
Access Control in Virtual Communities
Prohibition, Permission, Authorization and Delegation of Power in the Grid

Guido Boella
Dipartimento di Informatica

Universit̀a di Torino
Italy

e-mail: guido@di.unito.it

Leendert van der Torre
CWI

Amsterdam
The Netherlands

e-mail: torre@cwi.nl

Abstract

We are interested in the design of access control poli-
cies for virtual communities of agents based on the grid in-
frastructure. In a virtual community agents can play both
the role of resource consumers and the role of resource
providers, and they remain in control of their resources. We
argue that this requirement imposes a distinction between
the authorization to access a resource given by the virtual
community and the permission to do so issued by the re-
source providers. Our model is based on a logical multia-
gent framework that distinguishes the three roles of resource
consumption, provision, and of authorization.

1 Introduction

Access control is “the process of mediating every request
to resources and data maintained by a system and determin-
ing whether the request should be granted or denied” [26].
Access control policies are central inin virtual communi-
tiesbased on the grid or on peer to peer systems. Pearlman
et al. [21] define a virtual community as a large, multi-
institutional group of individuals who use a set of rules, a
policy, to specify how to share their resources, such as disk
space, bandwidth, data, online services,etc.Policies in vir-
tual communities become more complex than in distributed
systems due to, e.g., the following reasons.

• Every agent in the community can play both the role
of a resource consumer as well as that of a resource
provider: agents do not only use resources, but they
also put at disposal to the other participants of the com-
munity the resources they own. Resource providers re-
tain the control of their resources and they specify in
local policies the conditions of use of their resources.

• In centralized systems the central manager permits
agents to access the resources which it owns and con-

trols, according to the policies defined by itself. In con-
trast, in virtual communities, access control cannot be
directly implemented by a central manager who owns
all the resources.

• Resource providers should implement local access
control according to the community’s security poli-
cies. However, they should also not be overburdened
by the task of continuously updating the policies as
they change and new members join the community.
Hence, a resource providerdelegatesto a central agent
(calledCommunity Authorization Serviceor CAS by
[21]) who is not in control of its resources the task of
deciding which requests must be granted and which
denied.

• Agents who participate to the community are hetero-
geneous and change frequently, so they cannot be as-
sumed to be always cooperative and to stick to the sys-
tem policies, as concerns both requesting access to re-
sources and providing access to their resources.

Moreover, new questions are raised, like whether the task
of authorizingrequests performed by the CAS is identical
to the task performed by a resource provider when itpermits
access, and what is the relation between these two agents.

In this paper we address the problem how distributed ac-
cess control policies composed by prohibitions, permissions
and authorizations can be designed. To disentangle the dif-
ferent concepts involved in policies for virtual communi-
ties, our design is based on a logical multiagent model: so
we keep advantage both from the clearness of a logic model
and from the recent developments in agent theory. Two sub-
problems of such a model are:

1. How should permissions and authorizations be distin-
guished and how are they related?

2. How can a resource provider delegate to the CAS the
power of authorizing resource consumers and why can
the power to issue permissions not be delegated?

1



The problem of designing access policies for virtual
communities has been recently raised, e.g., by Pearlmanet
al. [21] and Sadighi Firozabadi and Sergot [24]. Pearl-
manet al. [21] argue that the solution is “to allow resource
owners to grant access to blocks of resources to a commu-
nity as a whole, and let the community itself manage fine-
grained access control within that framework”. The central-
ized management of resources owned by the single resource
providers is performed by aCommunity Authorization Ser-
vice: “A community runs a CAS server to keep track of
its membership and fine-grained access control policies. A
user wishing to access community resources contacts the
CAS server, which delegates rights to the user based on the
request and the user’s role within the community. These
rights are in the form of capabilities which users can present
at a resource to gain access on behalf of the community”.

In Figure 1 we depict the process of accessing a resource
in a virtual community, as described by Pearlmanet al.
[21]. When a resource providera3 wants to join a commu-
nity (step 1), it informs the CASa2, which replies with the
requirements on how its resource must be shared with the
community (2). When a resource consumera1 wants to ac-
cess the resource of agenta3, it must not only authenticate
itself with agenta2 providing its credentials (3), but it must
also get a proof that its request conforms to the community’s
access policy. This proof is expressed by acapability(e.g.,
a X.509 certificate) provided by agenta2 to a1 (4), which
identifies the agent and states that it isauthorizedto access
the resource. Now, agenta1 can make the actual request
to a3, forwarding it the capability (5). After checking the
truthfulness of the capability, agenta3 replies toa1 (6).

However, the authorization by agenta2 contained in
the capability is not enough for agenta1’s request being
granted. In a virtual community, agenta3 maintains the
control of its resource: the request is granted only if it is
also permitted by the local policy of agenta3.

In this paper, we argue that the authorization issued
by the CAS is conceptually different from the permis-
sion granted by the resource provider and that the resource
provider delegates to the CAS the power to issue authoriza-
tions rather then to issue permissions, since the latter power
requires being in control of a resource:

A resource provider controlsits resources: it receives re-
quests and decides whether it permits access. Only
the resource provider who controls these resources can
forbid or permit access, in the sense that it lets agents
access them; in fact, without its willingness to do
so the resources are not available even to authorized
users. The power to permit access cannot be delegated.
E.g., a resource can be accessed only if the web server
answers to a request. Moreover, nothing prevents the
resource provider to grant access to agents which are
not authorized.

Authorities (like the CAS) have the power to authorize ac-
cess but not the power to permit access to these re-
sources since they do not control them. They can ex-
ercise the power to authorize according to the virtual
community security policies since they have the re-
sources to implement the system policies, have more
detailed knowledge about the current policies, about
who are the current participants in the communities
and which are their roles.

The notion of authorization to access a resource and the
notion of permission should be kept distinct to have a cor-
rect model of the situation and to prevent dangerous misun-
derstandings in designing access policies

We analyze this distinction in a multiagent framework
which applies several ideas developed in theoretical and le-
gal studies. A cue that these notions have different prop-
erties is found also in the ordinary use of the terms au-
thorization and permission. E.g., for the Cambridge Ad-
vanced Learner’s Dictionary [22] permitting is “to allow
something”, “to make it possible for someone to do some-
thing, or to not prevent something from happening”, while
authorizing means “to give someoneofficial permission to
do something”. Moreover, dictionaries of law like [13] ar-
gue that authorizations and permissions are related but dif-
ferent concepts, and that authorizations do not create new
permissions.

Our model is based on some assumptions. First, as ex-
plained in detail in Section 2, we use for the individual
agents existing agent technology. To incorporate prohibi-
tions and permissions we attribute mental attitudes to the
normative system, as proposed by [2], an assumption which
facilitates the design as well as the evaluation of the de-
sign. Second, we believe that a model based on agents and
defined in terms of well founded notions inspired to the
regulation of human society, as prohibitions, permissions
and authorizations, can be more easily understood by hu-
man users and security managers; moreover, it can be ap-
plied also to virtual organizations composed by both artifi-
cial agents and humans. Third, all the roles - consumers,
providers and authorities - are modelled as heterogeneous
autonomous intelligent agents: to understand the behavior
of the system they belong to it is necessary to reason on
their beliefs and their motivations: desires and goals, and
prohibitions and permissions they are subject to.

This paper is organized as follows. In Section 2 we in-
troduce our multiagent design for distributed access control,
and in Section 3 we introduce the formal agent model and
and the definition of norms, authorizations and delegation.
Moreover, in Section 4, we discuss a scenario where the
formal model is applied, and in Section 5 we discuss the
theoretical foundations of the design.

