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Abstract. We develop a criterion for coalition formation among 2 From do-ut-des to i-dud coalitions
goal-directed agents, the indecomposable do-ut-des property. The in-
decomposable do-ut-des property refines the do-ut-des property (liPepending on the problem, a multiagent system can be represented
erally give to ge} by considering the fact that agents prefer to form at different levels of abstraction. For example, if you want to study
coalitions whose components cannot be formed independently. Aow agents have to coordinate in order to achieve a goal or how
formal description of this property is provided as well as an analysisagents should optimally use their resources, then a multiagent sys-
of algorithms and their complexity. tem can involve resources, actions, plans [1, 6]. Instead, if you want
to study which coalitions are strategically admissible to be formed,
you usually do not need such fine-grained descriptions of a multia-
1 Introduction gent system, coalitions are directly described by means of the con-
sequences that they can attain collaborating, without any description
about which joint plans agents have to perform [7, 10]. Following this
idea, we describe potential coalitions abstracting from actions, plans
. . ! "Br resources. However, in contrast with these approaches, we do not
dence introduced by Castelfranchi et al. [3]. In this context a Coal"represent a coalition just indicating the set of goals that it can attain.

tion is |_ntended as a group of agents which agree_to cooperate f%e want to use the topology of goal exchanges inside a coalition to
the achievement of a shared goal or to exchange with each other t fine our admissibility criterion

achievement of their own goals. The second case is of particular in- Thus, inspired by Conte and Sichman [4] we represent a (po-

terest as different networks of exchanges can be considered but nfétntial) coalition as a labeled AND-graph of dependencies among

a”V?/f them are trk?at“tzlf?bie. i f lition i ted b agents. A labeled AND-graph consists of a set of nodeswhich
€ assume hat the formation ot a coalition IS Supported by unangq e the agents involved in the coalition - and asef labeled

imous and enforced agreements, i.e. a coalition is effectively forme ND-arcs. Denoting withz/ the goals exchanged in the coalition, a

only when all its members agree to it (unanimousness) and they Caspeled AND-arc connects an agent, to a nonempty set of agents
not deviate from what established in the agreement, once they deci and it is labelled with a goaj € G, so it can be represented as a

to enter it (enforcement). Under these assumptions, we develop a c(:g

In this work we study the formation of coalitions among goal-

riple (ag, . The meaning of such an arc is that the agent
terion of admissibility, the indecomposable do-ut-des property (i-du ple (ag; @ 9) g o

in the followi tablishi hich lti tbe f d esires the goaj and the achievement gfis delegated to the set of
in the following), establishing which coalitions cannot be forme ur"agentsQ. In order to represent a coalition a labeled AND-graph has

detr the ass#mptlontth?tt;hedage?t('js are self-lrtwterzestet? ;hde |-du_g Progy satisfy two further conditions. Since a coalition is intended as the
erty s a retinement of Ine do-ut-des property [, ] WhICh desCribes gasyit of an agreement process, the first condition is that only those
condition of reciprocity: an agegfivesa goal only if this fact enables agents that contribute to the achievement of some goals are admit-

it to obtain, directly or indirectly, the satisfaction of one of its own ted in this process. The second condition establishes that a coalition

goals. The i-dud property refines thg .dO-Ut'deS .property by taklr?%rmation process does not involve private commitments that do not
into account also the fact that a coalition formation process can it-

. ) - __“require any form of collaboration.
self be costly and usually the costs involved in a coalition formation q Y

process increase with the number of agents involved. Furthermorgyefinition 1 A coalition is represented as a labeled AND-graph
being a coalition agreed unanimously, the more agents are involveghich is a tupleC' = (V, ), whereV is a finite set of nodes and
init, the larger is the risk of defections which can jeopardize the for-¢ ¢ ) (2V\ {0}) x Glis a set of labeled AND-arcs.

mation of the coalition. Thus, agents prefer to form coalitions which gajisfies two conditions: (1) for each node, € V, there exists

are as small as possible. _ at least an AND-arqag,, @, g) such thatag; € Q and (2)¢ does
In Section 2 we define the i-dud property and provide some examp gt contain an AND-arc in the fortfug,, {ag,}, g).

