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Abstract

In this paper we investigate the relation between decisions, deliberation and agent
types. In particular, we are interested how deliberation leads to decisions, and how
agent types classify patterns of deliberation. We therefore consider Classical and Qual-
itative Decision Theories (CDT and QDT), the Beliefs-Desire-Intention (BDI) model,
3APL systems, and Belief-Obligation-Intention-Desire (BOID) systems. The first two
are based on a decision rule which expresses a notion of rationality, whereas the latter
three are based on deliberation processes and agent types.

1 Introduction

In recent years the interest in models of decision making for autonomous agents has in-
creased. A reason for this growing interest is the notion of agent autonomy which is often
defined as the ability of agents to decide which actions to perform at any moment in time.
Different proposals have been made, rooted in different research traditions and objectives.
Each proposal explains the decision making behavior of agents in terms of different sets
of underlying concepts. For example, classical decision theory [22] explains the decision
making behavior in terms of a probability and a utility function, and a decision rule. Other
approaches criticize the representation of classical decision theory as being non-practical and
unrealistic. According to them it is hard to translate all factors that influence the decision
making behavior of an agent in terms of two functions that assign numbers to actions and
states. In contrast, they aim at explaining the decision making behavior of agents in terms
of qualitative concepts such as preference and likelihood ordering, or cognitive concepts such
as beliefs, desires, intentions, and obligations. These concepts are claimed to be intuitive
and easily accessible. In these approaches, the problem of deciding an action to perform is
split into two problems. The first problem is to decide which goal should be achieved, and
the second problem is to decide which action to perform to achieve the selected goal. The
first problem is called goal selection and the second problem is called planning. The problem
with these approaches is the lack of a clear formulation of decision rules that combines the
underlying qualitative concepts to decide which action to perform at any moment in time.

There are many conceptualizations and formalizations of decision making. In [8] we
compare classical decision theory with qualitative decision theory, knowledge-based systems
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and belief-desire-intention models developed in artificial intelligence and agent theory. They
all contain representations of information and motivation. Examples of informational atti-
tudes are probability distributions, qualitative abstractions of probabilities, knowledge, and
beliefs. Examples of motivational attitudes are utility functions, qualitative abstractions of
utilities, goals, and desires. Each of them encodes a set of alternatives to be chosen from.
This ranges from a small predetermined set, a set of decision variables, through logical for-
mulas, to branches of a tree representing events through time. Moreover, they have a way
of formulating how a decision is made. Classical and qualitative decision theory focus on
the optimal decisions represented by a decision rule. Knowledge-based systems and belief-
desire-intention models focus on a model of the representations used in decision making,
inspired by cognitive notions like belief, desire, goal and intention. Relations among these
concepts express an agent type, which constrains the deliberation process. We also con-
sider the relation between decision processes and intentions, and the relation between game
theory and norms and commitments.

In this paper we are interested in the relation between decisions, deliberation and agent
types. In particular, we are interested in the question:

How does deliberation based on agent types lead to decisions?

This question breaks down in three sub-questions:

1. What is an agent decision? To answer this question we discuss different approaches
and concepts used to explain the decision making behavior of agents. The first is
classical decision theory [15, 22] and the second it qualitative extension (QDT) [1, 17].

2. What is agent deliberation and how does it lead to a decision? To answer this question
we discuss two other approaches. The third approach we discuss is based on an
abstract model of the mental attitudes of an agent: beliefs, desires and intentions
(BDI) [2, 5, 19]. The fourth (3APL) is similar to BDI except that the decision rules is
replaced by a process called the deliberation process. It is this process that determine
which actions should be performed for a given set of underlying cognitive concepts.

3. How do agent types classify patterns of deliberation? The fifth approach we discuss
to answer this question is also based on mental attitudes extended with obligations
(BOID) [3].

The layout of this paper is as follows. First we discuss decisions in classical and quali-
tative decision theory. Then, we discuss the BDI approach, 3APL systems and deliberation
process. In the last section we consider the role of agent types in Rao and Georgeff’s BDI
approach and the BOID approach.