2



CAS

Resource
provider

Resource
consumer

Global
policy

DB

Local
policy

DB

Creden-
tials

Creden-
tials

Member
DB

Request
to
join

Policy
requirements

Request
for

authorization
with

credentials

Reply with
capability

Request with
capability

Reply or
sanction

1

2

3

4
5

6

Can a1 be 
authorized?

authorized and
permitted?

a1

a2

a3

Figure 1. The players in a virtual community.

2 A multiagent design for access control

In this section we first introduce the three dimensions of
our design: the agents and roles involved in the model, the
design of the individual agents, and the primitives we use
to incorporate normative concepts. Thereafter, we define
prohibitions, permissions, authorizations and delegations.

2.1 Agents and roles

In virtual communities there is no separation of resource
providers from resource consumers, and they can play the
role of authorities too. Our design is therefore based a sin-
gle set of agents, which can each play one or more of the
following roles.

First, in the role of resource consumers, agents can ac-
cess resources to achieve their goals. They are subject
to norms regulating security, prohibitions and permissions,
and also endowed with authorizations to access resources.

Second, in the role of resource providers, the agents can
provide access to the resources they own. We call this the
normative role, since they can issue norms, i.e., prohibitions
and permissions about the access of a resource, and enforce
their respect by means of sanctions, and delegate the power
to authorize resource consumers.

Third, in the role of what we call authorities, the agents
can declare resource consumers authorized when they are
requested to do so. They know that their declarations are
considered as authorizations by the resource providers since
they have been delegated the power to authorize resource
consumers on behalf of resource providers.

We represent agents by a setA = {a1, a2, . . .}, and
agentai in a consuming role byc(ai), in a producing role
by p(ai), and as an authority byu(ai).

2.2 Design of individual agents

In the design of individual agents, we incorporate the
standard beliefs-desire-intention or BDI design as it has
been developed in agent theory and standardized, e.g., in
FIPA. Note that this standardization not only concerns the
agents themselves, but also the communication and inter-
action protocols between them. Further developments in
this area can directly be incorporated in our design for dis-
tributed access control.

In agent models, mental attitudes are assigned to agents:
their beliefs, abilities and motivational attitudes. In the BDI
model, agents’ behavior is governed by their specific bal-
ance between beliefs, desires and intentions. In our model,
we assign these mental attitudes to each role of the agent.

The agent perspective is not only useful to design dis-
tributed access control policies, but also to evaluate the
design by simulation. To formalize decision making in a
multiagent setting, in [5] and [6] we introduce a qualitative
game theory which can be used to model the decision pro-
cess of agents subject to permissions and authorizations as
defined in this paper.

Agents deliberate to take actions; in this paper we are
interested in particular in the access of resources. Typical
access actions arerwx of unix, CRUD of databases and,
more recently, access to web resources and services. We
therefore define severalresource actionsfor manipulating
resources. LetRS be a set of resources. The set of resource
actions of agentai for a resourcer areRAi=w,u,c,x,... such
asw(r) (write r), u(r) (updater), c(r) (creater), x(r) (ex-
ecuter), etc.

2.3 Primitives for normative notions

To define prohibitions, permissions, authorizations and
delegation of institutional power, we introduce primitives
for violations, sanctions, institutional facts andcounts as
relations.

The first concept isviolation. The normative role can
decide whether something is considered a violation or not.
Thus, a violation is modelled as an atomic action.

The second concept issanction. Since it is not possible
to assume that all agents are cooperative and respect the
norms, sanctions provide motivations to fulfill the norms.
A sanction is an action negatively affecting an agent, i.e.,
the agent desires the absence of the sanction. If an agent
does not respect a prohibition, we do not identify between
behavior that is considered a violation and sanctions which
are applied in case of violations. Consequently, there are
also actions that represent sanctions.

3



The third concept is acounts asrelation. We use it to de-
fine other related concepts such as having the power, being
empowered, and institutional facts. The counts as relation
is a binary relation between actions and institutional facts.
An example of this relation is the fact that a signature by
the head of the department on a purchase order counts as
the institutional commitment of the department to pay for
that order: the head of the department has the institutional
power to buy on behalf of the department. If an actionx of
agenta1 counts as an institutional factq for the agenta2 in a
normative role, i.e.,p(a2), counts-as2(x, q), then agenta2

believes thatq is a consequence of agenta1’s doingx. We
describe this situation saying that agenta1 has the power to
create the institutional factq by doingx.

2.4 Permissions, authorizations and delegation

The basic idea of our design is that we use only the con-
cepts introduced thus far - actions, beliefs, desires and goals
- because in that case we can reuse existing agent technolo-
gies to build distributed access control policies. But how
can these concepts be used to define permissions, authoriza-
tions, and delegations? Do we not need additional primi-
tive concepts like obligation and power? Roughly, the basic
ideas is as follows. Prohibitions and permissions are defined
in terms of goals attributed to the normative role, together
with some additional constraints; and authorizations are be-
liefs attributed to the normative role, together with some ad-
ditional constraints due to the fact that there are three agents
(or roles) involved.

Prohibition to do an action is the obligation not to do the
action. Prohibitions are defined as goals of normative
roles. This is paraphrased as: Your wish (goal, desire)
is my command (prohibition). The unfulfillment of the
goal is considered as a violation and is sanctioned.

Permission makes direct reference to the definition of pro-
hibition. A behavior is permitted if it is not considered
by a normative role as a violation and thus it is not
sanctioned. The main role of permissions is to pro-
vide exceptions to prohibitions in a given context [11].
For example, a permission to kill in self-defence makes
sense only in the context of a prohibition to kill. Thus
a permission is based on a goal of the normative role
not to consider a given behavior as a violation.

Authorization is a belief of a normative role which appears
as a condition in a permission. I am authorized only if
You believe so.

Declaration of authorization is an action of an authority
which states that an agent can be considered authorized
according to its own policy. Authorities can have what-
ever reason for declaring authorized someone: e.g.,
they can be forbidden not to do so, or they can have
the goal that only some agents are authorized (if the
authority is the manager of the system).

Delegation is the change of authority. The authorities play
the role of dispatcher of declarations. The declaration
turns into a belief of the normative role that an agent
is authorized. A normative role delegates the authority
when it joins the community.

Before we can make prohibitions and permissions more
precise, we have to consider the notion ofcontrol, because
an agent depends on the agent in control of the resource
[28]. E.g., in virtual communities agents are dependent for
their membership to the system: if they do not stick to poli-
cies they are denied citizenship. Moreover, agents depend
on resource providers for the possibility and the quality of
access to the resources: e.g., in P2P file sharing systems
a consumer has a reduced bandwidth if it does not share
files too. A resource provider is an agent who is in control
of a resource if it receives requests and decides whether to
let access take place or to deny it. In Sadighi Firozabadi
et al. [25]’s terminology, this is a preventative normative
system. In some situations, however, accesses cannot be
prevented, e.g., for efficiency reasons identities cannot be
always checked and only statistical monitoring and audit is
performed: only a detective normative system is possible.
Hence, we base the notion of control on a more general def-
inition: an agent is in control of a resource if it receives
requests and can sanction the agents which make forbid-
den requests. As a particular case, we have the preventative
model discussed above: the agent in control sanctions the
violation by avoiding that the access to a requested resource
achieves its effect (e.g., an HTTP get request receives as a
response an error message).

