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Abstract

In this paper we study game-theoretic foundations for norms. We assume that
a norm is a mechanism to obtain desired multi-agent system behavior, and must
therefore under normal or typical circumstances be fulfilled by a range of agent
types, such as norm internalizing agents, respectful agents fulfilling norms if pos-
sible, and selfish agents obeying norms only due to the associated sanctions.

1 Introduction
The relation between game theory and norms has received some attention. E.g., in a
widely discussed example of the so-called centipede game, there is a pile of thousand
pennies, and two agents can in turn either take one or two pennies. If an agent takes
one then the other agent takes turn, if it takes two then the game ends. A backward
induction argument implies that it is rational only to take two at the first turn. Norms
and trust have been discussed to analyze this behavior, see [6] for a discussion.

Our approach to study this relation it to use game-theory for the foundations of nor-
mative systems. In artificial social systems or normative multi-agent systems, a social
law or norm is a mechanism to achieve desired system behavior. Since in an open sys-
tem it cannot be assumed that agents obey the norm, there has to be a control system
motivating agents to obey the norm, by monitoring and sanctioning behaviors. More-
over, the system should not sanction without reason, as for example Caligula or Nero
did in the ancient Roman times, as the norms would loose their force to motivate agents.
Various ways to motivate agents including norms have been studied in economics, for
example using the game-theoretic machinery to study the rationality of norms.

The research question of this paper is how to give game-theoretic foundations to
norms such as obligations, permissions and counts-as conditionals. Most of our study
is focussed on obligations, and therefore on incentives like sanctions and rewards.



We first consider the so-called partially controlled multi-agent system (PCMAS)
approach of Brafman and Tennenholtz [3], one of the classical game-theoretical studies
of social laws in so-called artificial social systems developed by Tennenholtz and col-
leagues, because incentives like sanctions and rewards play a central role in this theory.
So-called controllable agents – agents controlled by the system programmer – enforce
social behavior by punishing and rewarding agents, and thus can be seen as representa-
tives of the normative system. For example, consider an iterative prisoner dilemma. A
controlled agent can be programmed such that it defects when it happens to encounter
an agent which has defected in a previous round.

The PCMAS model thus distinguishes between two kinds of agent interaction in
the game theory, namely between two normal (so-called uncontrollable) agents, and
between a normal and a controllable agent. We show in this paper that this makes it a
very useful model to give game-theoretic foundations to norms. Whereas classical game
theory is only concerned with interaction among normal agents, it is the interaction
among normal and controllable agents which we use in our game theoretic foundations.

The PCMAS approach not only clarifies the design of punishments, but it also il-
lustrates the iterative and multi-agent character of social laws. However, there are also
drawbacks of the model, such that it cannot be used to give a completely satisfactory
game-theoretic foundation for norms. We would like to express that a norm can be used
for various kinds of agents, such as norm internalizing agents, respectful agents that
attempt to evade norm violations, and selfish agents that obey norms only due to the as-
sociated sanctions. Therefore, as classical game theory is too abstract to satisfactorily
distinguish among agent types, we consider also cognitive agents and qualitative game
theory.

The layout of this paper is as follows. We introduce a qualitative game-theory based
on a logic for mental attitudes and cognitive agent theory, which we use to give game-
theoretic foundations of obligations and permissions.

2 Qualitative games among cognitive agents
In Boella and Lesmo’s game-theoretic approach to norms [2], a rational definition of
sanction-based obligations is given using classical game theory by representing the nor-
mative system as an agent. They model the normative system as a set of controlled
agents, as in the PCMAS model, but they do not necessarily assume that they are con-
trolled by the system programmer. We use a model of cognitive agents that is able
to distinguish among norm internalizing agents, respectful agents that attempt to evade
norm violations, and selfish agents that obey norms only due to the associated sanctions.

We have to be brief on technical details, and refer the reader to other work for the
details. The important issue here is to give the flavor of cognitive agent theory, where
the maximization of expected utility is replaced by maximization of achieved goals.



2.1 Input/output logic for mental attitudes
Makinson and van der Torre [9] define the proof theory of input/output logic as follows.

Definition 1 Let L be a propositional language, let the norms in G be pairs of L
{(α1, β1), . . . , (αn, βn)}, read as ‘if input α1, then output β1’, etc., and consider the
following proof rules strengthening of the input (SI), conjunction for the output (AND),
weakening of the output (WO), disjunction of the input (OR), and cumulative transitiv-
ity (CT) and Identity (Id) defined as follows:

(α, γ)
(α ∧ β, γ)

SI
(α, β), (α, γ)
(α, β ∧ γ)

AND
(α, β ∧ γ)

(α, β)
WO

(α, γ), (β, γ)
(α ∨ β, γ)

OR
(α, β), (α ∧ β, γ)

(α, γ)
CT

(α, α)
Id

The following four output operators are defined as closure operators on the set G using
the rules above.

out1: SI+AND+WO (simple-minded output)
out2: SI+AND+WO+OR (basic output)
out3: SI+AND+WO+CT (reusable output)
out4: SI+AND+WO+OR+CT (basic reusable output)

Moreover, the following four throughput operators are defined as closure operators on
the set G.

out+
i : out i+Id (throughput)

We write out(G) for any of these output operations, and out+(G) for any of these
throughput operations.

