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Abstract. We develop a criterion for coalition formation among
goal-directed agents, the indecomposable do-ut-des property. The in-
decomposable do-ut-des property refines the do-ut-des property (lit-
erally give to get) by considering the fact that agents prefer to form
coalitions whose components cannot be formed independently. A
formal description of this property is provided as well as an analysis
of algorithms and their complexity.

1 Introduction

In this work we study the formation of coalitions among goal-
directed agents. We start from a theory of social power and depen-
dence introduced by Castelfranchi et al. [3]. In this context a coali-
tion is intended as a group of agents which agree to cooperate for
the achievement of a shared goal or to exchange with each other the
achievement of their own goals. The second case is of particular in-
terest as different networks of exchanges can be considered but not
all of them are realizable.

We assume that the formation of a coalition is supported by unan-
imous and enforced agreements, i.e. a coalition is effectively formed
only when all its members agree to it (unanimousness) and they can-
not deviate from what established in the agreement, once they decide
to enter it (enforcement). Under these assumptions, we develop a cri-
terion of admissibility, the indecomposable do-ut-des property (i-dud
in the following), establishing which coalitions cannot be formed un-
der the assumption that the agents are self-interested. The i-dud prop-
erty is a refinement of the do-ut-des property [2] which describes a
condition of reciprocity: an agentgivesa goal only if this fact enables
it to obtain, directly or indirectly, the satisfaction of one of its own
goals. The i-dud property refines the do-ut-des property by taking
into account also the fact that a coalition formation process can it-
self be costly and usually the costs involved in a coalition formation
process increase with the number of agents involved. Furthermore,
being a coalition agreed unanimously, the more agents are involved
in it, the larger is the risk of defections which can jeopardize the for-
mation of the coalition. Thus, agents prefer to form coalitions which
are as small as possible.

In Section 2 we define the i-dud property and provide some exam-
ples of this notion. In Section 3, we provide an algorithm to search all
the sub-coalitions of a given coalition which satisfies the i-dud prop-
erty. Even if this problem is not computationally tractable, we show
in Section 4 that the problem to verify if a single coalition satisfies
the i-dud property is tractable and, in several cases, also the complex-
ity of the first problem may decrease considerably. Conclusions end
the paper.

1 Universit̀a di Torino, Italy, email:{guido,sauro}@di.unito.it
2 University of Luxembourg, Luxembourg, email: leon.vandertorre@uni.lu

2 From do-ut-des to i-dud coalitions

Depending on the problem, a multiagent system can be represented
at different levels of abstraction. For example, if you want to study
how agents have to coordinate in order to achieve a goal or how
agents should optimally use their resources, then a multiagent sys-
tem can involve resources, actions, plans [1, 6]. Instead, if you want
to study which coalitions are strategically admissible to be formed,
you usually do not need such fine-grained descriptions of a multia-
gent system, coalitions are directly described by means of the con-
sequences that they can attain collaborating, without any description
about which joint plans agents have to perform [7, 10]. Following this
idea, we describe potential coalitions abstracting from actions, plans
or resources. However, in contrast with these approaches, we do not
represent a coalition just indicating the set of goals that it can attain.
We want to use the topology of goal exchanges inside a coalition to
define our admissibility criterion.

Thus, inspired by Conte and Sichman [4] we represent a (po-
tential) coalition as a labeled AND-graph of dependencies among
agents. A labeled AND-graph consists of a set of nodesV - which
denotes the agents involved in the coalition - and a setE of labeled
AND-arcs. Denoting withGl the goals exchanged in the coalition, a
labeled AND-arc connects an agentag i to a nonempty set of agents
Q and it is labelled with a goalg∈ Gl , so it can be represented as a
triple (ag i, Q, g). The meaning of such an arc is that the agentagi

desires the goalg and the achievement ofg is delegated to the set of
agentsQ. In order to represent a coalition a labeled AND-graph has
to satisfy two further conditions. Since a coalition is intended as the
result of an agreement process, the first condition is that only those
agents that contribute to the achievement of some goals are admit-
ted in this process. The second condition establishes that a coalition
formation process does not involve private commitments that do not
require any form of collaboration.