Agentp(a2) is in control of a given resourcer for what
concerns a resource actionf1(r) executed by agentc(a1)
on r, control2(f1(r)), iff:

• Agent c(a1) who (tries to) commits access violations
aboutf1(r) can be sanctioned by agentp(a2).

In [8] we identify the possibility to sanction an agent as
the essential precondition for the ability to create norms:
prohibitions and permissions. The definition of prohibition
is given in terms of the mental attitudes of the agent and
of the normative role concerning violations and sanctions.
A prohibition F(1,2)(x, s | c) is read as ‘agentc(a1) is for-

4



bidden in systemp(a2) to see to it thatx in contextc, oth-
erwise it is sanctioned withs’. An agentc(a1) is forbidden
by a resource providerp(a2) to dox, F(1,2)(x, s | c), iff:

1. If conditionc holds, agentp(a2) wants the absence of
x and that agentc(a1) adopts¬x as its decision.

2. If x ∧ c then agentp(a2) has the goal thatx is consid-
ered as a violation.

3. If agentp(a2) considersx as a violation then it has as
a goal that it sanctions agentc(a1) with s.

4. Agentc(a1) has the desire not to be sanctioned.

Item 4 specifies that the sanction must be a motivation
for respecting the prohibition.

An agentc(a1) is permitted by agentp(a2) to do x in
contextc, P(1,2)(x | c) iff:

• If c∧x then agentp(a2) has the goal not to considerx
as a violation.

There is an asymmetry between prohibitions and permis-
sions, since the latter ones play the role of exceptions to the
former ones: the content of the prohibition is the negation
of a goal of the normative role, in contrast the content of a
permission is not its goal. In the case of the permission to
kill in self defence, the normative system clearly does not
have the goal that someone is killed even in self defence
circumstances.

Differently from many other works on prohibitions and
permissions we do not represent deontic concepts by means
of primitive operators. Our choice depends not only on the-
oretical reasons (as discussed in [2]), but especially on the
necessity to consider the motivations underlying the deci-
sions of agents. In a heterogeneous system like the grid
infrastructure, as also [24] argue, it is not possible to as-
sume that the mere existence of a prohibition is a sufficient
motivation for its respect. Moreover, the agents have to deal
with obligations conflicting with their motivations and obli-
gations conflicting with each other. So it is necessary to
have an explicit model of their decision process under sanc-
tion based prohibitions.

Authorizations are the means used by agents to regulate
the access of consumers to resources which they do not con-
trol. But there is no way to make authorized users access
a resource without a permission by the resource provider:
hence, authorizations are distinct from and presuppose per-
missions. An authorization is useless unless the resource
provider permits authorized agents to access the resourcer
it controls: authorizations change what is prohibited to an
agent and legitimate an action but without introducing or
removing any norm.

Consider the following example. An agenta3 joins some
virtual community; it will both use the resources provided
by the community, say downloading shared files, and pro-
vide its resourcer to the other members of the community,
say some of its disk space to store files: agenta3 plays both
the role of a resource consumer,c(a3), and that of a resource
provider,p(a3). Since agentp(a3) controls its disk space (it
is the only one who can decide that storing or retrieving files
take place), it regulated the access to the disk by means of
some local policy: prohibitions and permissions. E.g., it
prohibited to read files during the day, it prohibited to store
files exceeding 2.5Mb and it permitted to store compressed
files whatever their size.

When agenta3 joins the community, it agrees that also
some of the members of the community use its disk space
resourcer. In order to do so, in principle, agentp(a3) could
modify the norms regulating the access to its resource: e.g.,
by maintaining the prohibitions to read file during the day
and to store large files and the permission to store zipped
files, and by adding the permission about which members of
the community can store and retrieve files on its disk space.

However, this solution imposes on agentp(a3) an heavy
burden. In fact, even if the problem of authenticating which
are the current users of the community can be dealt with by
some trusted third party who gives them e-certificates, there
are still some other complexities: it remains the problem
of which members of the community are the ones which
the community currently wants that they can access the re-
source and under which conditions they can do so. More-
over, the community access policies may change with time
so that agentp(a3) should be kept informed and should
modify the norms regulating access to the resource it owns.
The complexity of modifications could also introduce un-
wanted errors in the access policy of agentp(a3).

What is needed is a solution which transfers the burden
of managing the community policies to other agents, play-
ing the role of authorities, which have the knowledge and
resources to perform this task. However, it is impossible
to say that an authorityu(a2) changes the prohibitions and
permissions posed by agentp(a3): norms are defined in
terms of goals of agentp(a3), and authorities cannot change
agentp(a3)’s goals. Moreover,u(a2) is not in control of
the resource so it cannot impose sanctions to motivate the
respect of prohibitions. Finally, agentp(a3) wants to pre-
serve its autonomy, so that it does not accept that someone
else can change the norms regulating access to its resource.

The solution is that agentp(a3) creates only a permis-
sion saying that authorized agents can access the resourcer.
But the decision to authorize agents to access the resource

5



r is delegated to the authorityu(a2) which has up to date
knowledge on the system policies and members. Delegat-
ing the decision to authorize is easier than delegating per-
missions: the authorization is not a goal of the agentp(a3)
but just a belief which can be induced by the authority by is-
suing e-certificates and capabilities to the agents which are
authorized. Moreover, it does not require that the delegated
agent is in control of the resource.

When the set of agents which can be authorized changes
as a consequence of new community policies, agentp(a3)
does not have to change the norms regulating access: new
authorizations are created when the authorityu(a2) issues
new capabilities (or, in our abstract terminology,u(a2) de-
clares them authorized). The capabilities are recognized by
agentp(a3) as the proof that the permission to accessr ap-
plies to a consumerc(a1) requesting access tor.

Then we have three agents involved in an authorization
with different roles:

1. The agent who is authorized is a resource consumer.

2. There is an agent, the “authority”, who has the power
to authorize: this agent decides which resource con-
sumers should be authorized and declares them autho-
rized.

3. The resource provider who considers declarations by
authorities as authorizations of the resource consumers
and thus permits access to the resource it controls.

There is an authorization by resource providerp(a3) to
resource consumerc(a1) to access resourcef1(r) when:

• Agent p(a3) controls access to resourcer by f1(r),
otherwise any permission to accessf1(r) would be
useless.

• There is a conditional permission tof1(r) which has
among its conditions a fact representing that it is au-
thorized,u3(f1(r)):

P(1,3)(x | u3(f1(r)))

• Agentc(a1) believes that agentp(a3) believes it is au-
thorized:u3(f1(r)), so that the conditional permission
is enabled.

The conditionu3(f1(r)) is made true by an action of an
authority: authorityu(a2) “declares”c(a1) authorized (for
example by signing a sheet, or by providing it with an e-
certificate or a capability). This declaration action denoted
by g2(f1(r)) has a meaning only if it has an effect on the
beliefs of the resource provider: this link is provided by the
delegation of the institutional power to authorize agents.

Authority u(a2) is delegated the institutional power to
authorize agentc(a1) to access a resourcer with resource
actionf1 on behalf of agentp(a3) by means of declaration
g2(f1(r)), Del(2,3)(g2(f1(r)), u3(f1(r))), iff:

• A declarationg2(f1(r)) by authorityu(a2) counts as
u3(f1(r)) for the agentp(a3):

counts-as3(g2(f1(r)), u3(f1(r)))

I.e., if agentp(a3) believes thatu(a2)’s action to declare
agentc(a1) authorizedg2(f1(r)) has as a consequence the
authorizationu3(f1(r)) by agentp(a3) to agentc(a1).

