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Abstract

In a range of contexts, one comes across processes resembling inference, but where
input propositions are not in general included among outputs, and the operation is not
in any way reversible. Examples arise in contexts of conditional obligations, goals,
ideals, preferences, actions, and beliefs. In a separate paper, we developed a general
theory of such processes when they are applied without restriction. In this paper, we
compare systematically several ways of restricting them by consistency constraints.

1. Background

We assume familiarity with (Makinson and van der Torre, this volume), which
defines and studies unrestricted output operations. Nevertheless, for convenience, we
briefly recall the central points.

We work in a boolean context, that is, we consider a propositional language closed
under the usual truth-functional connectives. The central objects of attention are
ordered pairs (a,x) of formulae, which we read forwards, i.e. with a as body and x as
head. Intuitively, we think of the body a as representing a possible input, and the head
x as a possible output. We call a set G of such pairs a generating set. The letter G also
serves as a reminder of the interpretation (among others) of the pairs as conditional
goals or obligations. When A is a set of formulae, we write G(A) for { x: (a,x) ∈ G for
some a ∈ A} .

The operation out(G,A) takes as argument a generating set G, and an input set A of
formulae, delivering as value a set of formulae. On the semantic level:

• Simple-minded output, written out1(G,A), is defined as Cn(G(Cn(A)));

• Basic output, written out2(G,A), is defined as ∩{ Cn(G(V)): A ⊆V, V complete} ,
where a complete set is one that either is maxiconsistent or is equal to the set L of
all formulae of the language;

• Simple-minded reusable output, written out3(G,A), is defined as ∩{ Cn(G(X)): A ⊆
X = Cn(X) ⊇ G(X)} ;

• Basic reusable output, written out4(G,A), is defined as ∩{ Cn(G(V)): A ⊆ V ⊇
G(V), V complete} .

We have outi(G,A) ⊆ Cn(A∪m(G)) for each i = 1,2,3,4, but not in general conversely.
Here m(G) is the set of all materialisations of elements of G, i.e. the set of all
formulae b→y with (b,y) ∈ G.

On the syntactic level, we work with singleton inputs, with derivability from an input
set A understood as derivability from the conjunction a of finitely many elements of
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A. Moreover, in the syntactic context it is more convenient to work with the notation
‘(a,x) ∈ out(G)’  than with ‘x ∈ out(G,a)’ . We thus consider rules for deriving pairs
(a,x) from a generating set G, which is also a set of pairs.

In general, for any set of rules, we say that a pair (a,x) of formulae is derivable from
G using those rules iff (a,x) is in the least set that includes G, contains the pair (t,t)
where t is a tautology, and is closed under the rules. The specific rules considered are:

SI: From (a,x) to (b,x) whenever b+ a
AND: From (a,x), (a,y) to (a,x∧y)
WO: From (a,x) to (a,y) whenever x+ y
OR: From (a,x), (b,x) to (a∨b,x)
CT: From (a,x), (a∧x,y) to (a,y).

As shown in the companion paper, simple-minded output coincides with derivability
using SI, AND, WO; basic output to those plus OR; simple-minded reusable output to
the first three plus RT; and basic reusable output to all five.

Except where explicitly indicated to the contrary, the term ‘output’  will be used to
cover indifferently all four output operations, and we write simply out(G,a) instead of
‘outi(G,a) for i = 1,2,3,4’ . To lighten language, we sometimes refer to basic reusable
output simply as reusable output.

All of our input/output operations satisfy replacement of input, and of output, by
classically equivalent propositions. That is, if (a,x) ∈ out(G) then (a′,x′) ∈ out(G)
whenever Cn(a) = Cn(a′) and Cn(x) = Cn(x′). It will be convenient to treat
replacement of logically equivalent propositions as a ‘silent rule’ , that may be applied
at any step without explicit justification.

2. Motivation and Questions

In this paper we consider what happens when consistency constraints are imposed on
the output operation. The motivation for imposing such constraints comes from the
logic of norms (deontic logic), where they have been proposed as one important
element involved in making good sense of  ‘contrary-to-duty’  conditional obligations.

Let G be a code consisting of explicitly given conditional obligations, and let a be a
condition. If the code tells us that a ought not to be the case, then it is customary to
say that any conditional norm (a,x) with a as body is ‘contrary-to-duty’ . It is widely
accepted that when assuming such a condition a, the norms of the code forbidding it
outi(G,A) ⊆ Cn(A∪m(G)) become in some sense inoperative. We recall a well-known
example.

Example 1. ‘Reykjavik scenario’  (Belzer 1987). Consider a code with three elements,
the first saying that neither Ronald (Reagan) nor Mikhael (Gorbatchov) should be told
the secret, the second that if Ronald is told then so should Mikhael, and the third that
if Mikhael is told then so should Ronald. Schematically, the code is G = { (t,¬r∧¬m),
(r,m), (m,r)} . Now consider the condition r that Ronald is in fact told, which is
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contrary-to-duty since (t,¬r) is implied by the code. It is natural to conclude, under
that condition, that Mikhael should also be told. Moreover, under the same condition,
it appears incorrect to conclude the opposite, that Mikhael should not be told, despite
the fact that this is part of the content of the first element of the code. It would also
seem pointless and perhaps incorrect to conclude, under the same condition, its own
opposite - i.e. that Ronald should not be told. Schematically, (r,m) should be
derivable, but (r,¬m) and (r,¬r) should not. But the unrestricted operations put all
three in out(G), the two undesired ones by simple applications of SI and WO.  

We do not pretend to have a recipe for dealing with examples such as these. The
literature already contains a wide variety of approaches. When the principles of the
code are understood as defeasible, then it is natural to use some kind of prioritisation
of its elements, notably in terms of degree of specificity. However, it is debatable
whether prioritisation is consistent with a strictly indefeasible reading of the elements
of the code, that is, as never in any circumstances admitting any exceptions. There are
also examples, such as the following, where prioritisation does not appear to help
anyway.