Definition 1 A coalition is represented as a labeled AND-graph
which is a tupleC = 〈V, E〉, whereV is a finite set of nodes and
E ⊆ V × (2V \ {∅})×Gl is a set of labeled AND-arcs.

C satisfies two conditions: (1) for each nodeagj ∈ V , there exists
at least an AND-arc(agi, Q, g) such thatagj ∈ Q and (2)E does
not contain an AND-arc in the form(ag i, {agi}, g).

With an abuse of notation we mean with(Q, g) ∈ C that there ex-
ists a(agi, Q, g) ∈ E . Following [8] we call(Q, g) a commitment
of C. A sub-coalitionC′ is intended a subgraph ofC where some
commitments are suppressed,(Q, g) 6∈ C′, for some(Q, g)∈ C.

We want to restrict the notion of coalitions assuring, first, reci-
procity, and, second, that no sub-coalitions of a coalition can be
formed independently. The former property is called do-ut-des [2, 8],
and we refine it to match the second requirement called indecompos-
ability.
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Figure 1. Two coalitions that satisfy the do-ut-des property but that do not
satisfy the i-dud property.

The do-ut-des property assures that each chain of exchanges in-
volved in a coalition returns something back to each agent involved
in it. This property has been characterized in [2, 8] by means of a
qualitative preference relation and a notion of dominance similar to
those used in Game Theory, such as the notion of core. Here, instead,
we propose a version of the do-ut-des property which is grounded on
topological property of chains of exchanges; the equivalence with the
dominance-based approach is shown in [8]. In [8] a goal is meant as
a state of affairs that, once attained by a group of agents, benefits one
or, in case, more agents. To simplify our formalism, we consider that
there do not exist two agents which desire the same goal.

We introduce some preliminary notions. A finite sequence of
AND-arcs P = (agi1

, Q1, g1), . . . , (agin
, Qn, gn) is a path if

for all 2 ≤ h ≤ n, ag ih
∈ Qh−1. Paths formalize possible

chains of exchangesamong the agents. We denote without(agi) the
set of labeled AND-arcs outgoing the agentag i, i.e. out(agi) =
{(agj , Q, g)}. Given O ⊆ out(agi), we call O∗ the propaga-
tion of O, i.e. the set of AND-arcs containing all the pathsP =
(ag i1

, Q1, g1), . . . , (ag in
, Qn, gn) such that (1)(ag i1

, Q1, g1)∈ O
andP does not contain an arc inout(ag i) \ O. We notice that
out∗(agi) contains all (and only) the paths starting fromagi.

The do-ut-des property consists of two conditions. The first condi-
tion is an efficiency condition: there do not exist two distinct sets of
agents in a coalition which are committed to the achievement of the
same goal. The second condition expresses the notion of reciprocity:
given an AND-arc(agi, Q, g) ∈ E , each agentagj involved in Q
agrees to provide the goalg to agi, only in the case this commitment
returns the satisfaction of some of its goals by means of a pathP.

Definition 2 A coalition 〈V, E〉 satisfies thedo-ut-desproperty iff
(1) there do not exist two commitments(Q, g), (Q′, g) ∈ C such
that Q 6= Q′ and (2) for all (ag i, Q, g) ∈ E and for all agj ∈ Q,
(ag i, Q, g)∈ out∗(agj).

It can be seen that both the coalitions in Figure 1 (a) and (b) satisfy
Definition 2.

However, the do-ut-des property does not consider the possibility
that a coalition can be decomposed in smaller sub-coalitions which
can be formed independently. Forming smaller coalitions can be pre-
ferred by agents because, e.g., involving less agents they reduce the
risk of defections, are easier to monitor, less expensive to form by
means of agreements, less trust is required among all the agents, etc.
The coalitions in Figure 1 (a) and (b) show two cases of this fact.
Consider in Figure 1 (a) the sub-coalitionsC1, involving only agents
ag1 andag2 and the relative arcs, andC2, involving only agentsag3

andag4 and the relative arcs. As the agents involved inC1 are not
interested in the goals achieved inC2 and vice versa, the two sub-

coalitions can be formed independently.
Concerning Figure 1 (b),C denotes the whole coalition,C1 the

coalition consisting of the nodesag1 andag2 and the two arcs la-
belled with the goalsg1 andg2. C2 denotes the coalition consisting
of the nodesag2 andag3 and the remaining arcs labelled with the
goalsg3 andg4. The difference is that in Figure 1 (a) bothag1 and
ag2 are indifferent betweenC1 and the whole coalition, while in
Figure 1 (b)ag2 is not indifferent betweenC1 andC since inC it
receives the goalg4 which is not provided inC1.