In order for agentc(a1) to reason about what is autho-
rized and permitted to do, it must consider the beliefs, de-
sires and goals of the other agents: in this way it can dis-
cover whether an action of agentu(a2) is considered as
an authorization by agentp(a3); only if p(a3) considers
c(a1) authorized,p(a3) leaves agentc(a1) access the re-
source without considering this action a violation and thus
punishing agentc(a1).

Works on delegation logics ([1], [18]) address the prob-
lem of how not only resource providers can delegate author-
ities but also delegated authorities can delegate their power
to authorize to other agents. For space reason we cannot
enter into this issue, but note that the delegation of power
from an authority to another one can be modelled again in
terms of the counts as relation.

This discussion shows that nothing requires that agent
u(a2), who is delegated the authority to authorize other
agents, is itself permitted nor authorized nor delegated to
authorize itself to access the given resource. The sepa-
ration of institutional power from the permission to exer-
cise it, identified by Makinson [19], is important for virtual
communities; as Bandmannet al.[1] argue, an organization
could “outsource some administrative task” such as assign-
ing access rights to some agent without allowing it to have
those access rights.

Moreover, authorizations only help the resource
providers in understanding when the community’s policy
allows access. However, the authorizations do not con-
strain the freedom of the resource providers to deny access
to agents which are authorized or to grant access to unau-
thorized agents. The autonomy of the resource providers
can be limited by community policies directed towards their
behavior: in particular, the community can impose prohibi-
tions or permissions on what the resource provider should
or should not consider as violations. As described in this
section, this is possible only since resource providers de-
pend on the community in that it can sanction them (e.g.,
by cancelling their membership to the community). In [5]
we address this issue of global policies constraining local
policies.

6



3 A formal model

In this section we introduce the agent model and formal-
ize the notions of prohibition, permission, authorization and
delegation.

3.1 Individual agent design

As mentioned before, for the individual agent design we
can use any BDI agent design. We choose the rule based
BOID architecture [10]; though in our theory, and in con-
trast to the BOID architecture, prohibitions are not taken as
primitive concept. Beliefs, desires and goals are represented
by conditional rules. Actions, calleddecision variables, can
have conditional and indirect effects with a non-monotonic
character.

First of all, the roles played by agents:

Definition 1 (Agents) LetA = {a1, a2, . . . , an} be a set
of n agents. An agentai ∈ A can play three roles:

1. Resource consumer, denoted asc(ai).

2. Resource provider, denoted asp(ai).

3. Authority, denoted asu(ai).

Next decisions. We assume that the base language con-
tains boolean variables and logical connectives. The vari-
ables are eitherdecision variablesof an agent, which rep-
resent the agent’s actions and whose truth value is directly
determined by it, orparameters, which describe the state of
the world and whose truth value can only be determined in-
directly. Our terminology is borrowed from Langet al. [17].

Definition 2 (Decisions) Let Ai = {m,m′,m′′, . . .}, the
decision variables ofai ∈ A, andP = {p, p′, p′′, . . .}, the
parameters, ben+1 disjoint sets of propositional variables.
A literal is a variable or its negation.di ⊆ Ai is a decision
of agentai.

The consequences of decisions are defined by the agent’s
epistemic state, i.e. its beliefs about the world: how a new
state is constructed out of previous ones given a decision is
expressed by a set ofbelief rules, denoted byBi. Belief
rules can conflict and agents can deal with such conflicts in
different ways. The epistemic state therefore also contains
an ordering on belief rules, denoted by≥B

i , to resolve such
conflicts.

Definition 3 (Epistemic states)Let a rule built from a set
of literals be an ordered sequence of literalsl1, . . . , lr, l
written asl1 ∧ . . . ∧ lr → l wherer ≥ 0. If r = 0, then we
also write> → l.

Theepistemic stateof agentai, 1 ≤ i ≤ n, is

σi = 〈Bi,≥B
i 〉

Bi is a set of rules;≥B
i is a transitive and reflexive relation

on the powerset ofBi containing at least the subset relation.

Example 1 Let s = {p} be the current state,d1 = {a},
B1 = {a → q, a ∧ p → ¬q} and≥B

1 = {a ∧ p → ¬q} >
{a → q}: q is a consequence of actiona, unlessp is true:
the second rule is an exception to the first one. The new
state resulting from the decisiond1 in states given the belief
rulesB1 is {p,¬q}: the applicable rules are{a → q, a ∧
p → ¬q}, but since they are conflicting only the rulea∧p →
¬q with higher priority in the ordering≥B

1 is applied.

The agent’s motivational state contains two sets of rules
for each agent.Desire(Di) andgoal (Gi) rulesexpress the
attitudes of the agentai towards a given state, depending
on the context. Given the same set of rules, distinct agents
reason and act differently: when facing a conflict between
their motivations, different agents prefer to fulfill different
goals and desires. We express these agent characteristics by
a priority relation on the rules which encode, as detailed in
Broersenet al. [10], how the agent resolves its conflicts.

Definition 4 (Motivational states) The motivational state
Mi of agentai 1 ≤ i ≤ n is a tuple〈Di, Gi,≥i〉, where
Di, Gi are sets of rules,≥i is a transitive and reflexive re-
lation on the powerset ofDi ∪ Gi containing at least the
subset relation.

For simplicity, we assumetransparencyof epistemic and
motivational states: each agent knows the other agents’
mental states.

The decision process of an agentai tries to minimize
(according to the ordering≥i on goal and desire rules) the
goal and desire rules inGi andDi which remain unsatisfied
given a certain decisiondi.

Definition 5 (Unfulfilled motivational states) Let
U(R, s) be the unfulfilled rules of states,
U(R, s)={l1∧. . .∧ln→l ∈ R | {l1, . . . , ln} ⊆ s andl 6∈s}

Theunfulfilled mental state descriptionof agentai is

Ui = 〈UD
i = U(Di, s), UG

i = U(Gi, s)〉
Example 2 Given the motivational state of agenta1

〈D1 = {> → z}, G1 = {> → x, y → w, z → u},≥1〉
the unfulfilled motivational state description of agenta1 in
states = {x, y} is

U1 = 〈UD
1 = {> → z}, UG

1 = {y → w}〉
In calculating which are the effects of a decisiondi given

an initial states, the agent uses the belief rulesBi and
the ordering on them≥B

i to resolve the possible conflicts.
Moreover, agentai must predict the decisions of the agents
acting after itself by recursively modelling ([15]) them us-
ing the information on their belief, goal and desire rules
captured by their motivational states. The interested reader
can find the details of the qualitative decision model in [5]
and [6].

7



3.2 Norms

Prohibitions and permissions are defined in terms of
goals and desires of the bearer of the norm and of the nor-
mative role. To represent violations for each propositional
variable we add aviolation variable.

Definition 6 (Violation variables) The violation variables
of agentp(aj) are a subset of the decision variables ofp(aj)
written asVj={V i

j (x) | x a literal built out of a proposi-
tional variable inP ∪Ai }: x is a violation by agentc(ai).

Definition 7 (Conditional prohibition with sanction)
Agentc(ai) is prohibited by agentp(aj) to decide to dox (a
literal built out of a variable inP ∪ Ai) with sanctions (a
propositional variable) under conditionq (a proposition),
F(i,j)(x, s | q), iff:

1. q → ¬x ∈ Gj : if agentp(aj) believes thatq it has as
a goal that agentc(ai) adopts¬x as its decision.

2. q ∧ x → V i
j (x) ∈ Gj : if agent p(aj) believes that

q ∧ x then it has the goalV i
j (x): to recognizex as a

violation done by agentc(ai).