2 Decisions

2.1 Classical Decision Theory

In classical decision theory, a decision is a choice made by some entity of an action from a
set of alternatives. It has nothing to say about actions – either about their nature or about
how a set of them becomes available to the decision maker. A decision is good if it is an
alternative that the decision maker believes will prove at least as good as other alternative
actions. Good decisions are formally characterized as actions that maximize expected utility,
a notion involving both belief and goodness. See [12] or [15, 22] for further explanations.

Definition 1 Let A stand for the set of actions or alternatives. With each action, a set of
outcomes is associated. Let W stand for the set of all possible worlds or outcomes. Let U
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be a measure of outcome value that assigns a utility U (w) to each outcome w ∈ W , and let
P be a measure of the probability of outcomes conditional on actions, with P (w|a) denoting
the probability that outcome w comes about after taking action a ∈ A in the situation under
consideration.

The expected utility EU (a) of an action a ∈ A is the average utility of the outcomes
associated with the alternative a, weighing the utility of each outcome by the probability that
the outcome results from the alternative a, that is, EU (a) =

∑
w∈W U (w)P (w|a). A rational

decision maker always maximizes expected utility, i.e. he makes decisions according to the
MEU decision rule.

Decision theory is an active research area within economics, and the number of exten-
sions and subtleties is too large to address here. Several other decision rules have been
investigated, including qualitative ones, such as maximin, minimax, minregret etc. Finally,
classical decision theory has been extended in several ways to deal for example with multiple
objective, sequential decisions, multiple agents, distinct notions of risk, etcetera.

Decision theory has become one of the main foundations of economic theory due to
so-called representation theorems. Representation theorems, such as the most famous one
of Savage [22], typically prove that each decision maker obeying certain innocent looking
postulates (about weighted choices) acts as if he applies the MEU decision rule with some
probability distribution and utility function. Thus, he does not have to be aware of it, and
his utility function does not have to represent selfishness. In fact, exactly the same is true
for altruistic decision makers. They also act as if they maximize expected utility; they just
have another utility function.

2.2 Qualitative Decision Theory

Qualitative decision theory relaxes the assumption of classical decision theory that the deci-
sion making agent is able to weigh all possible alternative courses of action before choosing
one of them. In realistic situations decision making agents are resource bounded in the
sense that they have partial information and do not have resources to compare the utility
of possible states. The research on qualitative decision theory aims therefore to develop
representation and reasoning schemes for partial information and generic preferences to
represent probabilities of states and generic preferences over those states [12]. Typically
qualitative orderings are introduced that represent the likelihood (probability) and desir-
ability (utility) of states. In contrast to classical decision theory where a decision rule such
as maximum expected utility determines the course of actions, in qualitative decision theory
and in the presence of incomplete information, the course of actions are decided based on
various strategies such as maximize potential gain or minimize potential loss [1].

According to Doyle and Thomason [12, p.58], quantitative representations of probability
and utility and procedures for computing with these representations, do provide an ade-
quate framework for manual treatment of very simple decision problems, but they are less
successful in more realistic cases. For example, they argue that classical decision theory
does not address decision making in unforeseen circumstances, it offers no means for cap-
turing generic preferences, it provides little help in modeling decision makers who exhibit
discomfort with numeric trade-offs, and it provides little help in effectively representing and
reasoning about decisions involving broad knowledge of the world.

Doyle and Thomason argue for various formalization tasks. They distinguish the fol-
lowing new tasks: formalisms to express generic probabilities and preferences, properties of
decision formulations, reasons and explanations, revision of preferences, practical qualitative
decision-making procedures and agent modeling. Moreover, they argue that hybrid repre-
sentation and reasoning with quantitative and qualitative techniques, as well as reasoning
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within context, deserve special attention. Many of these issues are related to subjects stud-
ied in artificial intelligence. It appears that researchers now realize the need to reconnect
the methods of AI with the qualitative foundations and quantitative methods of economics.

Some first results have been obtained in the area of reasoning about uncertainty, a sub-
domain of artificial intelligence which mainly attracts researchers with a background in
reasoning about defaults and beliefs. Often the formalisms of reasoning about uncertainty
are re-applied in the area of decision making. Thus, typically uncertainty is not represented
by a probability function, but by a plausibility function, a possibilistic function, Spohn-type
rankings, etc. Another consequence of this historic development is that the area is much
more mathematically oriented than the planning community or the BDI community.

