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In this paper we consider goal generation in cognitive agent architec-
tures. We show how goal generation can be described in terms of in-
teraction between mental attitudes biased by agent types such as real-
istic, social, selfish and stable. We introduce a generic BOID architec-
ture and agent type specific BOID architectures, in which goals are
generated from conditional beliefs, obligations, intentions and desires.
We implement the BOID architectures by relating conditional mental
attitudes to components, goal generation to extension construction,
and agent types to constraints on priority functions.
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Introduction

Reasoning about mental attitudes such as beliefs, desires, goals, plans, in-
tentions and obligations has been discussed in practical reasoning in phi-
losophy (von Wright, 1983; Bratman, 1987) and its formalization in qualita-
tive decision making has been discussed in artificial intelligence (Thomason,
2000). Each of these approaches proposes an agent architecture based on a
set of primitive concepts in terms of which the behavior of cognitive agents
is explained. Classic examples of agent architectures are based on goals and
knowledge (Newell, 1982; Laird et al., 1987). More recent agent architectures
are based on mental attitudes such as beliefs, desires and intentions (Brat-
man, Israel & Pollack, 1988; Cohen & Levesque, 1990; Rao & Georgeff, 1991)
as well as obligations and norms (Castelfranchi, Dignum, Jonker & Treur,
1999; Dignum, Morley, Sonenberg & Cavedon, 2000; Boella & Lesmo, to
appear).

We are interested in the relation between goals on the one hand and de-
sires, intentions and obligations on the other hand. In the classic approaches,
desires, intentions and obligations are not incorporated. Goals are primitive
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and not derived from more basic attitudes. In the approaches based on be-
liefs, desires and intentions, either the goals are used interchangeably with
desires, or goals and desires are completely separated. Goals are not first
class citizens. Thomason (2000) observes that the relation between goals and
desires becomes crucial when goal generation is considered. His logical
framework has inspired us to propose a cognitive agent architecture, which
includes an explicit agent goal generation component. The architecture is
called BOID, because goals are generated from the interaction between be-
liefs, obligations, intentions and desires.

In the BOID architecture we introduce generic and agent type specific
goal generation components. The type of the agent such as realistic, social,
selfish and stable plays an important role in the interaction between beliefs,
obligations, intentions and desires. For example, consider an agent that is
obliged to work whereas it desires to swim at the same time. It generates
either the goal to go to the office or the goal to go to the beach. Which of
these goals will be generated depends on the agent type. A social agent goes
to the office and a selfish agent goes to the beach. Agent types can be com-
pared in generality, which leads to an agent type lattice. A computational
model for goal generation is proposed based on a prioritized default logic
(Reiter,1980). This is inspired by Horty (1994), who showed how motiva-
tional attitudes can be formalized in default logic and Thomason (2000), who
combined rules for beliefs and desires in one system and who formalized a
set of goals generated from mental attitudes as a so-called extension. The
BOID architecture adds intentions and obligations, and it implements agent
types as constraints on priority functions.

In this paper we focus on goal generation and its relation to agent types.
Our analysis remains at the level of interactions between mental attitudes.
We do not consider the behavior of individual attitudes; they are considered
to be primitive. Moreover, we mainly consider the conceptual model with its
implementation, and we leave formal analysis for other papers (Broersen,
Dastani & van der Torre, 2001b). Other aspects of practical reasoning, such
as scheduling time slots or resources, or coordination of actions with other
agents, are topics of further research. In (Broersen, Dastani, Huang, Hulstijn
& van der Torre, 2001a) the architecture has been implemented in Prolog,
and it has been tested against a list of benchmark examples representing
different types of conflicts between mental attitudes.

The layout of this paper is as follows. First we introduce the conceptual
decomposition of goal generation in terms of mental attitudes. Thereafter we
introduce the corresponding computational BOID architecture and special-
ized BOID architectures for specific agent types. Finally we consider conse-
quences of our goal generation approach for planning and updating mental
attitudes.
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Goal generation as interaction of mental attitudes

Our view of the agent's deliberation process is visualized in Figure 1. Obser-
vations trigger a goal generation stage. Candidate goal sets are generated
based on primitive mental attitudes such as beliefs, obligations, intentions
and desires. This results in many different sets of mutually consistent goals.
The goal selection stage imposes an ordering on the sets of generated candi-
date goal sets, such that the best one can be selected for planning. This goal
set is then passed on to the planning stage to construct a plan to achieve the
goal set. We start with our conceptual view on goal generation, the role of
agent types and conditional mental attitudes.