3. V i
j (x) → s ∈ Gj : if agentp(aj) decidesV i

j (x) then it
has as a goal that it sanctions agentc(ai).

4. > → ¬s ∈ Di: agentc(ai) has the desire not to be
sanctioned.

A permission to dox is an exception to a prohibition to
do x if agentp(aj) has the goal thatx does not count as a
violation under some condition.

Definition 8 (Conditional permission) Agentc(ai) is per-
mitted by agentp(aj) to decide to dox (a literal built out
of a propositional variable inP ∪Ai) under conditionq (a
proposition),P(i,j)(x | q), iff

• q ∧ x → ¬V i
j (x) ∈ Gj : if agentp(aj) believesq ∧ x

then it wants thatx is not considered a violation done
by agentc(ai).

The permission overrides the prohibition if the goal that
something does not count as a violation (q ∧ x → ¬V i

j (x))
has higher priority in the ordering on goal and desire rules
≥j with respect to the goal of a corresponding prohibition
thatx is considered as a violation (q ∧ x → V i

j (x)):
≥j⊇ {q ∧ x → ¬V i

j (x)} > {q ∧ x → V i
j (x)}

We do not consider here the problem of how normative
role’s characteristics can be generated; e.g., see [7] for a
discussion of the problem of the legal sources of norms.

3.3 Resource, authorization and delegation

We introduce now the notion of resource, of control of a
resource, of authorization and delegation of the institutional
power to authorize access to a resource.

An agent who manipulates a resource by means of some
action is called aresource consumer:

Definition 9 (Resources)LetRS be a set of resources. Let
RAj = {fj(r) | r ∈ RS} be a set of resource actions of
agentc(aj) on r ∈ RS.

As discussed in Section 2.4, the possibility to punish vi-
olations by means of some sanctions is among the precon-
ditions for creating a prohibition; for this reason, the notion
of controlling a resource, which is a precondition for issu-
ing norms concerning access control, is defined in terms of
a condition which appears also in the definition of prohibi-
tion. We add this definition anyway since Definition 7 of
prohibition is given in a more general form referring to lit-
erals and not only to resource actions.

Definition 10 (Control of resource) Agentp(aj) controls
a resource actionfi of agentc(ai) on resourcer ∈ RS,
controlj(fi(r)), iff:

• Agentp(aj) can negatively influence agentc(ai) when
it executesfi(r) by means of some decision variable
or parameter which it can controls ∈ Aj ∪ P such
that > → ¬s ∈ Di: agent c(ai) desires not to be
sanctioned.

An agent who controls a resource is calledresource
provider.

As a particular case,s = ¬p can be a literal built out
of a parameter representing the failure of accessing a re-
source: e.g., reading a file has the desired effect of know-
ing the content of the file, and blocking the reading action
results in the impossibility of knowing the information con-
tained in the file.c(ai) believes thatp(aj) with m ∈ Aj

prevents to achieve the effectp of fi(r) which c(ai) de-
sires;fi(r) → p ∈ Bi, > → p ∈ Di andm has the effect
¬p: m → ¬p ∈ Bi and≥B

i ⊇ {m → ¬p} > {fi(r) → p}.
Besides issuing norms, an agent which controls a re-

source can consider other agents authorized to access the
resource it controls:

Definition 11 (Authorizations) Let the parameters
P contain a set of so-called authorization variables:

Hj={uj(fi(r)) | ai∈A andfi(r)∈RAi and
controlj(fi(r))}

They are institutional facts representing that the resource
providerp(aj) considers agentc(ai) authorized to accessr
with actionfi.

8



Instead, declaring an agent authorized does not have the
requirement to control a resource:

Definition 12 (Declarations) Let the decision variables of
agentu(ak) contain a set of so-called declaration variables

Tk = {gk(fi(r)) | ai ∈ A andfi(r) ∈ RAi}
gk(fi(r)) means that agentu(ak) declares agentc(ai)

authorized to accessr with actionfi.

The point of declaring agents authorized is that a dec-
laration generates an actual authorization if it counts as as
an authorization for the normative role controlling the re-
source.

Definition 13 (Counts as relation) A decision variable
x ∈ Ak of agentu(ak), counts-asq, q a literal built out
of a parameter, for agentp(aj), counts-asj(x, q), iff:

• x → q ∈ Bj : agentp(aj) believes thatx hasq as a
consequence.

Definition 14 (Delegation of authorization) Agent u(ak)
is delegated by agentp(aj) the institutional power to
authorize agentc(ai) to do fi(r) ∈ RAi by means
of declaration gk(fi(r)) ∈ Tk (uj(fi(r)) ∈ Hj),
Del(k,j)(gk(fi(r)), uj(fi(r))), iff:

• counts-asj(gk(fi(r)), uj(fi(r)))

By transparency of mental states, ifgk(fi(r))→uj(fi(r)) ∈
Bj then all agents believe thatp(aj) believes thatgk(fi(r))
counts as an authorization.

An agent who has been delegated the institutional power
to authorize access is called anauthority. It is not requested
to control any resource.

CAS

Resource
producer 

Resource
consumer 

info_1(file) in G1

Del(g2..,u2..)

P(read1(file)|u3(read1..))

a1

g2(read1(file))

read1(file)

info1(file) /
not info1(file)

1

2

3

4
5

6

read1..->
 V(read1..) in G3

ask1(g2(read1(file)))

a2

a3

ask1(g2(read1..))
-> g2(read1..) in G2

Figure 2. Requesting access.

4 Applicative scenarios

In this section we formalize some scenarios in our model.
First of all, consider a simple situation where only a re-
source providerp(a3) and a resource consumerc(a1) are
involved. Agentp(a3) provides access to a resourcefile,
say a file, in particular, by actionread1, say reading the
file file, which agentc(a1) can do onfile. We model
read1(file) ∈ A1 as a decision variable which makes agent
c(a1) know the content of the file (represented by the pa-
rameterinfo1(file) ∈ P ); agentc(a1) represents this con-
nection in its beliefs:read1(file) → info1(file) ∈ B1.
However, the result of reading the file is not automatic, since
agentp(a3) can prevent the success of the access by means
of a decision variableblock3 ∈ A3; agentc(a1) knows this
fact, sinceblock3 → ¬info1(file) ∈ B1; this belief rule
works as an exception to the previous one since it has pri-
ority over it according to the orderingc(a1) uses to resolve
conflicts among beliefs:

≥B
1 ⊆ {block3 → ¬info1(file)} > {read1(file) →

info1(file)}.
The fact thatp(a3) can block the attempt of accessing the

resource means that it is in control of the resource: in fact,
the decision variableblock3 can make falseinfo1(file)
which is a desire of the consumer when it wants to ac-
cess the resource:> → info1(file) ∈ D1. Hence,
control3(read1(file)) is true by Definition 10.