A typical example is Pearl’s qualitative decision theory, in which decisions are based
on abstractions of probability functions, and which is extended with a model of causality.
Boutilier’s logic of qualitative decision theory formalizes decisions as a set of controllable
propositions. However, he introduces another concept in his logic, which makes the logic
closer to the kind of logics we consider in the following section on deliberation and agent
types. This new concept is the concept of goal. This is explained in the following section.

2.3 Introduction of Goals in Decision Theory

Goals serve a dual role in most planning systems, capturing aspects of both desires toward
states and commitment to pursuing that state [10]. In goal-based planning, adopting a
proposition as a goal commits the agent to find some way to accomplish the goal, even if
this requires adopting some sub-goals that may not correspond to desirable propositions
themselves [9]. In realistic planning situations goals can be achieved to varying degrees,
and frequently goals cannot be achieved completely. Context-sensitive goals are formalized
with basic concepts from decision theory [1, 9, 13]. In general, goal-based planning must be
extended with a mechanism to choose between which goals must be adopted.

Boutilier [1] proposes a logic and possible worlds semantics for representing and reasoning
with qualitative probabilities and utilities, and suggests several strategies for qualitative
decision making based on this logic. His semantics is not quantitative (like CDT), but
purely qualitative. Consequently, the maximum expected utility (MEU) decision rule is
replaced by qualitative rules like Wald’s criterion. The conditional preference is captured
by a preference ordering (an ordinal value function) that is defined on possible worlds.
The preference ordering represents the desirability of worlds. Similarly, probabilities are
captured by an ordering, called normality ordering, on possible worlds representing their
likelihood.

Definition 2 The possible worlds semantics for this logic is based on models of the form
M = 〈W,≤P ,≤N , V 〉 where W is a set of worlds (outcomes), ≤P is a transitive and con-
nected preference ordering relation on W , ≤N is a transitive and connected normality or-
dering relation on W , and V is a valuation function.

In Boutilier’s logic, conditional preferences can be represented by means of ideal operator
I. We have that a model M satisfies the formula I(ϕ|ψ) if the preferred or best or minimal
ψ worlds are ϕ worlds. For example, let u be the proposition ‘agent has umbrella’ and r
be the proposition ‘it rains’, then I(u|r) expresses that in the most preferred rain-worlds
the agent has an umbrella. Similarly, probabilities are represented in this logic by means
of a normative conditional connective ⇒. For example, let w be the proposition ‘the agent
is wet’ and r be the proposition ‘it rains’, then r ⇒ w expresses that the agent is wet at
the most normal rain-worlds. Its semantics is derived from Hansson’s deontic logic with
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modal operator O for obligation [14].1 A similar type of semantics is used by Lang [16] for a
modality D to model desire. An alternative approach represents conditional modalities by
so called ‘ceteris paribus’ preferences, using additional formal machinery to formalize the
notion of ‘similar circumstances’, see e.g. [11, 13, 23, 24].

In general, a goal is any proposition that the agent attempts to make true. A rational
agent is assumed to attempt to reach the most preferred worlds consistent with its default
knowledge. Given the ideal operator and the default conditional, a goal is defined as follows.

Definition 3 Given a set of facts KB, a goal is any proposition ϕ such that

M |= I(ϕ | Cl(KB)) (1)

where Cl(KB) is the default closure of the facts KB defined as follows:

Cl(KB) = {ϕ | KB ⇒ ϕ} (2)

We assume (for simplicity of presentation) that Cl(KB) is finitely specifiable and take it
to be a single propositional sentence.2

3 Deliberation

We discuss the BDI approach and a cognitive agent system called 3APL that aims at develop-
ing computational specifications for more concrete agents. They illustrate how deliberation
can lead to decisions.

3.1 Belief, Desire, and Intention (BDI)

A criticism to classical and qualitative decision theory is that they are inadequate for real
time applications in dynamic environments. In such applications, the decision making agent
should select and execute actions at each moment in time. As the dynamic environment
changes either during the selection or the execution of actions, the decision making agent
need to deliberate to either reconsider the previously decisions, also called intentions, or
continuing the commitment to those decisions (intentions). This deliberation process is
argued by Bratman [2] to be crucial to realize stable behavior of decision making agents
with bounded resources. This approach has led to BDI systems [19] that extends decision
theory with the additional deliberation component called intention.