Observation Candidate
Goal Set

Goal Actions

PlanningGoal
Select

Goal
Generation

Figure 1: Cycle of the deliberation process

Goal generation

Thomason (2000) proposed that goals are the result of the interaction be-
tween beliefs and desires. We extend the interaction with obligations and
intentions, as illustrated by the following examples. Each example describes
an agent with possibly conflicting motivational attitudes. First, consider the
agent that is obliged to work, but desires to swim. If it is at work, then it
desires to drink coffee, and if it is swimming at the beach, then it is obliged
to wear a bathing suit. Although an agent may have conflicting desires and
obligations, it cannot be at work and on the beach at the same time. Now it
has to choose one of the two candidate goal sets: being at work with coffee
or being at the beach in a bathing suit. In the following example an agent has
to find out which actions or plans it can execute to reach the goal, and it has
to take the side-effects of its actions into account. The agent desires to be on
the beach. If it quits its job and drives to the beach, then it will be on the
beach. If it does not have a job, then it will be poor. If it is poor, then it de-
sires to work. The only desire and thus the only goal is to be on the beach.
The only way to reach this goal is to quit the job, but the side effect of this
action is that it will be poor. In that case it does not want to be on the beach,
but it wants to work.

Conflicts within a single attitude have been studied in the literature by
for example van Fraassen (1973). However, conflicts between different atti-
tudes have received less attention. A mental attitude conflicts with another
mental attitude if both cannot be used to generate a consistent set of goals.
The agent thus has to choose which of the two attitudes it should use at the
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expense of the other one. For such a choice, we say that the former overrides
the latter. The overriding mechanism is the method we use to solve conflicts
and generate goal sets. As observed by Thomason (2000), overriding desires
by beliefs reflects that the agent does not suffer from wishful thinking. A
similar argument applies to obligations and intentions. For example, the
overriding of intentions by beliefs reflects that an intended action can no
longer be executed due to a change of the environment. Such an intention
should not generate a goal. Also overriding among other attitudes can be
considered. Overriding obligations or desires by intentions reflects that
agents do not reconsider their intentions, which brings stability (Bratman,
1987). Only during a call for intention reconsideration such conflicts may be
resolved otherwise. For example, consider an agent that intends to go to the
cinema, and that is obliged to visit its mother. It goes to the cinema unless it
reconsiders its intentions.

The process of generating goals from different mental attitudes is biased
by the type of agents. Agent types are an idea developed in BDI logics to
distinguish, classify and compare agent behaviors (Cohen & Levesque, 1990;
Rao & Georgeff, 1991). We apply this notion of agent types to goal genera-
tion, where agent types correspond to ways to resolve conflicts. Agent types
for goal generation are given intuitive names. If the agent's beliefs override
its obligations, intentions or desires, then we say that this agent is realistic. If
its intentions override its desires and obligations, then we say that the agent
is stable. Moreover, if its desires override its obligations, then the agent is
called selfish and if its obligations override its desires, then the agent is
called social. These agent types can also be combined. For example, in stable
social agents intentions override obligations or desires, and obligations over-
ride desires. A useful notion here is that some agent types are more specific
than other agent types. Of course not all agent types are comparable. For
example, the realistic agent type is not more specific than the social agent
type, nor vice versa. Goal generation of more specific agents is more predict-
able than goal generation of general ones.
Conditional mental attitudes

There are two issues discussed in philosophical logic that we believe to be
relevant for goal generation. First, goal generation is based on four primitive
mental concepts: belief, obligation, intention and desire. We have chosen
these four attitudes, because overriding orders between them correspond to
intuitive and useful agent types. Philosophical studies of practical reasoning
(von Wright, 1983; Bratman, 1987) and formalizations of these attitudes in
qualitative decision making show that for decision making these concepts
can be further specified. They distinguish between knowledge and defaults,
prohibitions and permissions, commitments and plans or wishes and wants,
respectively. The four mental attitudes are usually read as follows. Beliefs
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are informational attitudes, which model what the world is expected to be
like. Intentions are previously generated goals or plans (Bratman et al.,
1988). Desires model internal motivations. Obligations model external moti-
vations, such as norms. We do not exclude the possibility that other, more
specialized mental attitudes are needed for goal generation. For example, in
some cases a distinction may be made between strong and weak intentions,
where strong intentions override desires and obligations, whereas desires
and obligations override weak intentions. Such additional attitudes must
always be motivated by a particular order of overriding, which corresponds
to an agent type.

Second, we consider these four mental attitudes to be conditional and
context-dependent. Existing models of mental attitudes in cognitive agents
such as BDI (Rao & Georgeff, 1991) and 3APL (Hindriks, de Boer, van der
Hoek & Meyer, 1999) are not conditional. But in philosophical logic, in par-
ticular in deontic logic (Hansson, 1969), it is argued that mental attitudes are
conditional by nature. Conditional approaches are often contrasted with
modal logics and their possible world semantics. One of the problems of
reasoning with conditionals in modal logic is whether a conditional must be
represented by a ? ?Ox or by O(a ?  x), where O stands for a modal operator
such as obligation. This has traditionally been discussed in the context of so-
called contrary-to-duty reasoning, see (van der Torre & Tan, 1999) for a sur-
vey.

