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Abstract

We study admissible coalitions in goal-directed multia-
gent systems. We define a qualitative criterion of admissibil-
ity in which a coalition has itself all the necessary informa-
tion to check admissibility. We show also that, under some
assumptions on preference relations of the agents, this ad-
missibility criterion can be used to reduce the search space
in a game theoretical approach.

1. Introduction

It is desirable that artificial agents can help each other
when they cannot achieve their goals, or when they profit
from cooperating. Cooperative game theory [6, 1] focuses
on collusive behaviors, supported by enforced agreements,
that involve the formation of coalitions. In collusive behav-
iors, agents have the possibility to decide how to coordi-
nate themselves without imposition by anyone. An agree-
ment is enforced if the involved parties cannot deviate from
the agreement, once they decide to enter it.

Sandholm et al. [7] distinguish two phases to establish
which coalitions can be formed. In the first phase a struc-
ture describing all the possible coalition configurations is
defined. In the second phase a quantitative method is used
to prune those configurations that cannot occur, under the
assumption of self-interested agents. It is reasonable to use
game theoretical criteria as pruning method, but, unfortu-
nately, it has been shown that several solution criteria de-
fined in cooperative game theory are computationally in-
tractable [8, 9]. Sandholm et al. [7] therefore define some
approximation algorithms to search the space of possible
coalitions.

In [3] we have introduced the do-ut-des property as a
qualitative criterion of admissibility for coalition formation
in goal-directed multiagent systems. This criterion has been
defined by means of a balance between the set of goals of
an agent achieved in a coalition and the tasks it is burdened
to perform if it agree to enter the coalition. In this way the

formalization of do-ut-des property is based on a not com-
pelling mixture of two aspects, the goals achieved and the
tasks executed to achieve them, that should correspond to
two different level of abstractions. In this paper we consider
an alternative approach that removes this weakness. More-
over if in [3] the do-ut-des property was defined starting
from a multiagent system representation that directly de-
scribes the achievement power of sets of agents. Here we
face the problem to define a typology of these achievement
powers starting from the capabilities of the single agents.
This notion of power presents an analogy with the one we
developed in [2]. The main difference is that in [2] we de-
fined a notion of power requiring to a set A of agents to be
minimal with respect the achievement of a goal g, in this
way we formalized the fact that all the agents in A have to
be necessary for the satisfaction of g. In this work the notion
of power requires a minimalization of the tasks assigned to
A and not a minimalization on the set itself. Therefore in
this case we formalize the notion of relevance of the tasks
executed by A with respect to the achievement of g.

In this work we face the problem to cut off from the space
of all possible coalitions the ones that cannot occur by us-
ing a qualitative admissibility criterion to be applied before
a quantitative game theoretical criterion. The methodology
used is on one hand to abstract from the specific preference
relations of the agents by focusing on the goals represent-
ing the advantages an agent gains entering a coalition. On
the other hand we do not simply represent a coalition by
means of the goals it can attain, as done in Dunne et al. [9],
we represent a coalition as an agreement describing for each
set of agents the goals it is burdened to achieve.

In Section 2 we define a multiagent system and provide
the notion of goals assurable by a set of agents. In Section
3 we define the cooperative game relative to a multiagent
system. In Section 4 the do-ut-des property is defined. Sec-
tion 5 shows under which conditions the do-ut-des coali-
tions can be employed as a qualitative reasoning on prof-
itability of coalitions. Section 6 shows the relation between
solution concept of core and the do-ut-des property.



2. The Multiagent System

In order to describe the coalitions that can be formed in
a multiagent system we define in this section a framework
to formalize agents with their individual characteristics, as
the goals they have or the tasks they can embark on. Tasks
are distinguished from strategies. A strategy is a complete
schedule of actions an agent can adopt in a game, so two
different strategies cannot be adopted at the same time. In-
stead, tasks are partial schedules and an agent can execute
more tasks at the same time if these tasks are compatible
with each other. As in Shehory and Kraus [8], an agent can
possibly joint two different coalitions if the required tasks
are compatible. We model compatibility among tasks as a
relation comp, given an agent a and a non-empty set of tasks
T it can execute. (a, T )∈ comp means that a can execute all
the tasks in T at the same time, therefore (a, {t}) ∈ comp
means that the agent a can execute the task t. Since we con-
sider goal-directed agents, we describe the effect of a task
only with respect to the goals it achieves. Formally we have
the following definition of a multiagent system:

Definition 1 (Multiagent System) A multiagent sys-
tem, MaS, is a tuple 〈Ag,Gl,Tk, gl, comp, ach〉 with the fol-
lowing elements. Ag is a set of agents. Gl is a set of goals.
Tk is a set of tasks. comp ⊆ Ag × 2Tk is a relation de-
scribing the sets of tasks an agent can execute at the same
time. gl : Ag → 2Gl is a function from agents to the
sets of their own goals such that

⋃
a∈Ag gl(a) = Gl. Fi-

nally, ach ⊆ 2Tk × Gl describes the results of executing a
set of tasks.

Example: As example we consider a simple version of
the game described in Grosz et al. [4]. There are four play-
ers and each of them has two colored chips and two col-
ored boxes, both the chips and the boxes can be colored as
follows: red r, green g or blue b. Every player has only one
goal, to fill each of his boxes with a chip of the same color of
the box. The players have the possibility to exchange their
chips and, for simplicity, we assume that the game is made
only of one turn.

The initial configuration is:

players boxes chips
p1 r r r g

p2 r g b b

p3 b g r b

p4 b b r g

This table shows how, in the initial configuration, there
is no a player that is self sufficient to see to its own goal,
so they have to exchange chips with each other in order to
satisfy their goals.

We formalize this multiagent system by the following
MaS. Ag is the set of the four player {p1, p2, p3, p4}, the

set of the goals Gl is {rr, rg, bg, bb}, according to the boxes
owned by the agents. The set of tasks Tk is the set of pair
(x, pj), where x can be r, g or b and j denotes one of the
four players: executing this task means to provide a chip
colored of x to the player pj .

comp describes compatible tasks, a set of distinct tasks
{(x1, p1

j ), . . . , (x
n, pn

j )} is compatible for a player pi,
(pi, {(x

1, p1
j ), . . . , (x

n, pn
j )}) ∈ comp, if and only if pi

has n chips, the first of color x1, the second of color x2

and so on. Since every agent has only two chips, any set
of tasks with more then two tasks is not compatible for a
player. gl associates, to any player, his relative goal, for-
mally gl = {(p1, {rr}), (p2, {rg}), (p3, {bg}), (p4, {bb})}.
ach describes the goals achieved by sets of tasks; a goal is
achieved when the two boxes of a player are filled with the
right chip, so, for example, the set of tasks {(g, p3), (b, p3)}
achieves the goal bg of p3. ¥

Since agents act together, and possibly collaborate in the
achievement of goals, we introduce tasks distributions, i.e.,
the tasks that can be executed by sets of agents. A tasks dis-
tribution of a set of agents A associates to each agent a∈ A

a nonempty set of tasks T such that (a, T ) ∈ comp and to
all the other agents the empty set.

Definition 2 Given a set of agents A ⊆ Ag, a tasks dis-
tribution of A is a function τA : Ag → 2Tk such that
τA⊆ comp and τA(a) 6= ∅ iff a∈ A.

We denote with
⊔

(τA) the union for a∈ A of τA(a).
Now we define a notion of compatibility among tasks

distributions.

Definition 3 We denote with τA1
t τA2

a function that, for
each agent a ∈ Ag, associates τA1

(a) ∪ τA2
(a). More-

over we say that τA′ v τA if there exists a τA′′ such that
τA = τA′ t τA′′ , as usual, τA′ < τA is and only if τA′v τA

and τA′ 6v τA. The tasks distributions τA1
, . . . , τAn

is com-
patible iff τA1

t . . . t τAn
⊆ comp.

Assume that there exists a tasks distribution τA of the set
of agents A such that it achieves a goal g no matter which
tasks distribution the other agents execute. If this is the case,
then A can assure, by means of τA, the achievement of g.

We also define a minimality condition on assurable goals
that is satisfied when a set of the agents A can assure a goal
g by means of τA and all the tasks in τA play a role in the
achievement of g, that is, there is no a subset A′ ⊆ A and a
tasks distribution τ ′

A such that A′ can assure g by means of
τ ′
A and τ ′

A < τA.