However,ag1 is indifferent betweenC1 andC andag3 is indif-
ferent betweenC2 andC as they receive and have to obtain the same
goals in both coalitions. Thus, if they agree toC, then they would
agree respectively toC1 andC2. When agentag2 wants to propose
toag1 andag3 to form coalitions, it has to decide whether to propose
C to both agents orC1 andC2 separately. It knows that if they agree
to C, then they would also agree respectively toC1 andC2. Agent
ag2 choosesC1 or C2 since forming one of them does not affect the
possibility forag2 to reach an agreement on the other sub-coalition,
andC1 andC2 are individually more reliable to succeed with respect
to the wholeC - as they involve individually less agents.

The i-dud property consists of three conditions. Given a coalition
C, the first condition is the condition (1) of the do-ut-des property.
The second condition strengthens the condition (2) of do-ut-des prop-
erty by imposing that for each agentagi in C, out∗(ag i) = E .
Thus, a coalition cannot be decomposed in two subgraphs which are
disconnected as in Figure 1 (a). Finally, the third condition takes
into account the case shown in Figure 1 (b): there does not exist
an agentag i and a bi-partitionO1,O2 of out(agi) - where we as-
sume that bi-partitions are composed by nonempty sets - such that
O∗1 ∩ O∗2 is empty. The idea underlying this third condition is that if
O∗1 ∩ O∗2 = ∅, then no agentagj 6= ag i involved inO∗1 would be
interested in one of the goals achieved inO∗2 and vice versa. So,agi

can deal separately with the formation of these two sub-coalitions.

Definition 3 A coalition〈V, E〉 satisfies thei-dudproperty iff for all
the agentsagi ∈ V , (cond1) there do not exist two commitments
(Q, g), (Q′, g)∈ C such thatQ 6= Q′, (cond2)out∗(agi) = E and
(cond3) there does not exist a bi-partitionO1,O2 of out(ag i) such
thatO∗1 ∩ O∗2 = ∅.
Considering again the coalitions in Figure 1 (a) and (b), as ex-
pected, they both do not satisfy the i-dud property. In Figure 1
(a), the first condition of Definition 3 is not satisfied as, for ex-
ample,out∗(ag1) = {(ag1, {ag2}, g1), (ag2, {ag1}, g2)} ⊂ E .
In Figure 1 (b), the third condition of Definition 3 is not sat-
isfied. Indeed, considering the bi-partition ofag2 composed by
O1 = {(ag2, {ag1}, g2)} andO2 = {(ag2, {ag3}, g4)}, we have
that O∗1 = {(ag2, {ag1}, g2), (ag1, {ag2}, g1)} and O∗2 =
{(ag2, {ag3}, g4), (ag3, {ag2}, g3)}. Thus,O∗1 ∩ O∗2 is empty.

A labeled AND-graph can represent a potential coalition con-
sisting of all, or a large part of, the opportunities of collaboration
in a multiagent system. So we would like to establish not only if
the whole coalition is admissible or not, but also which of its sub-
coalitions are admissible to be formed. Figure 2 (a) shows a quite
complex coalition that does not satisfy the i-dud property. Indeed,
given the bi-partition ofout(ag1) O1 = {(ag1, {ag4, ag5}, g1)}
andO2 = {(ag1, {ag3}, g6)}, it can be verified thatO∗1 ∩ O∗2 = ∅.
Figure 2 (b), (c), (d) and (e) show all the sub-coalitions of Figure 2
(a) which satisfy the i-dud property. These coalitions clearly satisfy
also the do-ut-des property. However, since the do-ut-des property
seeks only the reciprocity in a coalition, any composition of coalition
(e) with one of the coalitions (b), (c) and (d) satisfies the do-ut-des
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Figure 2. A complex coalition (a) and the sub-coalitions which satisfy the
i-dud property (b), (c), (d) and (e).

