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Abstract

There are many conceptualizations and formalizations of decision making. In
this paper we compare classical decision theory with qualitative decision theory,
knowledge-based systems and belief-desire-intention models developed in artificial
intelligence and agent theory. They all contain representations of information and
motivation. Examples of informational attitudes are probability distributions, quali-
tative abstractions of probabilities, knowledge, and beliefs. Examples of motivational
attitudes are utility functions, qualitative abstractions of utilities, goals, and desires.
Each of them encodes a set of alternatives to be chosen from. This ranges from
a small predetermined set, a set of decision variables, through logical formulas, to
branches of a tree representing events through time. Moreover, they have a way of
formulating how a decision is made. Classical and qualitative decision theory focus
on the optimal decisions represented by a decision rule. Knowledge-based systems
and belief-desire-intention models focus on a model of the representations used in
decision making, inspired by cognitive notions like belief, desire, goal and intention.
Relations among these concepts express an agent type, which constrains the delibera-
tion process. We also consider the relation between decision processes and intentions,
and the relation between game theory and norms and commitments.

1 Introduction

There are several conceptualizations and formalizations of decision making. Classical de-
cision theory [30, 45] is developed within economics and forms the main theory of decision
making used within operations research. It conceptualizes a decision as a choice from a set
of alternative actions. The relative preference for an alternative is expressed by a utility
value. A decision is rational when it maximizes expected utility.

Qualitative variants of decision theory [5, 39] are developed in artificial intelligence.
They use the same conceptualization as classical decision theory, but preferences are typ-
ically uncertain, formulated in general terms, dependent on uncertain assumptions and
subject to change. A preference is often expressed in terms of a trade-off.
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Knowledge-based systems [37] are developed in artificial intelligence too. They consist
of a high-level conceptual model in terms of knowledge and goals of an application domain,
such as the medical or legal domain, together with a reusable inference scheme for a task,
like classification or configuration. Methodologies for modeling, developing and testing
knowledge-based systems in complex organizations have matured, see [46].

Belief-desire-intention models – typically referred to as BDI models – are developed in
philosophy and agent theory [7, 13, 15, 31, 42]. They are motivated by applications like
robotic planning, which they conceptualize using cognitive concepts like belief, desire and
intention. An intention can be interpreted as a previous decision that constrains the set
of alternatives from which an agent can choose, and it is therefore a factor to stabilize the
decision making behavior through time.

1.1 Distinctions and similarities

In this paper we are interested in relations among the theories, systems and models that
explain the decision-making behavior of rational agents. The renewed interest in the foun-
dations of decision making is due to the automation of decision making in the context of
tasks like planning, learning, and communication in autonomous systems [5, 7, 14, 17].

The following example of Doyle and Thomason [24] on automation of financial advice
dialogues illustrates decision making in the context of more general tasks. A user who
seeks advice about financial planning wants to retire early, secure a good pension and
maximize the inheritance of her children. She can choose between a limited number of
actions: retire at a certain age, invest her savings and give certain sums of money to her
children. Her decision can therefore be modeled in terms of the usual decision theoretic
parameters. However, she does not know all factors that might influence her decision. She
does not know if she will get a pay raise next year, the outcome of her financial actions is
uncertain, and her own preferences may not be clear since, for example, securing her own
pension conflicts with her children’s inheritance. An experienced decision theoretic analyst
therefore interactively guides the user through the decision process, indicating possible
choices and desirable consequences. As a result the user may drop initial preferences by,
for example, preferring to continue working for another five years before retiring.

The most visible distinction among the theories, systems and models is that knowledge-
based systems and beliefs-desire-intention models describe decision making in terms of
cognitive attitudes such as knowledge, beliefs, desires, goals, and intentions. In the dialogue
example, instead of trying to detail the preferences of the user in terms of probability
distributions and utility functions, they try to describe her cognitive state.

Moreover, knowledge-based systems and beliefs-desire-intention models focus less on the
definition of the optimal decision represented by the decision rule, but instead also discuss
the way decisions are reached. They are therefore sometimes identified with theories of
deliberation instead of decision theories [16, 17]. However, as illustrated by the dialogue
example, in classical decision theory the way to reach optimal decisions has also been
studied in decision theoretic practice called decision analysis.

Other apparent distinctions can be found by studying the historic development of the
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various conceptualizations and formalizations of decision making. After the introduction
of classical decision theory, it was soon criticized by Simon’s notion of limited or bounded
rationality, and his introduction of utility aspiration levels [49]. This has led to the notion
of a goal in knowledge-based systems. The research area of qualitative decision theory
developed much more recently out of research on reasoning under uncertainty. It focusses
on theoretical models of decision making with potential applications in planning. The
research area of belief-desire-intention models developed out of philosophical arguments
that – besides the knowledge and goals used in knowledge-based systems – also intentions
should be first class citizens of a cognitive theory of deliberation.

The example of automating financial advice dialogues also illustrates some criticism
on classical decision theory. According to Doyle and Thomason, the interactive process
of preference elicitation cannot be automated in decision theory itself, although they ac-
knowledge the approaches and methodologies available in decision theoretic practice. For
example, they suggest that it is difficult to describe the alternative actions to decide on,
and that classical decision theory is not suitable to model generic preferences.

A historical analysis may reveal and explain apparent distinctions among the theories,
systems and models, but its also hides the similarities among them. We therefore adopt
another methodology for our comparison. We choose several representative theories for
each tradition, and look for similarities and differences between these particular theories.

1.2 Representative theories

For the relation between classical and qualitative decision theory we discuss the work of
Doyle and Thomason [24] and Pearl [39]. For the relation between qualitative decision
theory and knowledge-based systems and belief-desire-intention models we focus on the
different interpretations of goals in the work of Boutilier [5] and Rao and Georgeff [42].
For the direct relation between classical decision theory and belief-desire-intention models
we discuss Rao and Georgeff’s translation of decision trees to belief-desire-intention models
[41].

Clearly the results of this comparison between representative theories and systems
cannot be generalized directly to a comparison between research areas. Moreover, the
discussion in this paper cannot do justice to the subtleties defined in each approach. We
therefore urge the reader to read the original papers. However, this comparison gives some
interesting insights into the relation among the areas, and these insights are a good starting
point for further and more complete comparisons.

A summary of the comparison is given in Table 1. In our comparison, some concepts
can be mapped easily onto concepts of other theories and systems. For example, all theories
and systems use some kind of informational attitude (probabilities, qualitative abstractions
of probabilities, knowledge or beliefs) and some kind of motivational attitude (utilities,
qualitative abstractions of utilities, goals or desires). Other concepts are more ambiguous,
such as intentions. In goal-based planning for example, goals have both a desiring and an
intending aspect [22]. Some qualitative decision theories like [5] have been developed as a
criticism to the inflexibility of the notion of goal in goal-based planning.

3



classical qualitative knowledge-based
decision theory decision theory systems

(CDT) (QDT) (KBS / BDI)
underlying probability function likelihood ordering knowledge / belief
concepts utility function preference ordering goal / desire

decision rule decision criterion agent type / deliberation
time (Markov) decision-theoretic belief-desire-intention

decision processes planning models & systems
multiagent classical qualitative normative systems

game theory game theory (BOID)

Table 1: Theories, systems and models discussed in this paper

The table also illustrates that we discuss two extensions of classical decision theory in
this paper. In particular, we consider the relation between decision processes and inten-
tions, and the relation between game theory and the role of norms and commitments in
belief-desire-intention models. Our discussion of time and decision processes focusses on
the role of intentions in Rao and Georgeff’s work [42] and our discussion on multiple agents
and game theory focusses on the role of norms in a logic of commitments [9].

The relations between the areas may suggest a common underlying abstract theory of
the decision making process, but our comparison does not suggest that one approach can
be exchanged for another one. Due to the distinct motivations of the areas, and probably
due also to the varying conceptualizations and formalizations, the areas have sometimes
studied distinct elements of the decision making process. Our comparison therefore not
only considers the similarities, but we also discuss some distinctions which suggests ways
for further research to incorporate results of one area into another one.