Definition 4 (Assurable goals) Given a task distribution
τA and g ∈ Gl, we say that A can assure g by means of
τA, (τA, g)∈ α-eff, iff

∀A ⊆ [Ag \A] ∀τA (
⊔

(τA t τA), g)∈ ach



We say that (τA, g) can minimally assure g by means of τA,
(τA, g) ∈ min-α-eff, iff (τA, g) ∈ α-eff and there does not
exist an A′⊆ A and a τA′ < τA such that (τA′ , g)∈ α-eff.

It can be seen that our framework satisfies the property
of super-additivity, i.e., given two disjoint sets of agents A1

and A2, if A1 can assure g1 by means of τA1
and A2 can

assure g2 by means of τA2
, then A1∪A2 can assure for both

g1 and g2 by means of τA1
t τA2

.

Example: Defined the multiagent system relative to the
boxes-chips game, tasks distributions as well as the sets
α-eff and min-α-eff can be derived following the relative
definitions. Since it is not possible here to describe them
extensively, we provide only some examples and consider-
ations. In the following, for readability reasons, we denote
an element (pi, {(x

1, p1
j ), . . . , (x

n, pn
j )}) of a tasks assign-

ment with

pi
x1

→ p1
j , . . . , pi

xn

→ pn
j

An example of tasks distribution is τ{p1,p3} = {p1

g
→

p3, p3

b
→ p3}, indeed both p1

g
→ p3 and p3

b
→ p3 are in

comp. When a player obtains, from some players, the chips
needed to satisfy his goal, the other players cannot obstruct
him. α-eff reflects the relation ach, i.e., if (

⊔
(τA), g)∈ ach,

then (τA, g)∈ α-eff.
This in general is not true, for example, when two per-

sons with the same strength try respectively to open and to
close a door. Their tasks, pull the door and push the door,
would be successful if performed separately, but together
they obstruct with each other.

Nevertheless in our game min-α-eff is strictly con-
tained in α-eff, in fact, given the tasks distribution

τ{p1,p2,p3} = {p1

g
→ p3, p3

b
→ p3, p2

b
→ p4}, since p3 ob-

tains the needed chips b and g, his goal is satisfied and,
hence, (τ, bg) ∈ α-eff. Nevertheless also the restric-

tion of τ to {p1, p3} satisfies the goal bg, so p2

b
→ p4 is not

useful for the achievement of bg. ¥

3. Cooperative games

Definition 4 establishes the potentials for cooperation in
a multiagent system. To see which of them can actually oc-
cur, we consider cooperative games defined starting from
goal-directed agents. A coalition describes the possibility
for a set of agents to help each other in the satisfaction of
their goals. In this way it is not associated to a coalition a
single value that can be divided among the members of the
coalition as much as they like, but a set of consequences
that describes the goals achieved and the burdens sustained
by each agent. This typology of problems are faced by co-
operative games without transferable payoffs whose defini-
tion we borrows from Osborne et al. [6].

Definition 5 (Cooperative games) A cooperative game
without transferable payoffs (NTU ) is a tuple

〈Ag,Cs, att,-1, . . . ,-n〉

with the following elements. Ag is a set of agents. Cs is a set
of consequences. att : 2Ag \ ∅ → 2Cs maps each nonempty
set A of agents in the set of consequences that are attain-
able by A. For each agent ai, -i⊆ Cs × Cs is a prefer-
ence relation over Cs, i.e. it is complete, reflexive and tran-
sitive. Given c1, c2 ∈ Cs, with c1 -i c2 we denote that the
agent ai prefers c2 at least as c1.

Following Sandholm et al. [7], we consider the notion
of core as solution criteria of a cooperative game. The no-
tion of core is based on a dominance relation over the set of
possible consequences attainable by the gran coalition Ag.
c∈ att(Ag) is dominated if there exists a set of agents such
that it can attain a consequence that is strictly preferred by
all its members to c.

Definition 6 (Core) Let 〈Ag,Cs, att,-1, . . . ,-n〉 be a co-
operative game without transferable payoffs, the core is the
set of consequences c∈ att(Ag) such that there does not ex-
ist a group of agents A⊆ Ag and a consequence c′∈ att(A)
such that for all ai∈ A, c ≺i c′.

We define a cooperative game without transferable pay-
offs relative to a multiagent system MaS. First of all, we
consider the set of possible consequences that a set of agents
can attain if they form a coalition.