property as well.
Given a coalitionC, Definition 3 could be usedtout courtin order

to design an algorithm which find all the sub-coalitions satisfying
the i-dud property (C included). However, Definition 3 requires to
verify, for each agentagi involved in C, a condition on the set of
bi-partitions ofout(ag i). The number of bi-partitions of a setA is
equal to the Stirling numberS(n, 2) = 2n−1 − 1, wheren is the
cardinality ofA. Therefore, the problem to verify if justC satisfies
the i-dud property would increase in complexity exponentially with
the cardinality ofout(ag i). For this reason we consider an alterna-
tive approach in order to make at least the verification of a single
coalition tractable.

We reformulate cond2 as a property of strong connectivity of a di-
rected graph. We define a direct graphG[C] = 〈V,E〉 relative to the
coalitionC = 〈V, E〉 as follows: the set of nodesV is equal to the
setV of agents involved inC and(ag i, agj)∈ E if and only if there
exist a goalg and a group of agentsQ such that(agi, Q, g) ∈ E
andagj ∈ Q. It easy to see that if(agj , Q, g) ∈ out∗(agi), then
there exists a path inG[C] from agi to agj . So, since each agent
is involved in the achievement of at least a goal, the condition that
out∗(agi) = E is equivalent to say thatG[C] is strongly connected,
i.e. for each pair of nodesagi andagj there exists a path fromagi

to agj . Given a generic directed graphG, we call the strongly con-

nected components ofG the maximal strongly connected sub-graphs
which contains at least one arc.

Now we consider how to reformulate cond3. Under the assump-
tion thatG[C] is strongly connected, cond3 is closely related to the
notion of biconnectivity for undirected graphs. An undirected graph
G is biconnected if and only if it is connected and for all triples of
distinct nodesag i, agj andagk, there exists a pathp connectingagj

andagk such thatagi is not inp. In the contrary case,agi is called an
articulation node [9]. As for strongly connected components of a di-
rected graph, the biconnected components of an undirected graphG
are the maximal biconnected subgraphs ofG which contain at least
one arc. It is easy to see that two distinct biconnected components
share at most one node and, if so, this node is an articulation node.

Starting from the directed graphG[C] = 〈V,E〉, we define an
undirected graphG[C] = 〈V, E〉 as follows:V = V and, forag i 6=
agj , {ag i, agj}∈ E if and only if (ag i, agj) or (agj , agi) are inE.
The following theorem shows that the fact that cond3 is not satisfied
is indicated by the presence of an articulation nodeagi.

Theorem 1 LetC = 〈V, E〉 be coalition such thatG[C] is strongly
connected, if there exists an agentag i∈ V and a bipartitionO1,O2

of out(ag i) such thatO∗1 ∩O∗2 = ∅, thenag i is an articulation node
of G[C].

proof: Assume that there exists an agentagi ∈ V and a bipartition
O1,O2 of out(agi) such thatO∗1 ∩O∗2 = ∅ and,per absurdum, agi

is not an articulation node.
Strong connectivity ofG[C] assures that (ass1) there exist two

agents, sayag1 and ag2, such thatag i, ag1 and ag2 are distinct
andag1 is involved inO∗1 andag2 is involved inO∗2 , and (ass2)
O∗1 ∪ O∗2 = E . Sinceagi is not an articulation node, there exists an
undirected pathp connectingag1 andag2 such thatagi is not a node
of p. For (ass2) and condition (1) of Definition 1, each node in the
path is an agent inO∗1 orO∗2 . Thus, starting fromag1 it is possible to
walk throughp until an agentagh is inO∗1 and the successoragk is in
O∗2 . The presence of an undirected arc connectingagh to agk means
that one of them is involved in setout of the other one. Without loss
of generality we assume that there exists a set of agentsQ and a goal
g such thatagh∈ Q and(agk, Q, g)∈ E . This means thatout(agh)
is contained in bothO∗1 andO∗2 . For strong connectivity ofG[C],
we also have thatout∗(agh) = E and henceout(agh) is not empty,
thenO∗1 ∩ O∗2 6= ∅ against the hypothesis. 2

