
Specifying Multiagent Organizations

Leendert van der Torre1,2?, Joris Hulstijn3, Mehdi Dastani3, and Jan Broersen3

1 CWI Amsterdam
2 Delft University of Technology

3 University of Utrecht

Abstract. In this paper we investigate the specification and verification of infor-
mation systems with an organizational structure. Such systems are modelled as
a normative multiagent system. To this end we use KBDIOCTL, an extension of
BDICTL in which obligations and permissions are represented by directed modal
operators. We illustrate how the logic can be used by introducing and discussing
various properties of normative systems and individual agents which can be rep-
resented in the logic. In particular we discuss the enforcement of norms.

1 Introduction

Normative computer systems are computer systems which involve obligations, prohi-
bitions and permissions [19]. The traditional applications can be found in computer
security, for example to regulate access to file systems or libraries. Other applications
have been studied in electronic commerce, in legal expert systems and in databases.
See [28] for a survey on these applications. More recently, normative systems have
been used to regulate virtual communities in the context of the (semantic) web. To sup-
port the development of such systems, several agent architectures have been proposed
that incorporate obligations, prohibitions and permissions.

In this paper we investigate the formalization of regulations such as the widely dis-
cussed library regulations, parking regulations, copier regulations, cottage regulations,
et cetera. Such examples are characterized by sometimes complicated normative sys-
tems, as well as organizational structures. Moreover, in contrast to earlier investigations,
we not only consider the case in which humans interact with a normative computer
system, but we also consider cases in which computers interact with other computer
systems, that is, we consider multiagent systems. In particular, we consider the formal-
ization of properties involving normative multiagent systems in an extension of Schild’s
BDICTL [23, 11, 12], which is itself a variant of Rao and Georgeff’s BDICTL [21]. Such
an extension consists of an extension of the logic and an extension of the properties
expressed in the logic. Obligations are motivational attitudes, just like desires, but they
are also related to organizational issues.

First, obligation is formalized as a directed modality [17, 13, 25, 4, 27]. Thus, whereas
we may say that agenta desire to prepare a report, we say that the agenta is obliged to
prepare a reporttowards another agentb. Moreover, as explained in more detail in Sec-
tion 5, whereas desires and intentions remain in force as motivational attitude until the

? Supported by the ArchiMate research project.

agentbelievesthey have been achieved or are no longer achievable, obligations remain
in force until the agentknowsthey have been fulfilled or they are no longer achievable.
We introduce an extension of BDICTL called KBDIOCTL, that makes the distinction be-
tween desires and obligations explicit, as well as the distinction between beliefs and
knowledge.

Second, we provide organizational concepts such as roles, role relations, and groups
in order to specify inter-agent relations that hold in organizations. The organizational
concepts are interpreted as follows.

A role is a set of related constraints that should be satisfied when an agent enacts the
role. For example, the role of project manager puts constraints on the expertise,
capabilities, responsibilities, goals, obligations and permissions of the agent that
enacts the role. Note that various different definitions of the concept of a role have
been proposed. Our definition follows [14, 7, 29, 10]. The definition of a role is
always related to some organizational activity, which determines its scope. For ex-
ample, the role of chairman only makes sense during a meeting. Agents may only
enact a role provided they arequalified, i.e., meet the basic requirements for the
role.

Role relations, also known asdependenciesor channels, are constraints put on a rela-
tion between roles. Examples of a role relations aresupervisorof and the producer-
consumer relation. Role relations coordinate the behavior of different agents, sim-
ilar to the way channels coordinate components in software architectures [1]. One
role can be enacted by many agents. Consider for example several postmen in a
district. Moreover, one agent can enact many roles. Consider for example a lecturer
who is also a conference reviewer.

A group is a set of roles that share a group characteristic. For example, roles involved
in selling goods in an organization form a group often called the selling department.

The motivation of our work is to develop a specification and verification language
for normative multiagent systems with organizational structure. We therefore focus on
properties of regimentation, which formalize whether norms can be violated, on dead-
lines, and on definitions of organizational structure. Due to the fact that we not only
consider humans, but also artificial agents interacting with normative computer sys-
tems, new issues and properties arise.

For example, for agent systems it is common practice to design agents that can-
not violate norms, or agents that are benevolent and will always first try to fulfill the
obligations or goals of other agents, before trying to achieve their own desires. There-
fore it is useful to have a specification language that can express such properties too.
As these properties cannot be programmed in human agents, such properties have not
made sense previously, and consequently we believe that they have not been addressed
in the literature. We acknowledge the criticism on such properties, but such criticism is
beyond the scope of this paper.

The layout of the paper is as follows. In section 2 we describe an example speci-
fication domain. In Section 3 we extend Schild’s logic with obligations, prohibitions,
permissions and organizational concepts. In the remainder, we discuss properties which
can be expressed in the logic, and which can be used to specify the running example.

2 Multiagent organizations: the running example

In this section we exemplify the type of specification properties we are interested in.
Shorter specification examples in subsequent sections will also apply to the domain
described here. Our example domain is concerned with the different ways an organiza-
tional norm can be implemented in a multiagent system. A multiagent system developer
has a choice of options to operationalize a norm. In each case, a number of assumptions
about the mental attitudes and reasoning capabilities of the subjects of the norm, the
individual agents, are necessary. A system developer can leave it up to the individ-
ual agents to respect the norm. In that case, he assumes that agents are benevolent or
norm-abiding, and proving that the system comforms to the norm presupposes that this
assumptions is formalized. By contrast, the system developer can hardwire the norm
into the environment, making it physically impossible for agents to violate it. In that
case, no additional assumptions on agents are needed. We believe that a rich logic like
KBDIOCTLis suitable to express this kind of notions and assumptions.

