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Abstract

In this paper we consider the merging of rules or con-
ditionals. In contrast to other approaches, we do not
invent a new approach from scratch, for one particular
kind of rule, but we are interested in ways to general-
ize existing revision and merging operators from belief
merging to rule merging. First, we study ways to merge
rules based on only a notion of consistency of a set of
rules, and illustrate this approach using a consolidation
operator of Booth and Richter. Second, we consider
ways to merge rules based on a notion of implication
among rules, and we illustrate this approach using so-
called min and max merging operators defined using
possibilistic logic.

Introduction
We are interested in the merging or fusion of rules or con-
ditionals. When there are several sources of rules that are
in some sense conflicting, incoherent or inconsistent, then a
rule merging operator returns a weaker non-conflicting set
of rules. Such merging operators can be used in many areas
of artificial intelligence, for example when merging regula-
tions in electronic institutions, merging conditional default
rules, or merging conditional goals in social agent theory.

In general, there are two approaches to develop operators
and algorithms to merge rules. One approach starts from a
particular kind of rule, and develops a merging operator for
a particular application domain. The other approach tries
to generalize existing operators from belief merging, which
have been developed as a generalization of belief revision
operators. In this paper we follow in the latter approach, and
we address the following research questions:

1. How to define a general framework to study rule merging
and develop rule merging operators?

2. Given a merging operator for belief merging, how can we
use it for rule merging?

3. Defeasible rules can be stratified into a prioritized rule
base. How can we use this stratification in rule merging?

Though many notions of rules have been defined, they are
typically represented as syntactic objects φ → ψ in a meta-
language, expressing a conditional statement “if φ then ψ”,
where φ and ψ are formulas of an object language, for ex-
ample propositional or first-order logic. Given a set of such

rules R expressed as pairs of formulas of a language L, we
can apply the rules to a context S, consisting of formulas of
L, which results again in a set of sentences of L. In this pa-
per, following conventions from input/output logic (Makin-
son & van der Torre 2000), we write out(R,S) for the result
of applying the rules of R to S.

A crucial ingredient of belief merging operators is a no-
tion of inconsistency. However, since rules are typically rep-
resented in the meta-language, there is no obvious choice of
rule inconsistency which can be used. To use a merging op-
erator for rule merging, we have to define when a set of rules
is conflicting or contradictory. We discuss various ways to
define the inconsistency of a set of rules, and illustrate how
a merging operator for belief merging can be used for rule
merging using a generalization of the so-called AGM partial
meet approach (Alchourrón, Gärdenfors, & Makinson 1985;
Hansson 1999) due to (Booth & Richter 2005).

Moreover, a notion of consistency is sufficient to define
selection operators, but in general we need also a notion of
implication among rules. For example, when we interpret
the arrow→ as an implication in conditional logic, or as the
material implication of propositional logic, then two rules
φ→ ψ and ξ → ϕ imply the rule φ∧ ξ → ψ∨ϕ. Moreover,
if we merge the former two rules, the latter one may be the
result. We illustrate this using merging operators from pos-
sibilistic logic (Dubois, Lang, & Prade 1994), a logic that
associates with a formula a numerical value between 0 and
1. One interpretation of this value is that it represents a strat-
ification of the formulas in the knowledge base in formulas
with higher and lower priority. A particular kind of condi-
tionals has been defined, and these conditionals have been
stratified using a stratification algorithm.

The layout of this paper is as follows. We first discuss the
inconsistency of a set of rules, and illustrate it on the merg-
ing operator of Booth and Richter. Then we discuss rule
implication, and illustrate it on merging operators defined
using possibilistic logic.

Preliminaries: Unless otherwise indicated, our back-
ground logic in this paper will be a propositional logic L
containing the usual propositional connectives, including
material implication which we denote by ⊃. For any set of
formulas S, Cn(S) is the set of logical consequences of S.
We will say S is Cn-consistent if S is classically consistent.
Ω is the set of all propositional interpretations relative to L.