Example 2. Möbius strip (Makinson 1999). Put G = { (a,b), (b,c), (c,¬a)} , where the
pairs are understood as conditional goals, intentions or obligations. All of b, c, ¬a are
in the reusable output of G under input a. Intuitively, we would be inclined to accept b
as output, and also c if we admit reusability, but loath to accept ¬a.  

In this example, there does not seem to be any straightforward way of prioritising the
elements of G in terms of degree of specificity,. There are three maximal subsets H of
G whose unrestricted (reusable) output with input a is consistent with that input,
namely the three two-element subsets. Intersecting the outputs for all of them gives
Cn(∅), and the only choice among the three values of H that gives the ‘ right’  result is
H =  { (a,b), (b,c)} .

On the other hand, intuition is easily accommodated in the example by using
derivation rules, with consistency checks at the nodes of the derivation trees. One
simply ‘keeps going’  as long as possible until hitting trouble, where ‘ trouble’  means
violation of a consistency constraint. In other words, in any derivation, at any node n
with attached pair (a,x), the input a considered at n should be consistent with the
entire collection of pairs attached to nodes on which n depends. Consider the simplest
derivation of (a,¬a):

(a,b) (b,c)  (c,¬a)
             SI                 SI
    (a∧b,c)   (a∧c,¬a)
    --------------------------------- CT      

  (a,c)      
   -------------------------------   CT

   (a,¬a)
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This is blocked at the last step, since the input a considered there is inconsistent, in
some sense, with the pairs on which it depends, in particular with the three leaves.

But what kind of consistency is this? It is not just classical consistency, for it
compares a proposition with one or more ordered pairs of propositions And how
exactly should dependence be defined? The first purpose of this paper is thus:

• To articulate ways in which these notions may be unpacked. We shall see that
there are at least four ways of reading consistency, and two of dependence; and
that some combinations sit together more comfortably than others (sections 3,4).

Our further purposes are:

• To compare the force of consistency constraints under the various options. In
general they are distinct, although some are stronger than others. For derivations
not using OR, the two notions of dependence trivially coincide; one of our main
results (Observation 3) is that for such derivations, the four notions of consistency
also agree.

• To study the role of leaves and the root node in the application of consistency
constraints. We have some positive and some negative results for both
derivations and derivability (Observations 7-9,11-13).

• To seek semantic characterisations of constrained output. The positive results on
the role of leaves and roots, permit us to characterise restricted output
semantically when the unrestricted version does not use OR (Observation 10). For
output using OR, the problem is not settled.

We emphasise that we are not advocating a particular solution to the problem of
interpreting contrary-to-duty obligations. Our intention is formal. It is to articulate and
compare, more systematically and carefully than has been done before, some main
kinds of consistency constraint on derivations, that may eventually form part of such a
solution.

3. Concepts of consistency

Consider any derivation ∆ and a node n:(a,x) of ∆. Let H be the set of nodes of ∆ on
which n depends (in a sense later to be made precise). In the context in which we are
working, perhaps the most principled way of understanding the consistency of the
body a with H is in terms of output itself. In other words, in any derivation, when
n:(a,x) is a node depending on H, we should require:

Body/output (bo) constraint wrt H: ¬a ∉ out(H,a).

Another way of understanding the consistency of a with H, is in terms of the
materialisation m(H) of H , i.e. (section 1) the set of all formulae b→y with (b,y) ∈ G.

Body/materialisation (bm) constraint wrt H: ¬a ∉ Cn(m(H)).
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This, in turn, has two close neighbours. One requires the body a to be consistent with
the set h(H) of all heads of elements of H;  the other with the set f(H) of all fulfilments
of elements of H, where the fulfilment of (b,y) is defined as b∧y. In other words:

Body/head (bh) constraint wrt H: ¬a ∉ Cn(h(H))
Body/fulfilment (bf) constraint wrt H: ¬a ∉ Cn(f(H)).

The bf constraint has been examined intensively by van der Torre in a number of
publications, notably (van der Torre 1997, 1998, 1999), of which the last provides a
succinct overview. The bh constraint has been studied in the context of the logic of
conditional norms in (Makinson 1999). The bm constraint does not appear to have
received much attention in the literature. As far as the authors are aware, the bo
constraint has not been investigated or even isolated. We shall consider all four in a
comparative manner.

Observation 1. For fixed a and set H of pairs, bf ⇒ bh ⇒ bm ⇒ bo where the arrow
means that satisfaction of the left constraint (at a with respect to H) implies
satisfaction of the right one.

Proof. Clearly, the materialisation b→y of a node (b,y) is implied by its head y, which
in turn is implied by its fulfilment b∧y;  this shows the first two implications. For the
third, recall from section 1 that x ∈ outi(H,a) implies x ∈ Cn({ a} ∪m(H)). Putting x =
¬a and applying classical logic we thus have in particular that ¬a ∈ out(H,a) implies
¬a ∈ Cn(m(H)). 

However, as we shall now see, the appropriate notion of dependence (i.e. the value of
H chosen when applying the constraint to a derivation) may take different forms in
derivations using the rule OR, rendering the relationship between the four constraints
more complex. Roughly speaking, for bo and bm we should consider the entire
subtree generated by the node under consideration, whereas for bh and bf we should
split it at applications of the OR rule.

4. Concepts of dependence

On what nodes in a derivation tree would we say that a given node n:(a,x) ‘depends’?
The natural first answer is: those occurring in the subtree determined by n, travelling
leafwards. Evidently, one may query whether n itself may (or should) be excluded
from the subtree. We will show later that if n is not a leaf, then the decision makes no
difference. But there is another one that does.