ples of this notion. In Section 3, we provide an algorithm to search all

the sub-coalitions of a given coalition which satisfies the i-dud prop-With an abuse of notation we mean wit§, g) € C that there ex-
erty. Even if this problem is not computationally tractable, we showists a(ag;, @, g) € £. Following [8] we call(Q, g) a commitment

in Section 4 that the problem to verify if a single coalition satisfiesof C'. A sub-coalitionC” is intended a subgraph &f where some
the i-dud property is tractable and, in several cases, also the complesommitments are suppressé@), g) ¢ C’, for some(Q, g) € C.

ity of the first problem may decrease considerably. Conclusions end We want to restrict the notion of coalitions assuring, first, reci-

the paper. procity, and, second, that no sub-coalitions of a coalition can be
formed independently. The former property is called do-ut-des [2, 8],
1 Universitx di Torino, Italy, email{guido,saury@di.unito.it and we refine it to match the second requirement called indecompos-

2 University of Luxembourg, Luxembourg, email: leon.vandertorre@uni.lu  ability.



coalitions can be formed independently.
@ @ Concerning Figure 1 (b) denotes the whole coalitiort}; the

[¢] [¢]
g, 9, N N coalition consisting of the nodesy, andag, and the two arcs la-
@ @ @ belled with the goalg, andg.. C> denotes the coalition consisting
g of the nodeszg, and ag; and the remaining arcs labelled with the
[¢] B 9 N

goalsgs andgs. The difference is that in Figure 1 (a) botlg, and
@ @ ag, are indifferent betweei®; and the whole coalition, while in
Figure 1 (b)ag, is not indifferent betwee’; andC since inC' it
a) b) receives the goajs which is not provided irC;.
However,ag, is indifferent betweerC; andC' and ag, is indif-
ferent betweeit’; andC' as they receive and have to obtain the same
Figure 1. Two coalitions that satisfy the do-ut-des property but that do not goals in both F:oalltlons. Thus, if they agreed then they would
satisfy the i-dud property. agree respectively t6; andC>. When agentyg, wants to propose
t0 ag, andag to form coalitions, it has to decide whether to propose
C'to both agents of; andC, separately. It knows that if they agree
The do-ut-des property assures that each chain of exchanges i ¢, then they would also agree respectivelyp and Cs. Agent
volved in a coalition returns something back to each agent invoIve%Z choose<’; or Cs since forming one of them does not affect the
in it. This property has been characterized in [2, 8] by means of &ossibility for ag, to reach an agreement on the other sub-coalition,
qualitative preference relation and a notion of dominance similar tandc, andC, are individually more reliable to succeed with respect
those used in Game Theory, such as the notion of core. Here, insteag, the wholeC - as they involve individually less agents.
we propose a version of the do-ut-des property which is grounded on The j-dud property consists of three conditions. Given a coalition
topological property of chains of exchanges; the equivalence with thex the first condition is the condition (1) of the do-ut-des property.
dominance-based approach is shown in [8]. In [8] a goal is meant agne second condition strengthens the condition (2) of do-ut-des prop-
a state of affairs that, once attained by a group of agents, benefits ORfty by imposing that for each ageny, in C, out*(ag;,) = €.
or, in case, more agents. To simplify our formalism, we consider thatryys, a coalition cannot be decomposed in two subgraphs which are
there do not exist two agents which desire the same goal. disconnected as in Figure 1 (a). Finally, the third condition takes
We introduce some preliminary notions. A finite sequence ofinto account the case shown in Figure 1 (b): there does not exist
AND-arcs P = (ag;,,Q1,91),---,(ag;,,Qn,gn) is @ path if  an agentag, and a bi-partitiond;, O, of out(ag,) - where we as-
forall 2 < h < n, ag;, € Qn-1. Paths formalize possible syme that bi-partitions are composed by nonempty sets - such that
chains of exchangemmong the agents. We denote withit (ag;) the 0 1 03 is empty. The idea underlying this third condition is that if

set of labeled AND-arcs outgoing the agenf;, i.e. out(ag;) = O} 0 O} = 0, then no agentig; # ag, involved in O; would be
{(ag;,@,9)}. Given O C out(ag;), we call O the propaga- interested in one of the goals achieved and vice versa. Saig,
tion of O, i.e. the set of AND-arcs containing all the patRs=  can deal separately with the formation of these two sub-coalitions.