We discuss qualitative decision theory in more detail than knowledge-based systems
and belief-desire-intention models, because it is closer to classical decision theory and has
been positioned as an intermediary between classical decision theory and the others [24].
Throughout the paper we restrict ourselves to formal theories and logics, and do not go
into system architectures or into the philosophical motivations of the underlying cognitive
or social concepts.

The layout of this paper is as follows. In Section 2 we discuss classical and qualitative
decision theory. In Section 3 we discuss goals in qualitative decision theory, knowledge-
based systems and belief-desire-intention models. In Section 4 we compare classical decision
theory and Rao and Georgeff’s belief-desire-intention model. Finally, in Section 5 we
discuss intentions and norms in extensions of classical decision theory that deal with time
by means of processes, and that deal with multiple agents by means of game theory.

2 Classical versus qualitative decision theory

In this section we compare classical and qualitative decision theory, based on Doyle and
Thomason’s introduction to qualitative decision theory [24] and Pearl’s qualitative decision
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theory [39].

2.1 Classical decision theory

In classical decision theory, a decision is the selection of an action from a set of alternative
actions. Decision theory does not have much to say about actions – neither about their
nature nor about how a set of alternative actions becomes available to the decision maker.
A decision is good if the decision maker believes that the selected action will prove at least
as good as the other alternative actions. A good decision is formally characterized as the
action that maximizes expected utility, a notion which involves both belief and desirability.
See [30, 45] for further explanations on the foundations of decision theory.

Definition 1 Let A stand for a set of alternative actions. With each action, a set of
outcomes is associated. Let W stand for the set of all possible worlds or outcomes.1 Let U
be a measure of outcome value that assigns a utility U(w) to each outcome w ∈ W , and let
P be a measure of the probability of outcomes conditional on actions, with P (w|a) denoting
the probability that outcome w comes about after taking action a ∈ A in the situation under
consideration.

The expected utility EU(a) of an action a is the average utility of the outcomes associ-
ated with the action, weighing the utility of each outcome by the probability that the outcome
results from the action, that is, EU(a) =

∑
w∈W U(w)P (w|a). A rational decision maker

will always maximize expected utility, i.e., it selects action a from the set of alternative
actions A such that for all actions b in A we have EU(a) ≥ EU(b). This decision rule is
called maximization of expected utility and typically referred to as MEU.

Many variants and extensions of classical decision theory have been developed. For
example, in some presentations of classical decision theory, not only uncertainty about the
effect of actions is considered, but also uncertainty about the present state. A classic result
is that uncertainty about the effects of actions can be expressed in terms of uncertainty
about the present state. Moreover, several other decision rules have been investigated,
including qualitative ones, such as Wald’s criterion of maximization of the utility of the
worst possible outcome. Finally, classical decision theory has been extended in various
ways to deal with multiple objectives, sequential decisions, multiple agents and notions of
risk. The extensions with sequential decisions and multiple agents are discussed in section
5.1 and 5.2.

Decision theory has become one of the main foundations of economic theory due to
so-called representation theorems, such as the famous one by Savage [45]. It shows that
each decision maker obeying certain plausible postulates (about weighted choices) acts as
if he were applying the MEU decision rule with some probability distribution and utility
function. Thus, the decision maker does not have to be aware of it and the utility function
does not have to represent selfishness. In fact, altruistic decision makers also act as if
they were maximizing expected utility. They only use another utility function than selfish
decision makers.

1Note that outcomes are usually represented by Ω. Here we use W to facilitate our comparison.
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2.2 Qualitative decision theory

According to Doyle and Thomason [24, p.58], quantitative representations of probability
and utility and procedures for computing with these representations do provide an adequate
framework for manual treatment of simple decision problems, but are less successful in
more realistic cases. They suggest that classical decision theory does not address decision
making in unforeseen circumstances, offers no means for capturing generic preferences,
provides little help to decision makers who exhibit discomfort with numeric trade offs, and
provides little help in effectively representing decisions involving broad knowledge of the
world.

Doyle and Thomason therefore argue for a number of new research issues: formalization
of generic probabilities and generic preferences, properties of the formulation of a decision
problem, mechanisms for providing reasons and explanations, revision of preferences, prac-
tical qualitative decision-making procedures and agent modeling. Moreover, they argue
that hybrid reasoning with quantitative and qualitative techniques, as well as reasoning
within context, deserve special attention. Many of these issues are studied in artificial
intelligence. It appears that researchers now realize the need to reconnect the methods
of artificial intelligence with the qualitative foundations and quantitative methods of eco-
nomics.

First results have been obtained in the area of reasoning under uncertainty, a sub-
domain of artificial intelligence which mainly attracts researchers with a background in
nonmonotonic reasoning. Often the formalisms of reasoning under uncertainty are re-
applied in the area of decision making. Typically uncertainty is not represented by a
probability function, but by a plausibility function, a possibilistic function, Spohn-type
rankings, etc. Another consequence of this historic development is that the area of quali-
tative decision theory is more mathematically oriented than the knowledge-based systems
or the belief-desire-intention community.

The representative example we use in our first comparison is the work of Pearl [39].
A so-called semi-qualitative ranking κ(w) can be considered as an order-of-magnitude ap-
proximation of a probability function P (w) by writing P (w) as a polynomial of some small
quantity ε and by taking the most significant term of that polynomial. Similarly, a rank-
ing µ(w) can be considered as an approximation of a utility function U(w). There is one
more subtlety here. Whereas κ rankings are positive, the µ rankings can be either positive
or negative. This represents the fact that outcomes can be either very desirable or very
undesirable.

Definition 2 A belief ranking function κ(w) is an assignment of non-negative integers to
outcomes or possible worlds w ∈ W such that κ(w) = 0 for at least one world. Intuitively,
κ(w) represents the degree of surprise associated with finding a world w realized, and worlds
assigned κ(w) = 0 are considered serious possibilities. Likewise, µ(w) is an integer-valued
utility ranking of worlds. Moreover, both probabilities and utilities are defined as a function
of the same ε, which is treated as an infinitisimal quantity (smaller than any real number).
C is a constant and O is the order of magnitude.
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P (w) ∼ Cεκ(w),
U(w) = O(1/εµ(w)), if µ(w) ≥ 0,

−O(1/ε−µ(w)), otherwise.
(1)

This definition illustrates the use of abstractions of probabilities and utilities. However,
we still have to relativize the probability distribution, and therefore the expected utility,
to actions. This is more complex than in classical decision theory, and is discussed in the
following section.

2.3 Relation

We first discuss similarities between the set of alternatives and the decision rules to select
the optimal action. Then we discuss an apparent distinction between the two approaches.

2.3.1 Alternatives

In classical decision problems the alternative actions typically correspond to a few atomic
variables, whereas Pearl assumes a set of actions of the form ‘Do(ϕ)’ for every proposition
ϕ. That is, where in classical decision theory we defined P (w|a) for alternatives a in A
and worlds w in W , in Pearl’s approach we write P (w|Do(ϕ)) or simply P (w|ϕ) for any
proposition ϕ. In Pearl’s semantics such an alternative can be identified with the set of
worlds that satisfy ϕ, since a valuation function assigns a truth value to every proposition
at each world of W . We could therefore also write P (w|V ) with V ⊆ W .

Consequently, examples formalized in Pearl’s theory typically consider much more al-
ternatives than examples formalized in classical decision theory. However, the set of alter-
natives of both theories can easily be mapped on each other. Classical decision theory also
works well with a large number of atomic variables, and the set of alternatives in Pearl’s
theory can be restricted by adding logical constraints to the alternatives.

