
Relationships Meet their Roles
in Object Oriented Programming

Matteo Baldoni1, Guido Boella2, and Leendert van der Torre3

1Dipartimento di Informatica - Università di Torino - Italy. email: baldoni@di.unito.it
2Dipartimento di Informatica - Università di Torino - Italy. email: guido@di.unito.it

3University of Luxembourg. e-mail: leendert@vandertorre.com

Abstract. In this paper we study how roles can be added to patterns modelling
relationships in Object Oriented programming. Relationships can be introduced
in programming languages either by reducing them to attributes of the objects
which participate in the relationship, or by modelling the relationship itself as a
class whose instances have the participants of the relationships among their at-
tributes. However, even if roles have been recognized as an essential component
of relationships, also in modelling languages like UML, they have not been intro-
duced in Object Oriented programming when it is necessary to model relation-
ships. Introducing roles allows to add attributes and behaviors to the participants
in the relationship, rather than to the relationship itself, and to distinguish the
natural types of the participants in the relationships from the roles the partici-
pants acquire in the relationships. We show how the role model of the language
powerJava can be used to endow the relationship as attribute pattern with roles.

1 Introduction

The need of introducing the notion of relationship as a first class citizen in Object Ori-
ented (OO) programming, in the same way as this notion is used in OO modelling,
has been argued by several authors, at least since Rumbaugh [1]. Rumbaugh [1] claims
that relationships are complementary to, and as important as, objects themselves. For
example, a student can be related to a university by an enrollment relationship, he can
attend a course, and have a tutor. Thus, relationships should not only be present in mod-
elling languages, like ER or UML, but they should also be available in programming
languages, either as primitives, or, at least, represented by means of suitable patterns.

Two main alternatives have been proposed for modelling relationships by means of
patterns, e.g., by Noble [2]:

– The relationship as attribute pattern: the relationship is modelled by means of
an attribute of the objects which participate in the relationship. For example, the
Attend relationship between aStudent and aCourse can be modelled by
means an attributeattended of theStudent and of an attributeattendee of
theCourse .

– The relationship object pattern: the relationship is modelled as a third object linked
to the participantsStudent andCourse . A classAttend must be created and
its instances related to each pair of objects in the relationship. This solution under-
lies programming languages introducing primitives for relationships, e.g., [3].



These two solutions have different pros and cons, as Noble [2] discusses. But they
both fail to capture an important modelling and practical issue. If we consider the kind
of examples used in the works about the modelling of relationships, we notice that rela-
tionships are also essentially associated with another concept: students are related to tu-
tors or professors [3, 4], courses are basic courses and advanced courses [4], customers
buy from sellers [5], employees are employed by employers, underwriters interact with
reinsurers [2],etc. From the ontological point of view these concepts are not natural
kinds like person or organization: rather, they all are roles involved in a relationship [6].

Roles have different properties than natural kinds, and, thus, are difficult to model
with classes: they are dynamically acquired, they depend on other entities - the rela-
tionship they belong to and their players - and they add properties and behaviors to the
objects playing roles. Moreover, roles can be played by objects of different classes. In
particular, when an object of some natural type plays a certain role in a relationship, it
acquires new properties and behaviors. For example, a student in a course has a tutor,
he can give the exam and get a mark for the exam, another property which exist only as
far as he is a student of that course.

As Steimann [7] argues, there is an intrinsic role of roles as intermediaries between
relationships and the objects that engage in them. Thus, in this paper, we focus on the
following research question: How to introduce roles in relationships? And as subques-
tion: Which are the advantages given by roles in the relationship as attribute pattern?

In this paper as methodology we use our model of roles in OO programming lan-
guages which has been added to an extension of the Java programming language, called
powerJava, described in [8].

The language powerJava introduces roles as a way to structure the interaction of
objects (callee) with other objects calling their methods (caller). Roles express the pos-
sibilities of interaction offered by a callee to another one, i.e., the methods it can call.
First, these possibilities change according to the class of the caller of the methods. Sec-
ond, a role maintains the state of the interaction with a certain caller. As roles have a
state and a behavior, they share some properties with classes. However, roles can be
dynamically acquired and released by an object playing them. Moreover, they can be
played by different types of classes. This is why roles in powerJava can be added to
model relationships, where the behavior of an object changes when it enters a relation-
ship until it subsequently abandons it.