(a‘gil Q1 91)7 BN (aginv Qn, g") such that (110’91‘1 , @1, 91) €O
and P does not contain an arc inut(ag,) \ ©. We notice that  Definition 3 A coalition(V, £) satisfies thé-dud property iff for all
out*(ag,) contains all (and only) the paths starting fram,. the agentsag, € V, (condl) there do not exist two commitments
The do-ut-des property consists of two conditions. The first condi{@, 9), (Q', g) € C such thatQ # Q', (cond2)out” (ag;) = £ and
tion is an efficiency condition: there do not exist two distinct sets of(cond3) there does not exist a bi-partitid® , Oz of out(ag;) such
agents in a coalition which are committed to the achievement of théhat O7 N O3 = {.
same goal. The second condition expresses the notion of reciprocit¥::
given an AND-arc(ag,, @, g) € &, each agentg; involved in Q
agrees to provide the goglo ag,, only in the case this commitment
returns the satisfaction of some of its goals by means of ajpath

onsidering again the coalitions in Figure 1 (a) and (b), as ex-
pected, they both do not satisfy the i-dud property. In Figure 1
(a), the first condition of Definition 3 is not satisfied as, for ex-
ample, out™(ag;) = {(ag;,{ag>},91),(ags,{ag,},92)} C €.
Definition 2 A coalition (V, ) satisfies thedo-ut-desproperty iff ~ In Figure 1 (b), the third condition of Definition 3 is not sat-
(1) there do not exist two commitmer{9, g), (Q’,g) € C such  isfied. Indeed, considering the bi-partition afj, composed by
thatQ # Q' and (2) for all (ag,;, Q,9) € € and forallag; € Q,  O1 = {(ag2,{ag,},92)} and Oz = {(agy, {ags}, 94)}, we have
(ag;, Q. g) € out™(ag;). that O = {(agy,{ag,},92), (ag,{ags},91)} a_md 0 =
{(agy,{ags}, 94), (ags, {ag,}, g3)}. Thus, 07 N O3 is empty.
It can be seen that both the coalitions in Figure 1 (a) and (b) satisfy A labeled AND-graph can represent a potential coalition con-
Definition 2. sisting of all, or a large part of, the opportunities of collaboration
However, the do-ut-des property does not consider the possibilityn a multiagent system. So we would like to establish not only if
that a coalition can be decomposed in smaller sub-coalitions whickhe whole coalition is admissible or not, but also which of its sub-
can be formed independently. Forming smaller coalitions can be prezoalitions are admissible to be formed. Figure 2 (a) shows a quite
ferred by agents because, e.g., involving less agents they reduce tbemplex coalition that does not satisfy the i-dud property. Indeed,
risk of defections, are easier to monitor, less expensive to form byiven the bi-partition ofout(ag,) O1 = {(ag,,{ag,, ags}, 91)}
means of agreements, less trust is required among all the agents, eéedO> = {(ag,, {ag5}, g6)}, it can be verified thaD} N O3 = 0.
The coalitions in Figure 1 (a) and (b) show two cases of this factFigure 2 (b), (c), (d) and (e) show all the sub-coalitions of Figure 2
Consider in Figure 1 (a) the sub-coalitiofis, involving only agents  (a) which satisfy the i-dud property. These coalitions clearly satisfy
ag, andag, and the relative arcs, arfth, involving only agentsig also the do-ut-des property. However, since the do-ut-des property
and ag, and the relative arcs. As the agents involved’inare not  seeks only the reciprocity in a coalition, any composition of coalition
interested in the goals achievedd and vice versa, the two sub- (e) with one of the coalitions (b), (c) and (d) satisfies the do-ut-des