2.3.2 Decision rule

Both classical decision theory as presented in Definition 1 and Pearl’s qualitative decision
theory as presented in Definition 2 can deal with trade-offs between normal situations and
exceptional situations. The decision rule from Pearl’s theory differs from decision criterion
such as ‘maximize the utility of the worst outcome’. This qualitative decision rule of
classical decision theory has been used in purely qualitative decision theory of Boutilier [5]
which is discussed in the following section. The decision criteria from purely qualitative
decision theories do not seem to be able to make trade-offs between such alternatives.

The problem with a purely qualitative approach is that it is unclear how, besides the
most likely situations, also less likely situations can be taken into account. We are interested
in situations which are unlikely, but which have a high impact, i.e., an extremely high or
low utility. For example, the probability that your house will burn down is very small,
but it is also very unpleasant. Some people therefore decide to take an insurance. In a
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purely qualitative setting there does not seem to be an obvious way to compare a likely
but mildly important effect to an unlikely but important effect. Going from quantitative
to qualitative we may have gained computational efficiency, but we seem to have lost one
of the useful properties of decision theory.

The ranking order solution proposed by Pearl is based on two ideas. First, the initial
probabilities and utilities are neither represented by quantitative probability distributions
and utility functions, nor by pure qualitative orders, but by a semi-qualitative order in
between. Second, the two semi-qualitative functions are assumed to be comparable in a
suitable sense. This is called the commensurability assumption [26].

Consider for example likely and moderately interesting worlds (κ(w) = 0, µ(w) = 0)
or unlikely but very important worlds (κ(w) = 1, µ(w) = 1). These cases have become
comparable. Although Pearl’s order of magnitude approach can deal with trade-offs be-
tween normal and exceptional circumstances, it is less clear how it can deal with trade-offs
between two effects under normal circumstances.

2.3.3 A distinction and a similarity

Pearl explains that in his setting the expected utility of a proposition ϕ depends on how
we came to know ϕ. For example, if we find the ground wet, it matters whether we
happened to find the ground wet (observation) or watered the ground (action). In the
first case, finding ϕ true may provide information about the natural process that led to
the observation ϕ, and we should change the current probability from P (w) to P (w|ϕ). In
the second case, our actions may perturb the natural flow of events, and P (w) will change
without shedding light on the typical causes of ϕ. This is represented differently, by Pϕ(w).
According to Pearl, the distinction between P (w|ϕ) and Pϕ(w) corresponds to distinctions
found in a variety of theories, such as the distinction between conditioning and imaging
[36], between belief revision and belief update, and between indicative and subjunctive
conditionals. However, it does not seem to correspond to a distinction in classical decision
theory, although it may be related to discussions in the context of the logic of decision [30].
One of the tools Pearl uses for the formalization of this distinction are causal networks: a
kind of Bayesian networks with actions.

A similarity between the two theories is that both suppress explicit reference to time.
In this respect Pearl is inspired by deontic logic, the logic of obligations and permissions
discussed in Section 5.2. Pearl suggests that his approach differs in this respect from
other theories of action in planning and knowledge-based systems, since they are normally
formulated as theories of temporal change. Such theories are discussed in the comparison
in the following section.

3 Qualitative decision theory versus BDI logic

In this section we give a comparison between qualitative decision theory and knowledge-
based systems and belief-desire-intention models, based on their interpretation of beliefs
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and goals. We use representative qualitative theories that are defined on possible worlds,
namely Boutilier’s version of qualitative decision theory [5] and Rao and Georgeff’s belief-
desire-intention logic [41, 43, 44].

3.1 Qualitative decision theory (continued)

Boutilier’s qualitative decision theory [5] may be called purely qualitative, because its
semantics does not contain any numbers, only more abstract preference relations. It is de-
veloped in the context of planning. Goals serve a dual role in most planning systems, cap-
turing aspects of both desires towards states and commitment to pursuing that state [22].
In goal-based planning, adopting a proposition as a goal commits the agent to find some
way to accomplish the goal, even if this requires adopting subgoals that may not corre-
spond to desirable propositions themselves [19]. Context-sensitive goals are formalized with
basic concepts from decision theory [5, 19, 25]. In general, goal-based planning must be
extended with a mechanism to choose which goals must be adopted. To this end Boutilier
proposes a logic for representing and reasoning with qualitative probabilities and utilities,
and suggests several strategies for qualitative decision making based on this logic.

The MEU decision rule is replaced by a qualitative rule, for example by Wald’s criterion.
Conditional preference is captured by a preference ordering (an ordinal value function)
defined on possible worlds. The preference ordering represents the relative desirability of
worlds. Boutilier says that w ≤P v when w is at least as preferred as v, but possibly more.
Similarly, probabilities are captured by a normality ordering ≤N on possible worlds, which
represents their relative likelihood.

Definition 3 The semantics of Boutillier’s logic is based on models of the form

M = 〈W,≤P ,≤N , V 〉 (2)

where W is a set of possible worlds (outcomes), ≤P is a reflexive, transitive and connected
preference ordering relation on W , ≤N is a reflexive, transitive and connected normality
ordering relation on W , and V is a valuation function.

Conditional preferences are represented in the logic by means of modal formulas I(ϕ|ψ),
to be read as ‘ideally ϕ if ψ’. A model M satisfies the formula I(ϕ|ψ) if the the most
preferred or minimal ψ worlds with respect to ≤P are ϕ worlds. For example, let u be
the proposition ‘the agent carries an umbrella’ and r be the proposition ‘it is raining’,
then I(u|r) expresses that in the most preferred rain-worlds the agent carries an umbrella.
Similar to preferences, probabilities are represented in the logic by a default conditional
⇒. For example, let w be the proposition ‘the agent is wet’ and r be the proposition ‘it is
raining’, then r ⇒ w expresses that the agent is wet at the most normal rain-worlds. The
semantics of this operator is used in Hansson’s deontic logic [27] for a modal operator O
to model obligation, and by Lang [33] for a modal operator D to model desire. Whereas in
default logic an exception is a digression from a default rule, in deontic logic an offense is
a digression from the ideal. An alternative approach represents conditional modalities by
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so called ‘ceteris paribus’ preferences, using additional formal machinery to formalize the
notion of ‘similar circumstances’, see, e.g., [23, 25, 50, 51].

In general, a goal is any proposition that the agent attempts to make true. A rational
agent is assumed to attempt to reach the most preferred worlds consistent with its default
knowledge. Given the ideal operator and the default conditional, a goal is defined as
follows.

Definition 4 Given a set of facts KB, a goal is any proposition ϕ such that

M |= I(ϕ | Cl(KB)) (3)

where Cl(KB) is the default closure of the facts KB defined as follows:

Cl(KB) = {ϕ | KB ⇒ ϕ} (4)

3.2 BDI logic

According to Dennett [20], attitudes like belief and desire are folk psychology concepts that
can be fruitfully used in explanations of rational behavior. If you were asked to explain
why someone is carrying an umbrella, you may reply that he believes it is going to rain
and that he does not want to get wet. For the explanation it does not matter whether
he actually possesses these mental attitudes. Similarly, we describe the behavior of an
affectionate cat or an unwilling screw in terms of mental attitudes. Dennett calls treating
a person or artifact as a rational agent the ‘intentional stance’.

“Here is how it works: first you decide to treat the object whose behavior is
to be predicted as a rational agent; then you figure out what beliefs that agent
ought to have, given its place in the world and its purpose. Then you figure
out what desires it ought to have, on the same considerations, and finally you
predict that this rational agent will act to further its goals in the light of its
beliefs. A little practical reasoning from the chosen set of beliefs and desires
will in most instances yield a decision about what the agent ought to do; that
is what you predict the agent will do.” [20, p. 17]

In this tradition, knowledge (K) and beliefs (B) represent the information of an agent
about the state of the world. Belief is like knowledge, except that it does not have to
be true. Goals (G) or desires (D) represent the preferred states of affairs for an agent.
The terms goal and desire are sometimes used interchangeably. In other cases, a desire is
treated like a goal, except that sets of desires do not have to be mutually consistent. Desires
are long term preferences that motivate the decision process. Intentions (I) correspond to
previously made commitments of the agent, either to itself or to others.