Semantics of input/output logics have been given for out(G) in a classical Tarskian
style (a model is a pair of sets of propositional valuations, with additional constraints)
and for out(G,A) = {x | a ⊆ A, (a, x) ∈ out(G)} in a more operational style. More-
over, extensions of input/output logics have been developed for contrary-to-duty rea-
soning [10] and for reasoning about weak and various kinds of strong permission [11].

The following definition extends constraints with a priority relation among norms,
to resolve conflicts. Moreover, it introduces undercutter rules a → b, which mean that
if input a, then the output does not contain x. They are used to model permissions as
exceptions to obligations.

Definition 2 Let L be a propositional language, let G and H be two sets of pairs of
L, let ≥: 2G∪H × 2G∪H be a transitive and reflexive relation on subsets of these pairs,
and let out be an output operation.



• A pair 〈G′, H ′〉 is consistent in a if out(G′, a) is consistent, and for each (b, x) ∈
H ′, if b ∈ out(G′, a) then x 6∈ out(G′, a).

• maxfamily(G,H,≥, a) is the set of pairs 〈G′ ⊆ G,H ′ ⊆ H〉 that:

1. are consistent in a, and

2. if 〈G′′ ⊆ G,H ′′ ⊆ H〉 is consistent in a, G′ ⊆ G′′, and H ′ ⊆ H ′′, then
G′′ = G′ and H ′′ = H ′;

In other words, it is maximal with respect to set inclusion among the consistent
pairs;

• preffamily(G,H,≥, a) is the set of pairs 〈G′,H ′〉 that:

1. are in maxfamily(G, H,≥, a), and

2. if 〈G′′ ⊆ G, H ′′ ⊆ H〉 is in maxfamily(G,H,≥, a) and G′′ ∪ H ′′ ≥
G′ ∪H ′, then G′′ = G′ and H ′′ = H ′;

In other words, it is maximal with respect to ≥;

• out∩(G,H,≥, a) = ∩out(preffamily(G,H,≥, a),≥, a); In other words, using
only the rules which occur in all elements of preffamily .

2.2 Beliefs, goals, decisions, decision rule
To represent that agents are autonomous decision makers, we associate a set of deci-
sion variables with each agent. Decisions or actions are based on controllability from
control theory or discrete event systems (not to be confused with controllable agents!).
Moreover, each agent has four sets of rules, besides beliefs and goals also undercutters
for beliefs and goals. Finally, each agent has a priority relation among these rules.

Definition 3 Let L be a propositional logic based on the set of propositions X . A
multi-agent system is a tuple 〈A, B,G, C, H, AD, MD ≥〉 where:

• the agents A, beliefs, B, goals G, belief undercutters C, and goal undercutters
H are five disjoint sets;

• the agent description AD : A → 2B∪G∪C∪H∪X is a function from agents to its
beliefs, goals, undercutters, and decision variables;

• the mental description MD : B ∪ C ∪ G ∪H → L × L is a function from the
mental attitudes to input/output rules;

• the priority relation ≥: A → (2B∪C × 2B∪C) ∪ (2G∪H × 2G∪H) is a binary
relation on sets of beliefs and goals.



The qualitative decision rule is based on maximizing achieved goals, or minimizing
unachieved goals.

Definition 4 Given a multi-agent system, and let out+ be a throughput operation for
beliefs, and out an output operation for goals.

• A decision profile δ : (∪a∈AAD(a)∩X) → {0, 1} is a function from the decision
variables to truth values; We represent δ by a logical formula;

• The expected effects of decision profile δ for agent a, E(δ, a), are out+∩ (AD(a)∩
B,AD(a) ∩ C,≥, δ);

• The unachieved goals according to agent a, U(δ, a), are ∩(G \ {G′|〈G′, H ′〉 ∈
preffamily(G,H,≥, E(δ, a))})

• δ is preferred to δ′ iff U(δ, a) ⊂ U(δ′, a)

2.3 Agent types
The qualitative game theory works analogous to the classical game theory, where the
maximization of expected utility is replaced by a minimization of unachieved goals.
This more detailed model allows us to distinguish among various agent types. In this
paper, we consider three agent types.

