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Abstract. This paper discusses the formal specification of properties that de-
termine the behavior of component based BDI agents, i.e. classical BDI agents
in which the mental attitudes are conditional and represented by interconnected
components. Some properties, such as realism and commitment strategies, have
already been discussed in the BDI literature and can be formally specified by
for example Rao and Georgeff’s BDICTL formalism. Other properties are spe-
cific to component based cognitive agents and cannot be specified by existing
BDICTL formalisms. We focus here on the so-called functional dependencies be-
tween mental attitudes where a mental attitude is considered to be a function of
one or more other mental attitudes. To formally specify the properties of func-
tional dependencies we extend Rao and Georgeff’s BDICTL formalism. In par-
ticular, for functional dependencies we introduce ‘only belief’, ‘only desire’ and
‘only intend’ operators in the tradition of Levesque’s ‘all I know’ operator, and
for components we distinguish between ‘belief in’ and ‘belief out’, ‘desire in’
and ‘desire out’, and ‘intention in’ and ‘intention out’ operators. We show how
our extended formalism can be used to specify functionality properties such as
conservativity, monotonicity, and self-boundedness, as well as properties related
to the connections between and control of the components.

1 Introduction

A cognitive agent is a computational entity that has a mental state consisting of mental
attitudes such as beliefs, desires, and intentions. Such an agent senses the environment
and reacts to it based on several factors such as a rational balance between its mental
attitudes [6, 13], how these mental attitudes are initiated and processed [3, 4, 16], and
how information and control flow in such a computational entity [8, 17, 18].

In agent oriented software methodology there is no consensus on the tools and con-
cepts to specify and verify the behavior of cognitive agents [6, 8, 13, 15]. The BDI ap-
proach [6, 13] provides a specification and verification framework for cognitive agents.
The central theme in specifying the behavior of cognitive agents is the rational bal-
ance between mental attitudes. For example, for an agent to have realistic behavior,
its desires should not conflict with its beliefs. The BDICTL formalism [6, 7, 13, 15] is
a system that can be used to formally specify and reason about the behavior of cogni-
tive agents. BDICTL is a multi-modal logic that includes temporal operators of so-called



computational tree logic (CTL) combined with three epistemic modal operators for the
agent’s beliefs, desires, and intentions. The behavior of a cognitive agent is then spec-
ified by characterizing these modalities and their relations. For example, the axiom
D(φ) → ¬B(¬φ) expresses what Rao and Georgeff call weak realism. This axiom
states that if an agent desires to bring about a proposition, then it does not believe the
negation of it.

A drawback of the existing specification and verification tools for cognitive agents,
such as BDICTL formalism, is that the specification of agent behavior is at an abstract
level and merely in terms of a rational balance between mental attitudes. These ap-
proaches abstract from properties that may influence the correct behavior of cognitive
agents such as how mental attitudes are initiated and processed, and how data and con-
trol flow when agents deliberate. We are motivated by drawbacks of the BDICTL formal-
ism to specify properties for the component-based cognitive agents [3, 8] where agents
mental attitudes are conditional and represented as components. Note that motivational
attitudes such as desires are usually represented by conditionals (or rules), which has
been studied in particular in deontic logic [1, 12].

One type of properties that are abstracted from in the BDI approach is based on
the functional dependency between mental attitudes. We say that there is a functional
dependency between two mental attitudes if one of them completely determines the
other. For example, the dependency between the agent’s beliefs (B) and its intentions
(I) is functional if the intentions are determined by the beliefs, i.e. if there is a function
f such that regardless of the states of the other components we haveI = f(B). Note
that this particular function may be required to be non-monotonic since intentions do
not persists under growing beliefs. For instance, an agent who believes the weather is
hot and intends to go to the beach if the weather is hot may intend to go to the beach,
but if the agent also believes that he must work and that he cannot go to the beach if
he works, then the agent may not intend to go to the beach anymore. In general, the
functional dependence between agent’s mental attitudes can be specified by functional
properties such as conservativity, monotonicity, and self-boundedness [18].