The example is derived from an observation concerning different ticket policies
of public transport networks [15]. Suppose ticket policies are specified as a multi-agent
system. Using these specifications, one can formulate the consequences of such policies
as logical properties, and verify them with respect to the system specifications.

Compare the Paris metro with a French train. On the entrance of a platform of the
Paris metro, the authorities have placed a high barrier with gates that will only open
when a valid ticket is inserted. Without a valid ticket, it is physically impossible to
pass the barrier and use the metro. By contrast, it is possible to board a French train
without a ticket. The authorities rely on personal benevolence, on social pressure, and
on a sanctioning system of ticket inspection and fines, to persuade passengers to buy
a valid ticket. Looking at other travel systems we find yet other solutions to the same
problem: under which assumptions can we conclude that all passengers will pay for the
ride? We can phrase the norm as follows:

When travelling by public transport, one should have paid for the trip.

This norm is an instance of a much more general pattern occurring in situations in
which humans interact with normative computer systems, and also in multiagent sys-
tems such as virtual communities or web services. For example, an agent has to access
a resource offered by another agent. To regulate such access, there is an organizational
structure, that may contain roles, but also more complicated normative constructs such
as authorization and delegation mechanisms. In this paper we restrict ourselves to the
norm above.

We consider the following ways to implement this norm in a multi-agent system.
Each possibility relies on some specific assumptions about the environment, or about
the agents inhabiting the system.

1. Implementing a norm in the environment. The norm is enforced with gates on
the platform. No assumptions on the mental attitudes of agents are needed, only
assumptions about their physical ability.

2. Implementing a norm by designing benevolent or norm abiding agents. All
agents can be designed to be sincere. If they tell you they have paid, you can trust
them. This removes the need for tickets as evidence of payment. Moreover, agents
can be designed to be either benevolent, or norm abiding. If a benevolent agent
understands why the norm is a good norm, for example to maintain a good quality
of public transport, it will internalize the norm and make it a personal goal. A norm
abiding agent will simply obey the norm, no matter how this relates to its own goals.

3. Implementing a norm by relying on rationality . Here tickets are introduced as
evidence of payment, and hence as a right to travel. No sincerity assumption is
needed. If an agent is caught travelling without a valid ticket, it is subject to a sanc-
tion: to pay a fine. This assumes that agents are rational decision makers, in the
economic sense of maximizing expected utility. An agent will display the behavior
corresponding to the norm, if a ticket is cheaper than the fine multiplied by the per-
ceived chance of being caught. Authorities can affect this way of decision making
by increasing the fine, or by making the agents believe that the chance of being
caught has increased.

4. Implementing a norm by relying on social control. Here again tickets are used as
evidence of payment. Being caught without a ticket leads to social embarrassment
and a loss of reputation. Like in item 3 above, this solution assumes that agents are
subject to sanctions, and moreover, that embarrassment counts as an effective sanc-
tion. Embarrassment typically only comes up if all other passengers can observe
that the passenger does not pay.

5. Implementing a norm by relying on a combination of mechanisms. In most
actual situations a mixture of these types of norm enforcement is in place. For
example, a fine system is used to remind agents of the noble purpose behind the
norm. Social embarrassment comes on top of the fine. That means that in practice,
fines do not have to be as high as would be required for socially unaffected citizens.

Note that the above categories not only occur in human society, but also in multia-
gent systems. Implementing a norm in the environment is also the typical case used
in web services: if an agent has not paid for the service, it simply cannot access it.
Implementing a norm by norm abiding agents is not possible in human organizations,
but frequently occurs in multiagent organizations. Human and multiagent systems of-
ten depend on rationality, for example in the context of electronic commerce. Finally,
many human organizations rely on social control, and there are examples of multiagent
systems containing social agents [8].

Obligations are motivational attitudes, just like desires, but they also have orga-
nizational aspects. First, obligations are always directed. Obligations can be directed
towards abstract entities like ‘the company’ or ‘the system’, towards other agents, or
towards the agents themselves. Second, the organizational structure is represented by
the sets of roles, groups, and their interactions, as indicated above. Group membership
and the assignment of agents to roles changes over time, as role relations are estab-
lished or disconnected. The ‘social fact’ of an agent enacting a role is distinguished
from the satisfaction of the requirements that go with the role. For example, although a
passenger does not have a ticket while he is in the metro, even if he does not satisfy the
requirements set by the role, he remains a passenger.

