of feasible worlds from
Init and is denoted by FW �BK� Init�Constr�.

Note that in Init the uncontrollable variables need not to be assigned a truth value.
Only the controllable variables must have a fixed truth value (complete initial state).
Init being complete and actions being deterministic means that the agent has a
complete knowledge of the initial world regarding to the uncontrollable atoms and
thus that the set of feasible worlds FW �BK� Init�Constr� is known.
What we want to do now is to extend the preference relation induced on W by

$DS�BK% to a preference relation on the set of possible decisions, taking account
of contingent knowledge. By default, and for the sake of simplicity, from now on the
preference relation $DS�BK% is induced from (standard) distinguished utility models.

Definition 15 (preferred feasible worlds and decisions) Let � = $ContrVar�
UncontrVar�DS�BK�Constr� Init% be a decision problem and let &d� &d′ ∈ ��Init�. We
say that &d (�

&d′ iff Res� &d� Init� ≥$DS�BK% Res� &d′� Init�. A decision &d is a preferred
decision iff &d is ≥$DS�BK%-maximal in Dec�Init�Constr�; in this case Res� &d� Init� will
be called a preferred feasible world.

Equivalently, � is a preferred feasible world iff � is ≥$DS�BK%-maximal in
FW �BK� Init�Constr�. Preferred decisions represent optimal choices for the agent.
There may be physically possible worlds above a preferred feasible world � but
these worlds are not feasible from the actual situation (although there are physically
possible in other circumstances). Note that since ≥$DS�BK% is generally not com-
plete, (� is generally not complete either. Thus there may be several incomparable
preferred decisions.
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4.3. Examples

The following example illustrates an instance of what Horty [20] calls overridden
rules.

Example 14 (asparagus)

1. If you are invited to a dinner you should not eat with your fingers
2. If you are served asparagus you should eat with your fingers;
3. Being served asparagus means that you are invited to a dinner;
4. You are currently being served asparagus.

The controllable atom is f (eat with your fingers) while d and a are uncontrollable.
d is considered uncontrollable, because once you have started participating to the
dinner, the truth of d cannot be changed. In agreement with intuition, (1) and (2)
are encoded by loss desires, while (3) is background knowledge (�¬d� a� is physically
impossible) and (4) is contingent knowledge (relevant to the current situation only).
We check that the truth value of all uncontrollable atoms is known. Thus,

ContrVar = �f 2UncontrVar = �d� a2
DS = �D1

≥1�¬f �d��D1
≥1�f �a�2

BK = �a→ d2 Init = �a2Constr = 	


Let �1 and �2 be associated respectively with D1
≥1�¬f �d� and D1

≥1�f �d ∧ a�. The
distinguished utility functions have the following form:

uDS�BK��d� a� f �� = −�1 uDS�BK�daf̄ � = −�2

uDS�BK��d�¬a� f �� = −�1 uDS�BK��d�¬a�¬f �� = 0

uDS�BK��¬d�¬a�×�� = 0 uDS�BK��¬d� a�×�� is undefined

The constraints expressed by the conditional desires entail that �2 > �1 > 0
(D1

≥1�f �a� is more specific than D1
≥1�¬f �d�). Hence, we get the following prefer-

ence relation on the set of physically possible worlds:

�d�¬a�¬f � ≈ �¬d�¬a� f � ≈ �¬d�¬a�¬f �
↓

�d� a� f � ≈ �d�¬a� f �
↓

�d� a�¬f �

Now, since Init = �a, the set of feasible worlds is ��d� a� f �� �d� a�¬f �. Since
�d� a� f � >DS�BK �d� a�¬f �, the only preferred feasible world is �d� a� f �. Hence the
only preferred decision is do�f �, i.e., the agent should eat with her fingers.
Note that at in another situation where the agent is at a dinner where she is served

another dish than asparagus Init = d ∧¬a, the preferred feasible world would then
be �d�¬a�¬f � and the preferred decision would be do�¬f �.
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Example 15 (asparagus and napkin) Same as Example 14 plus the conditional
desire D1

≥1�n�d� (n means you eat with a napkin—controllable). The new desire is
again a loss desire.

DS = �D1
≥1�¬f �d��D1

≥1�f �a��D1
≥1�n�d�2

BK = �a→ d2 Init = �a

The preferred feasible world is �d� a� f � n�, and consequently the preferred decision
is �do�f �� do�n�.

Example 16 (where a desire is more specific than a set of 2 desires) p uncontroll-
able, a and b controllable.