As argued by Bratman [7], intentions are meant to stabilize decision making. Consider
the following application of a lunar robot. The robot is supposed to reach some destination
on the surface of the moon. Its path is obstructed by a rock. Suppose that based on its
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cameras and other sensors, the robot decides that it will go around the rock on the left. At
every step the robot will receive new information through its sensors. Because of shadows,
rocks may suddenly appear much larger. If the robot were to reconsider its decision with
every new piece of information, it would never reach its destination. Therefore, the agent
will adopt a plan until some really strong reason forces it to change it. The intentions of
an agent correspond to the set of adopted plans at some point in time.

Belief-desire-intention models, better known as BDI models, are applied in for example
natural language processing and the design of interactive systems. The theory of speech
acts [3, 47] and subsequent applications in artificial intelligence [1, 14] analyze the meaning
of an utterance in terms of its applicability and sincerity conditions and the intended effect.
These conditions are best expressed using belief or knowledge, desire or goal, and intention.
For example, a question is applicable when the speaker does not yet know the answer and
the hearer is expected to know the answer. A question is sincere if the speaker actually
desires to know the answer. By the conventions encoded in language, the effect of a question
is that it signals the intention of the speaker to let the hearer know that the speaker desires
to know the answer. Now if we assume that the hearer is cooperative, which is a reasonable
assumption for interactive systems, the hearer will adopt the goal to let the speaker know
the answer to the question and will consider plans to find and formulate such answers.
In this way, traditional planning systems and natural language communication can be
combined. For example, Sadek [8] describes the architecture of a spoken dialogue system
that assists the user in selecting automated telephone services like the weather forecast,
directory services or collect calls. According to its developers the advantage of the BDI
specification is its flexibility. In case of a misunderstanding, the system can retry and reach
its goal to assist the user by some other means. This specification in terms of BDI later
developed into the standard for agent communication languages endorsed by FIPA. If we
want to automate parts of the interactive process of decision making, such a flexible way
to deal with interaction is required.

As a typical example of a formal BDI model, we discuss Rao and Georgeff’s initial BDI
logic [42]. The partial information on the state of the environment, which is represented
by quantitative probabilities in classical decision theory and by a qualitative ordering in
qualitative decision theory, is now reduced to binary values (0-1). This abstraction of
the partial information on the state of the environment models the beliefs of the deci-
sion making agent. Similarly, the partial information about the objectives of the decision
making agent, which is represented by quantitative utilities in classical decision theory
and by qualitative preference ordering in qualitative decision theory, is reduced to binary
values (0-1). The abstraction of the partial information about the objectives of the deci-
sion making agent, models the desires of the decision making agent. The BDI logic has a
complicated semantics, using Kripke structures with accessibility relations for each modal
operator B,D and I. Each accessibility relation B, D, and I maps a world w at a time
point t to those worlds, which are indistinguishable with respect to respectively the belief,
desire or intention formulas that can be satisfied.

11



Definition 5 (Semantics of BDI logic [42]) An interpretation M 2 is defined to be a
tuple M = 〈W,E, T,<, U,B,D, I, Φ〉, where W is the set of worlds, E is the set of primitive
event types, T is a set of time points, < a binary relation on time points, U is the universe
of discourse, and Φ 3 is a mapping from first-order entities to elements in U for any given
world and time point. A situation is a world, say w, at a particular time point, say t, and
is denoted by wt. The relations B, D4, and I map the agent’s current belief, desire, and
intention accessible worlds, respectively. I.e. B ⊆ W × T ×W and similarly for D and I.

Again there is a logic to reason about these mental attitudes. We can only represent
monadic expressions like B(ϕ) and D(ϕ), and no dyadic expressions like Boutilier’s I(ϕ|ψ).
Note that the I modality has been used by Boutilier for ideality and by Rao and Georgeff
for intention; we use their original notation since it does not lead to any confusion in this
paper. A world at a time point of the model satisfies B(ϕ) if ϕ is true in all belief accessible
worlds at the same time point. The same holds for desire and intention. All desired worlds
are equally good, so an agent will try to achieve any of the desired worlds.

Compared to the other approaches discussed so far, Rao and Georgeff introduce a
temporal aspect. The BDI logic is an extension of the so-called computational tree logic
(CTL∗), which is often used to model a branching time structure, with modal epistemic
operators for beliefs B, desires D, and intentions I. The modal epistemic operators are
used to model the cognitive state of a decision making agent, while the branching time
structure is used to model possible events that could take place at a certain time point and
determines the alternative worlds at that time point.

Each time branch represents an event and determines an alternative situation. The
modal epistemic operators have specific properties such as closure under implication and
consistency (KD axioms). Like in CTL, the BDI logic has two types of formula. The
first is called a state formula, and is evaluated at a situation. The second is called a path
formula, and is evaluated along a path originating from a given world. Therefore, path
formulae express properties of alternative worlds through time.

Definition 6 (Semantics of Tree Branch [42]) Let M = 〈W,E, T, <, U,B,D, I, Φ〉 be
an interpretation, Tw ⊆ T be the set of time points in the world w, and Aw be the same
relation as < restricted to time points in Tw. A full path in a world w is an infinite
sequence of time points (t0, t1, . . .) such that ∀i (ti, ti+1) ∈ Aw. A full path can be written
as (wt0 , wt1 , . . .).

In order to give examples of how state and path formulae are evaluated, let M = 〈W,E, T, <
, U,B,D, I, Φ〉 be an interpretation, w,w′ ∈ W , t ∈ T , (wt0 , wt1 , . . .) be a full path, and Bw

t

be set of belief accessible from world w at time t. Let B be the modal epistemic operator,
♦ the temporal eventually operator, and ϕ be a state formula. Then, the state formula
Bϕ is evaluated relative to the interpretation M and situation wt as follows:

M, wt |= Bϕ ⇔ ∀w′ ∈ Bw
t M, w′

t |= ϕ (5)

2The interpretation M is usually called model M .
3The mapping Φ is usually called valuation function represented by V .
4In their definition, they use G for goals instead of D for desires.
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A path formula ♦ϕ is evaluated relative to the interpretation M along a path (wt0 , wt1 , . . .)
as follows:

M, (wt0 , wt1 , . . .) |= ♦ϕ ⇔ ∃k ≥ 0 such that M, (wtk , . . .) |= ϕ (6)

3.3 Comparison

As in the previous comparison, we compare the set of alternatives, decision rules, and
distinctions particular to these approaches.

3.3.1 Alternatives

Boutilier [5] introduces a simple but elegant distinction between consequences of actions
and consequences of observations, by distinguishing between controllable and uncontrol-
lable propositional atoms. Formulas ϕ built from controllable atoms correspond to actions
Do(ϕ). Boutilier does not study the distinction between actions and observations, and he
does not introduce a causal theory. His action theory is therefore simpler than Pearl’s.

BDI on the other hand does not involve an explicit notion of action, but instead models
possible events that can take place. Events in the branching time structure determine the
alternative (cognitive) worlds that an agent can reach. Thus, each branch represents an
alternative the agent can select. Uncertainty about the effects of actions is not modeled by
branching time, but by distinguishing between different belief worlds. So all uncertainty
about the effects of actions is modeled as uncertainty about the present state; a well known
trick from decision theory we already mentioned in section 2.1.

The problem of mapping the two ways of representing alternatives onto each other is
due to the fact that in Boutilier’s theory there is only a single decision, whereas in BDI
models there are decisions at any world-time pair. If we consider only a single world-time
pair, for example the present one, then each attribution of truth values to controllable
atoms corresponds to a branch, and for each branch a controllable atom can be introduced
together with the constraint that only one controllable atom may be true at the same time.