We interpret the four basic mental attitudes as follows. Beliefs represent
the information of an agent about the current state of the world. All obser-
vations are turned into beliefs. Beliefs behave as a kind of filter on desires
and obligations: only desires and obligations consistent with the beliefs are
turned into a goal.

Obligations represent attitudes that reflect the social nature of agents.
Obligations can be violated, because agents are autonomous (Dignum,
Kinny & Sonenberg, to appear). In a typical example, an agent has a desire to
do otherwise and the desire is stronger than the obligation. Even social
agents can violate their obligations if they intended earlier to do otherwise
and they are not open-minded enough to reconsider this intention. Moreo-
ver, norms are often contradictory. In order to deal with conflicts, an agent
must be able to drop some obligations in favor of others.

Intentions are considered here as the generated goals that the agent has
selected in its previous deliberations. Intentions are incorporated to relate
previously generated goals to the goal generation process. In the philosophi-
cal literature it has been argued, among others by Bratman (1987), that in-
tentions deserve a special status besides beliefs and desires: they cannot be
reduced to them. The incorporation of intentions possibly makes the agent's
behavior more stable.
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Desires are closely related to goals. In some approaches they are even
identified with goals (Cohen & Levesque, 1990; Rao & Georgeff, 1991; Hin-
driks et al., 1999). The desires of an agent reflect its long term preferences,
but also its acute wants and urges. They are often produced by an emotional
or affective process. The theoretical notion of desire is used to model both
kinds of input to the decision making process. In general an agent can select
its goals, but it cannot select its desires. Desires are much more stable (Das-
tani, Huang & van der Torre, to appear). Desires are long term preferences,
and when a desire is triggered by an observation or belief, then a short-term
desire is turned into a goal. In this way one can even model the effect of
biological survival mechanisms. For example, if an agent is without food for
some period, this might trigger an acute desire for food.

BOID architecture

The agent's deliberation loop in Figure 1 is formalized by the control loop for
the BOID architecture in Figure 2. It receives input from the environment
(Obs), it calculates a set of candidate goal sets (S) based on a priority function
(? ), selects one goal set, decides which plans should be performed (P), up-
dates all components, and starts observing the environment again.

select ? ?;
repeat

Obs := read_environment();
S := generate_candidate_goal_sets(Obs, B, O, I, D, ? );
P := select_goal_set_and_generate_plans(S);
update(B, O, I, D, ? , P)

until forever

Figure 2: Control loop for the BOID architecture

The goal generation of this control loop is explained in detail below. We
map the issues discussed in the previous section onto computational con-
cepts: conditional mental attitudes become input-output components, goal
generation becomes extension generation, and overriding becomes a priority
function.
BOID conditional mental attitudes

Conditional mental attitudes are formalized by components. The behavior of
each component is modeled by a set of pairs of propositional logic formulas
(a, b) that take the form of rules, written as a ?? X?  b with X ?  {B, O, I, D}.
These rules instruct the agent what inference steps to make. The rule a ?? B?
b implements that if a is derived as a goal, then the agent believes that as a
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consequence b is a goal. The rule a ?? O?  b implements that if a is derived as a
goal, then the agent is obliged to adopt b as a goal. The rule a ?? I?  b imple-
ments that if a is derived as a goal, then the agent intends b to be a goal. The
rule a ?? D?  b implements that if a is derived as a goal, then the agent desires
that b is a goal. In general, if a is derived as a goal and it is not inconsistent to
derive b, then there is reason to believe, be obliged, intend, or desire that also
b is a goal. The rules provide necessary but not sufficient justification for
making the inference from a to b. There might be other rules blocking the
inference, such as for example T ?? X?  ? b, in which T stands for any tautol-
ogy like a ? ?? a.

A set of BOID rules is not used to specify the resulting agent reasoning
behavior, and they should therefore not be read as declarative specifications.
A declarative specification formula like B(a ? ?b) means that the agent be-
lieves that the implication relation holds between the propositions a and b.
The implication ?  in this formula obeys different logical properties than
?? ? , such as contraposition and reasoning by cases. See (Makinson & van
der Torre, 2000) for a discussion on such logical properties. In other words,
the operational reading of the rules implies that the symbol ?? ?  cannot be
interpreted as a material implication.
BOID goal generation

Goal generation is formalized as the derivation of so-called extensions in
default logic (Reiter, 1980). Default logic extends the inference rule modus
ponens with two new mechanisms. First, there is a consistency constraint on
the inference process, such that rules are only applied if they do not lead to
an inconsistency. Second, the application of defeasible rules may result in
conflicting outputs and thus in conflicting goal sets. They lead to alternative
sets of logic formulas. The representation of conflicting mental attitudes by
multiple consistent sets of formulas was proposed (for unconditional obli-
gations) in the seventies by van Fraassen (1973) and was first related to de-
fault logic by Horty (1994). The representation of candidate goal sets by ex-
tensions is originally proposed by Thomason (2000). A motivation to use
default logic is that extensions are constructed before conflicts are resolved.
This can be contrasted with an approach in which a conflict is resolved as
one is encountered. A conflict may be defined as a minimal set, in the sense
that if two sets are conflicting then one of the sets cannot be a strict subset of
the other one (Reiter, 1987). However, to resolve the conflict we have to con-
sider the whole extension, because agents should consider the effects of
goals before they commit to them.