DS = �D1
≥1�a�	��D1

≥1�b�	��D1
≥1�¬a ∧ ¬b�p�2

BK = �2 Init = �p


Let �1, �2 and �3 be associated respectively with D1
≥1�a�	�, D1

≥1�b�	� and D1
≥1�¬a∧¬b�p�.

u$DS�BK%��p� a� b�� = −�3 u$DS�BK%��p� a�¬b�� = −��2 + �3�
u$DS�BK%��p�¬a� b�� = −��1 + �3� u$DS�BK%��p�¬a�¬b�� = −��1 + �2�
u$DS�BK%��¬p� a� �b� = 0 u$DS�BK%��¬p� a�¬b�� = −�2

u$DS�BK%��¬p�¬a� b�� = −�1 u$DS�BK%��¬p�¬a�¬b�� = −��1 + �2�

The constraints induce that �3 ≥ 1 + �1 + �2 > �1 + �2, which means that
D1
≥1�¬a ∧ ¬b�p� is more specific than the set of desires �D1

≥1�a�	��D1
≥1�b�	�.

Since Init = �p, the set of feasible worlds is ��p� a� b�� �p� a�¬b�� �p�¬a�¬b��
�p�¬a�¬b�. Now, it can be checked that the preferred feasible world is
�p�¬a�¬b�, i.e., D1

≥1�¬a ∧ ¬b�p� overwhelms the set of two desires �D1
≥1�a�	�,

D1
≥1�b�	�. The preferred decision is thus �do�¬a�� do�¬b�.
Example 17 (Forrester paradox)

1. You should not kill;
2. If you kill, you should do it gently.

(1) and (2) are encoded as loss desires. Note that Init is complete since
UncontrVar = �.

DS = �D1
≥1�¬k�	��D1

≥1�g�k� (g and k are controllable)


BK = �g→ k2 Init = 	

Let �1 and �2 be associated respectively with D1
≥1�¬k�	� and D1

≥1�g�k�. We get
u$DS�BK%��¬k�¬g�� = 0; u$DS�BK%��k� g�� = −�1; u$DS�BK%��k�¬g�� = −��1 + �2�.
The preferred decision is {do�¬k�� do�¬g�}.
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Assume now that the agent has received from his hierarchy the order to kill.
Disobeying the hierarchy induces a maximal penalty, which translates by the
desire D1

≥+�k�	�, to be added to DS. Now the preferred decision becomes
�do�k�� do�g�}.
A variation of this example consists of considering as possible the situation where

the individual to be killed is already dead. This translates by adding the new uncon-
trollable variable d (already dead), and Constr = { if d then do�k� inapplicable,
if d then do�g� inapplicable} (it is not possible to kill, nor a fortiori to kill gen-
tly, a person who is already dead). Then the only available decision (and thus the
preferred one whatever the orders of the hierarchy) is �do�¬k�� do�¬g�.

Example 18 (Reykjavik scenario, continued)

DS as in Example 82
g� r are controllable2 BK = 	2
Constraints = �if g then do�¬g� inapplicable�

if r then do�¬r� inapplicable2

The constraints express that once g (respectively r) is true, i.e., once Gorbachev
(respectively Reagan) knows the secret, it is not possible to fix the value of g
(respectively r) to false.
The preference ordering is shown in Example 12. When Init = 	, the preferred

decision is �do�¬r�� do�¬g�. Now, if the secret has already been told to Reagan
(Init = r), the previous preferred decision is not any longer available, and the new
preferred decision becomes �do�r�� do�g��.

5. Further research

In this paper we only considered the situation where desires are imposed upon an
agent by another one, as in multi agent systems. In particular, the picture we have
in mind is that of a robot who, given our requirements (imperatives), tries to figure
out the set of admissible utility functions, calculates the expected utilities and acts
accordingly. We do not impose our complete preference ordering on the robot, but
only a simple approximation of it, for computational reasons and because we do
not know it ourselves. In our semantic interpretation, we concentrate exclusively
on the role of expressing desirability—as opposed to intentionality (commitment to
pursue) [10]—recognizing that the result is only a partial account of the use of goals
in planning systems.
Even in this simple situation we have to take several other concepts into

account. The relation between desires, defaults, expectations, facts and decisions
is represented in Figure 1. The input of the one-shot (i.e. static) decision prob-
lem consists of desires (or goals), defaults (or beliefs), expectations and facts. The
input is transformed—nonmonotonically—into (qualitative abstractions of) utility
and probability distributions, which can be combined in an expected utility ordering
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Figure 1. Desires, defaults, expectations and decisions.