Another type of properties that is abstracted from in the BDI approach is based on
the design details of the agent, i.e. how data and control flow in an agent. To illustrate
this type of properties, consider the interpreter of the proposed PRS architecture for
BDI agents [9]. The PRS interpreter assumes that at any particular time certain goals
are active in the system and certain beliefs are held in the system database. Given these
beliefs and goals, a subset of plans may be relevant. The exact way in which goals
are activated, beliefs are generated, and plans are selected influences the agent’s correct
behavior. Therefore, it is important to specify properties concerning the flow of data and
control in such agents. We are interested in particular in component-based BDI agents,
such as Broersen et al.’s BOID system [4], in which each component, when activated,
determines its representing mental attitude for a given context.

The aim of this paper is to extend the BDICTL formalism to specify functional de-
pendencies between agent’s mental attitudes as well as properties related to components
such as the flow of data and control among components. We extend the BDICTL formal-
ism with:



– additional modal operators that enable the specification of functional dependencies,
based on all-I-know like operators [11].

– additional modal operators that enable the distinction between input and output of
components.

This paper is organized as follows. In section 2, we discuss some examples of com-
ponent based cognitive agents, their possible traces, and various types of properties of
these traces. The examples motivate functional dependencies between mental attitudes
and the use of components to represent them. They illustrate also the lack of expres-
siveness of BDICTL which forms our motivation to extend it. In section 3, we introduce
an extension of Rao and Georgeff’s BDICTL formalism that can express various types
of trace properties including some properties of functional dependencies among mental
attitudes. This formalism can be used as the specification and verification language for
component based cognitive agents. In section 4, we recapitulate suggested trace prop-
erties of component based cognitive agents and formalize these properties in terms of
the extended BDICTL formalism.

2 Motivating Examples

In component based cognitive agents [2, 3] each mental attitude, which is represented
by a component, can be considered as a process having functional behavior, i.e. it gen-
erates some output based on the input that it receives from other mental attitudes. Some
properties of the functional behavior can be described by functionality descriptions in-
troduced in [18]. Typical properties are whether the input of a component is included
in its output, or whether it supports reasoning by cases. Components are related to each
other in the sense that their inputs are the outputs of other components. The properties
of these relations may involve the possibilities for information exchange between com-
ponents. For example, in some cases it may make sense for the belief inputs to include
the desire outputs while it may make no sense for the desire inputs to include the belief
outputs. A typical example is when an agent desires to go to the dentist and believes that
going to the dentist implies pain. In this case, the belief inputs can include the desire
outputs to generate the consequence of going to the dentist (i.e. having pain), but the
desire inputs should not include the belief outputs since the agent does not desire the
belief consequences, i.e. the agent does not desire to have pain. Another more complex
property of the relation between components is the realism property according to which
desires are overridden by beliefs [5, 16]. This property characterize an ordering relation
between possible inputs of the belief component. Realism is defined as the property that
allows the belief inputs to include all belief outputs before including a desire output.

The functional behavior of mental attitudes gives rise to a variety of functional
properties that influence the behavior of agents. For example, in certain applications one
may want to specify the belief component as having monotonic behavior with respect
to the desire component, i.e. if the belief component outputscannot work for the input
visit family at any time point, then it should also outputcannot work for the input
visit family ∧ eat or in general for the inputvisit family ∧ x for any propositional
formula x and at any time point. Note that we can also require the monotonicity of
mental attitudes through time in the sense that if a component outputsp at timet, then it



will output p at all time momentst′ > t. This monotonicity property is not a functional
property of components since the time moment is not the input of components.

2.1 Functional Dependencies between Mental Attitudes

The behavior of a BDI agent is specified in terms of properties of its possible traces,
i.e. sequences of states. We distinguish between concrete and abstract trace properties.
Concrete properties specify relations between particular propositions (if I believe that
it is hot then I desire a beer’) whereas abstract properties specify relations between
mental attitudes for all possible propositions (‘for any beliefφ and desireψ, φ ∧ ψ is
consistent’). Concrete properties are formalized as assumptions or premises, whereas
abstract properties are formalized as axioms or theorems. The formal difference is that
we may apply uniform substitution to theorems but not to premises.