3 KBDIO CTL , a logic for specifying multiagent organizations

We use a version of BDICTL presented by Schild [23], which we extend with operators
for knowledge and directed obligation. The syntax of KBDIOCTLinvolves a modal op-
eratorKa for knowledge of agenta, an operatorBa for belief, Da for desire,Ia for
intention, andOa,b for an obligation of agenta towards agentb [17, 13, 4, 27]. Knowl-
edge, belief, desire and intention are internal to the agent and thus not directed. The
temporal operators of the language are imported from CTL. To specify organizational
structure, special propositions ‘g(a)’, ‘ r(a)’, and ‘a ch b’ are introduced for ‘agenta is
a member of groupg’, ‘agenta enacts roler’, and ‘agenta andb stand in role relation
ch’, respectively. Higher order relations can be defined analogously. We assume that
roles, groups and role relations are all primitive, though in certain systems they have
been defined in terms of each other. For example, a group can be defined as the role of
being a member of the group. Also, a group can be defined as a role relation between
all members of the group, or between the group members and the group leader.

Definition 1 (Syntax KBDIOCTL). Given a finite setA of agent names, a finite set
G of group names, a finite setR of role names, a finite setC of role relations, and
a countable setP of primitive proposition names, which includes ‘g(a)’, ‘ r(a)’, and
‘a ch b’ for all a, b ∈ A, g ∈ G, r ∈ R, and ch ∈ C, the admissible formulae of
KBDIOCTL are recursively defined by:

S1 Each primitive proposition inP is a state formula.
S2 If α andβ are state formulae, then so areα ∧ β and¬α.
S3 If α is a path formula,Eα andAα are state formulae.
S4 If α is a state formula anda, b ∈ A, thenKa(α), Ba(α), Da(α), Ia(α), Oa,b(α)

are state formulae as well.
P If α andβ are state formulae, thenXα andαUβ are path formulae.

We assume the following abbreviations:
disjunction α ∨ β ≡def ¬(¬α ∧ ¬β) implication α → β ≡def ¬α ∨ β
future F (α) ≡def >Uα globally G(α) ≡def ¬F (¬α)
permission Pa,b(α) ≡def ¬Oa,b(¬α) prohibition Fa,b(α) ≡def ¬Pa,b(α)
undirected Oa(α) ≡def Oa,a(α).

The semantics of KBDIOCTL involves two dimensions. The truth of a formula is evalu-
ated relative to a worldw and a temporal states. A pair 〈w, s〉 is called a situation. The
relation between situations is traditionally called an accessibility relation (for beliefs)
or a successor relation (for time).

Definition 2 (Situation structure KBDIO CTL). Assume a finite setA of agent names.
A structureM = 〈∆,R,K,B,D, I,O, L〉 forms a situation structure if∆ is a set of
situations,R ⊆ ∆×∆ is a binary relation such thatw = w′ whenever〈w, s〉R〈w′, s′〉,
Z(a) ⊆ ∆×∆ for the functionsZ ∈ {K,B,D, I} anda ∈ A, andO(a, b) ⊆ ∆×∆
with a, b ∈ A are binary relations such thats = s′ whenever〈w, s〉Z(a)〈w′, s′〉 or
〈w, s〉O(a, b)〈w′, s′〉, andL an interpretation function that assigns a particular set of
situations to each primitive proposition.L(p) contains all those situations in whichp
holds.

A speciality of CTL is that some formulae – called path formulae– are not interpreted
relative to a particular situation. What is relevant here are full paths. The reference to
M is omitted whenever it is understood. Note thatαUβ is true ifα is true until the last
moment before the first one in whichβ is true (alternative definitions are used in the
literature too).

Definition 3 (Semantics KBDIOCTL). Given a setA of agent names. A full path in
situation structureM is a sequenceχ = δ0, δ1, δ2, . . . such that for everyi ≥ 0, δi is
an element of∆ andδiRδi+1, and ifχ is finite withδn its final situation, then there is
no situationδn+1 in ∆ such thatδnRδn+1. We say that a full path starts atδ iff δ0 = δ.
If χ = δ0, δ1, δ2, . . . is a full path inM , then we denoteδi byχi (i ≥ 0).

LetM be a situation structure,δ a situation,χ a full path anda, b ∈ A two agents.
The semantic relation|= for KBDIOCTL is then defined as follows:

S1 δ |= p iff δ ∈ L(p) andp is a primitive proposition
S2 δ |= α ∧ β iff δ |= α andδ |= β

δ |= ¬α iff δ |= α does not hold
S3 δ |= Eα iff for some full pathχ in M starting atδ, we haveχ |= α

δ |= Aα iff for each full pathχ in M starting atδ, we haveχ |= α
S4 δ |= Ka(α) iff for everyδ′ ∈ ∆ such thatδK(a)δ′, δ′ |= α

δ |= Ba(α) iff for everyδ′ ∈ ∆ such thatδB(a)δ′, δ′ |= α
δ |= Da(α) iff for everyδ′ ∈ ∆ such thatδD(a)δ′, δ′ |= α
δ |= Ia(α) iff for everyδ′ ∈ ∆ such thatδI(a)δ′, δ′ |= α
δ |= Oa,b(α) iff for everyδ′ ∈ ∆ such thatδO(a, b)δ′, δ′ |= α

P χ |= Xα iff χ1 |= α
χ |= αUβ iff there is ani ≥ 0 such thatχi |= β and for all j(0 ≤ j < i), χj |= α

Like Rao and Georgeff, we use standard interpretations of these operators.Oa,b is
interpreted as a standard deontic operator KD [30],B as KD45,K as S5, andD, I as
KD modal logic operators. The properties discussed in this paper characterize the rela-
tion between mental attitudes of a single agent. Properties can always be expressed at
two levels. First, we can express thatall obligations of an agent towards an agent sat-
isfy a property. In that case, the obligations are characterized by this property. Second,
properties may hold for one particular obligation only. In that case we may say that
this particular obligation satisfies the property, but it does not characterize the agent’s
obligations in general. In this paper, we follow the convention that properties expressed
usingα are axioms, and thusα can be substituted by any propositional formula.