In our approach, goal generation is based on prioritized default logic. The
representation of a goal generation component in Definition 1 - our instan-
tiation of a default theory - therefore not only contains a set of facts and a set
of rules, but also a priority function ?  on the rules. To keep the formal details
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in this paper to a minimum we assume that individual extensions do not
contain disjunctive information, that is, we assume that extensions are sets of
positive or negated atomic formulas called literals. More advanced imple-
mentations of prioritized default logics are now being studied in the area of
answer set programming, see e.g. (Brewka & Eiter, 1999).

Definition 1 (Goal generation component) Let L be a propositional language
and let rules be ordered pairs of L written as (a ?? ?  b), with b a conjunction of liter-
als over L. The goal generation component is represented by a tuple ?Obs, B, O, I, D,
? ? with Obs a set of literals over L, and B, O, I and D sets of rules, and ?  a function
from B ? ?O ? ?I ? ?D to the integers.

The goal generation procedure in Definition 2 starts with a set of obser-
vations Obs, which cannot be overridden, and initial sets of default rules for
the component: B, O, I, and D. Moreover, it assumes an ordering function ?
on the rules of the different components. The procedure then determines a
sequence of sets of extensions S0, S1, ????. The first element in the sequence is
the set of observations: S0 = {Obs}. A set of extensions Si+1 is calculated from a
set of extensions Si by checking for each extension E in Si whether there are
rules that can extend the extension. There can be none, in which case noth-
ing happens. Otherwise each of the consequents of the applicable rules with
highest ? -value are added to the extension separately, to form distinct exten-
sions in Si+1. The operator Th(S) refers to the closure of S under propositional
logic consequence, and the syntactic operation Lit(b) extracts the set of liter-
als from a conjunction of literals b. In practice not the whole set of extensions
is calculated, but only those that are calculated before the agent runs out of
resources.

Definition 2 (Generate goal procedure) Let ?  = ?Obs, B, O, I, D, ? ? be the repre-
sentation of the goal generation component for propositional logic L, and let an ex-
tension E be a set of L literals (an atom or the negation of an atom). We say that:
?  a rule (a ?? ?  b) is strictly applicable to an extension E, iff a ?  Th(E), b ?  Th(E)

and ? b ?  Th(E);
?  max(E, ? ) ?  B ? ?O ? ?I ? ?D is the set of rules (a ?? ?  b) that are strictly appli-

cable to E such that there does not exist a (c ?? ?  d) ?  B ? ?O ? ?I ? ?D strictly
applicable to E with ? (c ?? ?  d) > ? (a ?? ?  b);

?  E ?  L is an extension for ?  iff there exists an n such that E ?  Sn and Sn = Sn+1
for the procedure in Figure 3.

In some circumstances the goal generation procedure in Definition 2 is ef-
ficient, and in other circumstances it is not. For example, it efficiently gener-
ates one extension if all rules have a unique priority value, because in each
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iteration at most one rule can be selected. However, the number of exten-
sions increases quickly when the number of rules with the same priority
value increases. It remains an open problem how to optimize the procedure
in the general case.

I := 0; Si  := {Obs};
repeat

Si+1 := ? ;
for all E ?  Si

if exists (a ?? ?  b) ? ?B ? ?O ? ?I ? ?D strictly applicable to E
then for all (a ?? ?  b) ?  max(E, ? )

do Si+1 : = Si+1? ?{ E ? ?Lit(w)};
end for

else
Si+1 : = Si+1? ?{E};

end if
end for
i: = i+1;

until Si = S i-1 ;

Figure 3: Procedure to calculate extensions

We found it useful to implement a prototype of the goal generation pro-
cedure in Prolog, along with some examples. In this way one can try out
different priority functions, and see if their behavior on the examples comes
out as expected. The source code can be found at http://www.cs.vu.nl/~boid/. One
of the examples contains the following mental attitudes. If the agent goes to
the conference, then it believes that there are no cheap rooms close to the
conference site. If it goes to the conference, then it is obliged to take a cheap
room. If it goes to the conference, then it desires to stay close to the confer-
ence site. It intends to go to the conference. This example can be represented
by the following rules with priority function ? ?:

(go_to_conference ? ?cheap_room) ?? B?  ?  close_to_conf_site (?  = 5)
(go_to_conference ? ?close_to_conf_site) ?? B?  ? ?cheap_room (?  = 4)
T ?? I?  go_to_conference (?  = 3)
go_to_conference ?? O?  cheap_room (?  = 2)
go_to_conference ?? D?  close_to_conf_site (?  = 1)

Let the input of the agent be empty. Then, following the extension calcu-
lation mechanism, we first derive all beliefs and intentions, resulting in ex-
tension {go_to_conference}. Because it is a social agent, the obligation rule is
applied first. This results in the intermediate extension {go_to_conference,
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cheap_room}. It is returned to the belief component, where it triggers the first
belief rule. This produces the following extension, which denotes the situa-
tion in which the agent has decided to go to the conference and take a cheap
room not close to the conference site. This is social behavior in case the room
is paid from the traveling budget of the research group.