Definition 1. A state of a cognitive agent consists of the states of its mental attitudes.
A trace or run of a cognitive agent is a sequence of agent states through time. Trace
properties can be either concrete or abstract. A concrete property is a property that is
used as a premise, and an abstract property is a property which is used as a theorem.

Example 1 illustrates two concrete properties. In the following examples we ignore
the nesting of mental attitudes (e.g. agent believes that he desires that etc.) such that the
states are characterized by propositional formulae.

Example 1.Let SB andSD indicate the belief and desire states. The following trace
starts at timet. The agent believesp at t, it believes¬p at t + 3, it desires¬r ∧ s at
t + 1, etc.

time t t + 1 t + 2 t + 3 t + 4
SB p p p ¬p ¬p
SD ¬r ∧ ¬s ¬r ∧ s r ∧ s ¬r ∧ s ¬r ∧ ¬s

A concrete property can be stated as: for all traces if at some state the agent believes
¬p and desiress, then the agent desires¬s at the next state. Another concrete property
can be stated as: for all traces if at some state the agent desires¬r and believesp, then
the agent desiresr at the next state. Obviously, the first concrete property holds for this
trace example while the second does not hold.

The following example illustrates an abstract property, which is the realism property
defined by Cohen and Levesque [6].

Example 2.Consider the following trace.

time t t + 1 t + 2 t + 3
SB p ¬p r r
SD p ∧ q ¬p ∧ r p ∧ r ¬p ∧ r

If we represent states by logically closed sets, then the realism property can be stated
as: for all traces and at every state the desiresSD are a superset of the beliefsSB .



Note that this kind of realism, in which the desiresSD are a superset of the be-
liefs SB , may be counterintuitive in many applications. Rao and Georgeff therefore
introduce several other kinds of realism, such as their weak realism mentioned in the
introduction, see [14] for a discussion. In this paper we no further discuss realism, but
we are primarily interested in functional dependencies.

The following example illustrates a functional dependency between beliefs and de-
sires.

Example 3.Consider the following trace of an agent that believesq if it desiresp.

time t t + 1 t + 2 t + 3
SD s p p r ∧ s
SB u q q u

This trace can be described by a functionSB(t) = f(SD(t)), because for identical
desires the agent has identical beliefs. Note that the agent’s beliefs are determined by
its desires, which seems to suggest that the agent is not capable of making observations.

The most interesting functional dependencies are the ones where a mental attitude
depends on several other mental attitudes. The following example illustrates such a
case.

Example 4.Consider the following trace, in which the beliefs are either a function of
the desires or a function of the intentions.

time t t + 1 t + 2 t + 3
SD s p p s
SI p s p p
SB q q q r

The beliefs are not a function of both the desires and the intentions, because there is no
functionf such thatSB(t) = f(SD(t), SI(t)). The counterexample is that at moment
t the desire iss, the intention isp and the belief isq, whereas at momentt + 3 for
identical desires and intentions the belief isr.

However, there may be another way in which the trace of the latter example is based
on a functional dependency between beliefs, desires, intentions. This is the case when
the belief at the momentt depends on the intention, at the momentt + 1 on the desire,
at the momentt + 2 on either the desire or the intention, and at the momentt + 3 on
the desire. That is, we have two functionsf andg such thatSB(t) = f(SD(t)) or
SB(t) = g(SI(t)). This is what we consider in the following subsection, using the
notion of component.

2.2 Components Based Cognitive Agents

Like the states of BDI agents, a state of a component based cognitive agent with con-
ditional mental attitudes consists of the state of its mental attitudes. However, unlike
the states of BDI agents, a state of component based agent consists of input and output
states of each mental attitude.



Definition 2. A state of a component-based cognitive agent consists of the input and
output states of its mental attitudes. Traces and their (concrete and abstract) properties
are as defined before. We writeSC

in andSC
out for the input and output states of the mental

attitude that is represented by componentC, respectively.