In BDI systems, the partial information on states is reduced to dichotomous values (0-1);
the propositions are believed or not. This abstraction is called the beliefs of the decision
making agent. Similarly, the partial information about the objectives of the decision making
agent is reduced to dichotomous values (0-1); the propositions are desired or not. This
abstraction is called the desires of the decision making agent. Finally, the partial information
about the previous decisions, to which the agent is still committed to, is represented by
dichotomous values (0-1); the proposition are intended or not.

3.2 3APL

3APL is a computational specification for cognitive agents. The specification language con-
sists of two parts: the object-level and the meta-level specification language. The expressions

1In default logic, an exception is a digression from a default rule. Similarly, in deontic logic an offense is
a digression from the ideal.

2A sufficient condition for this property is that each “cluster” of equally normal worlds in ≤N corresponds
to a finitely specifiable theory. This is the case in, e.g., System Z.



44 Mehdi Dastani and Leendert van der Torre

of the object-level language specifies the cognitive attitudes of agents such as beliefs, goals,
and plans (intentions), and additional ingredients such as actions that can be performed by
the agent and reasoning rules that it can apply. The expressions of the meta-level language,
also called the deliberation language [6, 7], specify the deliberation process that determines
which actions should be performed at each moment in time. These expressions specify many
decisions such as which goal to select, which reasoning rules to apply, which plan to execute,
if and which goal to revise, and if and which plan to revise.

The deliberation language is a many-sorted language [6, 7]. It includes sorted terms that
refer to object-level entities such as beliefs, goals, actions, plans, and rules, predicates that
express relations between terms, and statements that selects goals, plans, reasoning rules,
and generate plans or examine the consequences of the plans. For now it is important to
illustrate only the statements of the deliberation language through which various types of
deliberation activities can be implemented.

Definition 4 Let s be any sort, ts be a term of sort s, and Vs be a variable of sort s. The
set of basic statements of the deliberation language is defined as follows:

• Vs := ts

• selgoal(tsg , fc, Vig)
selint(tsi, fc, Vii)
selplan(tsp, fc, Vip)
selrule(tsxrr , tsx, Vixrr) for x ∈ {g, i, p}

• update(tsx, tiy) for x, y ∈ {b, g, i}
reviseplan(tip , t′ip)

• plan(tii, tN )
replan(tip, tspr, fc, tN )
btplan(tip, tspr, tN )
explan(tip)

The set of deliberation statements is defined as follows:

- Basic statements are deliberation statements

- If ϕ ∈ DF is a deliberation formula, and α and β are deliberation statements, then
the following are deliberation statements:
α ; β ,
IF ϕ THEN α ELSE β ,
WHILE ϕ DO α

The first statement Vs := ts is designed to assign a sorted term ts to a variable Vs of the
same sort. The following statements are all selecting some item from a particular set of those
items. The statement selgoal(tsg , fc, Vig) selects an individual goal from the set of goals de-
noted by the term tsg. The term denoting the selected individual goal is assigned to variable
Vig. The function fc maps goals to boolean values indicating whether the goal formula sat-
isfies the criterium c. The statement selint(tsi, fc, Vii) selects an individual intention from
the set of intentions denoted by the term tsi. The term denoting the selected individual
intention is assigned to variable Vii. The function fc indicates whether the intention satisfies
the criterium c. The statement selplan(tsp, fc, Vip) selects an individual plan from the set
of plans denoted by the term tsp. The term denoting the selected plan should satisfy cri-
terion fc and is assigned to the variable Vip. The statement selrule(tsxrr , tsx, Vixrr) selects
a rule from the set of (goal, intention, or plan) reasoning rules denoted by the terms tsxrr
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and assigns the term that denotes the rule to the variable Vii. The selected rule should be
applicable to a formula from the set denoted by the term tsx.

The criterium c used in the selection functions can be used to define a preference ordering
between the goals, intentions, plans and rules. So, in fact this is the place where a relation
with qualitative decision theory can be made. The same argument can be made for the other
selection functions. The main advantage over the classical decision theoretic approach is that
the deliberation uses several independent preference orderings over different concepts. The
combination of all these orderings leads to a decision on which action will be performed next.
However, unlike decision theory where all factors have to be combined into one function that
determines the best action, we explicitly program this combination. Besides this advantage
of having all factors explicitly available (and thus easily adjustable) the combination of these
factors into a decision can be made situation dependent, therefore allowing for an adjustable
preference ordering of the agent.