In Section 2 we discuss how relationships are introduced in OO programming. In
Section 3 we summarize our model of roles in powerJava and in Section 4 we use it to
introduce roles in the relationship as attribute pattern.

class Student {
String name;
int number;
HashSet<BasicCourse> attends;

}

class BasicCourse {
String code;
String title;
HashSet<Student> attendees;
void enrol(Student s) {

attendees.add(s);
s.attends.add(this); }}

Fig. 1. The relationship as attribute pattern



2 Introducing relations in OO

We will describe in this section the relationship as attribute pattern with reference to a
university domain. Consider a student who can attend different kinds of courses: basic
ones and advanced ones. The same course can be a basic one in the curriculum of a
senior student and an advanced one for junior student. A student can give the exam of
the basic course he is attending, and his mark is reported on a registry, and it is possible
to send a message to the student of the course. Finally, a course is associated with a
tutor if it is taken as a basic course; the tutor, which is not present in advanced courses,
can be different for every student attending a given course.

The relationship as attribute pattern is described in Figure 1: the relationship be-
tween a student and a course he attends is modelled by means of an attributeattends
of the instances of classStudent which participate in the relationship. The type of
the attribute is a set ofBasicCourse s. Symmetrically, theStudent appears in the
attributeattendees of the type set ofStudent s in the classBasicCourse .

This solution, however, does not allow to add a state and behavior to the pairs of
elements related by the relationship. For example, it is not possible to specify a different
tutor for eachStudent of theBasicCourse .

This is possible in the alternative pattern, the relationship object, where the partic-
ipants in the relationship are linked to an object representing a relationship instance.
This alternative solution can be modelled in UML, which specifies information proper
of an association via an association class, which can be endowed with properties and
behaviors. An association class has exactly one instance for each set of objects linked
through the association and a lifetime delimited by the existence of the association. If
a link is dissolved, the association class instance is destroyed. Due to the association,
certain information exists that is specific to the association.

But the relationship object solution shares with the relationship as attribute a limita-
tion. We would like to model the scenario introducing natural types likePerson rather
than theStudent class only. The reason for such modelling choice is that aPerson
is not always aStudent , but only as long as he attends courses. Moreover, he can give
exams or receive communications concerning the course, only if he is registered and,
thus, related by the relationship with aCourse which he follows as aBasicCourse .
He has different marks in different exams, and even different students can have different
tutors for the same course. Analogously aCourse has a tutor only if it plays the role
of BasicCourse . Note thatPerson instances can play also other roles while they
areStudent , like, e.g., employee.

Moreover, even if the relationship object pattern allows to add new properties and
behaviors, it does not allow to satisfy completely the requirement that properties and
behaviors are associated to the participants: this pattern does not distinguish which
properties and behaviors belong to theStudent and which ones to theCourse . All
properties and behaviors are associated to the instance of the class representing the
relationship.

We leave modelling this pattern for future work, even if its realization in powerJava
is straightforward.



class Printer {
private int printedTotal;

definerole User {
private int printed;
public void print(){ ...

printed = printed + pages;
printedTotal = printedTotal

+ printed;
Printer.print(that.getName());

}}}

role User playedby UserReq
{ void print();

int getPrinted(); }
interface UserReq

{ String getName();
String getLogin();}

jack = new AuthPerson();
laser1 = new Printer();
laser1.new User(jack);
((laser1.User)jack).print();

Fig. 2. A role User inside aPrinter .

3 Roles in powerJava

Baldoni et al. [8] introduce roles in powerJava, an extension of the object oriented
programming language Java. Java is extended with:

1. A construct specifing the role with its name, the methods required to play the role,
and the operations it offers to its players.

2. The implementation of a role, inside another object and according to its definition.
3. How an object can play a role and invoke the operations offered by the role.

Figure 2 shows the use of roles in powerJava by means of the example of a printer
which can be accessed via roles, e.g.,User . First of all, a role is specified as a sort of
interface (role - right column) by indicating via an interface which classes can play
the role (playedby ) and which are the operations acquired by playing the role (e.g.,
print ). Second (left column), a role is implemented inside an object as a sort of inner
class which realizes the role specification (definerole ). The inner class implements
all the methods required by the role specification as it were an interface.

In the bottom part of the right column of Figure 2, the use of powerJava is de-
picted. First, the candidate playerjack of the role is created. It implements the re-
quirements of the roles (the classAuthPerson implementsUserReq ). Before the
player can play the role, however, an instance of the object hosting the role must be
created first (aPrinter laser1 ). Once thePrinter is created, the playerjack
can become aUser too. Note that theUser is created inside thePrinter laser1
(laser1.new User(jack) ) and that the playerjack is an argument of the con-
structor of roleUser of typeUserReq , which becomes the value of the special vari-
ablethat , thus allowing to refer to the player from the role implementation.