The output of a component is assumed to represent the mental attitude that cor-
respond with that component, e.g.SB

out represents the belief stateSB . The input of a
component is the output of another component. It is considered as the context of the
component’s output and thus as the context of the mental attitude represented by the
component’s output. For the previous examples, this consideration implies that we re-
placeSB by SB

out, SD by SD
out andSI by SI

out. The output of a component can be the
input of another component. For example, in Example 3 the input of the belief compo-
nent was the output of the desire component. Note that this trace seems to suggest that
the belief component outputsq whenever it receivesp as input. This is illustrated by the
following trace.

time t t + 1 t + 2 t + 3
SD

out s p p r ∧ s
SB

in s p p r ∧ s
SB

out u q q u

The input of a component can originate from various components. For example,
in Example 4 the input of the belief component can be the output of the desire or the
intention component. The crucial property of the following trace is thatSB

in is either
SD

out or SI
out, and thatSB

out functionally depends onSB
in. Note that in this trace the

belief component outputsq whenever it receivesp as input.

time t t + 1 t + 2 t + 3
SD

out s p p s
SI

out p t p p
SB

in p p p s
SB

out q q q r

In this example, the belief output state depends on two other output states: the desire
and intention output states. In such cases, one may abstract over the output-states on
which a componentC depends and consider only the input-state of the componentC.
In example 4, one may use the input-state of the belief componentSB

in instead ofSD
out

orSI
out. This implies that agent traces reflect choices that have been made by the agent’s

control mechanism, i.e. which component provides the input of a component at a certain
moment.

Finally, the functional dependencies between mental attitudes may have certain
properties. A functional property, such as monotonicity, is a property of the input-states
SC

in and the output-statesSC
out of componentC. For example, belief is a function of

desire (i.e. desire is the input of the belief) when the consequence of desires are consid-
ered. One may then want to specify that this function is monotonic.

Example 5.The following trace satisfies monotonicity of beliefs as a function of de-
sires. If for any time momentt we haveφ = SB

in(t) andψ = SB
out(t), then we have



for anyt′ that if SB
in(t′) impliesφ thenSB

out(t
′) impliesψ. If the input grows, then the

output grows too.
time t t + 1 t + 2 t + 3
SB

in = SD
out p ¬q p ∧ q ¬q ∧ r

SB
out s u s s ∧ u

The examples discussed in this section illustrated the functional nature of mental
attitudes and their properties. Moreover, we illustrated that a mental attitude may de-
pend on more than one mental attitude and that agent control mechanism determines
the dependence of mental attitudes at each state. In the following section we consider
the formalization of these examples.

3 The Specification Language for Component Based Agents

In this section we briefly repeat Rao and Georgeff’s formalism [14] and we extend it
with additional modalities to capture the mutual dependence of the agent’s mental atti-
tudes. The introduction of these modalities makes it possible to specify the functional
dependencies between agents mental attitudes.

3.1 BDICTL Formalism

We use an equivalent reformulation of BDICTLpresented by Schild [15]. In contrast to
Schild, we only consider the single agent case. The CTL operators are used to quantify
over possible traces and states, while the BDI operators are used to quantify over mental
states. Intuitively, the CTL operatorA stands for all possible traces,E for at least one
possible trace,X for the next state, andU for until.

Definition 3. [15, Def.4,6] The admissible formulae of BDICTL are categorized into two
classes, state formulae and path formulae.

S1 Each primitive proposition is a state formula.
S2 If α andβ are state formulae, then so areα ∧ β and¬α.
S3 If α is a path formula, thenEα andAα are state formulae.
S4 If α is a state formula, thenB(α), D(α), I(α) are state formulae as well.
P If α andβ are state formulae, thenXα andα ∪ β are path formulae.

The semantics of BDICTL involves two dimensions: an epistemic and a temporal dimen-
sion. The truth of a formula depends on both the epistemic worldw and the temporal
states. A pair 〈w, s〉 is called a situation in which BDICTL formulae are evaluated. The
relation between situations is traditionally called an accessibility relation (for beliefs)
or a successor relation (for time).

Definition 4. [15, Def.2,7] A Kripke structureM = 〈W,R1, . . . ,Rn, L〉 is comprised
of three components. The first component is an arbitrary non-empty setW containing
all worlds relevant toM . The second component is a family of relationsRi ⊆ W ×W .
The remaining third component is an assignment functionL. This function assigns a



particular set of worlds to each primitive proposition.L(p) contains all those worlds in
whichp holds.