However, it is important to notice that all properties expressed relative to a group or
role, such asr(a) → Kaα, can only be expressed as formulas, not as an axiom. The
reason is, roughly, a condition likeg(a) or r(a) should not be substituted by another
proposition. For example, ifr(a) → Kaα is an axiom, then so isq → Kaα. An
alternative way to formalize organizational structure in Rao and Georgeff’s logic is to
index modal operators by groups and roles, and thus write the above property as an
axiomKg(a)α. The reason we made this choice of formalizing organizational structure
in propositions is that the expressive power of the alternative representation is limited.
The loss of relativized axioms is considered to be less severe, as the status of interaction
axioms in this logic is problematic anyway, as discussed in Section 9.

4 Specification of organizational structure

Organizational structure is typically specified in terms of roles and role relations. When
agentx ∈ A plays the rolep ∈ R of passenger, and has not paid before travel started,
then he or she is obliged to pay a fine to the public transport companys. This can be
specified by the following set of formulas, for allx, y ∈ A. Note that sanctions are
modelled as obligations too, and that the violation condition is expressed using the until
operator of CTL.

(p(x) ∧ (¬paidxUtravelx)) → Ox,sfinex

If the public transport companys ∈ A has delegated the power to collect fines to the
ticket controller,c ∈ R, we get(p(x)∧ c(y)∧ (¬paidxUtravelx)) → Ox,yfinex. Such
so-called delegation relations can become complex and are not further discussed in this
paper. See for example, [16, 2].

In general, obligations are created by interaction. For example, in an electronic mar-
ket where agents are buying and selling goods, a confirmation to buy creates a obligation
to pay for the buyer and an obligation of shipping the goods for the seller. Obligations
may also be created by the way a social system is designed. A social system typically
contains stable relationships between roles, which affect the obligations of the agents
in those roles. In particular, obligations can be based on the known or believed mental
attitudes of agents standing in a role relation. For example, the role relationadopts∈ C
between agenta ∈ A and agentb ∈ A can be characterized by the following axiom,
which says that agenta adopts all obligations of agentb towards some other agent
c ∈ A. The following formula schema can be instantiated for all agentsa, b, c ∈ A,
and proposition letterq. Obviously we have an analogous property when we replace
knowledge (K) by belief (B).

(a adoptsb ∧KaOb,cq) → Oa,cq

We can further specify obligation adoption with additional formulas. For example, the
formula schema(r(a) ∧ r(b)) → a adoptsb specifies that agenta adopts the obliga-
tions of agentb when they play the same roler in the organization. In a similar way,
KaDbα → Oa,bα characterizes that agenta adopts the known desires of agentb as its
obligations. Take a client-server system for example. When the servers believes that its
client c desires a piece of information, then we can specify that the servers is obliged
to see to it that clientc gets this information. The following axiom schema character-
izes theslaveof ∈ C or “your wish is my command” role relation, which says that the
desires or intentions of masterm ∈ A become the obligations of slaves ∈ A.

(s slaveof m ∧KsImq) → Os,mq

For example, reconsider the running example and assume that the passenger has not
paid. Now we need a detection mechanism to make sure that the sanction is applied. A
ticket controller has the institutional power to make a passenger without a ticket pay a
fine. However, the controller does not have the power to make any passenger pay a fine.
There must be a pretext. This can be specified as a restricted instance of the master-slave
principle listed above.

(p(x) ∧ c(y) ∧KxKy¬have ticketx ∧KxIyfinex) → Ox,yfinex

For violation detection, we first still have to specify that not having a ticket counts
as evidence of not having paid. How to formalize such constitutive norms is an open
problem in deontic logic, see for example [24, 18, 3]. A very simple specification in our
specification language is(g(x) ∧ ¬Kxhave ticketx) → Kx(¬paidxUtravelx), for all
member agentsx of some suitable groupg ∈ G.

We can further extend the logic with new group related concepts to specify require-
ments on groups of agents. For example, the first axiom schemata forx, y ∈ A charac-
terizes the property that all members of groupg must know each other and they must
be able to have the role relationch that they can communicate with each other. This
is called acquaintance among members of a group. Groups and roles can also be com-
bined. For example, for any organization it is important that agents recognize the roles
that other agents are enacting. In human society, uniforms, location (behind a desk) or
badges are used to this purpose. A groupg ∈ G in which a roler ∈ R of an agent
a ∈ A is known to all agents is calledtransparent.

(g(x) ∧ g(y)) → (Kxg(y) ∧ (x ch y)) (g(a) ∧ g(b) ∧ r(a) → Kbr(a))

Related to transparency of roles is the property of delegation transparency, which states
that agents must know of other agents on behalf of whom they are acting. So if some
agenta delegates a job tob, a’s role as a principal must be known. Verifying delegation
chains is particularly important for legal applications, because the principle remains
legally accountable.