{ go_to_conference, cheap_room, ? ?close_to_conf_site }

Moreover, consider a ?  that assigns 2 to the desire rule and 1 to the obli-
gation rule. This results in the following extension, which represents the
situation in which an agent has decided to go to the conference and takes an
expensive room close to the conference site. This may be called selfish be-
havior.

{ go_to_conference, close_to_conf_site,? ?cheap_room }

Finally, assume that ?  assigns to both the desire and obligation rule the
same priority value 2. So ?  no longer assigns unique values to the rules, and
the goal generation procedure now derives both extensions. The agent has to
select one of the candidate goal sets later.

We index all formulas of the extension with the name of the component
from which they are derived to keep track of their origin. This information is
used in the goal selection and plan generation components, not in the goal
generation component. The formulas derived from the belief component
should for example be removed from the generated extensions since these
formulas are thought to be about the world (informational attitude) and do
not form goals (motivational attitude).

Specialized BOID architectures

Agent types are used to distinguish, classify and compare agent behavior,
and can be defined in all parts of the BOID architecture. Agent types for goal
generation are based on overriding, such that for example, in realistic agents
beliefs override other mental attitudes and in social agents obligations over-
ride desires. We also illustrate that agent types cannot only be used to clas-
sify agent behaviors, but also to compare them. We discuss two ways in
which overriding can be made computational, either as constraints on the
priority function ? , or hard-wired in the architecture.
Agent types for goal generation

Agent types for goal generation are conflict resolution methods. An agent
has a conflict if the goal generation procedure in Definition 2 derives multi-
ple extensions. A conflict is resolved if the priority function is adapted such
that no alternative extensions are generated. A mental attitude conflicts with
another mental attitude if two rules from the different attitudes are applica-
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ble, but applying both leads to an inconsistent set. A rule overrides another
rule if it has a higher priority. Agent types for goal generation are formal-
ized in Definition 3 as constraints on the set of available priority functions.
When the deliberation loop starts, the selected priority function obeys the
constraints corresponding to the agent type, and when in the update proce-
dure another priority function is selected, it has to obey those constraints
too. An agent type is called primitive if it contains only one constraint, and
complete if it induces a total strict ordering on the components.

Definition 3 An agent type for goal generation is a consistent set of constraints on
priority function ?  of the form X  Y with X, Y ?  {B, O, I, D} defined as follows:
? ?rule_x ? ?X, ? ?rule_y ? ?Y, ? (rule_x) > ? (rule_y)

A primitive agent type contains a single constraint. A complete agent
type is a maximal consistent set of constraints. There are twelve primitive
agent types, which are listed in Table 1 together with the corresponding
constraints. They are ordered in six pairs, each agent type X  Y together
with its opposite X  Y.

Constraints Agent type
B O (O  B) Realistic relative to obligations (dogmatic)
B  I  (I  B) Realistic relative to intentions (over-committed)
B  D (D  B) Realistic relative to desires (wishful thinker)
O  I (I  O) (Un)Stable relative to obligations
O  D (D  O) Social (selfish)
I  D (D  I) (Un)Stable relative to desires

Table 1: Twelve primitive agent types

An agent type is a set of primitive agent types. For example, the realistic
agent type is {B O, B I, B D}, the stable agent type is {I O, I D},
the social stable agent type is {I O, I D, O D}, etc. Moreover, agent
types can be derived. For example, since orderings are transitive we can
derive that an agent which is unstable relative to obligations (O I) and
stable relative to intentions (I D) is social (O D). There are twenty-four
complete agent types, of which the six realistic ones are listed in Table 2.

Constraints Agent type
B  O ; O  I ; I  D Realistic, unstable-O, stable-D, social
B  O ; O  D ; D  I Realistic, unstable-O, unstable-D, social
B  I ; I  O ; O  D Realistic, stable-O, stable-D, social
B  I ; I  D ; D  O Realistic, stable-O, stable-D, selfish
B  D ; D  O ; O  I Realistic, unstable-O, unstable-D, selfish
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B  D ; D  I ; I  O Realistic, stable-O, unstable-D, selfish

Table 2: Six complete realistic agent types

The definition of agent types leads to a simple way in which agent types
can be compared. Agent type A is at least as general as agent type B if all the
priority functions that respect the constraints of agent type B, also respect
the constraints of agent type A. The generality relation between realistic
agent types forms the lattice visualized in Figure 4, if we add a top element.