The set min-α-eff defined in Definition 4, describes the
set of all potentials for cooperation. If a set of agents A

decides to form a coalition and there exists a (τA′ , g) ∈
min-α-eff such that A′⊆ A, then the goal g is in the achieve-
ment potential of A, i.e. can be a part of a consequence at-
tainable by A.

Since not all of the elements of min-α-eff can be carried
out at the same time, this means that the consequences at-
tainable by a set of agents A derives from all the subsets
{(τA1

, g1), . . . , (τAn
, gn)} ⊆ min-α-eff in which the tasks

are compatible, see Definition 3, and for all 1 ≤ i ≤ n,
Ai ⊆ A. Following Kraus et al. [5], we consider a con-
sequence of the formation of a coalition A the whole set
c = {(τA1

, g1), . . . , (τAn
, gn)}, and not simply the set of

all goals achieved in c, as done in Dunne et al. [9]. This en-
ables us to define in the next section the do-ut-des property.

In the following, instead of saying that c is a consequence
attainable by the set A of agents if they form a coalition, we
simply say that c is a possible coalition of A.

Definition 7 (Possible coalitions) Given a multia-
gent system MaS = 〈Ag,Gl,Tk, gl, comp, ach〉 and
a nonempty set of agents A ⊆ Ag, we say that
c = {(τA1

, g1), . . . , (τAn
, gn)} ⊆ min-α-eff is a pos-

sible coalition of A iff τA1
, . . . , τAn

are compatible and for
all 1 ≤ i ≤ n, Ai⊆ A.



We say that c is a possible coalition if there exists a set of
agent A such that c is a possible coalition of A, moreover
we denote with Glc the set of all the goals achieved in c:

Glc = {g∈ Gl | ∃A⊆ Ag s.t. (τA, g)∈ c}

We define a cooperative game relative to a multiagent sys-
tem as follows.

Definition 8 (Cooperative game of a MaS) Given a multi-
agent system MaS, a cooperative game relative to MaS,
NTU [MaS], is a tuple 〈Ag,Cs, att,-1, . . . ,-n〉 with the
following elements. Ag is the set of agents of MaS. Cs is the
set of all possible coalitions of MaS. att : 2Ag \ ∅ → 2Cs

maps for each nonempty set of agents A the set of all possi-
ble coalitions of A. For each agent ai ∈ Ag, -i⊆ Cs × Cs
is a preference relation over Cs.

Example: Given the MaS relative to the boxes-
chips game, we consider a cooperative game
NTU [MaS] = 〈Ag,Cs, att,-1, . . . ,-n〉 as follows.
A player pi first of all prefers a coalition that satis-
fies his goal with respect to a coalition that does not sat-
isfies it. In the case two coalitions both satisfy his goal
or both do not satisfy it, the pi prefers the one that mini-
mize the number of chips he gives to the other agents.

More formally, given a possible coalition
c = {(τA1

, g1), . . . , (τAn
, gn)} and an agent pi, we

first denote with τ(pi, c) the set of all tasks, (x, pj), as-
signed to pi in c such that pi 6= pj , i.e. τ(pi, c) is the
set of tasks (x, pj) such that pj 6= pi and there exists
(τAi

, gi) ∈ c with (x, pj) ∈ τAi
(pi). The preference rela-

tion -i of each player pi such that c1 -i c2 if and only one
of the either (1) (gl(ai) ∩ Glc1

) ⊂ (gl(ai) ∩ Glc2
)

or (2) (gl(ai) ∩ Glc1
) = (gl(ai) ∩ Glc2

) and
|τ(ai, c1)| ≤ |τ(ai, c2)|. ¥

4. Do-ut-des Coalitions

In this section we provide a criterion of admissibility for
coalitions, the do-ut-des property. This property is based on
a dominance relation between a possible coalition c and a
one of its sub-coalitions c′ ⊂ c. So, against the usual quanti-
tative notions of profitability as the core, in which the coali-
tion c has to be compared with all the other possible coali-
tions to see if it belongs to the core, a coalition c contains
all the information to check if it satisfies the do-ut-des prop-
erty. First we define a preference relation between two coali-
tions by means of the functions adv and obl that describe for
each agent its advantages and burdens in c.

Definition 9 (adv function) Given a coalition c, adv[c] :

Ag → 2Gl maps, for each agent a ∈ Ag, the set of goals
achieved in c that are goals of a: adv[c](a) = Glc ∩ gl(a).