As observed in (Makinson 1999), for derivations with the rule OR, taking the entire
subtree as the dependency set can give inappropriate results under the bh and bf
constraints, since it bars proof by cases except when the cases are mutually consistent.

Example 3. Proof by exclusive cases (Makinson 1999): Put G = { (a,x∧y),
(¬a,x∧¬y)} , and consider the following derivation  to get (t,x) where t is a tautology.
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(a,x∧y)         (¬a,x∧¬y)
           WO                  WO
(a,x) (¬a,x)
----------------------------------    OR

(t,x)

Intuitively, the derivation appears acceptable when the pairs are understood as
conditional goals or obligations. But formally, the situation is as follows. The first
steps, using WO, pass all four checks, since on the left a∧x∧y is consistent and
similarly on the right so is ¬a∧x∧¬y. For the last step, let H be the set of nodes of the
tree. On the one hand, its materialisation m(H) is consistent, so ¬t ∉ Cn(m(H)). Thus
the last step derivation passes the bm check (and so also the bo check). On the other
hand, the set of all heads of elements of H (indeed of the leaves in H) is inconsistent.
Thus ¬t ∈ Cn(h(H)) ⊆ Cn(f(H)) and the derivation fails the bh and bf checks. 

For this reason, when investigating respectively the bh and bf constraints, (Makinson
1999) and (van der Torre 1998, 1999) work with a more discriminating account of
dependence, with a special treatment of branching under the OR rule. Roughly
speaking, it is thought of as creating parallel dependency tracks. When we apply it to
pass from premises (a,x) and (b,x) to (a∨b,x), the latter may be seen as depending on
each of the two premise nodes considered separately, but not on them taken together.

In general, a node depends on each member of a family of sets of nodes, as follows.
Given a node n in a derivation tree, we travel leafwards in the subtree generated by n,
splitting it into two at every application of the OR rule, so that one tree contains one
of the two premise nodes and the other tree contains the other premise node. In this
way we obtain a family of trees, each of which is part of the subtree generated by n.
We say that node n depends separately on the set of nodes of each member of that
family. This definition is rather informal, but is visually clear and suffices for our
purposes without entering into the formalities of graph theory.

Example 4. Dependency sets. Consider a derivation tree with rules applied as follows
(we give names to the nodes but abstract from the formulae):

A B C D E
----------  CT  | |  SI  |
      F  | G  |
       -----------------------  OR               -------------------  OR

H I
 ------------------------------------   AND

J

Then the root node J depends on each of the following four sets: { J,H,F,A,B,I,G,D} ,
{ J,H,C,I,G,D} ,  { J,H,F,A,B,I,E} , { J,H,C,I,E} . With unsplit dependence, it depends on
the set of all nodes of the tree. As remarked above, one might prefer to exclude J itself
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from these sets and, as will be seen later, it makes no difference to the resulting
consistency constraints.  

In this light, we return to the weaker constraints bo and bm, and ask whether it would
make any difference if we split trees there too. It would, as shown by the following
example.

Example 5. Effect of splitting on bo, bm. Put G = { (a,x), (¬a,x)} , and consider the
following derivation.

(a,x)      (¬a,x)
             WO                    WO    
(a,x∨y)             (¬a,x∨y)
--------------------------------------    OR

         (t,x∨y)
                  SI
        (¬x, x∨y)

If, in our definition of dependence, we split this tree at the OR step, then it passes the
bm (and hence also bo) consistency check. For example, looking at the body ¬x of the
root node, it is consistent with the set of materialisations of nodes in the left branch,
and likewise with those of the right branch. But if we do not split the tree, then the
derivation fails the bo check (and thus also bm) at its root, since x ∈ out2(H,¬x) where
H is the set of all nodes (indeed, leaves) of the tree.  

Intuitively, the authors feel that split dependence seems to accord with the idea of
demanding consistency of the current body with heads and fulfilments of previously
used items, whilst unsplit dependence accords with requiring consistency with their
materialisations or output. From here on, when we speak of the various constraints,
we shall always understand them with dependence notions associated in that way
unless expressly indicated to the contrary.

In other words, the four consistency constraints that we shall consider are the
following,  for any derivation ∆ and node n:(a,x) in ∆:

• Body/output (bo): ¬a ∉ out(Hn,a), where Hn is the set of nodes of the subtree
determined by n;

• Body/materialisation (bm): ¬a ∉ Cn(m(Hn)), where again Hn is the set of nodes of
the subtree determined by n;

• Body/head (bh): ¬a ∉ Cn(h(Hn)) for each set Hn in the dependency family of n;

• Body/fulfilment (bf): ¬a ∉ Cn(f(Hn)) for each Hn in the dependency family of n.

We say that a derivation ∆ satisfies a constraint iff every node of the derivation does
so.
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Remark. Care should be taken when considering the bo constraint. Its definition is
rather more subtle than the others. Whether ∆ satisfies the bo constraint at node
n:(a,x) depends not only on the nodes actually used in getting n (or even those used
later in the derivation under consideration), but also on the totality of rules allowed.
We need to check whether a is consistent with out(Hn,a), where out is an unrestricted
output operation (normally the one to be constrained). For the other constraints, we
need only check the consistency of a with the materialisations, heads, or fulfilments
of  nodes actually used.

These consistency constraints could also be expressed ‘ locally’ , by requiring the body
of each node to be consistent with a label attached to that node. The labels may be
defined inductively from leaves to root, accumulating information as they grow.
Indeed in earlier publications on the bh and bf constraints, cited above, the authors
proceeded in that manner. However, our present view is that the use of labels is best
seen as a possible technique for checking satisfaction of a constraint, while our
present focus is on the concepts that give rise to them.