The statement update(tsx, tiy) updates a mental base (belief, goal, or intention base) de-
noted by the term tsx with the formula denoted by the term tiy. The statement reviseplan(tip , t′ip)
removes the plan that is denoted by the term tip from the plan base, and adds the plan that
is denoted by the term t′ip to it.

The final set of basic statements are all related to updating the plans of the agent in
some way. The statement plan(tii, tn) generates a plan expression with maximum length
tn to achieve intention tii. The generated plan expression is assigned to the plan base of
the agent. The statement replan(tip, tspr, fc, tN) uses the set of planning rules tspr and
generates a new plan expression to replace the plan expression tip. The new plan expression
satisfies the criteria fc and has maximum length tN . The statement btplan(tip, tspr, tN ) does
the same as replan except that btplan uses an order among planning rules and generates the
next plan expression according to that order. Finally, explan(tip) executes the individual
plan expression denoted by the term tip. We assume that the execution of a plan has some
external effects. The internal mental effects should be realized using the update statement
explicitly.

In this paper, we do not consider the formal semantics of this deliberation language since
we are only interested in the implementation of the deliberation process and how autonomous
agent properties related to the agent’s decision making ability can be implemented. The
semantics for this language is an extension of the semantics of the meta-language already
presented in [6].

4 Agent types

Agent types are patterns of deliberation. The most famous ones are the realism and com-
mitment strategies defined in BDI systems. Agent types that are introduced in the BDI
tradition can be considered as specification of abstract decision patterns that determine
which state can be chosen as the goal state. These decision patterns can be extended in
two directions. The first direction is to consider additional cognitive concepts that influence
the decision making behavior such as obligation and norms. The goal state can then be
chosen not only from desires, but also from obligation or norm states since obligation and
norms are external motivational attitudes. Like in the BDI tradition, the set of goal states
can be constrained by a number of axioms that determine which states can be chosen as
the goal state. Another direction to extend the specification of abstract decision patterns is
to consider the specifications of more concrete decision patterns or agent types. The latter
extension results in what is called the specification of deliberation process which is usually
formulated as a iterative procedure that repeats itself infinitely.
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4.1 BDI-CTL

As a typical example of a BDI model, we discuss Rao and Georgeff’s initial BDI-CTL
logic [19]. In this rather complicated semantics of the BDI-CTL logic, the belief, desire, and
intention of decision making agents are represented by the relation B, D, and I, respectively.
In BDI-CTL, the formalization of mental states (belief-desire-intention) is extended with
Computational Tree Logic CTL and CTL∗ in order to represent how the mental states of
the decision making agent change through time. Time is considered as an abstraction of
actions that the agent can perform.

Definition 5 (Semantics of BDI logic [19]) An interpretation M is defined to be a tu-
ple M = 〈W,E, T,<, U,B,D, I,Φ〉, where W is the set of worlds, E is the set of primitive
event types, T is a set of time points, < a binary relation on time points, U is the universe
of discourse, and Φ is a mapping from first-order entities to elements in U for any given
world and time point. A situation is a world, say w, at a particular time point, say t, and is
denoted by wt. The relations B, D, and I ⊆ W × T ×W map the agent’s current situation
to her beliefs, desire, and intention-accessible worlds, respectively.

BDI does not involve an explicit notion of actions, but instead models possible events that
can take place through time by the branching time. The branching time structure models
possible sequences of events and determines the alternative cognitive worlds that an agent
can bring about through time. Thus, each branch in the temporal structure represents an
alternative the agent can choose. Uncertainty about the effects of actions is not modeled by
branching time, but by distinguishing between different belief worlds. In effect, they model
all uncertainty about the effects of actions as uncertainty about the present state, a well
known representation from decision theory [22]. This translation is discussed at length in
[18].