Rules, alias conditionals, will be of the form φ → ψ where
φ, ψ ∈ L. Thus L2 is the set of all rules.

Rule consistency
Applying rules
In this paper we make only minimal assumptions on
out(R,S) in general. We assume out(R,S) is a logically
closed set of formulas of L. We also assume that a rule
can be applied when the context is precisely the body of
the rule, and that a set of rules cannot imply more than the
materialization of the rules, that is, then assuming that the
set of rules are formulas of L by interpreting the condition
as a material implication. There are many additional
properties one may want to impose on the application of
rules.

Let R be a set of pairs from a logic L, let S be a set of
formulas of L, out(R,S) ⊆ L is assumed to satisfy the fol-
lowing conditions:

1. out(R,S) = Cn(out(R,S))

2. If φ→ ψ ∈ R, then ψ ∈ out(R, {φ});

3. out(R,S) ⊆ Cn(S ∪ {φ ⊃ ψ | φ→ ψ ∈ R})

Seven kinds of such rules have been studied in the in-
put/output logic framework (Makinson & van der Torre
2000). One example, called simple-minded output in
(Makinson & van der Torre 2000), is

out1(R,S) = Cn({ψ ∈ L | (φ→ ψ) ∈ R and φ ∈ Cn(S)}).

We will refer to this operation again later in this section.
Many other examples can be defined. They satisfy additional
properties, such as the monotonicity property that the output
out(R,S) increases if either R or S increases.

Consistency of output
Since rules are defined as pairs of formulas of L, we can
define the consistency of a set of rules in terms of Cn-
consistency. In input/output logic, the following two notions
of consistency have been defined for a set of rules relative to
a given context S (Makinson & van der Torre 2001):

Output constraint A set of rulesR satisfies the output con-
straint when out(R,S) is Cn-consistent.

Input/output constraint A set of rules R satisfies the
input/output constraint when S ∪ out(R,S) is Cn-
consistent.

When the application of a set of rules out(R,S) always
contains the input S, then these two kinds of constraints ob-
viously coincide. However, there are several intuitive no-
tions of rules, such as norms, which do not have this prop-
erty, and where the two constraints are distinct.

Rule consistency
We consider a weak and a strong notion of consistency of
a set of rules. A set is weakly consistent when it does not
lead to Cn-inconsistent output for the inputs of the available
rules, and it is strongly consistent when it does not lead to

Cn-inconsistency for any consistent context. Strong con-
sistency is sometimes used, for example, when developing
institutional regulations.

Weak consistency For all φ → ψ ∈ R, we have
out(R, {φ}) is Cn-consistent.

Strong consistency For anyCn-consistent S ⊆ L, we have
that out(R,S) is Cn-consistent.

Example: A consolidation operator
(Booth & Richter 2005) assume a very abstract framework
based on the abstract framework for fuzzy logic due to
(Gerla 2001). They just need three ingredients:

(i) a set L0 of formulas,

(ii) a set W of abstract degrees which can be assigned to
the formulas in L0 to create fuzzy belief bases, and

(iii) a special subset Con of these fuzzy belief bases which
specifies those fuzzy bases which are meant to be consis-
tent, in whatever sense.1

For the set L0 they assume no particular structure – it is
just an arbitrary set, while the only thing assumed about W
in general is that it is a complete distributive lattice. For-
mally, a fuzzy belief base is a function u : L0 →W . F(L0)
denotes the set of all fuzzy bases. If u(ϕ) = a, then this is
interpreted as the information that the degree of ϕ is at least
a, i.e., it could in actual fact be bigger than a, but the infor-
mation contained in u doesn’t allow us to be more precise.
The partial order over W is denoted by ≤W . The “fuzzy”
subset relationv between fuzzy bases is defined by

u v v iff u(ϕ) ≤W v(ϕ) for all ϕ ∈ L0.