A Kripke structureM = 〈S,R,B,D, I, L〉 forms a situation structure if each of
the following three conditions is met.

1. S is a set of situations.
2. w = w′ whenever〈w, s〉R〈w′, s′〉.
3. s = s′ whenever〈w, s〉B〈w′, s′〉 and similarly forD andI.

Schild [15, Section 3] does not present the semantic relation of CTL, but only the
one of its extension CTL* (as well as the one of theµ-calculus). This extension is not
considered in this paper. A speciality of both CTL and CTL* is that some formulae are
not interpreted relative to a particular situation. These are the path formulae. What is
relevant here are full paths. The reference toM is omitted whenever it is understood.

Definition 5. A full path in M = 〈S,R,B,D, I, L〉 is an infinite sequenceχ =
δ0, δ1, δ2, . . . such that for everyi ≥ 0, δi is an element ofS andδiRδi+1. We say that
a full path starts atδ iff δ0 = δ. We use the following convention. Ifχ = δ0, δ1, δ2, . . .
is a full path inM , thenχi (i ≥ 0) denotesδi.

LetM = 〈S,R,B,D, I, L〉 be a situation structure,δ a situation, andχ a full path.
The semantic relation|= for BDICTL is then defined as follows:

S1 δ |= p iff δ ∈ L(p).
S2 δ |= α ∧ β iff δ |= α andδ |= β.

δ |= ¬α iff δ |= α does not hold.
S3 δ |= Eα iff there is at least one full pathχ in M starting atδ s.t.χ |= α.

δ |= Aα iff for every full pathχ in M starting atδ, χ |= α.
S4 δ |= B(α) iff for everyδ′ ∈ S such thatδBδ′, δ′ |= α.

δ |= D(α) iff for everyδ′ ∈ S such thatδDδ′, δ′ |= α.
δ |= I(α) iff for everyδ′ ∈ S such thatδIδ′, δ′ |= α.

P χ |= Xα iff χ1 |= α.
χ |= α ∪ β iff there is ai ≥ 0 s.t.χi |= β and for all j(0 ≤ j < i), χj |= α.

We write♦α (or Fα) for >Uα (read as ‘for at least one state in the future’) and
2α (or Gα) for ¬♦¬α (read as ‘for all states in the future’).

3.2 Specifying Functional Dependencies

In order to specify the functional relation between two mental attitudes of a component
based agent, we should guarantee the following property: if in two situations one mental
attitude is the same (the domain), then the other mental attitude should be the same too
(the scope). For example, such axioms should be able to express that agent’s belief is a
function of agent’s desire (see example 3), i.e.

{ψ | M, δ |= B(ψ)} = f({φ | M, δ |= D(φ)})
It seems that the property that agent’s belief depends functionally on its desire can be
formally specified by the following axiom.

E♦( D(φ) ∧B(ψ) ) → A2( D(φ) → B(ψ) )



or alternatively

A2( D(φ) → ¬B(ψ) ) ∨A2( D(φ) → B(ψ) )

However, this formula is too strong. For example, substitute a tautology forφ, then
assuming the usually accepted seriality axiomD(true), the above formula would entail
the following highly problematic property, which says that beliefs cannot change.

E♦B(ψ) → A2B(ψ)

There are several solutions to this problem. Here we follow a proposal of Rao and
Georgeff which uses ‘only belief’ operators [10]. We also extend BDICTL with distinct
epistemic modal operators for input and output. In particular, we split each epistemic
modal operatorX of the BDICTL formalism into two modal operators:Xin andXout.
Note thatXin can be considered as the context of the mental attitude that is represented
by the epistemic modal operatorX and, thus,Xin(φ) can be interpreted asφ is the
context ofX. For uniformity, we useXout as the alternative notation for the modal
operatorX.