This figure should be read as follows. The level in this hierarchy indicates
the generality of agent types. The bottom of this lattice is the realistic agent
type. Each higher layer adds additional constraints resulting in more specific
agent types. The top of this lattice is the falsum, which indicates that adding
any additional constraint to the agent types at the lower level results in an
inconsistent agent type. Just below the falsum are the six complete realistic
agent types.

There are also other constraints on priority functions. One of them is the
following unique extension property, which says that ?  associates with each
rule a unique integer. It induces a strict total order on the rules.

Definition 4 (Unique goal set) A goal generation component that generates
unique goal sets is represented by a tuple ?Obs, B, O, I, D, ? ? with ?  a function from
B ? ?O ? ?I ? ?D to the integers such that ? (x) = ? (y) implies x = y.

Another constraint on priority function ?  is the following component or-
der property.

Definition 5 (Component order) A goal generation component represented by a
tuple ?Obs, B, O, I, D, ? ? induces a strict component order when ?  is a function
from B ? ?O ? ?I ? ?D to the integers such that for all X, Y ?  {B, O, I, D} with X ?  Y
we have either X Y or X  Y.

The only agent types that satisfy the component order property are the
complete agent types. Lack of the component order property is illustrated by
the realistic agent. It starts with the observations and calculates belief exten-
sions by iteratively applying belief rules. When no belief rule is applicable
anymore, then either the O, the I, or the D component is chosen from which
one applicable rule is selected and applied. When a rule from a chosen com-
ponent is applied successfully, the belief component is attended again and
belief rules are applied. If there is no rule from the chosen component appli-
cable, then another component is chosen again. If there is no rule from any
of the components applicable, then the process terminates - a fixed point is
reached - and extensions are calculated.
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Figure 4: The lattice structure of realistic agent types.

Mapping agent types to agent architectures

A computational agent architecture specifies the components of an agent,
how they are related, and how the information flows around. The combina-
tion of the goal generation procedure with an agent type can be mapped to a
specialized agent architecture. This works as follows. We add an informa-
tion link from component X to component Y if X Y and there is no com-
ponent Z such that X Z and Z Y. Moreover, we add links from all com-
ponents X to components Y for which there exist no component Z such that
Z Y. We give two examples of such mappings and how they must be in-
terpreted.
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BObservation Goal Set
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Figure 5: Goal generation component for stable social agents.

First, consider the goal generation component of the realistic social stable
agent type in Figure 5 that is specified by the constraints B  I  O  D.
Belief rules are applied iteratively, indicated by the incremental loop around
the B component. If no more belief rules are applicable, then the calculated
set of extensions is sent to the I component. If possible, one intention is ap-
plied and the set of extensions is sent back to the B component via the in-
cremental loop from I to B; otherwise the set of extensions goes to the O
component, etc. The goal generation component visualized in Figure 5 rep-
resents an ordering among mental attitudes where the connections between
the components fully determine how sets of extensions flow around.

Second, consider the selfish unstable-D agent type that is specified by a
partial component ordering. As a consequence of the partiality of the com-
ponent order, there is a component that is connected to two other compo-
nents. This agent type is mapped to the goal generation component, as visu-
alized in Figure 6. This goal generation component should be interpreted as
above: if the set of output extensions of a component differs from the set of
input extensions, it flows back through the incremental loop; otherwise it
flows from the B component to the D component and from the D component
to either O or I component.

BObservation
O

D
I Goal Set

Figure 6: Goal generation component for selfish unstable-D agents.

The specialized architectures suggest several enhancements to the ge-
neric goal generation architecture in Definition 1 and 2. For example, in the
generic architecture all extensions are calculated at the same time, whereas
the specialized architectures suggest that also a non-deterministic choice
may be made during extension calculation. Moreover, the generic architec-
ture is based on sets of default rules, whereas the specialized architectures
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suggest that components can be implemented otherwise. For example, the
belief component may maximize cross entropy or apply AGM belief revision
(Alchourrón, Gärdenfors & makinson 1985), and its output may be a prob-
ability distribution, a set of them, plausibility measures, a belief set, etc. Such
a component needs an interface (called a wrapper) which translates the in-
put and output of the component to a propositional language. Summarizing,
a set of rules can be interpreted as an abstract input-output description of a
component, which can be implemented in a variety of different ways.