5. Immediate relations between consistency constraints

Observation 2. bm ⇒ bo and bf ⇒ bh.

Clarification. This observation should be understood as saying that in any derivation
∆, and at any node n:(a,x) of ∆, satisfaction of the bm (resp. bf) constraint at node n
implies satisfaction of the bo (resp. bh) constraint at that node, where the constraints
themselves are understood as at the end of section 4.

Proof. Immediate from Observation 1 and the understanding that bo, bm are applied
with unsplit dependence, whereas bh, bf are applied with split dependence. 

However, the converse implications, and also both of those between bm and bh, may
fail, as illustrated by the following examples.

Example 6.  Derivation satisfying bh but failing bf.

(a,x)         (b,x)
------------------   OR
       (a∨b, x)
                          SI
((a∨b)∧(a→¬x), x)

This satisfies bh: e.g. for the root node, the body (a∨b)∧(a→¬x) is consistent with the
set of heads in each branch. But no derivation with the same root and a subset of the
leaves satisfies fails the fulfilment check: there is no derivation of the root from a
single one of the leaves, and body (a∨b)∧(a→¬x) is inconsistent with the fulfilment
of the leaf (a,x).  
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Example 7. Derivation satisfying bm but failing bh.

(a,x∧y)         (b,x)
         WO        
   (a,x)               
   -----------------    OR
          (a∨b,x)
                       SI
 ((a∨b)∧(¬x∨¬y), x)

This satisfies bm: e.g. for the root node, body ((a∨b)∧(¬x∨¬y) is consistent with
materialisations a→x∧y and b→x taken together. But it (and any other derivation
from a subset of the same generators to the same conclusion) fails the bh check: root
body (a∨b)∧(¬x∨¬y) is inconsistent with leaf head x∧y.  

Example 8. Derivation satisfying bo (defined in terms of basic output) and bh, but
failing bm. A single example suffices to do both jobs. Put G = { (a, x∧(a→y)), (¬a,
x∧(¬a→y))} . Consider the derivation:

(a, x∧(a→y)) (¬a, x∧(¬a→y))
                  WO                        WO
   (a,x)                            (¬a,x)
    --------------------------------------    OR
               (t,x)
                              SI
                      (¬y,x)

The derivation passes the bo constraint when the latter is defined in terms of basic
output. In particular, for the root node, y ∉ out2(G,¬y). To check this, use the
semantic definition of out2 (section 1): putting say v(a) = 1 and v(y) = 0, we have ¬y
∈ V but G(V) = { x∧(a→y)}  which does not classically imply y.

The derivation also passes bh (recalling that this constraint is defined with split
dependence). In particular, for the root node we have that for each branch of the tree,
¬y is consistent with the set of all heads on that branch.

But it fails bm (recalling that this is defined with unsplit dependence). In fact, any
derivation with the same root and a subset of the leaves will fail bm. On the one hand,
if the derivation uses only one of the leaves, then it cannot yield the root, even without
applying consistency constraints; recall from section 1 that (a,x) ∈ outi(G) implies x ∈
Cn({ a} ∪m(G)} , i.e. a→x ∈ Cn(m(G)), while clearly in the example ¬y→x is not a
classical consequence of the materialisation of any one leaf taken alone. On the other
hand, if the derivation uses both leaves, then bm fails because ¬y is inconsistent with
the materialisations of the leaves taken together.  

The derivations in examples 6, 7, 8 all make use of the rule OR. In the next section we
shall show that this is no accident.
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6. Consistency checks in derivations without OR

For derivations that do not use the rule OR, it is immediate that no dependency splits
arise (although the tree still branches at every application of AND and of CT). For this
reason, one could call these derivations ‘one-track’ . For these derivations, it is thus
immediate that the two concepts of dependence coincide: a node (a,x) depends on the
set of all nodes in the subtree that it generates. Thus for derivations without OR, we
immediately have the implications bf ⇒ bh ⇒ bm ⇒ bo, by Observation 1. More
surprisingly, in this case we also have the converse implications, as we now show.

Observation 3. For derivations not using OR (i.e. using at most the rules SI, AND,
WO, CT) the consistency checks bo, bm, bh, bf are equivalent at every node.

Clarification. We recall from section 4 that care should be taken when considering the
bo constraint, as its definition is relative to a choice of unrestricted output operation.
In the above observation, it is understood as defined with respect to any one of the
four kinds of unrestricted output recalled in section 1, i.e. outi for i ∈ {1,2,3,4} , that
allows at least the rules used in whatever derivation is under consideration.

Proof. Knowing already that bf ⇒ bh ⇒ bm ⇒ bo, it remains to show bo ⇒ bf. Fix
any derivation tree. For each node n:(a,x) in the derivation, write Hn for the set of all
nodes in the subtree determined by n. Write f(Hn) for the set of all fulfilments of
elements of Hn. It suffices to show that for every node n:(a,x) of the tree, if a is
inconsistent with f(Hn) then ¬a ∈ out(Hn,a). As out(Hn,a) is closed under
consequence for all four unrestricted output operations, it suffices to show that { a} ∪
out(Hn,a)+ f(Hn). This we now do by induction.

Basis: Suppose n:(a,x) is a leaf of the tree. Then x ∈ out(Hn,a), f(Hn) = { a∧x} , so
clearly { a} ∪ out(Hn,a) + f(Hn).

SI: Suppose n:(a,x) is derived by SI from p:(b,x). Then a+ b,  x ∈ out(Hn,a), out(Hp,b)
⊆ out(Hn,a), f(Hn) = { a∧x} ∪ f(Hp). By the induction hypothesis, { b} ∪ out(Hp,b)+
f(Hp). Putting these together, { a} ∪ out(Hn,a) + f(Hn), as desired.