Instead, the function obl is defined as the set of goals in
which achievement an agent is involved:

Definition 10 (obl function) Given a coalition c, obl[c] :

Ag → 2Gl is such that for all a∈ Ag

obl[c](a) = {g∈ Glc | ∃(τA, g)∈ c s.t. a∈ A}

Now we are able to define, for each agent ai, a qualita-
tive preference relation ≤i between two coalitions. In con-
trast with the quantitative preference relations introduced in
the Definition 5, our preference relation in not complete, so
it could be the case that, given an agent ai and two coali-
tions c1 and c2, c1 6≤i c2 and c2 6≤i c1.

Definition 11 (Qualitative preference relation)
Let c1 and c2 be two coalitions. We say that the
agent ai qualitatively prefers c1 to c2, c2 ≤i c1, iff
adv[c2](ai) ⊆ adv[c1](ai) and obl[c1](ai) ⊆ obl[c2](ai).

As usual we say that ai strictly qualitatively prefers c1 to
c2, c2 <i c1, if c2 ≤i c1 and c1 6≤i c2.

A possible coalition c satisfies the do-ut-des property, or
it is a do-ut-des coalition, if and only if there does not ex-
ist an agent involved in c which strictly qualitatively prefers
a coalition c′ ⊂ c and all the agents involved in c′ qualita-
tively prefers c′ at least as c. In this case a does not agree
to c, considering that c′ is better for him and that if all the
agents involved in c′ would have agreed to c, then they agree
also to c′.

Definition 12 (Do-ut-des property) Given a coalition c,
we denote with Dom(c) the set of agents involved in c, i.e.
Dom(c) = {a ∈ Ag | ∃(τA, g) ∈ c s.t. a ∈ A}. We say
that c′ ⊂ c do-ut-des dominates c iff the following condi-
tions hold:

1. ∃ai∈ Dom(c) c <i c′

2. ∀aj ∈ Dom(c′) c ≤j c′

A coalition c is do-ut-des iff there does not exist a coali-
tion c′⊂ c that do-ut-des dominates c.

Example: In our boxes-chips game we provide an ex-
ample of a do-ut-des coalition and an example of a coali-
tion that does not satisfy the do-ut-des property. As first ex-
ample consider c described by:

τA g

p1

r
→ p1, p3

r
→ p1 rr

p1

g
→ p3, p3

b
→ p3 bg

where each row of the table is an element of c. In this coali-
tion every player obtains the satisfaction of his own goal, so
no one of them qualitatively prefers the empty coalition to
c. Moreover since both p1 and p3 are necessary for the ful-
fillment of rr and bg, in each one of the coalitions obtained



considering only one row of the table there is a player that
is disadvantaged. So c satisfies the do-ut-des property.

As second example consider the coalition c as shown in
the following table:

τA g

p1

r
→ p1, p3

r
→ p1 rr

p2

b
→ p4, p2

b
→ p4 b b

It can be seen that it does not satisfy the do-ut-des prop-
erty. In fact the advantages of p2 and p3 in this coalition
are empty, nevertheless they are involved respectively in the
achievement of rr and bb. So both of them qualitatively pre-
fer to c the empty coalition, in which they do not obtain any-
thing but also do not provide anything. ¥

5. Do-ut-des compatible NTU

The Definition 8 does not provide any restriction to the
preference relations -i of the agents. Nevertheless the no-
tion of do-ut-des coalitions can be related to the quantita-
tive notion of core only in the case the -i are compatible
with the Definition 11, i.e. for any agent ai, ≤i implies -i

and <i implies ≺i.

Definition 13 (Do-ut-des compatible NTU) Let
MaS a multiagent system, a cooperative game
NTU [MaS] = 〈Ag,Cs, att,-1, . . . ,-n〉 is do-ut-des
compatible iff for all 1 ≤ i ≤ n and for all possible coali-
tions c1, c2 ∈ Cs (1) if c1 ≤i c2, then c1 -i c2 and (2) if
c1 <i c2, then c1 ≺i c2.

Often the preference relation of an agent with respect to
a set of consequences is represented by an utility function
[1]. An utility function is real valued function over the set
of consequences Cs that represents, for each consequence,
the profitability of that consequence. We say that an utility
function utl : Cs → < represents a preference relation -
just in the case that for all c1, c2 ∈ Cs, c1 - c2 if and only
if utl(c1) ≤ utl(c2).