Definition 6. The admissible formulae of extended BDICTL are generated by the rules
of BDICTL, where S4 is replaced by the following rule:

S4 If α is a state formula, thenBin(α), Din(α), Iin(α), Bo
in(α), Do

in(α), Io
in(α),

Bout(α), Dout(α), Iout(α), Bo
out(α), Do

out(α), andIo
out(α) are state formulae as

well.

In order to define the semantics of these additional modal operators we extend the
BDICTL situation structure to include an additional specific accessibility relation for
each mental attitude in each state. These accessibility relations are denoted byBin,Din,
andIin. These accessibility relations capture the input states of each mental attitude.
Note that this accessibility relation formalizes parts of the agent’s control that deter-
mine the input of a certain component at a certain time. Moreover, we use accessibility
relationsBout,Dout, andIout instead of the accessibility relationsB,D andI from
BDICTL. Extended structures thus contain accessibility relations for input and output of
each component.

Definition 7. A Kripke structureM = 〈S,R,Bin,Din, Iin,Bout,Dout, Iout, L〉 forms
an extended situation structure if each of the following three conditions is met.

1. S is a set of situations.
2. w = w′ whenever〈w, s〉R〈w′, s′〉.
3. s = s′ whenever〈w, s〉Bin〈w′, s′〉 and similarly forDin, Iin,Bout,Dout andIout.

The semantic relation of extended BDICTL contains clauses for the twelve epistemic
modal operators that we have defined.

Definition 8. The semantic relation|= of extended BDICTL is defined like the semantic
relation for BDICTL, whereS4 is replaced by the following clauses:



S4 δ |= Bin(α) iff for everyδ′ ∈ S such thatδBinδ′, δ′ |= α.
δ |= Din(α) iff for everyδ′ ∈ S such thatδDinδ′, δ′ |= α.
δ |= Iin(α) iff for everyδ′ ∈ S such thatδIinδ′, δ′ |= α.
δ |= Bo

in(α) iff for everyδ′ ∈ S, δBinδ′ iff δ′ |= α.
δ |= Do

in(α) iff for everyδ′ ∈ S, δDinδ′ iff δ′ |= α.
δ |= Io

in(α) iff for everyδ′ ∈ S, δIinδ′ iff δ′ |= α.
δ |= Bout(α) iff for everyδ′ ∈ S such thatδBoutδ

′, δ′ |= α.
δ |= Dout(α) iff for everyδ′ ∈ S such thatδDoutδ

′, δ′ |= α.
δ |= Iout(α) iff for everyδ′ ∈ S such thatδIoutδ

′, δ′ |= α.
δ |= Bo

out(α) iff for everyδ′ ∈ S, δBoutδ
′ iff δ′ |= α.

δ |= Do
out(α) iff for everyδ′ ∈ S, δDoutδ

′ iff δ′ |= α.
δ |= Io

out(α) iff for everyδ′ ∈ S, δIoutδ
′ iff δ′ |= α.

Rao and Georgeff [10] use the ‘only’ operators to define the following intention
persistence axioms. We may again readI asIout andB asBout.

(IAXEε ∧AXBoAε) → AXIEε

(IoAXEε ∧AXBAε) → AXIEε

We use these new epistemic modal operators to formalize the functional dependence
between mental attitudes in terms of corresponding input and output modal operators.

Definition 9. The functional dependence of agent’s belief on other mental attitudes is
represented by the following axiom:

E♦( Bo
in(φ) ∧Bout(ψ) ) → A2( Bo

in(φ) → Bout(ψ) )

This holds for other mental attitudes as well.

In BDICTL* we can also express the following weaker variant of functional dependence
called trace functional dependence. It says that within traces similar inputs lead to sim-
ilar outputs. The formula is not well formed in the limited language of BDICTL.

Definition 10. The trace functional dependence of agent’s belief on other mental atti-
tudes is represented in BDICTL* by the following axiom:

A(♦( Bo
in(φ) ∧Bout(ψ) ) → 2( Bo

in(φ) → Bout(ψ) ))

Note that Rao and Georgeff’s notion of ‘only belief’ which we used in definition 8
is very strong, because it also contains nested beliefs. For some applications, it may
be more accurate to restrict the set of beliefs considered in the ‘only’ operator to the
propositional fragment. In this paper we do not consider this option. Moreover, in this
paper we do not consider complexity issues (see for example the work of Rao and
Georgeff for this issue). In the remainder of this paper, we consider which kind of
properties can be formalized in the extended BDICTL logic.