Consequences for planning and updating attitudes

Given the set of extensions as candidate sets of goals, a goal set should be
selected and a plan should be generated. Thereafter, before new candidate
goal sets can be generated, the mental attitudes should be updated. Below
we sketch how these notions can be made computational. Planning becomes
abduction, and attitude revision becomes a rule update procedure.
Select goal set and generate plan

The goal selection component selects one extension from the set of exten-
sions generated by the goal generation component. Each extension repre-
sents one possible future state of affairs. Several selection strategies are pos-
sible to select an extension for planning and execution. We can select the
smallest extension or use some domain dependent selection strategies, based
on additional information about preferences, priorities or costs. Selection can
also be based on the compatibility or similarity of the new extension with
previously selected extensions or with additional observations. One could
for example distinguish a persistent agent type, which typically selects the
extension most similar to previously selected extensions, or a conservative
agent type, which selects the extension that differs least from the current
state of affairs. The selection must be based on the feasibility of the exten-
sion. In case the selected extension cannot be translated into a feasible plan,
the second best extension is selected for execution.

In the BOID architecture, knowledge about the preconditions and effects
of actions and plans is typically stored as situation-action rules in the belief
component. Also the structure of plans, the dependencies and preferred
order of execution can be stored as defeasible belief rules. The rules encode
what would happen, if the action were carried out. Actions that are part of a
committed plan are best stored as conditional rules in the intention compo-
nent. Once we decided on a plan, we intend to continue to carry it out, un-
less some major reconsideration is called for. The exact details of planning
and scheduling are beyond the scope of this paper.

On a conceptual level, our views have been influenced by classical deci-
sion theory and planning under uncertainty, in which the effects of actions
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and events is seen as the manipulation of variables. We apply the distinction
between so called decision variables and parameters (Lang, van der Torre &
Weydert, to appear). An agent can directly control the truth value of the
decision variables, but not the truth value of the parameters. In multi-agent
systems for example, each agent has its own decision variables, corre-
sponding to the actions it can perform (Dastani & van der Torre, 2002). It
cannot influence external events, nor change the value of other agents' deci-
sion values. It can only try to collaborate. Although such a view of actions is
simple, it is sufficient to discuss the role of planning in the BOID architec-
ture.

At first sight, it seems we should restrict goal generation to decision vari-
ables only. One may argue that we should not generate or select goals that
we cannot see to. However, it may be that we cannot see to it directly, but
we can see to it indirectly. For example, consider a decision variable a, a
parameter p, a belief rule a ?? B?  p and a desire rule T ?? B?  p. The agent rea-
sons as follows. First, in the goal generation component it generates the goal
or extension {p}. Second, in the plan component - which also has access to
the relevant belief rules - the agent derives from goal {p} and belief rule a
?? B?  p that it should see to it that a, that is: do(a). Hence, the agent believes
that a side effect of do(a) is that p will become true. Note that a is not derived
by applying the belief rule, but by applying it in reverse. This form of rea-
soning is known as abduction. We believe that planning by abduction is an
efficient way to represent means-end reasoning in the BOID architecture.

There is a computational issue which thus far has not been addressed. In
decision theory, one way to find a plan is to order all possible plans and
select the best one. Compared to this one stage decision making process, the
two stage process of first selecting goals and thereafter generating plans to
reach goals, may lead to inferior choices. After all, some information may get
lost in the process. However, the two stage process can be much more effi-
cient, because the number of possible plans is exponential in the number of
decision variables. Moreover, there is a trade-off problem. In some applica-
tions it is better first to calculate the complete candidate goal sets and then
find actions to achieve them, in other applications it is better to calculate
partial goals first, look for ways to achieve them, and then continue to cal-
culate the goal sets (Dastani, Hulstijn & van der Torre, 2001).
Update mental attitudes

The conditional representation of mental attitudes introduces the distinction
between updating a conditional attitude and deriving an attitude from an
existing rule. The general guideline is that conditional attitudes represent
long term attitudes. During goal generation formulas are added to the cur-
rent goal set. For example, the observation of an advertisement triggers the
belief rule that ice cream is available. This triggers a desire to have an ice
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cream. The agent then adds the intention of buying the ice cream, which will
subsequently generate the obligation to pay. But the agent can also make
long term adjustments to the rules that model its attitudes. These adjust-
ments are motivated by some external observation or communication, by a
learning process or discovery, or by the process of deliberation which pro-
duces intentions to influence future decision making. For example, when
agents enter institutions or organizations, their set of conditional obligations
is updated with the appropriate norms and obligations. There are also cases
which can be formalized either way. For example, by signing a contract, an
agent becomes obliged to perform according to terms stated. This can be
formalized as an update of the obligation rules as well as an application of
existing rules. The guide line here is that it is most efficient to change the
rule base as little as possible. If many contracts are signed, then it is better to
have a generic obligation rule for signing contracts.