3.3.2 Decision rules

The qualitative normality and the qualitative desirability orderings on possible worlds that
are used in qualitative decision theory are reduced to binary values in belief-desire-intention
models. Based on the normality and preference orderings, Boutilier uses a qualitative
decision rule like the Wald criterion. Since there is no ordering in BDI models, each
desired world can in principle be selected as a goal world to be achieved. However, it is
not intuitive to select any desired world as a goal, since a desired world is not necessarily
believed to be possible. Selecting a desired world which is not believed to be possible,
results in wishful thinking [52] and therefore in unrealistic decision making.

Therefore, BDI proposes a number of constraints on the selection of goal worlds. These
constraints are usually characterized by axioms called realism, strong realism or weak
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realism [11, 44]. Roughly, realism states that an agent’s desires should be consistent with
its beliefs. Note that this constraint is the same in qualitative decision theories where goal
worlds should be consistent with the belief worlds. Formally, the realism axiom states that
something which is believed is also desired, or that the set of desire accessible worlds is a
subset of the set of belief accessible worlds, i.e.,

B(ϕ) → D(ϕ) (7)

and, moreover, that belief and desire worlds should have identical branching time structure,
i.e.,

∀w, v ∈ W,∀t ∈ T if v ∈ Dw
t then v ∈ Bw

t (8)

A set of such axioms to constrain the relation between beliefs, desires, and alternatives
determines an agent type. For example, we can distinguish realistic agents from unrealistic
agents. BDI systems do not consider decision rules but agent types. Although there are
no agent types in classical or qualitative decision theory, there are discussions which can
be related to agent types. For example, often a distinction is made between risk neutral,
risk seeking, and risk averse behavior.

In Rao and Georgeff’s BDI theory, additional axioms are introduced for intentions.
Intentions can be seen as previous decisions. These further reduce the set of desire worlds
that can be chosen as a goal world. The axioms guarantee that a chosen goal world is
consistent with beliefs and desires. The definition of realism therefore includes the following
axiom, stating that intention accessible worlds should be a subset of desire accessible
worlds,

D(ϕ) → I(ϕ) (9)

and, moreover, that desire and intention worlds should have an identical branching time
structure (have the same alternatives), i.e.

∀w∀t∀w′ if w′ ∈ Iw
t then w′ ∈ Dw

t (10)

In addition to these constraints, which are classified as static constraints, there are
dynamic constraints introduced in BDI resulting in additional agent types. These axioms
determine when intentions or previously decided goals should be reconsidered or dropped.
These constraints, called commitment strategies, involve time and intentions and express
the dynamics of decision making. The well-known commitment strategies are ‘blindly com-
mitted decision making’, ‘single-minded committed decision making’, and ’open-minded
committed decision making’. For example, the single-minded commitment strategy states
that an agent remains committed to its intentions until either it achieves its corresponding
objective or does not believe that it can achieve it anymore. The notion of an agent type
has been refined and it has been extended to include obligations in Broersen et al.’s BOID
system [10]. For example, they distinguish selfish agents, that give priority to their own
desires, and social agents, that give priority to their obligations.
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3.3.3 Two Steps

A similarity between the two approaches is that we can distinguish two steps. In Boutilier’s
approach, decision-making with flexible goals has split the decision-making process. First
a decision is made which goals to adopt, and second a decision is made how to reach these
goals. These two steps have been further studied by Thomason [52] and Broersen et al.
[10] in the context of default logic.

1. First, the agent has to combine desires and resolve conflicts between them. For
example, assume that the agent desires to be on the beach, if he is on the beach
then he desires to eat an ice-cream, he desires to be in the cinema, if he is in the
cinema then he desires to eat popcorn, and he cannot be at the beach as well as in
the cinema. Now he has to choose one of the two combined desires as a potential
goal: being at the beach with ice-cream or being in the cinema with popcorn.

2. Second, the agent has to find out which actions or plans can be executed to reach
the goal, and he has to take all side-effects of the actions into account. For example,
assume that he desires to be on the beach, if he will quit his job and drive to the
beach, he will be on the beach, if he does not have a job he will be poor, if he is poor
then he desires to work. The only desire and thus a potential goal is to be on the
beach, the only way to reach this goal is to quit his job, but the side effect of this
action is that he will be poor and in that case he does not want to be on the beach
but he wants to work.

Now crucially, desires come into the picture two times! First they are used to determine
the goals, and second they are used to evaluate the side-effects of the actions to reach
these goals. In extreme cases, like the example above, what seemed like a goal may not be
desirable, because the only actions to reach the goal have negative effects with much more
impact than the original goal.

At first sight, it seems that we can apply classical decision theory to each of these two
sub-decisions. However, there is a caveat. The two sub-decisions are not independent, but
closely related. For example, to decide which goals to adopt we must know which goals are
feasible, and we thus have to take the possible actions into account. Moreover, previously
intended actions constrain the candidate goals which can be adopted. Other complications
arise due to many factors such as uncertainty, changing environments, etc. We conclude
here that the role of decision theory in planning is complex, and that decision-theoretic
planning is much more complex than classical decision theory since the interaction between
goals and actions in classical decision theory is predefined while in qualitative decision
theory this interaction is the subject of reasoning. For more on this topic, see [6].

3.3.4 Goals versus desires

A distinction between the two approaches is that Boutilier distinguishes between ideality
statements or desires and goals, whereas Rao and Georgeff do not. In Boutilier’s logic,
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there is a formal distinction between preference ordering and goals expressed by ideality
statements. Rao and Georgeff have unified these two notions, which has been criticized
by [18]. In decision systems such as [10], desires are considered to be more primitive than
goals, because goals have to be adopted or generated based on desires. Moreover, goals can
be based on desires, but also on other sources. For example, a social agent may adopt his
obligations as a goal, or the desires of another agent. In many theories desires or candidate
goals can be mutually conflicting, but other notions of goals have been considered, in which
goals do not conflict. In that case goals are more similar to intentions. There are three
main traditions. In the Newell and Simon tradition of knowledge-based systems, goals are
related to utility aspiration levels and to limited (bounded) rationality. In this tradition
goals have an aspect of desiring as well as an aspect of intending. In the more recent
BDI tradition knowledge and goals have been replaced by beliefs, desires and intentions
due to Bratman’s work on the role of intentions in deliberation process [7]. The third
tradition relates desires and goals to utilities in classical decision theory. The problem here
is that decision theory abstracts away from the deliberation cycle. Typically, Savage-like
constructions only consider the input (state of the world) and output (action) of an agent.
Consequently, utilities can be related to both stages in the process, represented by either
desires or goals.

3.3.5 Conflict resolution

A similarity between the two logics is that both are not capable of representing conflicts,
either conflicting beliefs or conflicting desires.

Although the constraints imposed by the Boutilier’s I operator are rather weak, they
are still too strong to represent certain types of conflicts. Consider conflicts among desires.
Typically desires are allowed to be inconsistent, but once they are adopted and have become
intentions, they should be consistent. Several potential conflicts between desires, including
a classification and ways to resolve it, is given in [34]. A different approach to solving
conflicts is to apply Reiter’s default logic to create extensions. This is recently proposed
by Thomason [52] and used in the BOID architecture [10].

Finally, an important branch of decision theory has to do with reasoning about multiple
objectives, which may conflict, by means of multiple attribute utility theory [32]. This is
also the basis of the theory of ‘ceteris paribus’ preferences mentioned in previous section.
It can be used to formalize conflicting desires. By contrast, all the modal logic approaches
above would make conflicting desires inconsistent. Clearly, if we continue to follow the
financial advice example of Doyle and Thomason, conflicting desires must be dealt with.