Sov is an “information ordering”: u v v iff the information
contained in v is more “precise” than u. Under these defini-
tions (F(L0),v) itself forms a complete distributive lattice.
Given any set X ⊆ F(L0) of fuzzy bases the infimum and
supremum of X under v are denoted by

d
X and

⊔

X re-
spectively, with u t v being written rather than

⊔

{u, v},
etc. In the simplest case we can take W = {0, 1} with 0, 1
standing for true and false respectively. In this case the fuzzy
bases just reduce to (characteristic functions of) crisp belief
bases and we can write ϕ ∈ u rather than u(ϕ) = 1, while
v,

⊔

,
d

reduce to the usual ⊆,
⋃

,
⋂

.
The set Con ⊆ F(L0) is required to satisfy two condi-

tions. First, it is assumed to be downwards closed in the
lattice F(L0):

If v ∈ Con and u v v then u ∈ Con.

The second condition is slightly more involved, and corre-
sponds to a type of compactness condition:

Definition 1 Con is logically compact iff
⊔

X ∈ Con for
any X ⊆ Con such that u, v ∈ X implies there exists w ∈
X such that u t v v w.

1Actually for (iii) they start off assuming a deduction operator
D which for each fuzzy base returns a new fuzzy base denoting its
fuzzy consequences. However, as they point out, only the plain no-
tion of consistency is required for their formal results. (See Section
7 of (Booth & Richter 2005).)



In other words, the supremum of every directed family of
consistent fuzzy bases is itself consistent.

Given all this, we can make the following definitions, as-
suming some fixed u ∈ F(L0):

Definition 2 u⊥ is defined to be the set of maximally con-
sistent fuzzy subsets of u, i.e., v ∈ u⊥ iff
(i). v v u.
(ii). v ∈ Con.
(iii). If v @ w v u then w 6∈ Con.
A selection function (for u) is a function γ such that ∅ 6=
γ(u⊥) ⊆ u⊥.

From a selection function γ we define a consolidation op-
erator !γ for u by setting

u!γ =
l
γ(u⊥).

Definition 3 ! is a partial meet fuzzy base consolidation op-
erator (for u) if ! =!γ for some selection function γ for u.

Partial meet fuzzy base consolidation can be thought of
as a special case of a more general operation of partial meet
fuzzy base revision. In fact consolidation amounts to a revi-
sion by a “vacuous” revision input (ϕ/0W ) representing the
new information that the degree of ϕ is at least 0W , where
0W is the minimal element of the lattice W . This more
general operation was studied and axiomatically character-
ized in (Booth & Richter 2005). The following character-
ization of partial meet fuzzy consolidation does not appear
in (Booth & Richter 2005), though it can be proved using
similar methods.

Theorem 1 ! is a partial meet fuzzy consolidation operator
iff ! satisfies the following three conditions:

1. u! ∈ Con.
2. u! v u
3. For all φ ∈ L0, b ∈ W , if b 6≤W u!(φ) and b ≤W u(φ)

then there exists u′ ∈ Con such that u! v u′ v u and
u′ t (φ/b) 6∈ Con.

In 3, u!(φ) is the degree assigned to φ by the fuzzy base u!,
while (φ/b) denotes that fuzzy base which assigns b to φ and
0W to every other formula.

Application
Given an arbitrary set R ⊆ L2 (possibly infinite) of rules,
we need to formally define when R is consistent. For now,
we use the earlier-defined notion of strong consistency for
out1, which we will refer to as consistent1 .

Definition 4 Let R ⊆ L2 be a set of rules. We say R
is consistent1 iff out1(R, φ) is Cn-consistent for all Cn-
consistent φ ∈ L.