Goal generation and goal selection and planning are related to each other
by updates of the set of intention rules. If in the planning component an
agent decides to see to it that b, i.e. do(b), then T ?? I?  b is added to the inten-
tions used in the next goal generation. Updating intention rules is known as
intention reconsideration. Usually there is a trade-off between keeping an
intention, thereby maintaining stability in decision making, and reconsider-
ing or abandoning intentions, when the environment has changed so much
that the original motivations for adopting the intention no longer make
sense (Bratman, 1987). A common commitment strategy abandons intentions
in case the intention or its motivation have become fulfilled, or the intention
or its motivation can no longer be achieved, or its motivation may be
reached by some other means. Intentions therefore do not automatically
remain in the extension after each loop, but must be reinforced by the origi-
nal desire or obligation rule that gave rise to it.

Each update of rule based components can be constructed from primi-
tives add(a ?? X?  b, ? ) and delete(a ?? X?  b, ? ), where X ?  {B, O, I, D}. We do not
require that rules are mutually consistent, since they are only applied when
they do not contradict the given extension. However, the belief and intention
component must remain internally consistent. Moreover, inconsistencies and
multiple applicable rules slow down and complicate the process of extension
calculation. Therefore, some form of `bookkeeping' is required to keep the
rule base manageable, see e.g. work in truth maintenance systems (Doyle,
1979) and clever implementations of production systems like the RETE algo-
rithm (Forgy, 1982).

Related research

In general, there are two types of approaches to study, model and translate
mental attitudes and their balance into a cognitive agent architecture. The



18 ?

first type of approach starts with analytical (philosophical) or empirical
(psychological) studies of mental attitudes, their properties and interactions.
Based on these studies, agent logics and agent architectures are developed in
which the properties and interactions are translated and formalized. The
proposed logics and architectures are then supposed to model the expected
behavior of rational agents. An example of this type of approach is the BDI
model (Bratman et al., 1988; Rao & Georgeff, 1991). The second type of ap-
proach works the other way around. It starts by proposing agent logics and
architectures which are easy, intuitive and computationally tractable. The
inspiration for proposing these systems originate from computational sys-
tems in computer science and artificial intelligence. In these systems the
representation of mental attitudes, their properties and interactions are
studied and related to the expected agent characteristics such as agent be-
havior or agent type.

Our approach is inspired by default logic and it is thus of the second
type. However, it is also inspired by investigations in philosophical logic
which formalize conditional mental attitudes in terms of rules reminiscent of
production systems. In particular our proposal is inspired by deontic logic
(von Wright, 1999; Alchourrón, 1993; Makinson, 1999) and the so-called in-
put-output logics (Makinson & van der Torre, 2000).

A detailed comparison with other agent architectures is beyond the scope
of this paper. We believe that goal generation procedures can be built in
most other goal based architectures. The goal generation component based
on interaction between mental attitudes can be interpreted as a society of
minds, and it can be described with the Russian doll metaphor.

There are many other approaches to conflict resolution in artificial intel-
ligence. Our use of priorities is different from Thomason's ad hoc conflict
resolution mechanism, see (Broersen et al., 2001b) for a detailed comparison.
Another alternative is to associate losses and gains with the rules. Such a
decision-theoretic approach is by itself a line of research with many inter-
esting problems (Dastani et al., 2001). There are also many other approaches
to planning, see e.g. (Thomason, 2000).

Concluding Remarks
In this paper we have considered the question how goal generation can be
decomposed into interaction between mental attitudes from a conceptual as
well as a computational point of view. We obtain the following results. We
introduce the BOID architecture in which goals are generated from the con-
ditional mental attitudes beliefs, obligations, intentions and desires. We ob-
serve that goal generation architectures can be classified according to agent
types based on overriding of mental attitudes. Agent types can be compared
in generality, which results in a lattice of agent types. We implement the
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BOID architecture by relating conditional mental attitudes to components,
goal generation to extension construction, and agent types to constraints on
priority functions. We show how agent types can be used to construct spe-
cialized BOID architectures. This is possible due to the close correspondence
between the conceptual decomposition and the implementation.

One of the motivations for extending the repertoire of belief, desire and
intention with obligation is that it allows us to specify normative agents,
which can freely select to follow norms or violate them. The obligation com-
ponent can thus be used to model the social structure of groups of agents. In
addition to the autonomous BOID systems of this paper, we therefore intend
to investigate multi-BOID systems. In fact, the name `BOID' is partly in-
spired by Craig Reynolds' generic flocking creatures. Firstly, we would like
to extend the BOID approach to joint intentions and collaborative planning.
Current formal work on joint planning and action uses modal logics for in-
dividual intention (Wooldridge & Jennings, 1999, Dunin-Keplicz & Ver-
brugge, 2001). However, such models have little to say on the `social glue'
that keeps joint plans together. For example, collaboration requires partici-
pants to notify the others when they can not perform their part. Such nor-
mative conventions can be violated, just like other norms. Secondly, we are
interested in the cooperative behavior of groups consisting of agents of dif-
ferent types. Consider for example selfish and social agents who must sur-
vive in a prisoner's dilemma setting in which the short term gains of selfish
behavior may not outweigh long term benefits from social behavior.
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