3.3.6 Non-monotonic closure rules

A distinction between the logics is that Rao and Georgeff only present a monotonic logic,
whereas Boutilier also presents a non-monotonic extension. The constraints imposed by
the I formulas of Boutilier are relatively weak. Since the semantics of the Boutilier’s I
operator is analogous to the semantics of many default logics, Boutilier [5] proposes to
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use non-monotonic closure rules for the I operator too. In particular he uses the well-
known system Z [38]. Its workings can be summarized as ‘gravitation towards the ideal’,
in this case. An advantage of this system is that it always gives exactly one preferred
model, and that the same logic can be used for both desires and defaults. A variant of this
idea was developed by Lang [33], who directly associates penalties with desires (based on
penalty logic [40]) and who does not use rankings of utility functions but utility functions
themselves. More complex constructions have been discussed in [35, 50, 51, 54].

4 Classical decision theory versus BDI logic

In this section we compare classical decision theory to BDI theory. Thus far, we have
seen a quantitative ordering in classical decision theory, a semi-qualitative and qualitative
ordering in qualitative decision theory, and binary values in BDI. Classical decision theory
and BDI thus seem far apart, and the question can be raised how they can be related. This
question has been ignored in the literature, except by Rao and Georgeff’s translation of
decision trees to beliefs and desires in [41]. Rao and Georgeff show that constructions like
subjective probability and subjective utility can be recreated in the setting of their BDI
logic to extend its expressive power and to model the process of deliberation. The result
shows that the two approaches are compatible. In this section we sketch their approach.

4.1 BDI, continued

Rao and Georgeff extend the BDI logic by introducing probability and utility functions in
their logic. The intuition is formulated as follows:

“Intuitively, an agent at each situation has a probability distribution on his
belief-accessible worlds. He then chooses sub-worlds of these that he considers
are worth pursuing and associates a payoff value with each path in these sub-
worlds. These sub-worlds are considered to be the agent’s goal accessible worlds.
By making use of the probability distribution on his belief-accessible worlds
and the payoff distribution on the paths in his goal-accessible worlds, the agent
determines the best plan(s) of action for different scenarios. This process will
be called Possible-Worlds (PW) deliberation. The result of PW-deliberation
is a set of sub-worlds of the goal-accessible worlds; namely, the ones that the
agent considers best. These sub-worlds are taken to be the intention-accessible
worlds that the agent commits to achieving.” [41, p. 301]

In this extension of the BDI logic two operators for probability and utility are introduced.
Formally, if ϕ1, . . . , ϕk are state formulas, ψ1, . . . , ψk are state formulas, and θ1, . . . , θk, α
are real numbers, then θ1PROB(ϕ1) + . . . + θ1PROB(ϕ1) ≥ α and θ1PAY OFF (ψ1) +
. . . + θ1PAY OFF (ψ1) ≥ α are state formulas. Consequently, the semantics of the BDI
logic is extended by adding semantic structures to represent probabilities and utilities.
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Definition 7 (Extended BDI models [41]) The semantics of the extended BDI logic
is based on interpretation M of the following form:

M = 〈W,E, T, <,B,D, I, PA, OA, Φ〉 (11)

where W , E, T , <, B,D, I and Φ are as in definition 5 5. PA is a probability assignment
function that assigns to each time point t and world w a probability distribution ηw

t
6. Each

ηw
t is a discrete probability function on the set of worlds W . Moreover, OA is a utility

assignment function that assigns to each time point t and world w a utility function ρw
t .

Each ρw
t is a partial mapping from paths to real-valued numbers.

Given a state formula ϕ and a path formula ψ, the semantics of the extended BDI
language extends the semantics of the BDI langauge with the following two evaluation
clauses for the PROB and PAYOFF expressions.

M,wt0 |= prob(ϕ) ≥ α ⇔ ηw
t0
({w′ ∈ Bw

t0
| M, w′

t0
|= ϕ}) ≥ α.

M,wt0 |= payoff(ψ) ≥ α ⇔ ∀w′ ∈ Dw
t , and ∀xi such that M, xi |= ψ,

where xi is a fullpath (w′
t0
, w′

t1
, . . .),

it is the case that ρw
t0
(xi) ≥ α

(12)

We do not give any more formal details (they can be found in the cited paper), but we
illustrate the logic by an example.

Consider the example illustrated in figure 1. There is an American politician, a member
of the house of representatives, who must make a decision about his political career. He
believes that he can stand for the house of representatives (Rep), switch to the senate and
stand for a a senate seat (Sen), or retire altogether (Ret). He does not consider the option
of retiring seriously, and is certain to keep his seat in the house. He must decide to conduct
or not conduct an opinion Poll the result of which is either a majority approval of his move
to the senate (yes) or a majority disapproval (no). There are four belief-accessible worlds,
each with a specific probability value attached. The propositions win, loss, yes and no
are true at the appropriate points. For example, he believes that he will win a seat in the
senates with probability 0.24 if he has a majority approval to his switch and stands for a
senate seat. The goal-accessible worlds are also shown, with the individual utility values
(payoffs) attached. For example, the utility of winning a seat in the senate if he has a
majority approval to his switch is 300. Note that retiring is an option in the belief worlds,
but is not considered a goal. Finally, if we apply the maximal expected value decision
rule, we end up with four remaining intention worlds, that indicate the commitments the
agent should rationally make. The resulting intention-accessible worlds indicate that the
best plan of actions is Poll; ((yes?; Sen) | (no?; Rep)). According to this plan of actions

5Note that in this definition of interpretation M they have left out the universe of discourse U .
6In the original definition the notation µw

t is used instead of ηw
t . The notation is changed here to avoid

confusion with the Pearl’s notation in which µ is used.
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he should conduct a Poll followed by (indicated by sequence ; operator) switching to the
senate and standing for a senate seat (Sen) if the result of the Poll is yes or (indicated
by external choice | operator) not to switch to the senate and standing for a house of
representatives seat (Rep) if the result of the Poll is no.

Insert figure 1 about here

Figure 1: Belief, Goal and Intention worlds, using maxexpval as decision rule [41]

4.2 Relation between decision theory and BDI

Rao and Georgeff relate decision trees to these structures on possible worlds. They propose
a transformation between a decision tree and the goal accessible worlds of an agent.

A decision tree consists of two types of nodes: one type of nodes expresses agent’s choices
and the other type expresses the uncertainties about the effect of actions (i.e. choices of
the environment). These two types of nodes are indicated respectively by a square and
circle in the decision trees as illustrated in figure 2. In order to generate relevant plans
(goals), the uncertainties about the effect of actions are removed from the given decision
tree (circle in figure 2) resulting in a number of new decision trees. The uncertainties about
the effect of actions are now assigned to the newly generated decision trees.

Insert figure 2 about here

Figure 2: Transformation of a decision tree into a possible worlds structure

For example, consider the decision tree in figure 2. A possible plan is to perform Poll
followed by Sen if the effect of the poll is yes or Rep if the effect of the poll is no. Suppose
that the probability of yes as the effect of a poll is 0.42 and that the probability of no is 0.58.
Now the transformation will generate two new decision trees: one in which event yes takes
place after choosing Poll and one in which event no takes place after choosing Poll. The
uncertainties 0.42 and 0.57 are then assigned to the resulting trees, respectively. The new
decision trees provide two scenarios Poll; if yes, then Sen and Poll; if no, then Rep with
probabilities 0.42 and 0.58, respectively. In these scenarios the effects of events are known.
The same mechanism can be repeated for the remaining chance nodes. The probability
of a scenario that occurs in more than one goal world is the sum of the probabilities of
the different goal worlds in which the scenario occurs. This results in the goal accessible
worlds from figure 1. The agent can decide on a scenario by means of a decision rule such
as maximum expected utility.

5 Extensions

In this section we first discuss the extension of classical decision theory with time and
processes. This extension seems to be related to the notion of intention, as used in belief-
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intention-desire models of agents. Then we discuss the extension of classical decision theory
to game theory. This extension again seems to be related to concepts used in agent theory,
namely social norms. Exactly how these notions are related remains an open problem. In
this section we mention some examples of the clues to their relation which can be found in
the literature.