Using results of (Makinson & van der Torre 2000), we get
an alternative characterization of consistent1 :

Proposition 1 The following are equivalent:
(i). R is consistent1 .
(ii). For all Cn-consistent φ ∈ L, φ→ ⊥ cannot be derived
from R using the rule-set Rules1 that contains SI: derive
(φ ∧ ξ) → ψ from φ → ψ, WO: derive φ → (ψ ∨ ϕ) from
φ→ ψ, AND: derive φ→ (ψ∧ϕ) from φ→ ψ and φ→ ϕ.

To help define merging operators for rules, our aim now
is to define an operation which takes an arbitrary set of rules
R and returns a new rule set R! which is consistent1 . We
set up the following definitions:

Definition 5 R ⊥ is defined to be the set of maximally
consistent1 subsets of R, i.e., X ∈ R⊥ iff
(i). X ⊆ R.
(ii). X is consistent1 .
(iii). If X ⊂ Y ⊆ R then Y is inconsistent1 .
A selection function (for R) is a function γ such that ∅ 6=
γ(R⊥) ⊆ R⊥.

From a given selection function γ we then define a con-
solidation operator for R by setting

R!γ =
⋂

γ(R⊥).

Definition 6 ! is a partial meet consolidation operator (for
R) if ! =!γ for some selection function γ for R.

What are the properties of this family of consolidation op-
erators? It turns out the following is a sound and complete
set of properties for partial meet consolidation.

1. R! is consistent1 .

2. R! ⊆ R.

3. If φ → ψ ∈ R \ R! then there exists X such that
R! ⊆ X ⊆ R, X is consistent1 , and X ∪ {φ → ψ}
is inconsistent1 .

Theorem 2 ! is a partial meet consolidation operator iff !
satisfies 1–3 above.

Now, by considering the special case L0 = L2,W =
{0, 1}, and Con = consistent1 we obtain Theorem 2 as just
an instance of Theorem 1. However, to be able to do this
we need to check that consistent1 satisfies the conditions re-
quired of it:

Theorem 3 consistent1 is downwards closed and logically
compact.

Proof: The easiest way to show these is by considering
the proof-theoretical characterization of consistent1 from
Proposition 1(ii).

To show consistent1 is downwards closed in this case
means to show that if R is consistent1 and R′ ⊆ R then
R′ is consistent1 . But if R′ is inconsistent1 then φ → ⊥
is derivable from R′ using Rules1, for some Cn-consistent
φ. If R′ ⊆ R then obviously any derivation from R′ is a
derivation from R. Hence this implies R is inconsistent1 .

To show consistent1 is logically compact means to show
that

⋃

X is consistent1 for any set X of consistent1 rule
bases such that R,R′ ∈ X implies there exists R′′ ∈ X
such that R ∪ R′ ⊆ R′′. But suppose for contradiction
consistent1 was not logically compact. Then there is some
set X of consistent1 rule bases satisfying the above condi-
tion and such that

⋃

X is inconsistent1 . This means for
some Cn-consistent φ there is a derivation of φ → ⊥ from
⋃

X using Rules1. Let A1, . . . , An be the elements of
⋃

X
used in this derivation, and let R1, . . . , Rn be rule bases in
X such that Ai ∈ Ri. By repeated application of the above



condition on X we know there exists R′′ ∈ X such that
R1 ∪ . . . ∪ Rn ⊆ R′′. Hence our derivation of φ → ⊥ is
also a derivation from R′′. Thus we have found an element
of X (namely R′′) which is inconsistent1 – contradicting
the assumption that X contains only consistent1 rule bases.
Thus consistent1 is logically compact.

Remark
The proof above clearly goes through independently of the
actual rules which belong to Rules1. We could just as eas-
ily substitute Rules2 = Rules1 ∪ {OR}: derive φ ∨ ξ → ψ
from φ → ψ and ξ → ψ, or Rules3 = Rules1 ∪ {CT}: de-
rive φ → ϕ from φ → ψ and φ ∧ ψ → ϕ, or Rules4 =
Rules1∪{OR, CT}. This means Theorem 3 also holds if we
replace consistent1 with consistenti for any i ∈ {1, 2, 3, 4},
where we define R is consistenti iff outi(R, φ) is Cn-
consistent for all Cn-consistent φ ∈ L. This follows from
results in (Makinson & van der Torre 2000) which state
ψ ∈ outi(R, φ) iff φ→ ψ is derivable fromR using Rulesi.