4 Properties of Component Based Cognitive Agents

Properties of the traces of component based cognitive agents are related to a rational bal-
ance between mental attitudes, their functional dependence, and other properties that are
specific to this type of agents. Some existing properties concerning a rational balance
between mental attitudes can be formulated as expressions of the extended BDICTL for-
malism in a straightforward way in terms of the output states. For example, the Cohen
and Levesque’s realism in Example 2 can be expressed byBout(φ) → Dout(φ). Also
properties introduced by Rao and Georgeff [13] can be specified by usingBout, Dout,
andIout instead ofB, D, andI. For example, single minded commitment strategy can
be specified as follows:

Iout(A♦φ) → A( Iout(A♦φ) U (Bout(φ) ∨ ¬Bout(E♦φ)))

In this section, we discuss functional ad control properties taken from [18] and we
discuss how they can be formally specified in the extended BDICTL formalism.

4.1 Functional Properties

The functional dependencies between mental attitudes may be required to have certain
properties. The first property we discuss here is conservativity which is the property of
a mental attitude whose input is included in its output.

Definition 11 (Conservative).The belief of an agent is conservative iff the following
formula is a theorem.

Bin(φ) → Bout(φ)

The same holds for other desire and intention.

The following example illustrates conservativity.

Example 6.Let fB be a function that maps belief input to belief output, i.e.SB
out =

fB(SB
in). The following trace illustrates that the output of the agent’s beliefs function-

ally depends on its input and that this function (fB) is conservative. At every moment,
the output implies the input.

time t t + 1 t + 2
SB

in p r r ∧ p
SB

out p ∧ q ¬s ∧ r r ∧ p ∧ q

The second property of functional dependence is the monotonicity property. Ac-
cording to this property a mental attitude persists under the grow of its context (input).
The monotonicity property is defined on the basis of the modal ‘only belief’ operator.
However, in contrast to the definition of functional dependence, the ‘only’ operator is
used only once. Note that monotonicity implies functional dependence, becauseBo

in

impliesBin (but not vice versa!).



Definition 12 (Monotonic). The belief of an agent is monotonic iff the following for-
mula is a theorem.

E♦(Bo
inφ ∧Boutψ) → A2(Binφ → Boutψ).

The monotonicity of other mental attitudes can be specified in a similar way.

Monotonicity is illustrated by the following example.

Example 7.The following trace satisfies monotonicity of belief: the input at moment
t + 2 implies the input at momentt, and therefore the output at momentt + 2 implies
the output att. Similarly for t + 3 andt + 1.

time t t + 1 t + 2 t + 3
SB

in p ¬p p ∧ r ¬p ∧ s
SB

out q ¬q q ¬q

Another property of functional dependence is called self-boundedness. The self-
bounded property of mental attitudes can be specified as follows. This property is a
reformulation of transitivity.

Definition 13 (Self-bounded).The belief of an agent is self-bounded iff the following
formula is a theorem.

(E♦(Bo
inφ ∧Boutψ) ∧ E♦(Bo

inψ ∧Boutθ)) → A2(Bo
inφ → Boutθ)

It is weakly self-bounded iff the following formula is a theorem.

(E♦(Bo
inφ ∧Boutψ) ∧ E♦(Bo

in(φ ∧ ψ) ∧Boutθ)) → A2(Bo
inφ → Boutθ)

The self-boundedness of other mental attitudes can be specified in a similar way.

The following example illustrates self-boundedness.

Example 8.The following trace illustrates the self-bounded property of the belief com-
ponent:q is in the output ofp (momentt) andr is in the output ofq (momentt + 1),
and thereforeq is also in the output ofp (momentt + 2).

time t t + 1 t + 2
SB

in p q p
SB

out q r r

Finally, the last functional property we discuss is called well-informedness. This
property is related to reasoning by cases.