The consequence of the fact that we no longer have pre-orders, like in Boutilier’s logic,
but only an unstructured set, is that we can now only represent monadic expressions like
B(ϕ) and D(ϕ), no longer dyadic expressions like I(ϕ|ψ). We have that a world at a time
point of the model satisfies B(ϕ) if ϕ is true in all belief accessible worlds at the same time
point. Since there is no such ordering on the possible worlds in BDI, each desire world can
in principle be chosen in BDI as the goal world which need to be achieved. It may be clear
that it is not an intuitive idea to select a desire world as the goal world in a random way
since desire worlds can be in principle not belief worlds. Selecting a desire world which is
not believed results in wishful thinking and thus suggests an unrealistic decision. Therefore,
BDI proposes a number of constraints under which each desire world can be chosen as a goal
world. These constraints are usually characterized by some axioms called realism, strong
realism or weak realism [20, 4].

In particular, the realism constraint states that agent’s desire should be consistent with
its beliefs. Note that this constraint is the same as in QDT where the goal worlds should be
consistent with the belief worlds. Formally, the realism axiom states that the set of desire
accessible worlds should be a subset of the set of belief accessible worlds, i.e.

B(ϕ) → D(ϕ)

and, moreover, the belief and desire worlds should have identical branching time structure
(the same alternatives), i.e.

∀w∀t∀w′ if w′ ∈ Dw
t then w′ ∈ Bw

t

The definition of realism includes an additional axiom to reduce the set of desire worlds and
to guarantee that chosen desire world is consistent with the worlds that are already chosen
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as the goal worlds. Formally, this axiom states that the intention accessible worlds should
be a subset of desire accessible worlds, i.e.

D(ϕ) → I(ϕ)

and, moreover, the desire and intention worlds should have identical branching time struc-
ture (the same alternatives), i.e.

∀w∀t∀w′ if w′ ∈ Iw
t then w′ ∈ Dw

t

In addition to these constraints, which are classified as static constraints, there are different
types of constraints introduced in BDI resulting in additional agent types. These axioms
determine when intentions or previously decided goals should be reconsidered or dropped.
In BDI, choosing to drop a goal is thus considered to be as important as choosing a new goal.
These constraints, called commitment strategies, involve time and intentions and express the
dynamics of decision making. The well-known commitment strategies are ‘blindly committed
decision making’, ‘single-minded committed decision making’, and ‘open-minded committed
decision making’. For example, the single-minded commitment strategy states that an agent
remains committed to its intentions until either it achieves its corresponding objective or
does not believe that it can achieve it anymore.

These static and dynamic properties determine the type of decision making behavior.
Thus, in contrast to QDT, where the decision rule is based on the ordering on the possible
worlds, in BDI any desire world that satisfies a set of assumed axioms such as realism,
can be chosen as the goal world, i.e., BDI systems do not consider decision rules but they
consider agent types. Although, there is no such issue as agent type in classical or qualitative
decision theory, there are discussions which can be related to agent types. For example, in
discussions about risk attitude, often a distinction is made between risk neutral and risk
averse.

4.2 BOID

In the BOID approach [3] the actions are decided by first generating the goals that should
be achieved, and then planning them. The goals are generated based on the derivation of
so-called extensions in default logic [21]. Default logic extends the inference rule modus
ponens with two new mechanisms. First, there is a consistency constraint on the inference
process, such that rules are applied only if they do not lead to an inconsistency. Second,
the application of defeasible rules may result in conflicting outputs and thus in conflicting
goal sets. They lead to alternative sets of logic formulas. However, to resolve the conflict
we have to consider the whole extension, because agents should consider the effects of goals
before they commit to them. In the BOID approach, goal generation is based on prioritized
default logic. The specification of goal generation process - the instantiation of a default
theory - contains the specification of a set of facts, a set of rules, and the specification of
a priority function ρ on the rules. To keep the formal details in this paper to a minimum
we assume that individual extensions do not contain disjunctive information, that is, we
assume that extensions are sets of positive or negated atomic formulas called literals.

The specification of goal generation process is given in Definition 6. The goal generation
process starts with a set of observations Obs, which cannot be overridden, and initial sets
of default rules for B, O, I, and D. The procedure then determines a sequence of sets of
extensions S0, S1, . . .. The first element in the sequence is the set of observations: S0 =
{Obs}. A set of extensions Si+1 is calculated from a set of extensions Si by checking for
each extension E in Si whether there are rules that can extend the extension. There can be
none, in which case nothing happens. Otherwise each of the consequents of the applicable
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rules with highest ρ-value are added to the extension separately, to form distinct extensions
in Si+1. The operator Th(S) refers to the logical closure of S, and the syntactic operation
Lit(b) extracts the set of literals from a conjunction of literals b. In practice not the whole
set of extensions is calculated, but only those that are calculated before the agent runs out
of resources.