A way to effectively calculate the utility of a conse-
quence is by means of a cost-benefit analysis. The idea
underling the cost-benefit analysis is that any consequence
represents a state of affairs that involves some advantages,
but also has some contraindications. In our case a conse-
quence is a possible coalition c and, given an agent ai the
advantages of ai with respect to c derives from the of its
goals that are achieved if c is formed, i.e. adv[c](ai); the
contraindications of ai with respect to c depends on many
factors as, for example, the tasks it has to execute if c is
formed as in [3], but also the costs implicit to the coali-
tion formation process or to the fact that entering the coali-
tion it binds itself to satisfy some goals. For all these rea-
sons we consider that the costs relative to a coalition de-
pends to the coalition as whole.

The utility of a consequence c, for the agent ai, is
represented by a function blci that balance an estima-
tion of the advantages (the benefits) and an estima-
tion of the contraindications (the costs) of c. We as-
sume that the benefits and the costs of consequences are
themselves real value functions, respectively bnfi and
costi. Therefore, given a possible coalition c, the util-
ity of the agent ai relative to c, is given by the formula
utli(c) = blci(bnfi(adv[c](ai), costi(c)).

Now we show some sufficient conditions utli has to sat-
isfy in order to be do-ut-des compatible. The first condition
says that blci is a function strictly increasing in the first ar-
gument and strictly decreasing in the second argument. The
second condition says that the more are the goals an agent
has to execute the more are the relative costs. The third con-
dition says that adding a desired goal to set of desired goals
involves a not null increasing of the benefit function.

Definition 14 (Do-ut-des compatible utility functions)
An utility function of an agent ai, utli(c) =
blci(bnfi(adv[c](ai), costi(obl[c](ai))), is said to be
do-ut-des compatible iff

1. for all fixed x̂∈ < and ŷ∈ <, blci(x, ŷ) and blci(x̂, y)
are respectively strictly increasing and strictly de-
creasing.

2. for all possible coalitions c1, c2 ∈ Cs, obl[c1](ai) ⊆
obl[c2](ai) iff costi(c1) ≤ costi(c2).

3. for all c1, c2 ∈ Cs, adv[c1](ai) ⊆ adv[c2](ai) iff
bnfi(adv[c1](ai)) < bnfi(adv[c2](ai)).

The following theorem shows that if utli satisfies the
Definition 14, then it is effectively compatible with the qual-
itative preference relation ≤i.

Theorem 1 If the utility function utli is do-ut-des compat-
ible, then for all possible coalitions c and c′, (1) if c ≤i c′,
then utli(c) ≤ utli(c′), (2) c <i c′, then utli(c) < utli(c′).

proof: Assume that c ≤i c′, then

adv[c](ai) ⊆ adv[c′](ai) and obl[c′](ai)⊆ obl[c](ai) (1)

By hypothesis utli is do-ut-des compatible, so costi(c′) ≤
costi(c) and bnfi(adv[c](ai)) ≤ bnfi(adv[c′](ai)). But,
since blci is a function strictly increasing in the first argu-
ment and strictly decreasing in the second argument, we
have

blci(bnfi(adv[c](ai)), costi(c)) ≤
blci(bnfi(adv[c′](ai)), costi(c)) ≤
blci(bnfi(adv[c′](ai)), costi(c′))

(2)

and hence utli(c) ≤ utli(c′).
If c <i c′, then the previous inequality holds and also ei-

ther obl[c′](ai)⊂ obl[c](ai), or adv[c](ai) ⊂ adv[c′](ai). In
the first case costi(obl[c′](ai)) < costi(obl[c](ai)), so

blci(bnfi(adv[c′](ai)), costi(c)) <

blci(bnfi(adv[c′](ai)), costi(c′))
(3)



In the second case bnfi(adv[c](ai)) < bnfi(adv[c′](ai)), so

blci(bnfi(adv[c](ai)), costi(c)) <

blci(bnfi(adv[c′](ai)), costi(c))
(4)

In both the cases utli(c) < utli(c′). ¤

Example: In the boxes-chips game the preference rela-
tion -i defined in Section 3 can be represented by the util-
ity functions

utli(c) =
1 + bnfi(adv[c](pi))

1 + costi(c)
(5)

where bnfi(adv[c](pi)) is equal to 1000 if adv[c](pi)) is not
empty, 0 otherwise. cost(c) is equal to the sum of costs the
tasks (x, pj) that pi has to perform under c, where the cost
of a task (x, pj) is 50 if pj = pi, 200 otherwise.