5.1 Time: processes, planning and intentions

A decision process is a sequence of decision problems. If the next state is dependent on
only the current state and action the decision process is said to obey the Markov property.
In such a case, the process is called a Markov decision process or MDP. Since intentions
can been interpreted as commitments to previous decisions, it seems reasonable to relate
intentions to decision processes. However, how they should be related to decision processes
remains one of the main open problems of BDI theory.

A clue to relate decision processes and intentions may be found in the stabilizing func-
tion of intention. BDI researchers [43, 44] suggest that classical decision theories may
produce instable decision behavior when the environment is dynamic. Every change in the
environment requires the decision problem to be reformulated, which may in turn result in
conflicting decisions. For example, a lunar robot may make diverging decisions based on
relatively arbitrary differences in its sensor readings.

Another clue to relate decision processes and intentions may be found in commitment
strategies to keep, reconsider or drop an intention, because commitment to a previous
decision can affect new decisions that an agent makes at each time. Rao and Georgeff dis-
cuss blindly committed, single-mindedly committed, and open-mindedly committed agents
[43]. According to the first, an agent will deny any change in its beliefs and desires that
conflicts with its previous decisions. The second does allow belief changes; the agent will
drop previous decisions that conflict with new beliefs. The last strategy allows both de-
sires and beliefs to change. The agent will drop previous decisions that conflict with new
beliefs or desires. The process of intention creation and reconsideration is often called the
deliberation process.

However, these two clues may only give a partial answer to the question how decision
processes and intentions are related. Another relevant question is whether and how the
notion of limited or bounded rationality comes into play. For example, do cognitive agents
rely on intentions to stabilize their behavior only because they are limited or bounded in
their decision making? In other words, would perfect reasoners need to use intentions in
their decision making process, or can they do without them?

Another aspect of intentions is related to the role that they play in social interaction.
In section 3.2 we discussed the use of intentions to explain speech acts. The best example
of an intention used in social interaction is the content of a promise. Here the intention
is expressed and made public, thereby becoming a social fact. A combination of public
intentions can explain cooperative behavior in a group, using so called joint intentions [55].
A joint intention in a group then consists of the individual intentions of the members of
the group to do their part of the task in order to achieve some shared goal.
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Note that in the philosophy of mind intentions have also been interpreted in a different
way [7]. Traditionally, intentions are related to responsibility. An agent is held responsible
for the actions it has willingly undertaken, even if they turn out to involve undesired
side-effects. The difference between intentional and unintentional (forced) action, may
have legal repercussions. Moreover, intentions-in-action are used to explain the relation
between decision and action. Intentions are what causes an action; they control behavior.
On the other hand, having an intention by itself is not enough. Intentions must lead to
action at some point. We can not honestly say that someone intends to climb Mt. Everest,
without some evidence of him actually preparing for the expedition. It seems hard to
reconcile these philosophical aspects of intentions, with mere decision processes.

5.2 Multiagent: games, norms and commitments

Classical game theory studies decision making of several agents at the same time. Since
each agent must take the other agents’ decisions into account, the most popular approach
is based on equilibria analysis. Since norms, obligations and social commitments are of
interest when there is more than one agent making decisions, these concepts seem to be
related to games. However, again it is unclear how norms, obligations and commitments
can be related to games.

The general idea runs as follows. Agents are autonomous: they can decide what to
do. Some behavior will harm other agents. Therefore it is in the interest of the group,
to constrain the behavior of its members. This can be done by implicit norms, explicit
obligations, or social commitments. Nevertheless, relating norms to game theory is even
more complicated than relating intentions to processes, because there is no consensus on
the role of norms in knowledge-based systems and in belief-intention-desire models. Only
recently versions of BDI have been extended with norms (or obligations) [21] and it is
still debated whether and when artificial agents need norms. It is also debated whether
norms should be represented explicitly or can remain implicit. Clues for the use of norms
have been given in the cognitive approach to BDI, in evolutionary game theory and in the
philosophical areas of practical reasoning and deontic logic. Several notions of norms and
commitments have been discussed, including the following ones.

Norms as goal generators. The cognitive science approach to BDI [15, 12] argues that
norms are needed to model social agents. Norms are important concepts for social
agents, because they are a mechanism by which society can influence the behavior of
individual agents. This happens through the creation of normative goals, a process
which consists of four steps. First the agent has to believe that there is a norm.
second, it has to believe that this norm is applicable. Third, it has to decide to
accept the norm – the norm now leads to a normative goal – and fourth, it has to
decide whether it will follow this normative goal.

Reciprocal norms. The argument of evolutionary game theory [4] is that reciprocal
norms are needed to establish cooperation in repeated prisoner’s dilemmas.
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Norms influencing decisions. In practical reasoning, in legal philosophy and in deontic
logic (in philosophy as well as in computer science) it has been studied how norms
influence behavior.

Norms stabilizing multiagent systems. It has been argued that obligations play the
same role in multiagent systems as intentions do in single agent systems, namely they
stabilize its behavior [53].

Here we discuss an example which is closely related to game theory, in particular to the
pennies pinching example. This is a problem discussed in philosophy that is also relevant
for advanced agent-based computer applications. It is related to trust, but it has been
discussed in the context of game theory, where it is known as a non-zero sum game. Hollis
[28, 29] discusses the example and the related problem of backward induction as follows.

A and B play a game where ten pennies are put on the table and each in turn
takes one penny or two. If one is taken, then the turn passes. As soon as
two are taken the game stops and any remaining pennies vanish. What will
happen, if both players are rational? Offhand one might suppose that they
emerge with five pennies each or with a six-four split – when the player with
the odd-numbered turns take two at the end. But game theory seems to say
not. Its apparent answer is that the opening player will take two pennies, thus
killing the golden goose at the start and leaving both worse off. The immediate
trouble is caused by what has become known as backward induction. The
resulting pennies gained by each player are given by the bracketed numbers,
with A’s put first in each case. Looking ahead, B realizes that they will not
reach (5, 5), because A would settle for (6, 4). A realizes that B would therefore
settle for (4, 5), which makes it rational for A to stop at (5, 3). In that case, B
would settle for (3, 4); so A would therefore settle for (4, 2), leading B to prefer
(2, 3); and so on. A thus takes two pennies at his first move and reason has
obstructed the benefit of mankind.

Game-theory and backward induction reasoning do not produce the intuitive solution to
the problem, because agents are assumed to be rational in the sense of economics and
consequently game-theoretic solutions do not consider an implicit mutual understanding
of a cooperation strategy [2]. Cooperation results in an increased personal benefit by
seducing the other party in cooperation. The open question is how such ‘super-rational’
behavior can be explained.

Hollis considers in his book ‘Trust within reason’ [29] several possible explanations why
an agent should take one penny instead of two. For example, taking one penny in the first
move ‘signals’ to the other agent that the agent wants to cooperate (and it signals that
the agent is not rational in the economic sense). Two concepts that play a major role in
his book are trust and commitment (together with norm and obligation). One possible
explanation is that taking one penny induces a commitment that the agent will take one
penny again in his next move. If the other agent believes this commitment, then it has
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become rational for him to take one penny too. Another explanation is that taking one
penny leads to a commitment of the other agent to take one penny too, maybe as a result of
a social norm to share. Moreover, other explanations are not only based on commitments,
but also on the trust in the other party.

In [9] Broersen et al. introduce a language in which some aspects of these analyses can
be represented. They introduce a modal language, like the ones which have seen before,
in which they introduce two new modalities. The formula Ci,j(ϕ > ψ) means that agent
i is committed towards agent j to do ϕ rather than ψ, and Tj,i(ϕ > ψ) means that agent
j is more trusted by agent i after executing ϕ than after executing ψ. To deal with the
examples the following relation between trust and commitment is proposed: violations of
stronger commitments result in a higher loss of trustworthiness, than violations of weaker
ones.