Definition 6 (Generate goal process) Let ∆ = 〈Obs,B,O, I,D, ρ〉 be the specification
of the goal generation process for propositional logic L, and let an extension E be a set of L
literals (an atom or its negation). We say that:
- a rule (a ↪→ b) is strictly applicable to an extension E, iff a ∈ Th(E), b 6∈ Th(E) and
¬b 6∈ Th(E);
- max(E,∆) ⊆ B∪O∪I∪D is the set of rules (a ↪→ b) strictly applicable to E such that there
does not exists a (c ↪→ d) ∈ B∪O∪I ∪D strictly applicable to E with ρ(c ↪→ d) > ρ(a ↪→ b);
- E ⊆ L is an extension for ∆ iff E ∈ Sn and Sn = Sn+1 for the following proce-
dure:

i := 0; Si := {Obs};
repeat
Si+1 := ∅;
for all E ∈ Si do

if exists (a ↪→ b) ∈ B ∪O ∪ I ∪D strictly applicable to E then
for all (a ↪→ b) ∈ max(E,∆) do
Si+1 := Si+1 ∪ { E ∪ Lit(w)};

end for
else
Si+1 := Si+1 ∪ {E};

end if
end for
i:=i+1;

until Si = Si−1;

Agent types are used to distinguish, classify and compare agent decision making behavior.
In this paper, we consider agent types that are defined in terms of goal generation process.
These agent types are based on overriding, such that in realistic agents beliefs override other
mental attitudes, and in social agents obligations override desires. Agent types based on goal
generation are conflict resolution methods. An agent has a conflict if the goal generation
process in Definition 6 derives multiple extensions. A conflict is resolved if the priority
function is adapted such that no alternative extensions are generated. A mental attitude
conflicts with another mental attitude if two rules from different attitudes are applicable,
but applying both leads to an inconsistent set. A rule overrides another rule if it has a
higher priority. Finally, agent types based on goal generation are formalized in Definition 7
as constraints on the set of available priority functions. When the process starts the selected
priority function obeys the constraints corresponding to the agent type. An agent type is
called primitive if it contains only one constraint, and complete if it induces a total strict
ordering on the components.

Definition 7 An agent type based on goal generation is a consistent set of constraints
on priority function ρ of the form X � Y with X,Y ∈ {B,O, I,D} defined as follows:
∀rule x ∈ X ∀rule y ∈ Y ρ(rule x) > ρ(rule y)
A primitive agent type contains a single constraint. A complete agent type is a maximal
consistent set of constraints.

There are twelve primitive agent types, which are listed in Table 1 together with the cor-
responding constraint. They are ordered in six pairs, each agent type A together with its
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inverse {X � Y | Y � X ∈ A}. An agent type is a set of primitive agent types. For example,

Constraint Agent type

B � O (O � B) Realistic with respect to obligations (dogmatic)
B � I (I � B) Realistic with respect to intentions (over-committed)

B � D (D � B) Realistic with respect to desires (wishful thinker)
O � I (I � O) (Un)Stable with respect to obligations

O � D (D � O) Social (selfish)
I � D (D � I) (Un)Stable with respect to desires

Table 1: Twelve primitive agent types

the realistic agent type is {B � O,B � I, B � D}, the stable agent type is {I � O, I � D},
the social stable agent type is {I � O, I � D,O � D}, etc. Moreover, agent types can be
derived. For example, since orderings are transitive we can derive that an agent which is
unstable with respect to obligations (O � I) and stable with respect to intentions (I � D)
is social (O � D). There are twenty-four complete agent types, of which the six realistic
ones are listed in Table 2. The definition of agent types leads to a simple way in which

Constraints Agent type

B � O O � I I � D Realistic, unstable-O, stable-D, social
B � O O � D D � I Realistic, unstable-O, unstable-D, social
B � I I � O O � D Realistic, stable-O, stable-D, social
B � I I � D D � O Realistic, stable-O, stable-D, selfish
B � D D � O O � I Realistic, unstable-O, unstable-D, selfish
B � D D � I I � O Realistic, stable-O, unstable-D, selfish