So, ifG[C] is biconnected (i.e. it does not have articulation points),
then it satisfies cond3. However, the inverse implication of Theo-
rem 1 does not hold and cond3 can be satisfied even ifG[C] has
an articulation pointagi. This is due to the fact that the undirected
graphG[C] breaksan AND-arc in several undirected arcs, so the
biconnected components sharingag i may not correspond to any bi-
partition ofout(ag i). Figure 3 considers this fact. Figure 3 (b) rep-
resents the undirected graphG[C] of the coalitionC in Figure 3
(a). There exist two biconnected components ofG[C], one for each
arc, sharingag1 as articulation node. However, both arcs{ag1, ag2}
and{ag1, ag3} correspond to the AND-arc(ag1, {ag2, ag3}, g1),
thus they have to be considered as a single component because
{(ag1, {ag2, ag3}, g1)}∗ contains both of them. Beingout(ag1)
equal to{(ag1, {ag2, ag3}, g1)}, there does not exist a bi-partition
O1,O2 of out(ag1) such thatO∗1∩O∗2 = ∅. Thus,C satisfies cond3.

This property holds in general, when some biconnected compo-
nents ofG[C] contain some arcs which correspond to the same AND-
arc ofC, they are considered as a single component. If this grouping
process ends with a single component consisting of the whole undi-
rected graphG[C], then no bi-partitions ofout(ag1) falsify cond3.
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Figure 3. A labeled AND-graph and the corresponding undirected graph.

Algorithm 1 : FIND-I-DUD

Data: C = 〈V, E〉.
Result: I DUD , the set of sub-coalitions ofC that satisfy the

i-dud property
I DUD ← ∅;1

NDC =NO-DUPL-COMMITMENTS(C);2

forall C′∈ NDC do3

I DUD ← I DUD ∪FIND-2-3 (C′);4

3 The algorithm for finding coalitions

In this section we design a procedureFIND-I-DUD (see Algo-
rithm 1) which finds all the sub-coalitions of a coalitionC satisfying
the i-dud property (C included). We use the reformulation of cond2
and cond3 in Definition 3 in terms of strong connectivity of directed
graphs and biconnectivity of undirected graphs. By doing so, we also
decompose our problem as much as possible in well known problems
in graph theory.

The variable I DUD in line 1 stores the set of sub-
coalitions of C which satisfy the i-dud property. In line 2
NO-DUPL-COMMITMENTSchecks inE the presence of commit-
ments with the same goal but assigned to different sets of agents
(cond1) and it returns the setNDC of all combinationsC′ obtained
from C by deleting all the duplicated commitments except one.
This way, the sub-coalitions inNDC are the maximal sub-coalitions
which satisfy cond1. Since all their sub-coalitions satisfy this condi-
tion as well, we do not need to check recursively this condition on
them, i.e.NO-DUPL-COMMITMENTScan be run only once.

For each coalition inNDC the procedureFIND-2-3 is run (lines
3-4).FIND-2-3 (Algorithm 2) takes as input a coalitionC - which
satisfies cond1 - and it returns the set of sub-coalitions ofC, C in-
cluded, that satisfy cond2 and cond3. As we already have checked
cond1, we can add the results ofFIND-2-3 to the setI DUD .

The variableS stores the subsets ofC that satisfy cond2 and
cond3, in line 1 this variable is initialized to the empty set.

In line 2 SC-COMPONENTScalculates the strongly connected
componentsSCC of G[C] - algorithms for this procedure are well
known [5, 9]. Three cases are distinguished.
Case 1:G[C] has no strongly connected components. Since strong
connectivity is a necessary condition for the satisfaction of cond2, no
sub-coalitions ofC satisfy the i-dud property. Therefore,S is empty.
Case 2:G[C] is not strongly connected, but there exist some strongly
connected components. In this case only the sub-coalitions ofC
such that the relative directed graphs are subgraphs of a strongly
connected component can satisfy cond2. Therefore, in lines 7-10,
for each strongly connected component, the maximal labeled AND-
graph〈V ′, E ′〉, includedin the component, is constructed. The func-