The playerjack to act as aUser must be first classified as aUser by means of
a so-calledrole casting((laser1.User) jack ). Note thatjack is not classified
as a genericUser but as aUser of Printer laser1 . Oncejack is casted to
its User role, it can exercise its powers, in this example, printing (print() ). Such
method is called a power since, in contrast with usual methods, it can access the state of
other objects: the role namespace shares the one of the object including the role (called
institution). In the example, the methodprint() can access the private state of the
Printer and invokePrinter.print() or modifyprintedTotal .



role Student playedby Person {int giveExam(String work);}
role BasicCourse playedby Course {void communicate(String text);}
class Person{

String name;
private Queue messages;
//courses followed as BasicCourse
private HashSet<BasicCourse> attended;
class BasicCourse {

Person tutor;
// the method communicate access the state of the outer class
void communicate (String text)

{Person.this.messages.add(text);}
BasicCourse(Person t){
tutor=t;
Person.this.attended.add(this); }//add link

}
}
class Course {

String code;
String title;
//students following the course
private HashSet<Student> attendees;
private HashTable registry = new HashTable();
private int evaluate(String x){...}
class Student {

int number;
int mark;
int giveExam(String work){mark = Course.this.evaluate(work);

registry.set(that.name.hashCode(), mark); ... }
Student (){ Person.this.attended.add(this); }}}//add link

Fig. 3. Relationship-role as attribute pattern in powerJava

4 The relationship-role as attribute pattern

In this section we describe how a new pattern for modelling relationships with roles can
be defined, in analogy with the relationship as attribute pattern. We will use the example
of Section 2 to present it.

First of all, using powerJava we can distinguish natural types likePerson and
Course from the respective rolesStudent and BasicCourse . Person and
Course become, respectively,Student and BasicCourse when they enter the
relationship. Roles are represented in powerJava by instances dynamically associated
with the players of the roles, which include the state and behaviors acquired by the
players of the roles in the relationship (see Figures 3 and 5 where the UML representa-
tion is illustrated1).

1 The arrow starting from a crossed circle, in UML, represents the fact that the source class can
be accessed by the arrow target class.



public static void main (String[] args){
Course c = new Course();
Person p = new Person();
Student s = c.new Student(p);//create role Student for p in c
BasicCourse b = p.new BasicCourse(c,tutor);
//p as a Student of Course c gives the exam by submitting work
((c.Student)p).giveExam(work);
//a message is sent to p since he attends c as a BasicCourse
((p.BasicCourse)c).communicate(text); }

Fig. 4. Using the relationship-role as attribute in powerJava

Second, in the relationship as attribute pattern, a relationship is reduced only to two
symmetric attributesattended andattendees . In the new pattern, the relationship
is modelled also by means of a pair of roles implemented in the two classes representing
the natural types. Thus, the attributeattendees in Course of type Student in
Course becomesCourse.Student , and its values will be role instances which are
played by instances of typePerson . The roleStudent is associated with players
of type Person in the role specification, which specifies that aStudent can give
an exam (giveExam ). Analogously, the attributeattended of Person becomes
of type Person.BasicCourse and its values are associated with players of type
Course as in the role specification, which specifies that aCourse can communicate
with the attendee.

The role Student is implemented locally in the classCourse by the class
Course.Student , and, viceversa, the roleBasicCourse is implemented locally
in the classPerson by the classPerson.BasicCourse . Note that this is not con-
tradictory, since roles describe the way an object offers interaction to another one: a
Student represents what aCourse offers aPerson to interact with it, and, thus,
the role is implemented inside the classCourse . Moreover the methods associated
with the roleStudent , i.e., giving exams, and implemented inCourse.Student ,
modify the state of the class including the role (Course ) or call its private methods,
thus violating the standard encapsulation. Analogously, thecommunicate method
of Person.BasicCourse , implementing the method signature specified in the role
BasicCourse , modifies the state of thePerson hosting the role by adding a mes-
sage to the queue. These methods, in powerJava terminology, exploit the full potentiality
that powers have of violating the standard encapsulation of objects.

To associate aPerson and aCourse in the relationship, the role instances must
be created starting from the objects offering the role, e.g.:c.new Student(p) (see
themain in Figure 4) where the playerp is passed as a parameter.

When the player of a role must invoke a power it must be first role casted to the
role. For example, to invoke the methodgiveExam of Student , thePerson must
first become aStudent . To do that, however, also the object offering the role must
be specified, since thePerson can play the roleStudent in different instances of
Course ; in this case theCourse c : ((c.Student)p).giveExam(...) .