Rule implication

Merging operators may merge φ∧ψ and¬φ intoψ, which il-
lustrates that merging operators not necessarily select a sub-
set of the formulas from the conflicting sources, like the con-
solidation operators discussed in the previous section, but
they may also contain a formula implied by one of the for-
mulas of the sources. When we want to adapt such an op-
erator for rule merging, we have to define not only the con-
sistency of a set of rules, but also when rules imply other
rules.

There are many notions of rule implication in the lit-
erature. For example, consider the material implication
in propositional logic, thus φ → ψ = φ ⊃ ψ. We
have for example that φ ⊃ ψ implies (φ ∧ ξ) ⊃ ψ and
φ ⊃ (ψ ∨ ξ), or that φ ⊃ ψ together with ψ ⊃ ξ implies
φ ⊃ ξ. Such properties have been studied more system-
atically traditionally in conditional logic, or more recently
in input/output logic (Makinson & van der Torre 2000;
Bochman 2005). But these are just examples, and do not
directly provide a general solution. In particular, it does not
solve the question how to use merging operators for rules
defined in a meta-language, in which case we only have an
operation out(R,S) defining how to apply a set of rules.

For the general case we propose the following definition
of implication among rules. Following the convention in in-
put/output logic, we overload the operator ‘out’ to refer to
this operation too (the two kinds of operations are distin-
guished by the number of their arguments).

out(R) = {φ→ ψ | φ = ∧S, ψ ∈ out(R,S)}.

Example: merging in possibilistic logic

Prioritized information is represented in possibilistic logic
(Dubois, Lang, & Prade 1994) by means of a set of weighted
formulas of the form B = {(φi, ai) : i = 1, · · · , n}. The
pair (φi, ai) means that the certainty (or priority) degree of
φi is at least ai which belongs to the unit interval [0, 1]. A
possibility distribution is associated to a possibilistic base as

follows: ∀ω ∈ Ω,

πB(ω) =

{

1 if ∀(φi, ai) ∈ B,ω |= φi
1−max{ai : (φi, ai) ∈ B and ω 6|= φi}

otherwise.

When π(ω) > π(ω′) we say that ω is preferred to (or more
satisfactory than) ω′. For the rest of this section we simplify
by assuming our language L is generated by only finitely
many propositional variables.

A possibilistic base B = {(φi, ai) : i = 1, · · · , n}
is consistent iff the set of propositional formulas
{φi : (φi, ai) ∈ B} associated with B is Cn-consistent.

⊕ : [0, 1]k → [0, 1] is a k merging operator when it sat-
isfies the following two conditions. The first condition says
that if an alternative is fully satisfactory for all agents then
it will be also fully satisfactory w.r.t. the result of merging.
The second condition is the monotonicity property.

(i). ⊕(1, · · · , 1) = 1
(ii). ⊕(a1, · · · , an) ≥ ⊕(b1, · · · , bn) if ai ≥ bi for all

i = 1, · · · , n.

For example, let B1 = {(φi, ai) : i = 1, · · · , n} and
B2 = {(ψj , bj) : j = 1, · · · ,m} be two possibilistic bases.
Using⊕, the result of mergingB1 and B2, written as B⊕, is
defined as follows (Benferhat et al. 1999):

B⊕ = {(φi, 1−⊕(1− ai, 1)) : (φi, ai) ∈ B1}
∪{(ψj , 1−⊕(1, 1− bj)) : (ψj , bj) ∈ B2}
∪{(φi ∨ ψj , 1−⊕(1− ai, 1− bj))}.