The characteristic function defined by the Formula 5 in
the Section 3 is do-ut-des admissible. The first condition is
evident since in the Formula 5 utli is directly proportional
to bnfi(adv[c](pi)) and in inverse proportion to cost(c). The
second condition is also true since it is not possible for a
player, providing one chip, to satisfy at the same time the
goals of two different agents, so different goals require dif-
ferent tasks for the players. Concerning the third one, each
player a has only one goal so adv[c](pi) can be either empty
or equal to gl(a); since the associated reward are 0, if it is
empty, and 1, if it is gl(a), the condition is satisfied. ¥

6. Do-ut-des property and the core

In order to relate the qualitative do-ut-des property to the
quantitative notion of core we consider a quantitative ver-
sion of the do-ut-des property, we call it q-do-ut-des prop-
erty. We use this property to relate the do-ut-des property to
the notion of core, so we want that this property has a pre-
cise relationship with both of them.

Definition 15 (Q-do-ut-des) Let NTU [MaS] =
〈Ag,Cs, att,-1, . . . ,-n〉 be the cooperative game of
the multiagent system MaS. A possible coalition c is
q-do-ut-des iff for all c′ 6= c there does not exist an agent ai

such that c ≺i c′ and for all aj ∈ c′, c -j c′.

The following theorem shows that if a possible coalition
c is q-do-ut-des, then it is in the core.

Theorem 2 Let NTU [MaS] = 〈Ag,Cs, att,-1, . . . ,-n〉
be a cooperative game of the multiagent system MaS. If a
possible coalition c is q-do-ut-des, then it is in the core.

proof: If c is not in the core, then there exists a possible
coalition c′ such that for all the agents ai ∈ c′, c ≺i c′.
Therefore there exists an agent that strictly prefers c′ to c.
Moreover, since if c ≺i c′ holds, then also c -i c′ is true

for all ai∈ c′. But this means that c′ q-do-ut-des dominates
c, and hence that c is not q-do-ut-des. ¤

Moreover, we show that, for do-ut-des compatible NTU ,
if a possible coalition c is q-do-ut-des, then it is do-ut-des.

Theorem 3 Let NTU [MaS] = 〈Ag,Cs, att,-1, . . . ,-n〉
be a do-ut-des compatible cooperative game of a multia-
gent system MaS, if a possible coalition c is q-do-ut-des,
then it is do-ut-des.

proof: Assume that c is q-do-ut-des, but not do-ut-des. By
definition this means that there exists a possible coalition
c′ ⊂ c and an agent ai ∈ c such that c <i c′ and for all
aj ∈ c′, c ≤j c′. Since NTU [MaS] is do-ut-des compati-
ble, then it is also the case that c ≺i c′ and for all aj ∈ c′,
c -j c′. But this means that c′ q-do-ut-des dominates c

against the hypothesis. ¤

The problem is to find q-do-ut-des coalitions of
NTU [PS]. Since the set of q-do-ut-des coalitions is con-
tained in the core, if we find a q-do-ut-des coalition, we are
sure that it is also in the core.

The definition of q-do-ut-des coalitions requires to com-
pare a possible coalition c with all the others. Due to the
Theorem 3, we restrict the set of coalitions on which to
check for q-do-ut-des coalitions to the set of do-ut-des coali-
tions. However, for each do-ut-des coalitions, we still have
to compare it with of all the other possible coalitions.

Fortunately, the following theorem shows that if c is not
do-ut-des, then there exists a do-ut-des coalition that dom-
inates it. So we do not need to compare a do-ut-des coali-
tion with all the others in order to see if it is q-do-ut-des, but
only with the other do-ut-des coalitions.