AND: Suppose n:(a,z) is derived by AND from p:(a,x) and q:(a,y). Then z = x∧y ∈
out(Hn,a), out(Hp,a) ⊆ out(Hn,a), out(Hq,a) ⊆ out(Hn,a), and f(Hn) = { a∧z} ∪f(Hp)
∪f(Hq). By the induction hypothesis, { a} ∪ out(Hp,a)+ f(Hp) and { a} ∪ out(Hq,a)+
f(Hq). Putting these together (indeed without needing z = x∧y) we have { a} ∪
out(Hn,a)+ f(Hn).

WO: Suppose n:(a,x) is derived by WO from p:(a,y). Then y+ x, x ∈ out(Hn,a),
out(Hp,a) ⊆ out(Hn,a), f(Hn) = { a∧x} ∪ f(Hp). By the induction hypothesis, { a} ∪
out(Hp,a)+ f(Hp). Putting these together (indeed without needing  y+ x) we have { a} ∪
out(Hn,a)+ f(Hn).
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CT: Suppose n:(a,x) is derived by CT from p:(a,y) and q:(a∧y,x). Then x ∈ out(Hn,a),
y ∈ out(Hp,a) ⊆ out(Hn,a), and f(Hn) = { a∧x} ∪f(Hp)∪f(Hq). Also out(Hq,a∧y) ⊆
out(Hn,a∧y) ⊆ out(Hn,a), the last inclusion since as noted we also have y ∈ out(Hn,a).
By the induction hypothesis, { a} ∪ out(Hp,a) + f(Hp) and { a∧y} ∪ out(Hq,a∧y)+ f(Hq).
Putting these together we have { a} ∪ out(Hn,a) + f(Hn). 

7. Further contexts in which bo is equivalent to bm

From Observation 3 we know that in the context of simple-minded output, the bo and
bm constraints are equivalent at any node of a derivation. We now show that these
two are also equivalent in a number of other contexts.

We begin by going back to Example 8, which showed that in the context of basic
output, they are not equivalent: bo holds but bm fails. If in that example the bo
constraint is defined in terms of basic reusable output, then bo fails in it, for y ∈
out4(G,¬y). This can be checked using the semantic definition of basic reusable
output from section 1: if ¬y ∈ V and e.g. a ∈ V, then x∧(a→y) ∈ G(V) ⊆ V, so that
(a→y) ∈ V and hence ¬a ∈ V; so G(V) = { x∧(a→y), x∧(¬a→y)} , and thus y ∈
Cn(G(V)). Similarly when ¬a ∈ V.

On an intuitive level, this rather subtle situation may be explained as follows. In the
absence of any rules authorising inputs to reappear as outputs or outputs to be reused
as inputs, the two are ‘totally isolated’  from each other. Input messages pass into G,
which puts out whatever it likes, and without passing it back to the input side. So if a
is an input and also happens to reappear as the antecedent of a conditional in the
output, then the machine has no authority to perform a detachment, whether in the
output or in the output.

This suggests that if we add either CT or the identity rule to those for basic input, then
the bo constraint may become equivalent to bm. That is indeed the case.

Observation 4. When the bo constraint is defined in terms of reusable output, it is
equivalent to the bm constraint, for any a and H.

Proof. We need to show that ¬a ∈ Cn(m(H)) implies ¬a ∈ out4(H,a) for any a,H, the
converse being given already by Observation 2. Suppose ¬a ∈ Cn(m(H)), i.e. that a is
classically inconsistent with m(H). Then by Observation 6 of (Makinson and van der
Torre, this volume), out4(H,a) = Cn(H(L)) = Cn(h(H)), where L is the set of all
formulae and h(H) is the set of all heads of elements of H. But by classical logic
Cn(m(H)) ⊆ Cn(h(H)), so ¬a ∈ out4(H,a) and we are done. 

We recall (Makinson and van der Torre, this volume) that the identity rule puts (a,a),
for every formula a, into the output of every generating set. Thus given an output
operation outi the system defined by adding the identity rule may be defined as
outi(G∪I) where I = { (y,y): y a formula} .
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Observation 5. When the bo constraint is defined in terms of basic output plus the
identity rule, it is equivalent to the bm constraint, for any a and H.

Proof. From Observation 2 and classical logic, ¬a ∈ out2(H∪I,a) implies ¬a ∈
Cn(m(H)) for any a,H, so we verify the converse. We show more generally that x ∈
Cn(m(H)∪{ a} ) implies x ∈ out2(H∪I,a). Suppose x ∈ Cn(m(H)∪{ a} ); we use the
semantic characterisation of out2 (section 1). Let V be any complete set containing a.
We need to show that x ∈ Cn(H+(V)) where H+ = H∪I. By the supposition, it suffices
to show that m(H)∪{ a}  ⊆ Cn(H+(V)).

We have a ∈ Cn(H+(V)) since (a,a) ⊆ I ⊆ H+ and a ∈ V. Now let (b,y) ∈ H; we need
to check that b→y ∈ Cn(H+(V)). If b ∈ V then since (b,y) ∈ H ⊆ H+ we have y ∈
H+(V) so b→y ∈ Cn(H+(V)). On the other hand, if b ∉ V then since V is complete we
have ¬b ∈ V so since (¬b,¬b) ⊆ I ⊆ H+ we have ¬b ∈ H+(V) so again b→y ∈
Cn(H+(V)).  �

Observation 6. When the bo constraint is defined in terms of basic output plus both
reusability and the identity rule, it is equivalent to the bm constraint, for any a and H.

Proof. We know from (Makinson and van der Torre, this volume) that the system
constituted by basic output plus both the reusability and identity rules collapses into
classical consequence, i.e. x ∈ out(G,a) iff x ∈ Cn(m(G)∪{ a} ). Then ¬a ∈ out(G,a)
iff ¬a ∈ Cn(m(G)∪{ a} ) iff ¬a ∈ Cn(m(G)).  