(1)

We suppose that the bases (possibilistic bases in this section
and rule bases in the following sections) are individually
consistent. Inconsistency occurs after their merging.

Given B⊕, the useful result of merging – from which in-
ferences are drawn – is defined as a subset of B⊕ composed
of the consistent most prioritized formulas of B⊕, as far as
possible. Formally we have:

Definition 7 (Useful result of merging) Let B⊕ be the re-
sult of merging B1, · · · , Bn using ⊕. Let B⊕≥a

= {φi :
(φi, ai) ∈ B⊕, ai ≥ a} and Inc(B⊕) = max{ai :
(φi, ai) ∈ B⊕,B⊕≥ai

is Cn-inconsistent}. The useful part
of B⊕ is:

ρ(B⊕) = {(φi, ai) : (φi, ai) ∈ B⊕, ai > Inc(B⊕)}.

Another more qualitative representation of a possibilistic
base has been studied in possibilistic logic, based on a well
ordered partition of formulas (so without explicit weights!)
B = B1; · · · ;Bn, where formulas of Bi are prioritized over
formulas of Bj for i < j.

Let B = B1; · · · ;Bn and B′ = B′
1; · · · ;B

′
m. The

useful result of merging B and B′ using the min operator,
written as Bmin, is Bmin,1; · · · ;Bmin,max(n,m), where
Bmin,i = (Bi ∪ B′

i) if
⋃

1≤j≤i(Bj ∪ B
′
j) is Cn-consistent,

empty otherwise.

The useful result of merging B and B′ using the max
operator is Bmax,1; · · · ;Bmax,max(n,m), where Bmax,i =



(∪φ∈Bi,ψ∈B
′
1
∪···∪B′

i
(φ∨ψ))∪ (∪φ∈B1∪···∪Bi,ψ∈B

′
i
(φ∨ψ))

with Bi (resp. B′
i) is composed of tautology when i > n

(resp. i > m).

A possibility distribution π can also be written under a
well ordered partition, of the set of all possible worlds Ω, of
the form (E1, · · · , En) such that
• E1 ∪ · · · ∪ En = Ω,

• Ei ∩ Ej = ∅ for i 6= j,

• ∀ω, ω′ ∈ Ω, ω ∈ Ei, ω
′ ∈ Ej with i < j iff π(ω) >

π(ω′).

Rules in possibilistic logic
The qualitative representation of a possibilistic base is a par-
ticular kind of rules, using Algorithm 1 to compute the possi-
bility distribution associated with a set of rules (Pearl 1990;
Benferhat, Dubois, & Prade 1992). Let R = {φi → ψi :
i = 1, · · · , n}, and let C = {(L(Ci), R(Ci)) : L(Ci) =
Mod(φi ∧ ψi), R(Ci) = Mod(φi ∧ ¬ψi), φi → ψi ∈ R},
where Mod(ξ) is the set of worlds satisfying ξ.

Algorithm 1: Possibility distribution associated with a
rule base.

begin
l← 0 ;
while Ω 6= ∅ do

– l← l+ 1 ;
– El = {ω : ∀(L(Ci), R(Ci)) ∈ C, ω 6∈ R(Ci)} ;
if El = ∅ then

Stop (inconsistent rules);
El = Ω;

– Ω = Ω−El ;
– C = C\{(L(Ci), R(Ci)) : L(Ci) ∩ El 6= ∅} ;

return (E1, · · · , El)

end

Algorithms have been defined to translate one represen-
tation into another. For example, Algorithm 2 translates a
set of rules into a possibilitic base given in a well ordered
partition (Benferhat, Dubois, & Prade 2001).