Figure 2. A complex coalition (a) and the sub-coalitions which satisfy the
i-dud property (b), (c), (d) and (e).

property as well.
Given a coalition”, Definition 3 could be usetbut courtin order

to design an algorithm which find all the sub-coalitions satisfyingthen©; N O3 # () against the hypothesis.

the i-dud property ¢ included). However, Definition 3 requires to
verify, for each agentyg, involved in C, a condition on the set of
bi-partitions ofout(ag,). The number of bi-partitions of a set is
equal to the Stirling numbes(n,2) = 2"~! — 1, wheren is the
cardinality of A. Therefore, the problem to verify if just’ satisfies

nected components @ the maximal strongly connected sub-graphs
which contains at least one arc.

Now we consider how to reformulate cond3. Under the assump-
tion thatG[C] is strongly connected, cond3 is closely related to the
notion of biconnectivity for undirected graphs. An undirected graph
G is biconnected if and only if it is connected and for all triples of
distinct nodesug;, ag; andag,, there exists a pathconnectingag
andag, suchthatg, is notinp. In the contrary caseyg, is called an
articulation node [9]. As for strongly connected components of a di-
rected graph, the biconnected components of an undirected Graph
are the maximal biconnected subgraphsafhich contain at least
one arc. It is easy to see that two distinct biconnected components
share at most one node and, if so, this node is an articulation node.

Starting from the directed grap&[C] = (V, E), we define an
undirected grapis[C] = (V, E) as follows:V = V and, forag, #
ag;,{ag;, ag;} € Eifand only if (ag,, ag,) or (ag;, ag;) are inE.

The following theorem shows that the fact that cond3 is not satisfied
is indicated by the presence of an articulation nagle

Theorem 1 LetC = (V, &) be coalition such tha&[C] is strongly
connected, if there exists an agerst, € V and a bipartitionO1, Oz
of out(ag,) such thatO7 NO3 = ), thenag, is an articulation node
of G[C].

proof: Assume that there exists an agent € V and a bipartition
O1, O3 of out(ag,;) such thatd7 N O3 = () and,per absurdumag;
is not an articulation node.

Strong connectivity ofG[C] assures that (assl) there exist two
agents, sayg,; and ag,, such thatag,, ag, and ag, are distinct
and ag, is involved in O7 and ag, is involved in O3, and (ass2)
O7 U O3 = £. Sinceay, is not an articulation node, there exists an
undirected patlp connectingzg, andag, such thatg, is not a node
of p. For (ass2) and condition (1) of Definition 1, each node in the
path is an agent i or O3. Thus, starting fromug, it is possible to
walk throughp until an agentg,, is in O7 and the successaey,, is in
O3. The presence of an undirected arc conneciifgto ag, means
that one of them is involved in set:t of the other one. Without loss
of generality we assume that there exists a set of aggaisd a goal
g suchthaiag, € Q and(ag,, Q, g) € £. This means thatut(ag,,)
is contained in botlO7 and O5. For strong connectivity o&[C],
we also have thaiut™(ag, ) = £ and henceut(ag,,) is not empty,

O

So, if G[C] is biconnected (i.e. it does not have articulation points),
then it satisfies cond3. However, the inverse implication of Theo-
rem 1 does not hold and cond3 can be satisfied ev&jaf] has
an articulation poiniag,. This is due to the fact that the undirected
graph G[C] breaksan AND-arc in several undirected arcs, so the

the i-dud property would increase in complexity exponentially with biconnected components shariag, may not correspond to any bi-
the cardinality ofout(ag,). For this reason we consider an alterna- partition of out(ag,). Figure 3 considers this fact. Figure 3 (b) rep-
tive approach in order to make at least the verification of a singlgesents the undirected graf@{C|] of the coalitionC' in Figure 3

coalition tractable.