Combining Observations 3 -6, we see that the bo constraint is equivalent to bm for all
definitions of the former in terms of outi studied in this paper, except i = 2 (basic
output). This may conveniently be expressed in a table.

Kind of output bo = bm ? Proof
Simple-minded yes Observation 3
Simple-minded + CT yes Observation 3
Simple-minded + Identity yes Observation 3
Simple-minded + CT + Identity yes Observation 3
Basic no Example 8
Basic + CT yes Observation 4
Basic + Identity yes Observation 5
Basic + CT + Identity yes Observation 6

8. The role of root and leaves in a derivation

When carrying out a consistency check on a derivation ∆, do we need to verify it for
every node in ∆, or does it suffice to consider the root node? And if we are
considering a node m:(b,y), must we check the consistency of b with respect to all
nodes on which n depends, or is it enough  to consider only those that are leaves?
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These questions are significant computationally. They are also conceptually important
if we are interested in providing a semantics for constrained output operations. This is
because any semantics will have to abstract from the intermediate structure of
derivations, retaining only information about the leaves and the root.

It is important to note that the above questions may be posed at two different levels,
of specific derivations, and of derivability. Let us say that a constraint may be
restricted in a certain way without loss of force for derivations, iff whenever a
derivation ∆ satisfies the constraint in its restricted form, it satisfies it fully. On the
other hand, we say that a constraint may be restricted in a certain way without loss of
force for derivability, iff whenever a derivation ∆ satisfies the constraint in its
restricted form, there is some derivation ∆′ of the same root and the same (or fewer)
leaves that satisfies the constraint fully. Evidently, the former implies the latter, but
the converse may fail.

In this section we give some straightforward results for derivations, and in the
following section some more difficult ones that hold only for derivability.

Observation 7.  For each of the output operations outi (i = 1,2,3,4) the bf constraint
may be applied to the root only without loss of force for derivations.

Proof. Let ∆ be any derivation with root n:(a,x). Let m:(b,y) be any node of ∆, and
suppose that for some dependency set Hm of m, f(Hm) + ¬b. We need to show that for
some dependency set Hn of n, f(Hn) + ¬a. Since m is a node in the tree ∆ of which n is
the root, there is a dependency set Hn of n with m ∈ Hn and Hm ⊆ Hn. Hence b∧y ∈
f(Hn) and f(Hm) ⊆ f(Hn). Thus f(Hn) + b∧¬b + ¬a and we are done.  

Observation 8.  For each of the output operations outi (i = 1,2,3,4), and at any node of
any derivation,  the bo, bm, bh constraints may be applied with respect to leaves only
without loss of force for derivations.

Proof. Let ∆ be any derivation and let m:(b,y) be any node in ∆. Let Hm be any
dependency set of m, and let L(Hm) be the set of leaves in Hm.

For the bo constraint, we need to show that if ¬b ∉ out(L(Hm),b) then ¬b ∉
out(Hm,b), i.e., if (b,¬b) ∉ out(L(Hm)) then (b,¬b) ∉ out(Hm). Noting that L(Hm) ⊆ Hm

⊆ out(L(Hm)) (the latter since dependency is unsplit for the bo constraint) and
recalling that out(G) is a closure operation and so satisfies cumulativity, out(L(Hm)) =
out(Hm) and we are done.

For the bm constraint, we need only show that if m(Hm) + ¬b  then m(L(Hm)) + ¬b. It
suffices to show m(L(Hm)) + m(Hm). Recalling that for the bm constraint dependency
is unsplit, we note by inspection that the material counterparts of the rules defining
output are all classically correct. In other words, for each rule, the materialisations of
the premises of the rule together classically imply the materialisation of the
conclusion; for example, for CT, the formulae a→x and a∧x→y together classically
imply a→y.
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For the bh constraint, we need to show that if h(Hm) + ¬b  then h(L(Hm)) + ¬b. It
suffices to show h(L(Hm)) + h(Hm). Essentially the same argument can be used as for
the bm constraint taking account, however, of split dependency for the bh constraint.
We check by inspection that for each rule defining output, the heads of the premises
of the rule together classically imply the head of the conclusion, and moreover, in the
special case of the rule OR, the premise heads taken separately imply it (indeed, they
are identical with it).  

We note in passing, as a corollary, that we may without loss of force redefine the
notion of dependency so that when a node is not a leaf then it is excluded from its
dependency sets. For the bo, bm, bh constraints this is immediate from Observation 8.
For the bf constraint, it suffices to note that that for each rule defining output, the
fulfilments of the premises of the rule imply their heads, which as we have just
observed in the last part of the proof of Observation 8, together classically imply the
head of the conclusion, and moreover do so separately in the special case of the rule
OR.

Observation 9. For simple-minded output (and its extensions by CT and/or I) the
application of  any one of the consistency constraints bo, bm, bh, bf may be restricted
to the root only, with respect to the leaves only, without loss of force for derivations.

Proof. We use observations 7, 3, and 8. By Observation 7, bf may be applied wlf
(without loss of force for derivations) to the root node only; so since OR does not
occur in the derivation, we know by Observation 3 that the same is true for bo, bm,
bh. Hence by Observation 8, for each of bo, bm, bh, application may be restricted wlf
to the root node only, with respect to leaves only. Hence by Observation 3 again
(strictly speaking, re-running its proof using Ln rather than Hn) the same is also true of
bf, and we are done. 

Observation 9 permits a semantic characterisation of simple-minded output
constrained by any of bo, bm, bh, bf, and likewise for its extensions by CT and I. We
recall that out1 is simple-minded output, out3 is its extension by CT, and we write
out1+, out2+ to indicate their extensions by the identity rule I. When outi is an
unconstrained operation, we write  outi

c for its restricted version under any of the
constraints bo, bm, bh, bf.