For this reason,¬info1(file) can be used as a sanction
(as in Definition 7, it is a literal built out of a parameter and
p(a3) indirectly controls it by doingblock3) when p(a3)
poses prohibitions on its resource: the local access policy
of p(a3) is to prohibitc(a1) to access the resource during
the day (¬night), in order to reduce the load on its server:

F(1,3)(read1(file),¬info1(file) | ¬night).
This prohibition is defined in terms of goals ofp(a3), as

described by Definition 7:

G3 ⊇ {¬night → ¬read1(file),
read1(file) ∧ ¬night → V 1

3 (read1(file)),
V 1

3 (read1(file)) → ¬info1(file)}
These goals explain both the behavior ofp(a3) and of

c(a1): whenp(a3) faces an attempt to access the resource
file during the day,read1(file) ∧ ¬night, it has the goal
to consider the attempt as a violationV 1

3 (read1(file))
(read1(file) ∧ ¬night → V 1

3 (read1(file)) ∈ G3);
thus, it has the goal to sanction it (V 1

3 (read1(file)) →
¬info1(file)) by executing the actionblock3. Its decision
is d3 = {V 1

3 (read1(file)), block3}. On the other hand,
agentc(a1) is motivated by these goals not to try to attempt
to access the resource by doingread1(file) during the day:
by predicting the reactiond3 of p(a3), it understands that its
action does not result in the desired outcomeinfo1(file)
(due to block3 → ¬info1(file) ∈ B1); if, instead,

9



read1(file) is executed during the night, then the condi-
tional goal ofp(a3) to consider the attempt as a violation
is not relevant:read1(file)∧¬night → V 1

3 (read1(file))
is not applicable in situationread1(file) ∧ night. p(a3)
does not have any motivation to execute the blocking action
to sanctionc(a1) and, then, the access takes place with the
desired effect (sinceread1(file) → info1(file) ∈ B1 and
¬block3).

We now reconsider this scenario in the context of a vir-
tual community. As shown in Figure 2 we have three agents:
agenta3, who plays the role of a resource providerp(a3)
controlling the resourcefile, the resource consumerc(a1),
and the CAS of the virtual community represented by agent
a2; it is playing the role of an authorityu(a2).

When agenta3 joined the community (step 1) it main-
tained the prohibition to accessfile with actionread1 dur-
ing the day (F(1,3)(read1(file),¬info1(file) | ¬night)),
but it agreed to share the resource with the other members
of the community even during the day. To implement the
agreement, it could issue a permission to doread1(file);
unfortunately,p(a3) does not know which are the current
members (in this case whether agenta1 is a member) nor
which is the access policy of the community for what con-
cerns the resourcefile whichp(a3) is sharing.

In contrast, agentu(a2), as a CAS, has up to date in-
formation about which are the members of the community
and which of them can access the resource according to the
community policy. Here, we ignore the problem of which
are the current members and we focus again on agentc(a1),
to check whether it should be allowed to doread1(file) or
not. Assume that it is the case that the community wants
that agentc(a1) accessread1(file).

What is missing is a connection between agentp(a3)’s
access policy and agentu(a2)’s. The first step to do
is that agentp(a3) decides to consider agentu(a2)’s
decisions aboutc(a1) as its own decisions: when it
joins the community, agentp(a3) acquires the belief
rule that what agentu(a2) says (or declares, in our
terminology: g2(read1(file)) ∈ T2) about c(a1)’s
access tofile is considered byp(a3) as an authoriza-
tion by itself: u(a2)’s action g2(read1(file)) counts
as u3(read1(file)) ∈ H3 for p(a3). The belief rule

g2(read1(file)) → u3(read1(file)) ∈ B3

means thatp(a3) delegated to agentu(a2) the institu-
tional power to authorizec(a1) to doread1(file):

Del(2,3)(g2(read1(file)), u3(read1(file)))

The institutional factu3(read1(file)) - the authoriza-
tion by agentp(a3) to access the resource - is useless if
taken alone. To have a meaning it must have an effect on the
goals of agentp(a3) about whatc(a1) is prohibited, or not,
to do. We argued that the authorization by itself does not

create new permissions (and, hence, no new goal of agent
p(a3)). Rather, the authorization must be a condition of
some goal of agentp(a3), a goal that preventsp(a3) to con-
sider the access during the day (read1(file) ∧ ¬night) as
a violation (as, instead, it would be prescribed by the goal
read1(file) ∧ ¬night → V 1

3 (read1(file))):

read1(file) ∧ ¬night ∧ u3(read1(file)) →
¬V 1

3 (read1(file)) ∈ G3

where the second rule has priority over the first one:

≥3⊇ {read1(file) ∧ ¬night ∧ u3(read1(file)) →
¬V 1

3 (read1(file))} > {read1(file) ∧ ¬night →
V 1

3 (read1(file))}
The second rule is an exception to the rule considering

access as a violation. By Definition 8, agentc(a1) is per-
mitted to access the resource during the day if authorized:

P(1,3)(read1(file) | ¬night ∧ u3(read1(file)))

p(a3) permitsread1(file) only to agents authorized by
u(a2), which, as a CAS, knows the current composition of
the community and its global policy. Depending on the truth
of u3(read1(file)) agentc(a1) is considered as a viola-
tor or not in doingread1(file). But the authorization does
not change the local access policy ofp(a3), i.e., the set of
prohibitions and permissions, posed by agentp(a3) at the
moment of joining the community; the authorization only
changes the sphere of what is prohibited or permitted under
certain circumstances.

When agentc(a1) wants to doread1(file) (5), it knows
that it is forbidden to do so during the day, unless it is au-
thorized byp(a3). It knows that in order to be considered
authorizedu3(read1(file)) by p(a3), it has to present a ca-
pability from agentu(a2) containing its declaration of au-
thorizationg2(read1(file)) (5). So, when it authenticates
itself with the CAS (3) , it can also request a declaration by
deciding forask1(g2(read1(file))) ∈ A1.

Agent c(a1) has to take a decision and compares the
different alternatives for achieving its goalread1(file):
requesting the resource by doingread1(file) alone(step
5) or first asking for a declaration (3) and then re-
questing to access the resource (5). If it decides for
the first solution it knows that it violates the prohi-
bition F(1,3)(read1(file),¬info1(file) | ¬nigth) and
that it will be sanctioned with¬info1(file) by p(a3)
(6). How can agentc(a1) foresee the behavior of agent
p(a3)? It knows the mental state of agentp(a3); first
of all, p(a3) has among its goalsG3 the goal that
read1(file) is not executed and that the execution of
such action is considered as a violation (V 1

3 (read1(file)))
and thus sanctioned (¬info1(file), from the definition of
F(1,3)(read1(file),¬info1(file) | ¬night)).

10



If c(a1) decides to doread1(r) alone, it would trigger
the goal of considering it as a violation and, as a con-
sequence, the violation would trigger the goal to sanc-
tion it. However, sinceP(1,3)(read1(file) | ¬night ∧
u3(read1(file))), the goals ofp(a3) contain also an ex-
ception to the goal of consideringread1(file) a violation,
in caseread1(file) is executed by an authorized agent
u3(read1(file)).

From the agent characteristic of agentp(a3), c(a1)
knows that this second goal is preferred to the first one:
≥3⊇ {read1(file) ∧ ¬night ∧ u3(read1(file)) →
¬V 1

3 (read1(file))} > {read1(file) ∧ ¬night →
V 1

3 (read1(file))}
So, in case it is considered authorized, the goal of consid-

eringread1(file) a violation is cancelled by the preferred
goal not to consider authorized agents as violators (6).

How does c(a1) know that it is considered autho-
rized by p(a3)? Sincep(a3) delegatedu(a2) the power
to declare authorizations,c(a1) knows that, according
to p(a3)’s beliefs B3, a declarationg2(read1(file)) by
u(a2) is considered as an authorizationu3(read1(file)):
g2(read1(file)) → u3(read1(file)) ∈ B3.1 To
get a declaration to be included in its capability, agent
c(a1) can request one to agentu(a2) by doing action
ask1(g2(read1(file))) (3). Also in this case agentc(a1)
must reason about the motivations that lead agentu(a2) to
reply to its request (4). For example, the CAS can simply
have the goal to respond to the requests of agentc(a1):
ask1(g2(read1(file))) → g2(read1(file)) ∈ G2

From this goal agentc(a1) can predict that its request to
be declared authorized will be satisfied, so that its decision
d1 = {ask1(g2(read1(file))), read1(file)} will lead to
the desired consequenceinfo1(file) without any sanction.