suggesting decisions according to some decision rule like maximum utility. In this
paper we have focussed on the relation between desires and utility functions.
The main problem of this figure is the combination of desires and defaults for

expected utility considerations. Defaults are usually interpreted as constraints over
order-of-magnitude abstractions of probability functions, thus to combine these
defaults with desires it seems that first we have to interpret desires as constraints
over order-of-magnitude abstractions of utility functions and second we have to
assume that the two abstractions are of the same order-of-magnitude. This is the
approach followed by, e.g., Pearl [30] and Dubois and Prade [15], who call the latter
assumption the commensurability assumption.
Decision theory does not only provide a semantic framework for conditional

desires, but also a more general setting for planning. In further research we there-
fore consider how our logic can be used for planning, and in which way it has to
be extended. A plan is a sequence of action types with different costs and plausi-
bilities of success. So, all we need—in theory—is decision theory and an intelligent
search strategy for such chains of tasks, the goal being to maximize the expected
utility. Haddawy and Hanks [18] observe the distinction between symbolic planning
and decision theory, where the latter provides a normative model of choice under
uncertainty, but offers no guidance as to how the planning options are to be gen-
erated. An important problem is that in practice, the utilities and probabilities are
not known, and we therefore cannot directly exploit the tools of decision theory.

6. Related work

In this section we discuss related work from decision theory, agent theory and
planning. Since our approach also works on many examples from deontic logic,
in Section 6.2 we discuss some links between conditional desires and dyadic obliga-
tions in deontic logic.
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6.1. Preferences

Modeling preferences of rational agents has been tackled for long by decision theory
with utility-based or relational models, but generally without focusing on representa-
tional issues. For example, all possible states with their utility value are represented
explicitly. On the contrary, AI languages for knowledge representation can also be
used for preference modeling, to which they offer a way to represent preferences
compactly and implicitly.
In the agency literature there is a lot of research on logics of desires and goals

in a modal possible worlds framework, see e.g. [8, 32]. An advantage of this sim-
ple formalization is that it easily captures the relation between for example beliefs,
desires and intentions. On the other hand, as argued by Pearl [30], it obscures other
relations, such as for example the relation between desires and actions. Moreover,
as argued by Boutilier [5], it is difficult to formalize context-sensitive or conditional
goals. In addition, we think that an approach from first (decision-theoretic) prin-
ciples is necessary to make underlying assumptions explicit, to give a satisfactory
account of nonmonotonic reasoning about preferences, and to analyze different
types of conflicts (for which we can extend our decision-theoretic formalism with
notions from multi attribute utility theory [1, 22]).
In the context of qualitative decision theory recently several logics for desires

and goals have been proposed, which follow the thesis of Doyle and Wellman [13,
p. 698]:

The relative preference over the possible results of a plan constitutes the fun-
damental concept underlying the objectives of planning and decision making,
with desires and goals serving as a computationally useful partial specification
or heuristic approximation of these preferences [11].

Our approach is complementary to Boutilier’s [5]: while he focuses only on the
definition of optimal actions from a given preference relation, we also focus on
the practical generation of this preference relation. Boutilier also does not distin-
guish between background and contingent knowledge. Interestingly, our method-
ology contains two phases (generate the preference relation from a set of desires,
and then find the optimal feasible worlds, and thus the optimal decision) which
is in accordance with Tan and van der Torre’s argumentation [35] about the two-
phase treatment of violated obligations. Other approaches to qualitative decision
theory include [13, 34] (where conditional desires are interpreted very differently,
via a ceteris paribus assumption) and [15] who give a possibility theory based view
of decision theory.

6.2. Desires vs obligations

Two formalisms related to the logic of desires are the logic for qualitative decision
theory (QDT) and deontic logic, because they distinguish between what ideally is the
case (obligations and desires) from what actually is the case (facts). Conditional
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desires (“if a then I ideally would like b to be true”) are similar to conditional
obligations O�b�a� of dyadic deontic logics (“if a is true, then b should be true”),
in particular when these deontic logics are based on a preference-based semantics
(see [27, 40] for a survey): “O�b�a� holds iff b holds in all preferred a-worlds [19].”
Dyadic deontic logics were developed to handle so-called “contrary-to-duty (CTD)
obligations” (see Examples 8, 12, 14, 17, and 18). Defeasible obligations are handled
in a nonmonotonic framework by Horty [20, 38]. Alternative approaches to the
handling of CTD obligations were proposed by Prakken and Sergot [31], by Cholvy
and Cuppens [7] who make use of roles ranked by a priority ordering assumed
to be given—note that our approach could clearly be a basis for ordering roles
automatically, taking account of specificity—and by van der Torre and Tan [41] who
apply diagnosis techniques to finding a minimal set of violated obligations, similarly
to our violations of desires but without taking account of specificity.
It is worth noticing that our construction of a preference relation from loss desires

gives the intended results on the examples of CTD-obligations taken from the deon-
tic logics literature. Thus, our work on loss desires could be further developed in
a deontic perspective. Now, we argue that deontic logics and logics for QDT have
different perspectives and are thus more complementary than concurrent:

1. In deontic logics, obligations are generally considered exogenous (they are
imposed by a legal or moral code) while desires in logics for QDT are endoge-
nous (directly specified by the agent). Note that this difference should not
necessarily lead to a need of different treatments for obligations and desires (as
also argued by Boutilier [5] and Tan and van der Torre [35]).

2. More importantly, the main purpose of a deontic logic is deriving new obli-
gations (and permissions) from an initial specification, while QDT focuses on
the search for optimal acts and decisions. Thus, deontic logics may be viewed
“upstream” and QDT “downstream,” since the former provide representation of
ideal states, or of a whole preference relation between states, and the latter use
this preference relation (“goalness”) to find the best possible actions (An alter-
native logical approach to “goalness” has been proposed in [45]). Note that some
recent approaches have started to incorporate acts into a deontic logic, either by
integrating it with a dynamic logic, or by introducing a temporal component (see
[27] for a survey). Our approach has the advantage of simplicity since we avoid
the multiplication of modal operators, using instead a notion of controllability.

The relation between decision making and normative reasoning has also raised the
following two questions.

The practical problem: how do norms influence decision making? The question
here is whether norms influence one’s decision making only via the associated
rewards and penalties, or also directly. Different types of agents can be defined,
for example agents that only maximize their own utility and agents that follow
the norms of the society [6]. In the latter case, desires reflect individual behavior
whereas social norms represent social group behavior [21].
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The philosophic problem: is normative reasoning a kind of decision making? For
example, von Wright [44] argued that there is no genuine logic of norms and that
the norm giving activity can only be judged under various aspects and standards
of rationality.

7. Conclusion

In this paper we have proposed different procedures to induce the preference rela-
tion of the agent from a set of initial conditional desires and different types of
knowledge. A set of desires induces a set of distinguished utility functions by weight-
ing and adding up the utility losses and gains of the individual desires, and these
distinguished utility functions induce a qualitative partial preference ordering on
worlds. In the most complicated procedure, we use three different notions:

— desirability: some worlds are more desirable than others for the agent. This
notion only concerns the preferences of the agent, only, and has nothing to
do with the actual state of affairs;

— physical possibility: some worlds are physically possible, some are not. This notion
concerns the outside world and has nothing to do with preference (except that
it fixes the domain of the utility function);

— feasibility: some worlds can be reached by the agent, some cannot. This notion
concerns the decisions the agent can make; each possible decision enables him
to reach another—or the same—world, which must be physically possible.

In this most sophisticated procedure, we have turned the problem specification into
a decision problem: given a set of desires inducing a preference relation and factual
knowledge specifying which worlds are feasible and which ones are not, the agent
should attempt to achieve the best feasible situation by performing a suitable action.
This is where contingent knowledge is taken into account.
We have used a logical framework to represent the derivation of the preference

relation of the agent from a set of initial conditional desires. We assume that desires
induce constraints on utility functions, which we represent with monotonic logic, and
we assume that they induce a way to construct the distinguished or preferred utility
functions, which we represent with nonmonotonic extensions. Moreover, we have
defined a particular way to use this logic. The input is a set of desires (and knowl-
edge) and the output is a set of distinguished utility functions, i.e., the input is a
set of formulas and the output is a set of models. We also added a definition to
reduce the set of utility functions obtained from a set of desires to a single prefer-
ence structure. The main advantage to use a logical framework in the derivation of
preference orders is that it explicates subtle distinctions, like the different ways to
add up and weigh losses and gains of utility, the different notions of redundancy,
etc. The logical representation is compact and transparent, and can also be used for
communicating desires between agents. Other advantages of the logical representa-
tion are that it facilitates the comparison between our representation of desires and
related formalisms and nonmonotonic extensions developed for e.g. defaults and
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obligations (e.g. [26, 27]), and that it facilitates the introduction of more sophisti-
cated mechanisms to determine the distinguished utility function (by incorporating
mechanisms developed for nonmonotonic reasoning, such as e.g. [46]).
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