(a). There exist two biconnected component&@f], one for each

We reformulate cond2 as a property of strong connectivity of a di-arc, sharingig, as articulation node. However, both afesy, , ag, }

rected graph. We define a direct gra@ifiC'] = (V, E) relative to the
coalitionC' = (V, &) as follows: the set of nod€¥ is equal to the
set) of agents involved i’ and(ag,, ag,) € E if and only if there
exist a goalg and a group of agent9 such that(ag,, Q,g) € &
andag; € Q. It easy to see that ifag;, Q,g) € out™(ag,), then
there exists a path iG[C] from ag, to ag;. So, since each agent

and{ag,, ag;} correspond to the AND-artag,, {ag,, ags}, 1),
thus they have to be considered as a single component because
{(ag,{ags, ag93},91)}" contains both of them. Beingut(ag,)
equal to{(ag;,{ag,, ags}, g1)}, there does not exist a bi-partition
01, O of out(ag, ) such thaly NO; = . Thus,C satisfies cond3.
This property holds in general, when some biconnected compo-

is involved in the achievement of at least a goal, the condition thahents ofG[C] contain some arcs which correspond to the same AND-

out™(ag,;) = £ is equivalent to say thak[C] is strongly connected,
i.e. for each pair of nodesg, andag; there exists a path frorag,
to ag;. Given a generic directed grajgh, we call the strongly con-

arc of C, they are considered as a single component. If this grouping
process ends with a single component consisting of the whole undi-
rected graplG[C], then no bi-partitions obut(ag,) falsify cond3.



9, Algorithm 2: FIND-2-3
g OB o—o—e EGel
Result S, the set of sub-coalitions @ that satisfy cond2 and
cond3.
9, 93

185 «— 0;
a b) 2 SCC —SC-COMPONENT&[C]);
3 switch do
4 caseG|[C] has no strongly connected components
Figure 3. A labeled AND-graph and the corresponding undirected graph. 5 ‘ S0
6 caseG|[C] is not strongly connected, but it has some
strongly connected components
7 forall (V,E)e SCC do
Algorithm 1 : FIND-1-DUD 8 V' —V;
Data: C' = (V, £). ° & —{(ag;,Q,9)€ €| ag; € V. A QE VY
Result I_DUD, the set of sub-coalitions @¥ that satisfy the 10 § = SUFIND-2:3 ((V',£);
i-dud property 11 caseG|[C] is strongly connected
1 I.DUD « 0 12 (BC,A_NODES) +—BC-COMPONENT&[C]);
2 NDC =NO-DUPL-COMMITMENT&); 13 forall (ag,,Q,g)€ € s.t.ag,€ A_NODES do
3 forall C"€ NDC do 14 BC" — {(V',E')€ BC | {ag,, ag,} €
4 L I_DUD «+ I_DUD UFIND-2-3 (C'); E’ with ag; € Q};
15 BC «— [BC \ BC'lu{JBC"};
16 if | BC| = 1then
3 The algorithm for finding coalitions 17 S —A{C};
18 forall (Q,g)€ C do
In this section we design a proceduféND-I-DUD (see Algo- 19 ' —C\{(Q,9)};
rithm 1) which finds all the sub-coalitions of a coalitiGhsatisfying  oq S «— SUFIND-2-3 (C");
the i-dud property @' included). We use the reformulation of cond2 L -
and cond3 in Definition 3 in terms of strong connectivity of directed?! else
graphs and biconnectivity of undirected graphs. By doing so, we als#? forall (V,E)e BC do
decompose our problem as much as possible in well known problerdd & —{(ag;,Q,9)€E | ag; eV AN QC V],
in graph theory. 24 V=V,
The variable I_DUD in line 1 stores the set of sub- 25 | S« SUFIND-2-3 ((V', &),
coalitions of C' which satisfy the i-dud property. In line 2 -
NO-DUPL-COMMITMENTS8hecks in€ the presence of commit- %

ments with the same goal but assigned to different sets of agertg return S;
(condl) and it returns the s&tDC of all combination”” obtained
from C by deleting all the duplicated commitments except one.
This way, the sub-coalitions iVDC are the maximal sub-coalitions
which satisfy condl. Since all their sub-coalitions satisfy this condi-
tion as well, we do not need to check recursively this condition ontion FIND-2-3 is recursively called o', £’) and its output is
them, i.e NO-DUPL-COMMITMENT&an be run only once. added taS.