Algorithm 2 : FIND-2-3

Data: C = 〈V, E〉.
Result: S , the set of sub-coalitions ofC that satisfy cond2 and

cond3.
S ← ∅;1

SCC ←SC-COMPONENTS(G[C]);2

switch do3

caseG[C] has no strongly connected components4

S ← ∅;5

caseG[C] is not strongly connected, but it has some6

strongly connected components
forall 〈V,E〉∈ SCC do7

V ′ ← V;8

E ′ ← {(ag i, Q, g)∈ E | agi∈ V ∧ Q⊆ V};9

S ← S ∪ FIND-2-3 (〈V ′, E ′〉);10

caseG[C] is strongly connected11

(BC ,A NODES )←BC-COMPONENTS(G[C]);12

forall (ag i, Q, g)∈ E s.t.ag i∈ A NODES do13

BC ′ ← {〈V′, E′〉∈ BC | {agi, agj}∈14

E′ with agj ∈ Q};
BC ← [BC \ BC ′] ∪ {S BC ′};15

if |BC | = 1 then16

S ← {C};17

forall (Q, g)∈ C do18

C′ ← C \ {(Q, g)};19

S ← S ∪ FIND-2-3 (C′);20

else21

forall 〈V, E〉∈ BC do22

E ′ ← {(ag i, Q, g)∈ E | ag i∈ V ∧ Q⊆ V};23

V ′ ← V;24

S ← S ∪ FIND-2-3 (〈V ′, E ′〉);25

26

return S ;27

tion FIND-2-3 is recursively called on〈V ′, E ′〉 and its output is
added toS .
Case 3:G[C] is strongly connected, therefore, cond2 is satisfied. It
remains to check cond3 and for complexity reasons we use the char-
acterization by means of the biconnected components ofG[C] (see
Section 2).

In line 12 the set of biconnected componentsBC and the set
of articulation pointsA NODES are calculated. In lines 13-15
FIND-2-3 checks, for each articulation nodeagi, if there exists an
AND-arc (ag i, Q, g) such that the other agents inQ are involved in
two, or more, biconnected components, then these biconnected com-
ponents replaced with their union (see Figure 3). In the case we end
with a single component,|BC | = 1, C satisfies also cond3 and it
is added toS . Then, in lines 18-20, the sub-coalitionsC′ obtained
removing a single commitment(Q, g) from C are constructed and
FIND-2-3 is recursively called on them. If|BC | > 1, thenC does
not satisfy cond3. Also all the subsetsC′ of C such thatG[C′] is not
included in a component ofBC cannot satisfy cond3, therefore for
each component〈V, E〉 in BC , the maximal subgraph ofC included
in 〈V, E〉 is selected.FIND-2-3 is recursively called onC′ and the
output is added toS (lines 22-25). Finally,S is returned, line 27.



4 Complexity of the algorithm

In this section we discuss the complexity ofFIND-I-DUD . First
of all, we show that the problem of checking if a coalition satis-
fies the i-dud property is tractable. AlgorithmsFIND-I-DUD and
FIND-2-3 can be easily modified to simply check if a given coali-
tion satisfies the i-dud property. First, inFIND-I-DUD we replace
the FOR statement with an IF-THEN-ELSE statement which returns
false if C does not satisfy cond1, it callsFIND-2-3 on C, other-
wise. InFIND-2-3 we replace lines 5,7-10, 22-25 with an instruc-
tion returning false, and lines 17-20 with an instruction returning
true. We denote withm the number of agents involved inC and with
l the number of arcs inG[C]. The procedureSC-COMPONENTS
takes a time proportional tol [5]. In the caseG[C] is not strongly
connected,C does not satisfies the i-dud property andFIND-2-3
returns false. In the contrary case, the procedureBC-COMPONENTS
is called on the undirected graphG[C].