This is not the only possible motivation for agentu(a2)
to declare agentc(a1) authorized. As Firozabadi and Sergot
[24] argue it is possible that in heterogeneous virtual com-
munities even the administrators can sometimes be consid-
ered not fully trusted. In a different scenario, it is possible
that agentp(a3), when it joined the community, decided not
only to consider the declarations by agentu(a2) as autho-
rizations, but also to forbid the CAS not to declare autho-
rized the agentc(a1) when it requests the capability to do
read1(file):
F(2,3)(¬g2(read1(file)), s′ | ask1(g2(read1(file))))
wheres′ is some sanction affecting agentu(a2).

As in case of agentc(a1)’s decision, agentu(a2), when
it takes its decision, has to recursively model the decision of
p(a3), in turn.

1For the sake of simplicity, in this paper we do not consider the problem
of transmitting the capability containing the proof of the declaration and
we assume that agentp(a3) is immediately acquainted with that. Details
about communication issues and observations can be found in [5].

5 Foundations

In this section we contextualize our contribution with re-
spect both to the problem of access control in virtual com-
munities and to the logical foundations of the notion of in-
stitutional fact given in law studies and deontic logic.

The role played by the CAS in virtual communities can
be formalized in terms of what we called the authority role.
However, Pearlmanet al. [21] use the term ‘right’ both for
the authorizations provided by the CAS and the permissions
granted by the resource providers: “the user effectively gets
the intersection of the set of rights granted to the community
by the resource provider and the set of rights defined by the
capability granted to the user by the community.”

This use of the terms right, authorization and permis-
sion as synonyms is frequent in policies for managing ac-
cess control in distributed systems (e.g., [20], [18], [26]).
In this paper we show why and how these concepts should
be kept distinct in the context of virtual communities.

Even before the development of the grid architecture,
the necessity to integrate autonomous resource providers
has emerged in the field of federated databases. De Capi-
tani and Samarati [12] have developed a two step authoriza-
tion process for accessing data in a federation of databases:
when a client wants to access data, it must be authorized
first by the federation of databases and then by the single
local databases. De Capitani and Samarati [12]’s model al-
lows to specify different authorization strategies. A federa-
tion of databases, however, presents some differences with
respect to a grid architecture. In particular, all the accesses
to the data are requested to the federation and not to the lo-
cal providers. So, the federation does not only play the role
of the CAS in a grid architecture, but it is also in control
of the federated data: it can prevent a client from accessing
data which are accessible at the level of the local databases.
Hence, in our terminology, both the federation and the local
databasespermit access to a resource, rather then merely
authorizing it. Our model can deal also with such scenario.

A recently emerged requirement advanced, e.g., in [9]
is that it is essential to allow agents which want to access a
resource being informed about which policies are constrain-
ing a given resource. Our model can contribute to this issue
since we enhance the relationship existing between an au-
thorization given by the CAS and the permission given by
the resource provider. Including authorizations explicitly in
the conditions of a permission enables the resource provider
to inform a resource consumer about the fact that it is not
only necessary to stick to the resource provider’s policy, but
also to which policy of the community.

In this paper we assumed that the owner or stakeholder of
the resource is also the agent who is in control of it. How-
ever, this is not the general case; sometimes, the agent or
component (called the reference monitor) that grants or de-

11



nies access to a resource can be distinct from the resource
owner, and it acts in accordance to the access rules defined
by the owner. In [6], we address the problem of systems
where the agent, calleddefender, who implements the poli-
cies, is different from the agent who specifies the local ac-
cess control policies on the resource it owns.

The necessity of a fine grained analysis of the concepts
of permission and authorization in the security policy field
is witnessed also by Sadighi Firozabadi and Sergot [24] who
argue that a mere permission given by the resource provider
to access a resource which it controls must be distinguished
from theentitlementto access the resource: an agent is en-
titled and not merely permitted when the policies regulating
the virtual community prohibit the resource provider not to
permit the agent to access the resource.

Another distinction comes from the formalization of le-
gal reasoning by means of deontic logic. Jones and Ser-
got [16] distinguish permissions from authorizations inter-
preted in the sense of having been delegated theinstitutional
powerto do something: “when we say that the Head of De-
partment is authorized to purchase equipment, we mean first
and foremost that he has been granted by the institution the
power to enter valid purchase agreements”. Instead, “some-
times when we say that an agent is authorized to do such-
and-such we mean no more than that he has been granted
permission to do it”.

Law studies argue that a further distinction must be
drawn also in this last sense of the term authorization as
mere permission. The [13]’s dictionary of law argues that
adding or removing an authorization does not change the
normative status of an agent while a new permission does;
i.e., authorizations do not change the norms (prohibitions
and permissions), an agent is subject to; rather, authoriza-
tions lift the legal obstacles and limitations, thus legitimat-
ing an action of the agent: they change the sphere of what
is prohibited or permitted to the agent without adding or re-
moving norms. This is possible since norms have a condi-
tional character so that what is currently considered as a vio-
lation or not depends on which are the norms that have their
conditions satisfied in the current situation. The fact that au-
thorizations do not modify the existing norms, but change
what is prohibited and permitted to an agent anyway, means
that authorizations enable the conditions of some permis-
sions. Hence, the institutional power to authorize can be
delegated to other agents who do not directly control the re-
sources, since creating an authorization does not require to
change prohibitions and permissions.

Some scholars argue, instead, that the power to create
permissions can be delegated. [25], for example, propose a
framework where this power can be delegated as any other
power to create institutional facts. We show in this paper
that once prohibitions and permissions are not considered
as primitive logical entities, the preconditions for their cre-

ation emerge. When we define them in terms of goals of
the normative role, it emerges that controlling a resource is
necessary for issuing a norm.

In Section 1, we highlighted that according to Cambridge
Advanced Learner’s Dictionary [22]officiality seems to be
the first dimension distinguishing permissions from autho-
rizations: the official character of authorizations depends
on the fact that they areinstitutional facts, and this charac-
ter distinguishes them from permissions; an authorization is
an institutional fact which appears among the conditions of
some permission issued by a normative role: if the norma-
tive role believes this fact, the permission is enabled so that
what is permitted in the current situation is changed by the
authorization. The creation of institutional facts is a com-
monplace feature of legal systems and norm-governed orga-
nizations. According to [16], “it is that particular agents are
empowered to create certain types of states by mean of the
performance of specific types of acts. Typically, the states
created will have a normative character”.

Authorizations are created by authorities who have been
delegated the institutional power to do so by some institu-
tion (in our model the institution is some normative role).
An authority has beendelegated the power to create an in-
stitutional fact if the institution recognizes the authority’s
action ascounting assomething else (as in Searle [27]’s
construction of social reality). E.g., the fact that an author-
ity declares an agent authorized counts as an authorization
by a normative role.

For Jones and Sergot [16], the counts as relation ex-
presses the fact that a state of affairs or an action of an
agent “is a sufficient condition to guarantee that the insti-
tution creates some (usually normative) state of affairs”. As
[16] suggest this relation can be considered as “constraints
of (operative in) [an] institution”. [16] express them as con-
ditionals embedded in a modal operator. For Governatori
et al. [14], these conditionals must have a nonmonotonic
character, since it is possible that under some circumstances
a certain state of affairs does not counts as something else.