Algorithm 2: Translating R into B.

begin
m← 0 ;
while R 6= ∅ do

– m← m+ 1 ;
– A = {φk ⊃ ψk : φk → ψk ∈ R} ;
– Hm = {φk ⊃ ψk : φk → ψk ∈ R,A ∪
{φk} is Cn-consistent};
– if Hm = ∅ then Stop (inconsistent rules);
– R = R\{φk → ψk : φk ⊃ ψk ∈ Hm};

return Σ = Σ1; · · · ; Σn s.t. Σi = Hm−i+1.

end

Let R be a set of rules and Σ = Σ1; · · · ; Σn be its
associated possibilistic base using Algorithm 2. We

define a stratification of R as R = R1; · · · ;Rn with
Ri = {φk → ψk : φk ⊃ ψk ∈ Σi}. This stratification of R
will be used in the next section.

Moreover, the associated rule base of Σ = Σ1; · · · ; Σn is
(Benferhat et al. 2001):

R = {> → Σn,

¬Σn−1 ∨ ¬Σn → Σn−1,

· · · ,

¬Σ1 ∨ ¬Σ2 → Σ1},

where Σi =
∧

φ∈Σi
φ.

Merging rules in possibilistic logic
For the particular kind of rules defined in possibilistic logic,
we can thus define a merging operator as follows. Given a
set of rules, transform the set of rules to a possibilistic base.
Then apply a merging operator from possibilistic logic. Fi-
nally, transform the useful part of the merged base back into
a set of rules.

Definition 8 Let R and R′ be two rule bases. The result of
mergingR andR′ using the min operator, written as Rmin,
is obtained by translatingR andR′ toB andB′ using Algo-
rithm 2, merging B and B′ according to the min operator,
and translating the useful result of merging back into a set
of rules. The result of merging R and R′ using the max
operator is defined analogously.

Instead of this indirect way, we also define the merger
directly. We consider again the min and max mergers.

Definition 9 Let R and R′ be two rule bases, and let
R1; . . . ;Rn andR′

1; . . . ;R
′
m be their stratifications accord-

ing to Algorithm 2. Let R[k] be the set of rules in the first
k equivalence classes,

⋃

i=1...k(Ri ∪ R
′
i). The merger of R

andR′ according to min, written as Rmin, is R[k] such that
{φl ⊃ ψl : φl → ψl ∈ R[k]} is Cn-consistent, and k is
maximal.

Definition 10 Let R and R′ be two rule bases. The merger
of R and R′ according to max, written as Rmax, is {(φ ∧
ξ)→ (ψ ∨ ϕ) | φ→ ψ ∈ R, ξ → ϕ ∈ R′}.

The direct merging approach is twofold interest. It avoids
the different translations and also provides more intuitive re-
sults at the syntactic level.

Example 1 Assume there is only a single rule φ→ ψ which
is merged with the empty base. The indirect approach leads
to {> → (φ ⊃ ψ)} and the direct approach leads to {φ →
ψ}. The two sets are equivalent in the sense that they lead
to the same possibility distribution using Algorithm 1.

The indirect and direct approaches are in this sense equiv-
alent.

Proposition 2 Let R and R′ be two rule bases. Let R1

(resp. R2) be the result of mergingR andR′ using the min
operator following Definition 8 (resp. Definition 9). Then
R1 and R2 are equivalent in the sense that they induce the
same possibility distribution.
This result holds for the max operator as well.



The latter example illustrates that the kind of rules studied
in possibilistic logic are of a particular kind, and it raises the
question how the merging operation can be generalized for
arbitrary rules. This is studied in the following section.

Application
We now consider the generalization of this approach for an
arbitrary notion of rules. We first introduce the following
generalization of the stratification Algorithm 2.

Algorithm 3: Stratification of a rule base R.

begin
m← 0 ;
while R 6= ∅ do

– m← m+ 1 ;
– Hm = {φk → ψk : φk → ψk ∈
R, out(R, φk) ∪ {φk} is Cn-consistent};
– if Hm = ∅ then Stop (inconsistent base);
– removeHm from R;

return R = R1; · · · ;Rn s.t. Ri = Hm−i+1.

end

That Algorithm 3 is a generalization of Algorithm 2 can
be seen by setting out(R) = {φ ⊃ ψ | φ → ψ ∈ R} in the
above.