First, we consider norm internalizing agents. These uncontrollable agents incorpo-
rate some of the goals of the controllable agents. They thus behave like controllable
agents, if it is in their power.

Second, respectful agents try to fulfill obligations when they can do so. We model
this by making the violation conditions explicit in the controllable agents. They do not
sanction directly, but they first determine whether observed behavior is a violation, and
then associate a sanction with a violation. Respectful agents obey the norm, if they can,
regardless of the sanction.

Third, selfish agents care only about the sanctions imposed by the controllable
agents. They behave as traditional agents in economic theory.

3 Six clauses for obligation
For obligation and prohibition, we need at least six clauses. The first clause ensures
that “respectful” agents internalizing the goals of the normative system will fulfill their
obligation under typical circumstances, the second and third clause do so for “respect-
ful” agents not internalizing the norm, and the other clauses do so for “selfish” types
of agents. The first clause says that the obligation is in the desires and in the goals
of a normative system b (“your wish is my command”). The second and third clause



can be read as “the absence of x is considered as a violation”. The association of obli-
gations with violations is inspired by Anderson’s reduction of deontic logic to alethic
modal logic [1]. The third clause says that the normative system desires that there are
no violations. The fourth and fifth clause relate violations to sanctions and assume that
normative system b is motivated to apply sanctions only as long as there is a violation;
otherwise the norm would have no effect. Finally, for the same reason, we assume in
the last clause that the agent does not like the sanction.

Definition 5 (Obligation) Let MAS be a multi-agent system, and Ga = AD(a) ∩ G,
etc. Agent a ∈ A is obliged in MAS to decide to do x with sanction s if Y by controllable
agent b, written as MAS |= Oa,b(x, s | Y ), if and only if:

1. Y → x ∈ out(Gb): if controllable agent b believes Y , then it desires and has as
a goal that x.

2. Y ∧ x → Va(¬x) ∈ out(Gb): if controllable b believes Y and ¬x, then it has
the goal Va(¬x): to recognize ¬x as a violation by agent a.

3. > → ¬Va(¬x) ∈ Gb: controllable agent b desires that there are no violations.

4. Y ∧ Va(¬x)} → s ∈ out(Gb: if controllable agent b believes Y and decides
Va(¬x), then it desires that it sanctions agent a with s.

5. Y ∧ ¬s ∈ out(Gb): if controllable agent b believes Y , then it desires not to
sanction, ¬s. The controllable agent only sanctions in case of violation.

6. Y → ¬s ∈ out(Ga): if agent a believes Y , then it desires ¬s, which expresses
that it does not like to be sanctioned.

4 Two clauses for permission
We do not define permissions as the absence of obligation, so-called negative permis-
sion, but as exceptions to obligations, a kind of positive permission. For a discussion
on the issues involved in modeling permission, see [11]. Permission is simpler than
obligation, since permissions cannot lead to violations and sanctions.

Here we distinguish between permission and entitlement or right. It is only due to
entitlement that knowledge providers may be sanctioned when they do not permit a user
to access documents, but the user itself cannot be a violator and be sanctioned due to
its permissions to access a document. which distinguishes between users that are only
permitted to access knowledge, and users that are also entitled to it in the sense that
knowledge providers are obliged to permit them access. Games can be played to show
that the clauses of permission are necessary, again for norm internalizing agents and
other types of agents respectively.



Definition 6 (Permission) Let MAS be a multi-agent system. Agent a ∈ A is permitted
to decide to do x if Y in MAS by controllable agent b, written as MAS |= Pa,b(x | Y ),
if and only if:

1. Y → x ∈ out(Hb): if controllable agent b believes Y , then it does not have a
goal that x.

2. Y ∪ {x} → ¬Va(x) ∈ out(Gb): if controllable agent b believes Y and x, then it
does not want to count x as a violation.

5 Summary
We show how the distinction between controllable and uncontrollable agents can be
used to give game-theoretic foundations for norms. First, we discuss how the PCMAS
model can be used to give such foundations for obligations. The main drawback of this
model is that it is not clear how to distinguish among agent types. Another drawback is
that it does not explain how to deal with other kinds of norms, such as permissions.

Second we discuss a straightforward extension of the PCMAS model using goal
based reasoners instead of utility maximizers. We show also how game-theoretic con-
siderations can be used to model permissions, based on a discussion by Bulygin. The
use of qualitative game theory makes a bridge to deontic logic, which formalized logical
relations among obligations and permissions.

A third kind of norms are constitutive norms known as counts-as conditionals,
which define institutional facts in a normative system, for example which pieces of
paper count as money, and which relations count as marriages. The game theoretic
foundations of this kind of norms is subject of further research.
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