A promising issue in the specification of multiagent organizations is the definition
of a set of patterns for groups, roles and role relations. Patterns have proven to be very
useful in several areas of software engineering. For example, assume that we wish to
define a pattern for the role relationleader∈ C as the property that the agent fulfilling
the role is able to communicate with the group members and vice versa. Also, a group
leader must be able to delegate tasks to the group members and persuade them to have
certain beliefs. In addition, the obligations of members of a group are the obligations
of the group leader (a failure to satisfy an obligation by a group member is a failure to
satisfy the obligation of the group leader), and the members should be committed to the
task delegated to them. The following schemata characterize such a group leader. Let
a, x ∈ A, g ∈ G, leader andcom ∈ C be role relations that represent ‘leader of’ and
‘able to communicate’, respectively.

a leaderx →
Ka(a com x) ∧Kx(x com a) ∧ (ability to communicate)
DaAFIxq → AFIxq ∧ (task delegation)
IaBxq → AXBxq ∧ (persuading members)
Ox,aq → Oa,aq ∧ (obligation inheritance)
IxAFq → A(IxAFq ∪ (Baq ∨ ¬BaEFq))) (committed to delegated tasks)

An interesting question for further research is how standard patterns used in business
modelling or software engineering can be formalized in our specification language. In
this paper we do not consider this question, but we return to our running example.

5 Formalizing the norm of the running example

The public transport norm can be phrased as follows: any agent in the role of passenger
travelling by public transport, should have paid for the trip. We choose to describe this
norm in terms of a so called ‘deadline obligation’: “ifx ∈ A is playing the role of
passengerp ∈ R, thenx is obliged towards societys to see to it that there is no history
in whichx does not pay untilx travels”.

p(x) → Ox,s¬E((¬paidx ∧ ¬travelx)Utravelx)

The concept of deadline obligation is rather complex, as several alternative definitions
can be given [6]. The concept depends on the particular interpretation of the until oper-
ator. The formula states that the obligation applies to any agent in the role of passenger.
However, this formula does not describe behavior. The following formula, without the
obligation, does:

p(x) → ¬E((¬paidx ∧ ¬travelx)Utravelx)

Our definition of deadline obligations is inspired by Rao and Gerogeff’s formalizations
of commitment strategies. The main axioms discussed in temporal extensions of BDI
logic are realism properties and commitment strategies, in particular in BDILTL by Co-
hen and Levesque [9] and in BDICTL by Rao and Georgeff [22, 21].

Realism puts a constraint on desires, with respect to what the agent believes about
the state of the world. Some examples of realism properties areBaα → Daα , for ‘over-
committed realism’ as defined in [9],Daα → ¬Ba¬α for ‘weak realism’ as defined
in [22, 21], andDaEFα → BaEFα for ‘strong realism’.

Commitment strategies are constraints on the process of intention reconsideration:
under what circumstances is it allowed to drop an intention? Examples of commitment
strategies areIaAFα → A(IaAFα UBaα) , for ‘blind commitment’, and the more
interestingIaAFα → A(IaAFα U(Baα ∨ ¬BaEFα)), called ‘single minded com-
mitment’. Whereas realism properties are static, commitment strategies are dynamic in
the sense that they specify the temporal evolution of intentions. In the remainder of this
section we define static and dynamic properties that involve obligations.

Rao and Georgeff’s commitment strategies are examples of interactions of motiva-
tional attitudes and time. Such interactions also occur for desires and obligations. Co-
hen and Levesque [9] distinguish ‘achievement goals’ and ‘maintenance goals’. Their
definition in BDILTL can be adapted to KBDIOCTL as the definition ofOA

a,b below
on the left. Cohen and Levesque do not give a definition for maintenance goals, but
they characterize the difference as follows: “Achievement goals are those the agent be-
lieves to be false; maintenance goals are those the agent already believes to be true”.
This suggests that we can give a formulaOM

a,bα to express a maintenance obligation:
OM

a,bα ≡def Baα∧Oa,bAFα. Alternatively, we could define a maintenance obligation
by the restriction that the goal or obligation should be maintained all the time.

OA
a,bα ≡def Ba¬α ∧Oa,bAFα OM

a,bα ≡def Baα ∧Oa,bAGα

Another issue are the conditions that may discharge an obligation. Obligations typi-
cally persist until a deadline, e.g., deliver the goods before noon, or they persist forever,

e.g., don’t kill. We denote a deadline obligation byOa,b(α, d), where achievement of
the propositiond is the deadline for the obligation to achieveα. A deadline obliga-
tion Oa,b(α, d) persists until it is fulfilled or becomes obsolete because the deadline is
reached.

Oa,b(α, d) ≡def A((Oa,bα)U(α ∨ d))

A deadline obligationOa,b(α, α), for which the only deadline is the achievement
of the obligation itself, is called a ‘dischargeable obligation’. The definition simplifies
to Oa,b(α, α) ≡def A((Oa,bα)Uα). Alternatively, we may characterize the property
that obligations from agenta to agentb are dischargeable by the axiomOa,bα ↔
A((Oa,bα)Uα). Analogously we can also define dischargeable desires. For example,
an agent may desire a receipt until it gets one. However, a drawback of the axiom is
that it is expressed in terms of facts, which are not accessible to agents. We therefore
replace the occurrence ofα without a preceding modal operator byKaα. Moreover,
again we believe that dischargeable obligations and dischargeable desires obey differ-
ent discharging conditions. An obligation can only be discharged by theknowledge
that the obliged condition is fulfilled. A desire can already be discharged by thebelief
that this is the case. Consequently, the property that obligations from agenta towards
agentb are dischargeable, and analogously the property that desires from agenta are
dischargeable, are characterized by the following two axioms, respectively.