The following example illustrates two distinct kinds of ex-
amples of rule sets.

Example 2 Consider the following two:

1. > → f , d→ ¬f
2. > → ¬f , f → w

Both examples will be stratified in two equivalence classes
using the algorithm above, but for completely different rea-
sons. In the first example, ”d” causes an inconsistency, and
in the second example, ”f” is an inconsistency. (the first is
the usual kind of specificity in the Tweety example, the sec-
ond is the contrary-to-duty studied in deontic logic; the first
is an exception, the second a violation). The first base is
stratified into {d → ¬f}; {> → f} and the second base is
stratified into {f → w}; {> → ¬f}.

Proposition 3 A set of rules is inconsistent, according to
Algorithm 3, when for all rules (φ, ψ) ∈ R, we have that
out(R, {φ}) is Cn-inconsistent.

We can use the proposition to define a merging operator
according to the min operator, which is again a selection
operator. We therefore can use the same definition as above;
clearly it is again a generalization.

Definition 11 Let R and R′ be two rule bases, and let
R1; . . . ;Rn andR′

1; . . . ;R
′
m be their stratifications accord-

ing to Algo. 3. Let R[k] be the set of rules in the first k
equivalence classes,

⋃

i=1...k(Ri ∪ R
′
i). The merger of R

and R′ according to min, written as Rmin, is R[k] such that
R[k] is consistent according to Algo. 3, and k is maximal.

For the merging operator based on max, we have to use
the notion of implication in out. We simply use the same
operator as above.

Definition 12 Let R and R′ be two rule bases. The merger
of R and R′ according to max, written as Rmax, is {(φ ∧
ξ)→ (ψ ∨ ϕ) | φ→ ψ ∈ R, ξ → ϕ ∈ R′}.

Variations
The product operator in possibilistic logic may be seen as
a combination of the min and the max operator, in the
sense that the merger contains both selections and disjunc-
tion. We conjecture that it can be defined analogously in
our generalized setting. There are other ways to general-
ize Algorithm 2 for an arbitrary notion of rules. If we write
R[φ] = {(ξ → ψ) ∈ R|(φ↔ ξ) ∈ Cn(∅)}, we can find al-
ternatives for the relative line of the algorithm, for example:

– Hm = {φk → ψk : φk → ψk ∈
R, out(R, φk)} is Cn-consistent};

– Hm = {φk → ψk : φk → ψk ∈ R, out(R \
R[φk], {φk}) is Cn-consistent};

Summary
In this paper we introduce a general framework to study rule
merging and develop rule merging operators as a general-
ization of belief merging operators. We use simple rules
defined as pairs of formulas of a base logic, i.e., as condi-
tionals. We distinguish weak consistency of rules only in
contexts of the given rules, and strong consistency for all
possible consistent contexts. We define a notion of implica-
tion among rules based on implication in the base language:

out(R) = {φ→ ψ | φ = ∧S, ψ ∈ out(R,S)}.
We use the framework to study two examples.

Booth and Richter introduce a merging operator based on
a notion of consistency. Using our strong notion of consis-
tency of a set of rules, we define a rule merging operator. For
the proof of completeness we use a proof-theoretical char-
acterization. This illustrates a general point: to use belief
merging operators for rule merging, we may need to prove
some additional properties of the rule system, such as a no-
tion of compactness.

In possibilistic logic, a framework has been proposed to
study a variety of merging operators. Since also a kind of
rules have been studied in the framework of possibilistic
logic, these merging operators can also be used for this par-
ticular kind of rules. When generalizing the operators for
other kinds of rules, several new issues arise.

Since we considered only two examples of generalizing
belief merging operators to rule merging, there are many
possible studies for further research. We expect that a study
of such examples will lead to a further refinement of our
general framework.
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