Observation 10. Semantic characterisations of constrained output operations without
OR. For i = 1,3,1+,3+ we have: (a,x) ∈ outi

c(G) iff for some H ⊆ G, (a,x) ∈ outi(H)
and f(H) +/ ¬a,

Proof. Recall that dependency is unsplit in derivations without OR. For the left to
right implication simply put H to be the set of leaves of a constrained derivation of
(a,x) from G, and apply Observation 3. For the right to left implication, apply
Observation 9, noting that each operation outi

c(G) is trivially monotonic in G. 
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9. Constraints and derivability

Unfortunately, Observation 7 fails for the constraints bo,bm,bh, which may lose force
for derivations using OR, when applied to the root only.

Example 9. Derivation satisfying bo,bm,bh applied to the root, but not when applied
fully.

(a,x) (x,¬(a∧x)) (x,¬(a∧x))
              SI       
    (a∧x,¬(a∧x))       
    --------------------------------  CT            

(a,¬(a∧x))        
------------------------------------------    OR

(a∨x,¬(a∧x))

The body a∨x of the root is consistent with the heads of all the nodes taken together,
so that all three constraints hold at the root. However, the body a of the intermediate
node (a,¬(a∧x)) is not consistent with the materialisations of the two leaves on which
it depends, so that the bm, bh constraints fail when applied fully. The bo constraint
also fails at the same node, if defined in terms of reusable output, since ¬a ∈
out4(H,a) where H is the set of nodes on which it depends.

Moreover, it can be shown that the failures carry over to derivability. In other words:

Observation 11. There is no derivation with the same root as that of Example 9, and
with the same (or fewer) leaves, that satisfies any of the bo,bm,bh constraints applied
fully.

Outline of proof. We make an exhaustive search for such a derivation. First, we
observe that the root (a∨x,¬(a∧x)) cannot be derived, even without constraints, using
only one of the leaves (a,x) or (x,¬(a∧x)), since the materialisation of the root is not a
classical consequence of the materialisation of the leaf (section 1). Second, if the two
premises are combined in a derivation then the first proof rule combining them is
either CT (two ways), AND or OR. The application of CT shown in Example 9 and
the application of AND are blocked by consistency checks, the second application of
CT and OR only derive trivial consequences, respectively (a∧x,x) from (a∧x,t) and
(a∧x,x), and (a∨x,t) from (a,t) and (x,t). Consequently there is no derivation of the
root (a∨x,¬(a∧x)) from the leaves (a,x) and (x,¬(a∧x)) satisfying any of the bo,bm,bh
constraints.  

Again, Observation 8 fails for bf, which may lose force for derivations when it is
applied with respect to leaves only.
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Example 10. Derivation satisfying bf wrt leaves only, but not when applied fully.

(t,x) (t,x)
    SI    
(a,x)    
--------------------    OR
         (t,x)
                SI
       (¬a,x)    

Here, the body of each node is consistent with the fulfilment of the leaves, but the
body ¬a of the root node is not consistent with the fulfilment of the intermediate node
(a,x) on which it depends. 

However, it is clear that this derivation is a ‘ funny’  one. Although it fails the bf
constraint, there is clearly another derivation of the same root node from the same
leaf that satisfies the constraint. It can be shown that this is always the case.

Observation 12. For every derivation ∆ there is a derivation ∆′ with the same root and
the same leaves, such that if ∆ satisfies the bf constraint wrt leaves only, then ∆′
satisfies the bf constraint fully.

Clarifications and remarks. This observation is understood modulo each of the output
operations outi (i = 1,2,3,4) and their extensions with the rule I. ‘The same’ means
identity up to classical equivalence, in accord with the understanding (section 1) that
replacement of equivalent propositions is treated as a ‘silent rule’ . We give two
proofs, with different values of ∆′. The first proof transforms the derivation tree; the
second merely changes its labels, indeed only the bodies of the labels.

Outline of first proof. We sketch an algorithm that explicitly constructs ∆′ from ∆. We
would like to rewrite derivations so that SI is applied only in the final step of ∆′,
because in that case the fulfilments of the leaves imply the fulfilments of all other
nodes (except for that of the root, derived by SI). This can be done for the derivation
in Example 9.

   (a,x)            (b,x)
          SI          
    (a∧c,x)        
    ----------------    OR
     ((a∧c)∨b,x)

    (a,x)            (b,x)
    --------------------   OR
           (a∨b,x)
                        SI
        ((a∧c)∨b,x)

However, sometimes we cannot rewrite derivations so that SI is applied only at the
last step because, as remarked in Observation 18 of (Makinson and van der Torre, this
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volume) no rewrite rules are known for reversing applications of SI/CT and SI/AND.
Fortunately, there are weaker rewrite rules that suffice for Observation 12. The crucial
rewrite rules are the following one for SI/CT and an analogous one for SI/AND.

   (a,x)          (c,y)
         SI            SI
(a∧b,x)      (c∧d,y)
----------------------    CT: a∧b∧x ≈ c∧d
     (a∧b,y)

    (a,x)                    (c,y)
            WO            
    (a,x∨c)                    SI
             SI               
(a∧(¬x∨c),x∨c)      (a∧c,y)
-------------------------------- CT
         (a∧(¬x∨c),y)
                             SI
                (a∧b,y)

In the left derivation the fulfilments of the leaves together with the body of the root do
not necessarily imply the fulfilments of all nodes, but in the right derivation they do
so. SI is still applied before CT, but in a ‘minimal’  way: the proposition ¬x∨c
introduced by the rule is implied by the fulfilment of a leaf, namely (c,y), on which
depends the node obtained by the following application of CT, namely (a∧(¬x∨c),y).