Oa,bα ↔ A((Oa,bα)UKaα) Daα ↔ A((Daα)UBaα)

We can characterize thatOa,bα persists forever, i.e., that it is a ‘non-dischargeable obli-
gation’, byOa,bα ↔ AGOa,bα. We can also combine the definitions, such that agents
for instance have non-dischargeable achievement obligations, or dischargeable mainte-
nance obligations.

As we now have specified the norm, we finally specify the four ways to realize
that the norm is fulfilled. First we regiment the norm into the environment, such that
agents cannot violate the norm. Then we define agents which are designed such that
they cannot violate norms. Finally we discuss formalizations that rely on rationality
or social control. In the formalization, we distinguish between assumptions about so-
cieties, ticket policies, individual agents and the environment. These assumptions are
either formalized as formulas or as axioms. The difference is roughly that axioms are
true in any world of the model, and for axioms we can substitute the propositions by
other propositions. The norm itself – the first formula above – can be part of those as-
sumptions. We want to verify whether the second property follows from this.Γins is a
set of formulas representing assumed properties of the institution, in this case the public
transport network,Γr1 , ..., Γrn are sets of formulas that represent the assumed proper-
ties for the various rolesr1, ..., rn in the institution, like passenger or ticket collector,
Γenv is a set of formulas representing the assumed properties of the behavior of the
environment, and∆ represents the property to be shown. As usual we use the weakest
version of modal entailment, i.e.,ϕ |= ψ holds if and only if it is the case that whenϕ
is satisfied in some state of a model, than alsoψ is satisfied.

6 Implementing a norm in the environment

An important question when developing a normative system is whether the norms can
be violated or not, i.e., whether the norms are soft or hard constraints. In the latter case,
the norms are said to be regimented. Regimented norms correspond to preventative
control systems in computer security [15]. For example, in the metro example it is
not possible to travel without a ticket, because there is a preventative control system,
whereas it is possible to travel without a ticket on the French trains, because there
is a detective control system. Norm regimentation for agenta is characterized by the
following axiom.

Oa,bα → α

The following example illustrates the specification of regimentation in the running
example. It also illustrates that regimentation can be specified at different levels of
abstraction. At the detailed level, it is specified precisely how the norm is implemented
in the environment. At a more abstract level, the norm is given as an axiom, and it is
specified that the norm is regimented - but nothow it is regimented.

Example 1(norm enforcement by imposing a restrictive environment).The set of agents
is A = {x, s}, the set of roles isR = {p}, the set of groups and role relations
is G = ch = ∅, and the set of propositions isP = {travelx, have ticketx, paidx,
climbed barrierx, pass barrierx}. The following formulas represent assumptions.
(1) Having a ticket is the evidence for having paid. (2) Passengers cannot climb the
barrier. (3) To travel, a passenger must have passed the barrier. (4) To pass the barrier, a
passenger must have paid, or must have climbed it.

1. Γins = {p(x) → AG((have ticketx → paidx))},
2. Γpassenger = {AG(¬climb barrierx)},
3. C = {¬E(¬pass barrierxUtravelx),
4. AG(pass barrierx ↔ (have ticketx ∨ climb barrierx))}

We now show thatp(x) → ¬E((¬paidx ∧ ¬travelx))Utravelx) follows from the
above set. Suppose no passenger is travelling; then the behavior is trivially satisfied.
Now suppose a passenger is travelling. That means that she passed the barrier (3). That
means she has a ticket, or else she climbed the barrier (4). This last option is ruled out
by assumption (2). So she has a ticket, which means she paid (1).

Instead, we can specify the system at a higher level of abstraction by specifying the
norm and specifying that the norm is regimented.

1. Γins = {p(x) → Ox,s¬E((¬paidx ∧ ¬travelx)Utravelx)},
2. Γpassenger = {Ox,sα → α},
3. Γenv = {}

Note that the first formula is an ordinary assumption, whereas the second formula is an
axiom of the logic. The desired consequencep(x) → ¬E((¬paidx∧¬travelx)Utravelx)
follows directly from the assumptions.

7 Implementing a norm by designing norm abiding agents

A drawback of the regimentation property in the previous section is that it is not ex-
pressed in terms of mental concepts, and thus agents cannot reason about it. Therefore
we strengthen it to the case in which not onlyα is the case, but the agent also knows
that this is the case. The property that the obligations of agenta towards agentb are
regimented is characterized by the following axiom.

Oa,bα → Kaα

Note that since we have the axiomKaα → α, we have thatOa,bα → Kaα implies
Oa,bα → α. This strong property can be weakened in various directions. First, we can
weaken it in the sense that it is not necessarily a fact that the obligation is obeyed,
but that at least the opposite is not the case,Oa,bα → ¬Ka¬α. Second, it can be
weakened such that agentsbelievethat the obligation is not violated:Oa,bα → Baα and
Oa,bα → ¬Ba¬α. Third, the time of compliance to the obligation can be weakened:
Oa,bα → KaAFα, or e.g.,Oa,bα → KaAXα, etc.