Ci,j(ϕ > ψ) → Tj,i(ϕ > ψ) (13)

In this paper we only consider the example without communication. Broersen et al. also
discuss scenarios of pennies pinching with communication.

The set of agents is G = {1, 2} and the set of atomic actions A = {takei(1), takei(2) |
i ∈ G}, where takei(n) denotes that the agent i takes n pennies. The following formula
denotes that taking one penny induces a commitment to take one penny later on. The
notation [ϕ]ψ says that after action ϕ, the formula ψ must hold.

[take1(1); take2(1)] C1,2(take1(1) > take1(2)) (14)

The formula expresses that taking one penny is interpreted as a signal that agent 1 will
take one penny again on his next turn. When this formula holds, it is rational for agent 2
to take one penny.

The following formula denotes that taking one penny induces a commitment for the
other agent to take one penny on the next move.

[take1(1)]C2,1(take2(1) > take2(2)) (15)

The formula denotes the implications of a social law, which states that you have to return
favors. It is like giving a present at someone’s birthday, thereby giving the person the
obligation to return a present for your birthday.

Besides the commitment operator more complex examples involve also the trust op-
erator. For example, the following formula denotes that taking one penny increases the
amount of trust.

Ti,j((ϕ; takej(1)) > ϕ). (16)

The following formulas illustrate how commitment and trust may interact. The first for-
mula expresses that each agent intends – in the sense of BDI – to increase the amount of
trust (long term benefit). The second formula expresses that any commitment to itself is
also a commitment to the other agent (a very strong cooperation rule).

Ti,j(ψ > ϕ) → Ij(ψ > ϕ).
Cj,j(ψ > ϕ) ↔ Cj,i(ψ > ϕ).

(17)
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From these two rules, together with the definitions and the general rule, we can deduce:

Ci,j(takei(1) > takei(2)) ↔ Tj,i(takei(1) > takei(2)) (18)

In this scenario, each agent is assumed to act to increase its long term benefit, i.e., act to
increase the trust of other agents. Note that the commitment of i to j to take one penny
increases the trust of j in i and vice versa. Therefore, each agent would not want to take
two pennies since this will decrease its long term benefit.

6 Conclusion

In this paper we study how the research areas classical decision theory, qualitative de-
cision theory, knowledge-based systems and belief-desire-intention models are related by
discussing relations between several representative examples of each area. We compare the
theories, systems and models on three aspects: the way the informational and motivational
attitudes are represented, the way the alternative actions are represented, and the way that
decisions are reached. The comparison is summarized in table 2.

CDT QDT KBS BDI
information probabilities qualitative probability knowledge beliefs
motivation utilities qualitative utility goals desires
alternatives small set do(ϕ) decision variable branches

focus decision rule decision rule deliberation agent types

Table 2: Comparison

6.1 Similarities

Classical decision theory, qualitative decision theory, knowledge-based systems and belief-
desire-intention models all contain representations of information and motivation. The
informational attitudes are probability distributions, qualitative abstractions of probabil-
ities and logical models of knowledge and belief, respectively. The motivational attitudes
are utility functions, qualitative abstractions of utilities, and logical models of goals and
desires.

Each of them has some way to encode a set of alternative actions to be decided. This
ranges from a small predetermined set for decision theory, or a set of decision variables for
Boutillier’s qualitative decision theory, through logical formulas in Pearl’s approach and in
knowledge-based systems, to branches in a branching time temporal logic for belief-desire-
intention models.

Each area has a way of formulating how a decision is made. Classical and qualitative
decision theory focus on the optimal decisions represented by a decision rule. Knowledge-
based systems and belief-desire-intention models focus on a model of the representations
used in decision making, inspired by cognitive notions like belief, desire, goal and intention.
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Relations among these concepts express an agent type, which determines the deliberation
process.

We also discuss several extensions of classical decision theory which call for further
investigation. In particular, we discuss the two-step process of decision making in BDI,
in which an agent first generates a set of goals, and then decides how these goals can
best be reached. We consider decision making through time, comparing decision processes
and the use of intentions to stabilize decision making. Previous decisions, in the form of
intentions, influence later iterations of the decision process. We also consider extensions of
the theories for more than one agent. In the area of multi-agent systems norms are usually
understood as obligations from society, inspired by work on social agents, social norms and
social commitments [12]. In decision theory and game theory norms are understood as
reciprocal norms in evolutionary game theory [4, 48] that lead to cooperation in iterated
prisoner’s dilemmas and in general lead to an decrease in uncertainty and an increase in
stability of a society.

6.2 Challenges

The renewed interest in the foundations of decision making is due to the automation of
decision making in the context of tasks like planning, learning, and communication in au-
tonomous systems [5, 7, 14, 17]. The example of Doyle and Thomason [24] on automation
of financial advice dialogues illustrates decision making in the context of more general
tasks, as well as criticism on classical decision theory. The core of the criticism is that
the decision making process is not formalized by classical decision theory but dealt with
only by decision theoretic practice. Using insights from artificial intelligence, the alterna-
tive theories, systems and models challenge the assumptions underlying classical decision
theory. Some examples have been discussed in the papers studied in this comparison.

1. The set of alternative actions is known beforehand, and fixed.

As already indicated above, Pearl uses actions Do(ϕ) for any proposition ϕ. The
relation between actions is expressed in a logic, which allows one to reason about
effects of actions, including non-desirable side-effects. Boutillier makes a conceptual
distinction between controllable and uncontrollable variables in the environment.
Belief-desire-intention models use a branching time logic with events to model differ-
ent courses of action.

2. The user has an initial set of preferences, which can be represented by a utility
function.

Qualitative decision rules studied in classical decision theory as well as Boutilier’s
purely qualitative decision theory cannot combine preference and plausibility to de-
liberate over likely but uninfluential events, and unlikely but highly influential events.
Pearl’s commensurability assumption on the semi-qualitative rankings for preference
and plausibility solves this incomparability problem, while retaining the qualitative
aspect.
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3. The user has an initial set of beliefs which can be represented by a probability dis-
tribution.

The preferences of an agent depend on its beliefs about the domain. For example,
our user seeking financial advice may have wrong ideas about taxation, influencing
her decision. Once she has realized that the state will not get all her savings, she
may be less willing to give to charity for example. This dependence of preference on
belief is dealt with by Pearl, by Boutillier and by BDI models in different ways. Pearl
uses causal networks to deal with belief revision, Boutillier selects minimal elements
in the preference ordering, given the constraints of the probability ordering, and in
BDI models realism axioms restrict models.

4. Decisions are one-shot events, which are independent of previous decisions and do
not influence future decisions.

This assumption has been dealt with by (Markov) decision processes in the clas-
sical decision theory tradition, and by intention reconsideration and planning in
knowledge-based systems and BDI.

5. Decisions are made by a single agent in isolation.

This assumption has been challenged by the extension of classical decision theory
called classical game theory. In multi-agent systems belief-desire-intention models
are used. Belief-desire-intention logics allow one to specify beliefs and desires of
agents about other agents’ beliefs and desires, etc. Such nested mental attitudes
are crucial in the application of interactive systems. In larger groups of agents, we
may need social norms and obligations to restrict the possible behavior of individual
agents. In such theories agents are seen as autonomous; socially unwanted behavior
can be forbidden, but not be prevented. By contrast, in game theory agents are
programmed to follow the rules of the ‘game’. Agents are not in a position to break
a rule. The set of alternative actions must now also include potential violations of
norms, by the agent itself or by others.

Our comparison has resulted in a list of similarities and differences between the various
theories of decision making. The differences are mostly due to varying conceptualizations
of the decision making process, and a different focus in its treatment. For this reason, we
believe that the elements of the theories are mostly complementary. Despite the tension
between the underlying conceptualizations, we found several underlying similarities. We
hope that our comparison will stimulate further research into hybrid approaches to decision
making.
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