Table 2: Six complete realistic agent types

agent types can be compared. Agent type A is at least as general as agent type B if all
the priority functions that respect constraints of agent type A, also respect the constraints
of agent type B. The generality relation between realistic agent types forms the lattice
visualized in Figure 1 if we add a top element. This figure should be read as follows. The
level in this hierarchy indicates the generality of agent types. The bottom of this lattice
is the realistic agent type. Each higher layer adds additional constraints resulting in more
specific agent types. The top of this lattice is the falsum which indicates that adding any
additional constraint to the ρ function results in an inconsistent ordering. Just below are
the six complete realistic agent types.

There are also other constraints on priority functions. One of them is the following
unique extension property, which says that ρ associates with each rule a unique integer. It
induces a strict total order on the rules.

Definition 8 (Unique goal set) A goal generation process that generates unique goal sets
is specified by a tuple 〈Obs,B,O, I,D, ρ〉 with ρ a function from B∪O∪I ∪D to the integers
such that ρ(x) = ρ(y) implies x = y.

Another constraint on priority function ρ is the following attitude order property.

Definition 9 (Attitude order) A goal generation process specified by a tuple
〈Obs,B,O, I,D, ρ〉 induces a strict attitude order when ρ is a function from B ∪O ∪ I ∪D
to the integers such that for all X,Y ∈ {B,O, I,D} with X 6= Y we have either X � Y or
Y � X.



50 Mehdi Dastani and Leendert van der Torre
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Figure 1: The lattice structure of realistic agent types.

The only agent types that satisfy the attitude order property are the complete agent types.
Lack of the attitude order property is illustrated by the realistic agent. It starts with the
observations and calculates belief extensions by iteratively applying belief rules. When no
belief rule is applicable anymore, then the set of either O, the I, or the D rules are chosen
arbitrarily. The chosen set is called the active set of rules. If a rule from the active set of rules
is applicable, then the rule is selected and applied. When the rule is applied successfully,
the belief rules are attended again and belief rules are applied. If there is no rule from the
active set of rules O, I, or D is applicable, then another set of rules becomes the active set of
rules. If there is no rule from any of the O, I, or D applicable, then the process terminates
– a fixed point is reached – and extensions are calculated.

5 Summary

We consider a range of systems, which are concerned with decisions, deliberation or agent
types. We ask ourselves the following question:

How does deliberation based on agent types lead to decisions?

This question breaks down in three sub-questions. First, what is an agent decision? To
answer this question we discuss theories which define what a decision is, so-called decision
theories. The first is classical decision theory [15, 22] and the second it qualitative extension
(QDT) [1, 17]. In all these theories, a decision is the best option among a set of alternatives.
We also illustrate that classical as well as recently proposed qualitative decision theories do
not explain how decisions can be found, but in Boutilier’s decision theory the concept of
goal plays a central role. This is also a crucial concept in the three theories of deliberation
studied in this paper.

Second, what is agent deliberation and how does it lead to a decision? To answer this
question we discuss two other approaches. The first approach we discuss is based on an
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abstract model of the mental attitudes of an agent: beliefs, desires and intentions (BDI)
[2, 5, 19]. The second (3APL) is similar to BDI except that the decision rules is replaced
by a process called the deliberation process. It is this process that determine which actions
should be performed for a given set of underlying cognitive concepts. The discussion on BDI
systems and 3APL illustrates how deliberation finds decisions. The deliberation process is
based on cognitive concepts like beliefs, desires, goals, intentions and plans. The system
generates goals, and thereafter finds plans to achieve these goals.

Third, how do agent types classify patterns of deliberation? The fifth approach we
discuss to answer this question is also based on mental attitudes extended with obligations
(BOID) [3]. The discussion on BDI-CTL and BOID illustrates how agent types classify
deliberation. The deliberation process in BDI and BOID has been characterized in terms
of agent types or deliberation patterns. In BDI-CTL the agent types represent how beliefs,
goals and intentions are related, and when goals are maintained or dropped. In BOID the
agent types represent how the agent resolves his conflicts. For example, a selfish agent lets
its desires take precedence over his obligations. Using cognitive concepts and formulating
the decision rule in terms of deliberation patterns makes the later two approaches cognitive
theories of decision making.
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