At the most abstract level, the formalization of the running example remains nearly
the same, we replace the regimentation axiom by the epistemic variant above. Moreover,
the logic can specify the decision making of agents at more detailed levels. In particular,
the logic can specify when desires or obligations lead to intentions, and when intentions
lead to actions. That is, the regimentation axiomOa,bα → Kaα is decomposed into the
following two axioms.

Oa,bα → Iaα Iaα → Kaα

Furthermore, there are many variants on these two axioms. For example, a variant of
regimentation concerns conditionality with respect to a conflict between an agent’s in-
ternal and external motivations. For example, ‘if an agent is obliged to buy a ticket, but
desires to spend no money, then he intends to buy the ticket anyway, because he is a
‘social’ agent that does not let his own desires overrule his obligations’. The property
that agenta is strongly or weakly respectful with respect to agentb is characterized by
the following two axioms. The second formula is implied by the first one if the D axiom
¬(Iaα ∧ Ia¬α) holds for modalityIa.

(Oa,bα ∧Da¬α) → Iaα (Oa,bα ∧Da¬α) → ¬Ia¬α

Finally, the intention of achieving a state can interact with obligations to satisfy the
conditions for achieving that state. In such a case, new intentions are implied. The in-
teraction between intention and norms and the creation of intentions can be formulated
as the following benevolent axiom:

Ixα ∧Ox,s¬E(¬βUα) → Ixβ

The specification of rational agents is one of the main issues studied in agent theory, and
these results can be reused in KBDIOCTL. However, it is also well known that modal
logic has to be extended in several ways to make detailed agent models. For example,
to specify agents that maximize expected utility BDICTL has to be extended in various
ways [20].

8 Implementing a norm by relying on rationality or social control

The first way in which norms can be implemented, is to rely on agent rationality and
impose fines on norm violations. As mentioned above, the logic can specify when de-
sires or obligations lead to intentions, and when intentions lead to actions. In particular,
in the previous section the regimentation axiomOa,bα → Kaα is decomposed into
Oa,bα → Iaα andIaα → Kaα. In this section, we make sure that the agentdesiresto
fulfill the obligation. That is, the regimentation axiomOa,bα → Kaα is decomposed
into the following three axioms.

Oa,bα → Daα Da,bα → Iaα Iaα → Kaα

We thus interpret the first axiom as the specification that the system is such that it is
desired to fulfill the obligation. However, there are several ways in which the axiom can
be interpreted. The first explanation is that the agent is norm abiding andinternalizesits
obligations in the sense that they turn into desires. For example, if an agent is obliged
to buy a ticket, then it also desires to buy a ticket. The axiom can be weakened to
the condition that at least the agent cannot decide to violate the obligation, e.g., at
least it cannot desire not to buy a ticket:Oa,bα → ¬Da¬α. Instead of respectful,
agents may also be egocentric, which can be characterized by similar properties like
(Oa,bα ∧Da¬α) → Ia¬α and(Oa,bα ∧Da¬α) → ¬Iaα.

The second interpretation ofOa,bα → Daα is that the obligation turns into a desire,
because violating the desire implies a fine. We already discussed fines in Section 4. The
following example is a simplified version, that illustrates how the desire not to be fined
can lead to the desire to fulfill obligations. desires. Note that in this formalization the
derived desire may also be interpreted as a goal, which is often the case in BDICTL

specifications.

Oa,bpaid → Ka(¬paid → fine) (Ka(¬paid → fine) ∧Da¬fine) → Dapaid

The third interpretation ofOa,bα → Daα is that violating the obligation leads to
social embarrassment. This can be specified analogously to fines.

9 Related work

Despite the popularity of Roa and Georgeff’s logic in agent theory to specify and ver-
ify multiagent systems, the logical analysis of their logic is still in its infancy. Rao and
Georgeff did not present a full axiomatization of their logic, which was only presented
much more recently by Schild’s reduction to theµ calculus. Moreover, the axiomatiza-
tion is restricted to the logic without any interaction axioms. In the meantime, logicians
have restricted themselves to small fragments of their logic, for example to study the
interaction between knowledge and time, or to study the interaction between beliefs and
obligations.

Within deontic logic in computer science, our work is most closely related to dy-
namic deontic logic, extensions of dynamic logic with modalities for obligations and

permissions. In multiagent systems, recently norms and normative systems are dis-
cussed, but their specification or verification has has not been addressed. In action pro-
grams in IMPACT, there is a discussion on whether obligations can be violated, i.e.,
on norm regimentation [26]. We have addressed this issue in the context of the BOID
project, see http://boid.info. The present paper extends our short paper [5].

10 Summary

The motivation of our work is how such normative computer systems can be specified.
This problem breaks down as follows:

1. How to develop a logic for specification of normative computer systems?
2. Which kind of properties can be expressed in the specification logic?
3. How to apply the specification logic to application domains?