For each coalition ilvVDC the procedur&IND-2-3 isrun (lines  Case 3:G[C] is strongly connected, therefore, cond2 is satisfied. It
3-4).FIND-2-3 (Algorithm 2) takes as input a coalitiafi - which remains to check cond3 and for complexity reasons we use the char-

satisfies cond1 - and it returns the set of sub-coalitionS'of" in- acterization by means of the biconnected componenG©f (see

cluded, that satisfy cond2 and cond3. As we already have checkeBection 2).

condl, we can add the resultskIND-2-3 to the setl _DUD. In line 12 the set of biconnected compone§’ and the set
The variableS stores the subsets @ that satisfy cond2 and of articulation pointsA_NODES are calculated. In lines 13-15

cond3, in line 1 this variable is initialized to the empty set. FIND-2-3 checks, for each articulation node,, if there exists an

In line 2 SC-COMPONENTEalculates the strongly connected AND-arc (ag,, @, g) such that the other agentsdhare involved in
componentsSCC' of G[C] - algorithms for this procedure are well two, or more, biconnected components, then these biconnected com-
known [5, 9]. Three cases are distinguished. ponents replaced with their union (see Figure 3). In the case we end
Case 1:G[C] has no strongly connected components. Since strongvith a single componentBC| = 1, C satisfies also cond3 and it
connectivity is a necessary condition for the satisfaction of cond2, nds added taS. Then, in lines 18-20, the sub-coalition¥ obtained
sub-coalitions of” satisfy the i-dud property. Thereforg,is empty.  removing a single commitmert), g) from C' are constructed and
Case 2:G[C] is not strongly connected, but there exist some stronglyFIND-2-3 is recursively called on them. |BC| > 1, thenC does
connected components. In this case only the sub-coalitionS of not satisfy cond3. Also all the subs&té of C such thaG[C"] is not
such that the relative directed graphs are subgraphs of a stronglycluded in a component dBC cannot satisfy cond3, therefore for
connected component can satisfy cond2. Therefore, in lines 7-1&ach componen, E) in BC, the maximal subgraph @f included
for each strongly connected component, the maximal labeled ANDin (V, E) is selectedFIND-2-3 is recursively called o’ and the
graph{)’, £, includedin the component, is constructed. The func- output is added t& (lines 22-25). FinallyS is returned, line 27.



4 Complexity of the algorithm

We note that this fact occurs not only once, but every time a sub-

coalition of C does not satisfy the i-dud property. Moreoverifs a

In this section we discuss the complexity BIND-1-DUD . First

of all, we show that the problem of checking if a coalition satis-
fies the i-dud property is tractable. Algorith®ND-1-DUD and
FIND-2-3 can be easily modified to simply check if a given coali-
tion satisfies the i-dud property. First, FIND-I-DUD we replace
the FOR statement with an IF-THEN-ELSE statement which return
false if C' does not satisfy condl, it calsIND-2-3 on C, other-
wise. InFIND-2-3 we replace lines 5,7-10, 22-25 with an instruc-
tion returning false, and lines 17-20 with an instruction returning
true. We denote with the number of agents involved (i and with

! the number of arcs iG[C]. The procedureSC-COMPONENTS
takes a time proportional tb[5]. In the caseG[C] is not strongly
connected(' does not satisfies the i-dud property a@riND-2-3
returns false. In the contrary case, the proce@@€eCOMPONENTS
is called on the undirected graghC.

Also BC-COMPONENTS&an be executed in a time that is pro-
portional to|E| and, sinceE| < [, so far Algorithm 2 has a com-
plexity that is proportional td. We have to consider now the com-
plexity of the cycle corresponding to the lines 13-15. The numbe
of iterations of the cycle 13-15 is less thanThe instruction in line
14 has as upper bound, assuming that, during the execution of

proper AND-graph this phenomenon can be amplified by the fact that
when an AND-arc is removed in line 8, it may disconnect a strongly
connected component &[C].