In Section 3.3 we modelled the counts as relation in
terms of beliefs of the normative role. Since the beliefs
of agents are modelled as nonmonotonic conditionals, these
are suited to represent also counts as conditionals. For space
reasons in this paper we will not discuss the logical prop-
erties of beliefs and of the counts as relation. By reducing
counts as to beliefs we capture also the original Searle [27]’s
idea that a institutional power inherently works only ifcol-
lectively recognizedby the agents composing the institution.

In summary, an authorization to access is meaningful
only if there is a permission which has among its condi-
tions the authorization. Note that a similar dependence re-
lation between normative concepts exists between permis-
sions and prohibitions: permissions require the existence of
prohibitions they are an exception to.

12



6 Summary and concluding remarks

In this paper we introduce a design for distributed ac-
cess control, based on existing agent technologies. Our
approach is based on a distinction between three roles for
each agent: as a resource provider, a resource consumer
and authority. Using a minimal set of primitives, we intro-
duce sanction based prohibitions, permissions, authoriza-
tions and delegations. Our design is capable of formalizing
a wide range of scenarios. Organizational hierarchies can
be introduced, and the extension to full role based access
control is straightforward.

On the theoretical side, our design supports the thesis
that the notion of authorization must be kept distinct from
the notion of permission: an authorization is an institutional
fact which, to be useful, requires the existence of some
permission. Permissions, in contrast, derive their mean-
ing from the existence of prohibitions they are exception of.
Prohibitions and permissions can be issued only by agents
who are in control of resources, authorization can be dele-
gated. This distinction is necessary since, when a new agent
joins a virtual community, it has to provide its resources in
a way that is coherent with the policies of the community.
The integration of the norms regulating the access to its re-
sources with those of the community can be performed by
other agents by means of the delegation of the power to au-
thorize. In this way, changes to the community policies can
be implemented by the authorities which have been dele-
gated the institutional power to authorize rather then by the
single resource providers who joined the community. In
fact, an authority can change authorizations and as a conse-
quence the sphere of what is forbidden or permitted for a re-
source consumer is changed without the need to change the
prohibitions of permissions issued by the resource provider.

There are several issues for further research. First, Band-
mannet al. [1] argue that delegation of authorization should
be regulated since not all agents can be authorized by a
delegated authority. Second, our framework is applied for
modelling hierarchies of policies in order to represent the
fact that the norms issued by local resource providers can
be constrained by obligations and permissions posed at the
global level; for example, a resource provider can be for-
bidden to permit access to its resources to certain resource
consumers, or it can be obliged to permit access. Our frame-
work has been extended to deal with this problem by means
of obligations and permissions concerning what the local
resource providers have to consider as a violation [3, 5]. Fi-
nally, in [4] we explore how to formalize our model using
the standard BDICTL logic [23] for agent verification.

References

[1] O. L. Bandmann, B. Sadighi Firozabadi, and M. Dam. Con-
strained delegation. InIEEE Symposium on Security and
Privacy, 2002.

[2] G. Boella and L. van der Torre. Attributing mental attitudes
to normative systems. InProcs. of AAMAS’03, Melbourne,
2003. ACM Press.

[3] G. Boella and L. van der Torre. Decentralized control: Obli-
gations and permissions in virtual communities of agents. In
Procs. of ISMIS Conference. Springer Verlag, 2003.

[4] G. Boella and L. van der Torre. Game specification in the
trias politica. InProcs. of BNAIC’03, 2003.

[5] G. Boella and L. van der Torre. Local policies for the control
of virtual communities. InProcs. of IEEE/WIC Web Intelli-
gence Conference. IEEE Press, 2003.

[6] G. Boella and L. van der Torre. Norm governed multiagent
systems: The delegation of control to autonomous agents. In
Procs. of IEEE/WIC IAT Conference. IEEE Press, 2003.

[7] G. Boella and L. van der Torre. Permissions and obligations
in hierarchical normative systems. InProcs. of ICAIL 03,
pages 109–118, Edinburgh, 2003. AMC Press.

[8] G. Boella and L. van der Torre. Rational norm creation:
attributing mental attitudes to normative systems, part 2. In
Procs. of ICAIL 03, pages 81–82, Edinburgh, 2003. AMC
Press.

[9] P. Bonatti and P. Samarati. Logics for authorizations and se-
curity. In J. Chomicki, R. van der Meyden, and G. Saake,
editors, Logics for Emerging Applications of Databases.
Springer Verlag, 2003.

[10] J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre.
Goal generation in the BOID architecture.Cognitive Science
Quarterly, 2(3-4):428–447, 2002.

[11] E. Bulygin. Permissive norms and normative systems. In
A. Martino and F. S. Natali, editors,Automated Analysis of
Legal Texts, pages 211–218. Publishing Company, Amster-
dam, 1986.

[12] S. De Capitani di Vimercati and P. Samarati. Authoriza-
tion specification and enforcement in federated database sys-
tems.Journal of Computer Security, 5(2), 1997.

[13] F. del Giudice.Nuovo dizionario giuridico. Simone Editore,
2001.

[14] J. Gelati, G.Governatori, N. Rotolo, and G.Sartor. Declara-
tive power, representation, and mandate. a formal analysis.
In Procs. of JURIX 02, 2002.

[15] P. J. Gmytrasiewicz and E. H. Durfee. Formalization of re-
cursive modeling. InProc. of first ICMAS-95, 1995.

[16] A. Jones and M. Sergot. A formal characterisation of insti-
tutionalised power.Journal of IGPL, 3:427–443, 1996.

[17] J. Lang, L. van der Torre, and E. Weydert. Utilitarian de-
sires. Autonomous agents and Multi-agent systems, pages
329–363, 2002.

[18] N. Li, B. Grosof, and J. Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization.TISSEC,
6(1):128–171, 2003.

[19] D. Makinson. On the formal representation of rights rela-
tions. Journal of philosophical Logic, 15:403–425, 1986.

[20] J. Moffett and M. S. Sloman. Policy hierarchies for dis-
tributed systems management.IEEE Journal of Selected Ar-
eas in Communications, 11(9):1404–1414, 1993.

13



[21] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for group
collaboration. InProcs. of Policies for Distributed Systems
and Networks International Workshop, POLICY 2002. 2002.

[22] C. U. Press. Advanced Cambridge Learners’ dictionary.
Cambridge University Press, 2002.

[23] A. S. Rao and M. P. Georgeff. Decision procedures for BDI
logics. Journal of Logic and Computation, 8(3):293–343,
1998.

[24] B. Sadighi Firozabadi and M. Sergot. Contractual access
control. InProcs. of 10th International Workshop of Security
Protocols, Cambridge (UK), 2002.

[25] B. Sadighi Firozabadi, M. Sergot, and O. Bandmann. Using
authority certificates to create management structures.Lec-
ture Notes in Computer Science, 2467:134–145, 2002.

[26] P. Samarati and S. De Capitani di Vimercati. Access con-
trol: Policies, models, and mechanisms. In R. Focardi and
R. Gorrieri, editors,Foundations of Security Analysis and
Design LNCS 2171. Springer Verlag, Berlin, 2001.

[27] J. Searle. The Construction of Social Reality. The Free
Press, New York, 1995.

[28] J. S. Sichman, R. Conte, C. Castelfranchi, and Y. Demazeau.
A social reasoning mechanism based on dependence net-
works. In A. G. Cohen, editor,Proc. of 11th ECAI, pages
188–192. Wiley, Chichester, 1991.

14