Theorem 4 Given a do-ut-des compatible coopera-
tive game NTU [MaS] of a multiagent system MaS, if
a possible coalition c is not q-do-ut-des, then there ex-
ists a do-ut-des coalition c′ such that c′ q-do-ut-des domi-
nates c.

proof: Assume that c is not q-do-ut-des, and per absurdum
that each possible coalition c′ that q-do-ut-des dominates c

is not do-ut-des. So, due to the Definitions 15 and 12, we
have that (1) there exists ai such that c ≺i c′ and for all aj ∈
Dom(c′), c -j c′. (2) c′ is not do-ut-des: there exists a c′′ ⊂
c′ and a ah ∈ Dom(c′) such that c′ <h c′′ and for all ak ∈
Dom(c′′), c′ ≤k c′′.

Since NTU [MaS] is do-ut-des compatible, it is the case
that (1) c′ -k c′′ and hence, being Dom(c′′) ⊆ Dom(c′),
c -k c′′, (2) c′ ≺h c′′ and hence, being ah ∈ c′, c ≺h c′′.
But this means that c′′ q-do-ut-des dominates c. Now let
consider a sequence of possible coalitions c1, . . . , cm, such
that (1) cm = c′′, (2) for all 1 ≤ i ≤ m − 1, ci do-ut-des
dominates ci+1 (3) c1 is do-ut-des. Such a sequence cer-
tainly exists, indeed let consider the set of all the sequences
c1, . . . , cm = c′′ such that for all 1 ≤ m − 1, ci do-ut-
des dominates ci+1, and denote this set with DUD[c′′]. In



the case there is no a possible coalition that do-ut-des dom-
inates c′′, then there exists only one sequence in DUD[c′′]
and it is composed by c′′ itself. On the contrary there is at
least a sequence in DUD[c′′] of length equal to 2. Now if
c1, . . . , cm ∈ DUD[c′′] and c1 is not do-ut-des, then there
exists a sequence of length m + 1 in DUD[c′′]. But his en-
tails that if for all c1, . . . , cm ∈ DUD[c′′], c1 is not do-ut-
des, then DUD[c] has infinite cardinality, but this is impos-
sible since there exists only a finite number of sequences
of possible coalitions c1, . . . , cm = c′′ such that for all
1 ≤ i ≤ m− 1, ci⊂ ci+1.

Following the proof done for c′′, for each 1 ≤ i ≤ n, ci

q-do-ut-des dominates c, but this means that c1 is a do-ut-
des coalition that q-do-ut-des dominates c. ¤

Example: In the our boxes-chips game the cardinality of
the possible coalitions is 157. The do-ut-des coalitions are
only 14, i.e. the 91% of all coalitions, and the cardinality of
the q-do-ut-des coalitions is 4. An example of q-do-ut-des
coalition is described in the following table.

τA g

p1

r
→ p1, p3

r
→ p1 rr

p2

b
→ p4, p2

b
→ p4 bb

p1

g
→ p3, p3

b
→ p3 bg

p4

r
→ p2, p4

g
→ p2 rg

All the players satisfy their own goals. In the initial con-
figuration p1 and p3 need respectively only one chip to sat-
isfy their goals. Since no other player provides to them the
needed chip without achieve his own goal, p1 and p3 have to
provide at least one chip. But they provide only one chip, so
they reach the best score they can obtain. Instead, p2 and p4,
that initially have chips and boxes totally unmatched, have
to provide both their chips in order to fill their boxes. ¥

7. Conclusions

In this paper we have provided a description of a mul-
tiagent system as a collection of individual agents, each of
them with their own goals and skills. Then we have defined
the sets of goals assurable by a set of agents. Our defini-
tion considers with respect to the analogous definitions in
Boella et al. [2] a minimalization on the sets of tasks as-
signed to each agent.

Starting from the notion of assurable goals we have de-
fined a cooperative game associated to a multiagent system
and considered the notion of core as solution criterion for
it. We have defined the qualitative criterion of admissibility
for the formation of a coalition called do-ut-des and proved
that it can be used as a method to reduce the space on which
to select a subset of the core.

This reducing process can be computationally profitable.
The inclusion of a coalition c in the core, depends on a com-

parison of c all the other possible coalitions. This means
that in order to establish if a coalition is in the core the en-
tire cooperative game relative to a multiagent systems have
to be given and hence all the achievement capabilities have
to be calculated for each set of agents. In our approach, in-
stead, a coalition c have all the necessary information to
establish if it satisfies the do-ut-des property, therefore the
do-ut-des check can be parallelized with respect to the pro-
cess that calculate the cooperative game relative to the mul-
tiagent system.
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