Definition 14 (Reasoning by cases).The belief of an agent supports reasoning by
cases iff the following formula is a theorem.

(E♦(Bo
inφ ∧Boutθ) ∧ E♦(Bo

inψ ∧Boutθ)) → A2(Bo
in(φ ∨ ψ) → Boutθ)

Reasoning by cases for other mental attitudes can be specified in a similar way.



The following example illustrates reasoning by cases.

Example 9.The following trace illustrates the reasoning by cases property of the belief
component:r is in the output ofp (momentt) andq (momentt + 1), and therefore also
in the output ofp ∨ q (momentt andt + 2).

time t t + 1 t + 2
SB

in p q p
SB

out q ∧ r r q ∧ r

4.2 Control Properties

The flow of information is determined by the agent’s control mechanism. For example,
the output of the belief component may become the input of the desire component in
the sense that the desire formulae are activated based on the active beliefs. This type of
control can be specified in terms of the input and output modal operators. It is assumed
that one mental attitude is the input of a second mental attitude at the next state.

Definition 15. The following are properties of the agent’s control mechanism.

Desires Contextualizes Beliefs: The output of desires is the input of beliefs at the next
state, which implies that belief consequences of desires can be generated, i.e.

Doutφ → XBinφ.

Beliefs Contextualizes Beliefs: The output of beliefs is its own input at the next state,
which implies that all consequences of the active beliefs are generated (closure), i.e.

Boutφ → XBinφ.

These control properties can be adapted by stating that the output of a component
should be in the input of a component at some moment in the future. Moreover, the
the control properties can be extended with conflict checks, analogous to the checks in
persistence of intentions (see e.g. [10]).

4.3 A Classification of Component Based Agent Properties

The properties of component-based cognitive agents can be specified along several di-
mensions. Three important dimensions are time, input/output dependency, and compo-
nent dimensions.

The time dimension determines the time aspect involved in the properties. Properties
can be distinguished along this dimension into three types: No-time, Adjacent-time-
points, future directed types. For example, functional properties of a single component
is a property that does not involved time, some static properties do involve adjacent time
points, and commitment strategy properties involve future directed time.

The component dimension determines the aspect of properties that are related to the
number of components involved in a property. Some properties are properties of one



single component while others involve more than one component. For example, func-
tionality properties involve one component while some of control properties involve
two components.

The input/output dependency dimension determines those aspects of properties that
are related to the input/output dependency of components. Four types of properties that
can be distinguished along this dimension are distinguished: input-output, output-input,
input-input, and output-output dependencies. For example, the functionality properties
have the input-output type while standard BDICTL properties such as static and dy-
namic properties have the output-output types.

Let Cin andCout be the input and output of the componentC. The following table
shows some examples of properties specified along the proposed three dimensions.

Time ComponentInput/Output Property Type
No C Cin, Cout Functional property

Adjacent C1, C2 C1
out, C

2
in Control property

Future-directed C1, C2 C1
out, C

2
out Commitment Strategies

5 Conclusion

The aim of this paper is to develop a specification language for component based cog-
nitive agents. The mental attitudes of such cognitive agents are conditional, i.e. each
mental attitude is represented by a component that receives an input and generates an
output. The conditional nature of these mental attitudes implies functional dependen-
cies between them. In fact, one mental attitude becomes the context of another mental
attitude such that each mental attitude can be considered as a function of its context.

Several types of properties for component based cognitive agents are discussed, in-
cluding functional properties of the mental attitudes. To specify the behavior of such
agents the BDICTL formalism is extended with additional epistemic modal operators
to capture the input and output-states of each component. Based on these additional
modalities functional dependencies between mental attitudes are specified. The ex-
tended BDICTL formalism can thus be used to specify and verify the behavior of com-
ponent based cognitive agents.

A question for further research is the specification of compositional BOID agents
[4] in the proposed formalism or an extension of it. It seems that the language has to
be extended with at least obligations and goals (for the latter, see [7]). One particular
problematic issue here is that in the BOID architecture several conflicting goals sets or
extensions can exist in a state at the same time. How this can be formalized efficiently
in an extension of BDICTL is still an open problem.
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