Also BC-COMPONENTScan be executed in a time that is pro-
portional to|E| and, since|E| ≤ l, so far Algorithm 2 has a com-
plexity that is proportional tol. We have to consider now the com-
plexity of the cycle corresponding to the lines 13-15. The number
of iterations of the cycle 13-15 is less thanl. The instruction in line
14 has as upper boundm, assuming that, during the execution of
BC-COMPONENTS, a data structure is stored associating each arc
with the biconnected component in which it is included. Since the
sets of arcs of two distinct biconnected components are disjoint, also
the instruction in line 15 can be performed in time proportional to the
set of distinct biconnected components found in line 12, which has
an upper bound inm. Therefore, the cycle 13-15 has an upper bound
in O(l ·m). SinceO(l ·m) is an upper bound also to check cond1, it
is an upper bound for the problem to verify if a coalition satisfies the
i-dud property.

With respect to the original problem to find all the sub-coalitions
of C that satisfy the i-dud property, consider thatC satisfies cond1
and it contains only AND-arcs as(ag i, {agj}, g). In this case we
can representC as a directed graphG[C], where each arc(u, v)
univocally corresponds to a goal. We show that a single run of
FIND-2-3 is not computationally tractable.FIND-2-3 finds all
the sub-coalitions of a coalitionG[C] that satisfy cond2 and cond3.
This requires to find in particular all the subgraphs ofG[C] that
are the strongly connected subgraphs and such that the relative
undirected graph,G[C], is biconnected. Since an hamiltonian cy-
cle in G[C] - if any exists - satisfies the previous two conditions,
FIND-2-3 has to find a set of subgraphs which contains all the
hamiltonian cycles ofG[C]. Thus, this problem is exponential with
respect to the number of arcsl. In contrast, since checking if a sub-
graph ofG[C] is an hamiltonian cycle is linear with the cardinality of
the nodesV , also the problem of finding an hamiltonian cycle would
be polynomial with respect to number of arcs.

In the case a coalitionC can be represented by the correspond-
ing directed graphG[C], the set of subgraphs to check is equal to
2l. However, if C does not satisfy the i-dud property, then, either
G[C] is not strongly connected orG[C] has more than one compo-
nent as calculated in the lines 12-15. In both casesFIND-2-3 is
called directly on the subgraphs calculated respectively in lines 8-9
and 23-24. So, if there arek of these subgraphs, each of them with
li arcs, we have that the number of the graph which remain to be
verified is2l1 + · · · + 2lk instead of (approximately from below)
2l1+···+lk − 1. In the worst caseG[C] is not strongly connected and
it has one strongly component withl−1 arcs. In this case2l−1 graphs
remain to be verified instead of2l − 1.

We note that this fact occurs not only once, but every time a sub-
coalition ofC does not satisfy the i-dud property. Moreover, ifC is a
proper AND-graph this phenomenon can be amplified by the fact that
when an AND-arc is removed in line 8, it may disconnect a strongly
connected component ofG[C].

Returning to the coalitionC in Figure 2 (a), the number of AND-
arcs is 7, soa priori 27 = 128 sub-coalitions should be checked
by the algorithmFIND-I-DUD . However,C does not satisfy cond3
and, afterBC results to be greater than 1 in line 16 ofFIND-2-3 ,
FIND-2-3 is called on the sub-coalitions in Figure 2 (d) and (e).
The first sub-coalition has 4 AND-arcs and the second one has just 3
arcs. So after a single call ofFIND-2-3 , it remains24 + 23 = 24
sub-coalitions instead of 127. It can be shown that the total number
of sub-coalitions checked is equal to 16, i.e. only the 12,5% of the
number of all sub-coalitions ofC.

5 Conclusion

In this work we define a criterion of admissibility for coalition for-
mation which is based on the representation of a coalition as a net of
exchanges [4]: the i-dud property. This property refines the do-ut-des
property [2] by taking into account the fact that two distinct coali-
tions cannot be considered a whole coalition if they can be formed
independently. This condition arises from the fact that agents prefer
to form small coalitions because, as coalitions spring from unani-
mously agreements, the more are the agents involved in a coalition
the more is the risk that one of them gives up joining it.

The i-dud property inherits from the do-ut-des property the fact
that it uses only the internal topology of exchanges to check the ad-
missibility of a coalition. Approaches based on Cooperative Game
Theory, as [7, 10], abstract from this internal structure, and hence
they need to compare a coalition with the other possible coalitions in
order to establish its admissibility. This way, also the problem to see
if a coalition is admissible, applying for example the notion of core,
in intractable.
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