The pattern has different pros and cons; the following list integrates Noble [2]’s
discussions on them. Advantages of the Relationship-role as attribute pattern:

– It allows simple one-to-one relationships: it does not require a further class and its
instance to represent the relationship between two objects.

– It allows to introduce a state and operations to the objects entering the relationship,
which was not possible without roles in the relationship as attribute pattern.

– It allows the integration of the role and the element offering it by means of powers.
– It allows to show which roles can be offered by a class, and, thus, in which rela-

tionships they can participate, since they are all defined in the class.

Disadvantages of the Relationship-role as attribute pattern:

– It requires that the roles are already implemented offline inside the classes which
participate in the relationship.

– It does not assure coherence of the pair of roles like student-course, buyer-seller,
bidder-proponent, since they are defined separately in two different classes.

– The role cast to allow a player to invoke a power of its role requires to know the
identity of the other participant in the relationship.

– It does not allow to distinguish which is the role played in the other object partici-
pating in the relationship (e.g., aStudent in theattendees set of aCourse
can follow theCourse as aBasicCourse or anAdvancedCourse ).

In summary, we can define an informal program transformation, to add roles to the
relationship as attribute pattern using powerJava:

1. Identify the natural types of the objects playing the roles (e.g.,Person for
Student , or Person andOrganization for Customer ).

2. Change the type of the classes which participate in the relationship from the name
of the role to the name of the natural kinds playing the role (now there can be more
than one class playing the role); e.g., the classStudent becomesPerson .

3. Add a role definition relating the role to the natural types which can play the role,
or to an interface implemented by these natural types, and insert in the role specifi-
cation the signature of the powers (e.g.,communicate , giveExam ).

4. Identify the two links to the participants in the relationships in the classes repre-
senting the participants (e.g.,attendees of typeStudent in Course ), now of
natural types.

5. In the same class the link belongs to, add a role class implementing the role defini-
tion with the same name as the type of the link (e.g.,Student in the
BasicCourse class which is now calledCourse ). Add to this role class the
attributes and the implementation, according to the role specification, of the pow-
ers.

6. In the code which relates the two participant instances to the relationship, instead
of adding the players to the links, first create two roles instances played by the
respective players (of natural types), and, second, add these instances to the links
modelling the relationship in the class of the players, e.g.,Person (this can be
done in the role constructors).

7. When a method added by the relationship must be invoked, first, make a role cast
from the object playing the role to the role it plays.



+ communicate(String)

Course

+ name: John

+ tutor: person

+ number: 1234

− ...

− messages: ...

− attended: ...

− evaluate(String)

− attendees: ...

+ title: "programming"

RQ

RQ

+ mark: 10

+ Student(Person)

+ BasicCourse(Course)

+ giveExam(String)BasicCourse.this

that

that

:Person.BasicCourse

:Course.Studentp:Person

Student.this

c.Course

+ code: CS110

Person

Fig. 5. The UML representation of the relationship-role as attribute pattern example

5 Conclusion

In this paper we discuss why roles need to be introduced when relationships are mod-
elled in OO programs: it is possible to distinguish between the natural type of objects
populating the program and the roles they play, and objects acquire new states and
behaviors when they participate in a relationship. The state and behaviors which are
dynamically acquired are modelled by roles.

Using the language powerJava, a role endowed version of Java, we show how to in-
troduce roles in the the relationship as attribute pattern and we discuss the pros and cons
of the pattern when roles are introduced. In particular, we show that the relationship as
attribute pattern extended with roles enables to model the extension of behavior of the
objects entering a relationship, without the introduction of a further class modelling the
relationship. Future work is introducing roles in the relationship as object pattern and
designing new patterns where both patterns can be considered at the same time.

An extended version of this paper is available as a technical report at
http://www.di.unito.it/ ∼guido/ .

References

1. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In: Procs. of
OOPSLA. (1987) 466–481

2. Noble, J.: Basic relationship patterns. In: Pattern Languages of Program Design 4. Addison-
Wesley (2000)

3. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In: Procs. of
ECOOP. (2005) 262–286

4. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles. In: Procs.
of Very Large DataBases (VLDB’93). (1993) 39–51

5. Noble, J., Grundy, J.: Explicit relationships in object-oriented development. In: Procs. of
Technology of Object-Oriented Languages and Systems (TOOLS). (1995)

6. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social roles and their descriptions. In: Procs. of Conference on the Principles of Knowledge
Representation and Reasoning (KR’04), AAAI Press (2004) 267–277

7. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling. Data
and Knowledge Engineering35 (2000) 83–848

8. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava. Journal
of Object Technology (to appear)