Our methodology is to specify properties involving obligations in an extension of
Rao and Georgeff’s BDICTL [21, 23, 11, 12]. Such an extension consists of an extension
of the logic and an extension of the properties expressed in the logic. Obligations are
motivational attitudes, just like desires, but they also have organizational aspects. This
can be represented, for example, by introducing roles and by formalizing obligation as
a directed modality. Thus, whereas we may say that agenta desires to prepare a report,
we say that the agenta is obliged to prepare a reporttowards another agentb. We
accomplish our extension of BDICTL with obligations in the following steps:

– The introduction of an extension of BDICTL called KBDIOCTL, that makes the dis-
tinction between desires and obligations explicit, as well as the distinction between
beliefs and knowledge. We extend BDICTL with directed obligations [17, 13, 25, 4,
27] and roles.

– We introduce various single agent and multiagent properties. These properties can
be used in a high-level design language for normative computer systems.

– We apply the logic and the properties to the implementation of an organizational
norm.

References

1. F. Arbab, F.S. de Boer, M.M. Bonsangue, and J.V. Guillen Scholten. A channel-based coor-
dination model for components. Technical Report SEN-R0127, CWI, Amsterdam, 2001.

2. O.L. Bandmann, B. Sadigi Firozabadi, and M. Dam. Constrained delegation. InProcs. of
IEEE Symposium on Security and Privacy 2002, pages 131–140, 2002.

3. G. Boella and L. van der Torre. Regulative and constitutive norms in normative multiagent
systems. InProcs. KR’04, Whistler, CA, 2004.

4. J. Broersen, M. Dastani, Z. Huang, and L. van der Torre. Trust and commitment in dynamic
logic. In Procs. of EurAsia ICT 2002, LNCS 2510, pages 677–684. Springer, 2002.

5. J. Broersen, M. Dastani, and L. van der Torre. BDIOCTL: Properties of obligation in agent
specification languages. InProcs. of IJCAI’03, pages 1389–1390, 2003.

6. J. Broersen, F. Dignum, V. Dignum, and J.-J. Meyer. Designing a deontic logic of deadlines.
In Procs. of DEON’04, LNCS. Springer, 2004. This volume.

7. J. Carmo and O. Pacheco. A role based model for the normative specificatiuon of orga-
nized collective agency and agents interaction.Autonomous Agents and Multi-Agent Sys-
tems, 6:145–184, 2003.

8. C. Castelfranchi. Modelling social actions for AI agents.Artificial Intelligence, 103:157–
182, 1998.

9. P.R. Cohen and H.J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42(3):213–261, 1990.

10. M. Dastani, V. Dignum, and F. Dignum. Role assignment in open agent societies. InProcs.
of AAMAS’03, pages 489–496. ACM, 2003.

11. M. Dastani and L. van der Torre. An extension of BDICTL with functional dependencies
and components. InProcs. of LPAR’02, LNCS 2514, pages 115–129. Springer, 2002.

12. M. Dastani and L. van der Torre. Specifying the merging of desires into goals in the context
of beliefs. InProcs. of EurAsia ICT 2002, LNCS 2510, pages 824–831. Springer, 2002.

13. F. Dignum. Autonomous agents with norms.Artificial Intelligence and Law, 7(1):69–79,
1999.

14. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in
multi-agent systems. InProcs. of ICMAS’98, pages 128–135. IEEE Press, 1998.

15. B. Sadagi Firozabadi and L. van der Torre. Towards an analysis of control systems. InProcs.
of ECAI’98, pages 317–318, 1998.

16. B. Sadigi Firozabadi and M. J. Sergot. Revocation schemes for delegated authorities. In
Procs. of POLICY’02, pages 210–213, 2002.

17. H. Herrestad and C. Krogh. Obligations directed from bearers to counterparties. InProcs of
ICAIL’95, pages 210 – 218, New York, 1995.

18. A. Jones and M. Sergot. A formal characterisation of institutionalised power.Journal of
IGPL, 3:427–443, 1996.

19. J. Meyer and R. Wieringa.Deontic Logic in Computer Science: Normative System Specifi-
cation. John Wiley and Sons, 1993.

20. A. S. Rao and M. P. Georgeff. Deliberation and its role in the formation of intentions. In
Procs. of UAI-91, 1991.

21. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics.Journal of Logic and
Computation, 8(3):293–343, 1998.

22. A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture. In J. Allen,
R. Fikes, and E. Sandewall, editors,Procs. of KR’91, pages 473–484. Morgan Kaufmann
Publishers, 1991.

23. K. Schild. On the relationship between BDI-logics and standard logics of concurrency.Au-
tonomous agents and multi-agent systems, 3:259–283, 2000.

24. J.R. Searle.The Construction of Social Reality. The Free Press, New York, 1995.
25. M. P. Singh. An ontology for commitments in multiagent systems: toward a unification of

normative concepts.Artificial Intelligence and Law, 7:97–113, 1999.
26. G. Pick T. Eiter, V.S. Subrahmanian. Heterogeneous active agents, I: Semantics.Artificial

Intelligence, 108:179–255, 1999.
27. Y. Tan and W. Thoen. Modeling directed obligations and permissions in trade contracts. In

Procs of HICCS’98, pages 166–175, 1998.
28. R. Wieringa and J. Meyer. Applications of deontic logic in computer science: A concise

overview. InDeontic Logic in Computer Science, pages 17–40. John Wiley & Sons, Chich-
ester, England, 1993.

29. M.J. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia methodology for agent-oriented
analysis and design.Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

30. G.H. von Wright. Deontic logic.Mind, 60:1–15, 1951.