Returning to the coalitiod in Figure 2 (a), the number of AND-
arcs is 7, sa priori 27 = 128 sub-coalitions should be checked
gy the algorithnFIND-I-DUD . However,C' does not satisfy cond3
and, afterBC results to be greater than 1 in line 16FIND-2-3 ,
FIND-2-3
The first sub-coalition has 4 AND-arcs and the second one has just 3
arcs. So after a single call BIND-2-3 , it remains2* + 23 = 24
sub-coalitions instead of 127. It can be shown that the total number
of sub-coalitions checked is equal to 16, i.e. only the 12,5% of the
number of all sub-coalitions af'.

is called on the sub-coalitions in Figure 2 (d) and (e).

5 Conclusion

In this work we define a criterion of admissibility for coalition for-
mation which is based on the representation of a coalition as a net of
rexchanges [4]: the i-dud property. This property refines the do-ut-des
property [2] by taking into account the fact that two distinct coali-
tions cannot be considered a whole coalition if they can be formed

BC-COMPONENTS data structure is stored associating each aréndependently. This condition arises from the fact that agents prefer

with the biconnected component in which it is included. Since the
sets of arcs of two distinct biconnected components are disjoint, als[ﬁ
the instruction in line 15 can be performed in time proportional to the'
set of distinct biconnected components found in line 12, which has
an upper bound im. Therefore, the cycle 13-15 has an upper bound
in O(1-m). SinceO(! - m) is an upper bound also to check condl, it
is an upper bound for the problem to verify if a coalition satisfies the
i-dud property.

With respect to the original problem to find all the sub-coalitions
of C that satisfy the i-dud property, consider thatsatisfies condl
and it contains only AND-arcs a@g;, {ag,},g)- In this case we
can represent’ as a directed grapk[C], where each ar€u, v)

to form small coalitions because, as coalitions spring from unani-
ously agreements, the more are the agents involved in a coalition
e more is the risk that one of them gives up joining it.

The i-dud property inherits from the do-ut-des property the fact
that it uses only the internal topology of exchanges to check the ad-
missibility of a coalition. Approaches based on Cooperative Game
Theory, as [7, 10], abstract from this internal structure, and hence
they need to compare a coalition with the other possible coalitions in
order to establish its admissibility. This way, also the problem to see
if a coalition is admissible, applying for example the notion of core,
in intractable.

univocally corresponds to a goal. We show that a single run o REFERENCES

FIND-2-3 is not computationally tractablé&:IND-2-3 finds all 1]
the sub-coalitions of a coalitio[C] that satisfy cond2 and cond3.
This requires to find in particular all the subgraphs®fC] that [2]

are the strongly connected subgraphs and such that the relative
undirected graphG[C], is biconnected. Since an hamiltonian cy-
cle in G[C] - if any exists - satisfies the previous two conditions, 3]
FIND-2-3 has to find a set of subgraphs which contains all the
hamiltonian cycles ofz[C]. Thus, this problem is exponential with
respect to the number of arésln contrast, since checking if a sub-
graph ofG[C] is an hamiltonian cycle is linear with the cardinality of
the noded/, also the problem of finding an hamiltonian cycle would 5]
be polynomial with respect to number of arcs.

In the case a coalitiol” can be represented by the correspond- [6]
ing directed graphG[C], the set of subgraphs to check is equal to
2!. However, if C' does not satisfy the i-dud property, then, either 7]
G|[C] is not strongly connected @&[C] has more than one compo-
nent as calculated in the lines 12-15. In both cas¢D-2-3 is
called directly on the subgraphs calculated respectively in lines 8-9[€]
and 23-24. So, if there are of these subgraphs, each of them with [9]
l; arcs, we have that the number of the graph which remain to be
verified is2 + ... 4 2% instead of (approximately from below) [10]
2hi++he 1. In the worst cas& [C] is not strongly connected and
it has one strongly component with 1 arcs. In this casg2'~! graphs
remain to be verified instead of — 1.
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