In general, a set of rewrite rules (the two above together with SI/SI ⇒ SI, SI/WC ⇒
WC/SI, and SI/AND ⇒ SI/AND/SI) creates a derivation ∆′, for which an inductive
argument shows that the fulfilment of every node other than the root is implied by the
fulfilments of the leaves of each dependency set of its child. Hence the fulfilment of
every node is implied by the body of the root together with the fulfilments of the
leaves of each of its dependency sets.  

Second proof. We change the labels on ∆, and then extend it by just one more node.
The basic idea is to put a ceiling on the bodies of nodes, to make sure that application
of SI never makes them stronger than is necessary to derive the root of the tree from
the leaves. No change is made to heads of nodes or to the structure of the tree.

Let m:(b,y) be any node of ∆. Replace b by b∨ϕ(m) where ϕ(m) = ∨{ ∧f(L(H)): H ∈
Dm} . Here Dm is the family of all dependency sets H of ∆ that contain m, L(H) is the
set of all leaves in H, f(L(H)) is the set of fulfilments of elements of L(H), ∧ is
conjunction, and ∨ is disjunction.

For the additional node, let n:(a,x) be the root of ∆. By the above, it is relabeled as n:
(a∨ϕ(n),x). Add as its child a node n+1, serving as the new root node, and give it the
label (a,x), i.e. the same label as for the root node of ∆.

We claim that ∆′ is a derivation of (a,x) from the same leaves (up to logical
equivalence) as in ∆, and that it satisfies the bf consistency constraint applied fully.
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For each leaf m:(b∨ϕ(m),y) of ∆′ we have b ≈ b∨ϕ(m) since when m is a leaf and H ∈
Dm, then (b,y) ∈ L(H) so that ϕ(m) classically implies b.

The last step of ∆′ is justified by SI. An induction shows that all other steps in ∆′ are
justified by the same rules as their counterparts in ∆, so that ∆′ is a genuine derivation.
The cases for SI, WO, AND, are straightforward. For OR, the essential point is to
observe that when node m in ∆ is obtained from nodes p and q by OR, then Dm =
Dp∪Dq so that ϕ(m) ≈ ϕ(p)∨ϕ(q). The only delicate case is that for CT, which we give
in full. Suppose that in ∆, node m:(b,z) is obtained by CT from p:(b,y) and q:(b∧y,z).
We need to show that m:(b∨ϕ(m),z) is obtainable by CT from  p:(b∨ϕ(p),y) and
q:((b∧y)∨ϕ(q),z). It suffices to show (b∧y)∨ϕ(q) ≈ (b∨ϕ(p))∧y. The nodes p and q are
elements of the same dependency sets of ∆, so ϕ(p) = ϕ(q). Hence it suffices to show
that ϕ(p) implies y. Given the definition of ϕ(p), it suffices to show that for every
dependency set H of ∆, f(L(H)) implies the head of every node in H. But this holds in
any derivation: f(L(H)) immediately implies h(L(H)) which, as we have already seen
in the proof of Observation 8 (case of the bh check), implies h(H) and we are done.

It remains to check that ∆′ satisfies the full bf constraint. By Observation 7 it suffices
to show that it does so at the root n+1:(a,x), i.e. that a is consistent with f(H′) for
every dependency set H′ of ∆′. Let H′ be a dependency set of ∆′. Then H = H′ −
{ n+1}  is a dependency set of ∆ with L(H) = L(H′). Since ∆ satisfies the bf constraint
with respect to leaves, we know that a is consistent with f(L(H)). As already noted,
f(L(H′)) implies the head of every node in H′. To complete the proof, it suffices to
show that f(L(H)) implies the body of every node in H′ other than the root node
n+1:(a,x), i.e. that f(L(H)) implies the relabeled body b∨ϕ(m) of every node m of ∆.
But this is immediate from the definition of ϕ(m) and we are done.  

10. Open Questions

From Example 9 and Observation 11, we see that in general (for output operations
allowing OR), the bo, bm, bh constraints may lose force for derivability if applied to
the root only, which dashes hopes for a semantic characterisation of basic or reusable
output along the lines of Observation 10. It leaves open the question whether such
semantics could be obtained in a different matter, but the outlook is not encouraging.

In the case of the bf constraint, prospects seem rather brighter. Putting Observation 7
together with Observation 12 (strictly speaking, with the proof of the latter) we obtain
the following.

Observation 13. For each of the output operations outi (i = 1,2,3,4) the bf constraint
may be applied to the root only, with respect to leaves only, without loss of force for
derivability.

Outline of proof. Let ∆ be a derivation that satisfies the bf check applied to the root
only with respect to leaves only. By the same argument as used for Observation 12,
there is a derivation ∆′ with the same root and the same leaves, that satisfies the bf
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constraint applied to the root only but with respect to its entire dependency sets. By
Observation 7, ∆′ satisfies the bf check applied fully.  

However, there is still some distance between Observation 13 and a semantic
characterisation of basic or reusable output with the bf constraint. The reason is that in
the presence of OR, the bf constraint is applied with split dependence; and the pattern
of splitting depends not only on the root and the leaves, but also on the places where
OR happens to be applied in the derivation tree. So we need to check the consistency
of the body of the root, not with the set of fulfilments of all the leaves, but rather with
each of certain subsets of that set, and the identity of those subsets depends on the
internal structure of the derivation. The question of a semantic characterisation of
basic and reusable output under the bf constraint thus remains open, with a prospect
perhaps brighter than for the other constraints.

In general, our investigations into constrained output have set out from the syntactic
end, considering consistency checks on nodes in derivations and looking for semantic
counterparts. It would also be interesting to proceed in the reverse direction:
considering semantic restrictions on the definitions of output, and seeing how far they
can be represented syntactically.
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