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Abstract

We are interested in systems which do not pre-
scribe one single kind of preference, but in which
varying kinds of preferences can be used simulta-
neously. In such systems it is essential to know
the interaction among the kinds of preferences be-
ing used, and we therefore introduce and study a
nonmonotonic logic to reason about sixteen strict
and non-strict kinds of preferences, includingce-
teris paribuspreferences. Moreover, we study “dis-
tinguished” preference orders based on specificity
principles by showing when these distinguished
preference orders are unique, and by presenting al-
gorithms to calculate the distinguished preference
orders.

1 Introduction
We are interested in systems which do not prescribe one sin-
gle kind of preference, but in which varying kinds of prefer-
ences can be used simultaneously. For example, when buying
a car a user may specify a weak preference for five-doors, a
ceteris paribus preference for a European car, and a non-strict
preference for blue. Alternatively, a group decision making
system may be combining preferences from several agents
using distinct kinds of preference statements to communicate
their desires. In such systems it will be essential to know the
interaction among kinds of preferences.

Preference logic can be used to study the interaction among
various kinds of preferences both in monotonic logic for
the definition of preference statements as well as in non-
monotonic mechanisms for the way preference statements are
used when reasoning under uncertainty. Several propositional
preference logics have been introduced and studied, such as
for example logics for ceteris paribus preferences (compara-
tive statements under the proviso “all else being equal”) and
weak preferences (e.g.,p is preferred toq if the bestp∨ q are
¬q). For some of the preference logics non-monotonic rea-
soning mechanisms have been developed, most notably based
on specificity principles such as gravitation towards the ideal,
also known as System Z, or compactness. To study the inter-
action among kinds of preferences, we are interested in de-
veloping a non-monotonic preference logic for various kinds
of preferences.

In recent work[Kaci and van der Torre, 2005], we de-
velop algorithms for a non-monotonic preference logic for
four kinds of preferences without a ceteris paribus proviso.
In this paper we raise the following four questions:

1. How can we extend the various kinds of preferences with
a ceteris paribus proviso?

2. How can we extend the non-monotonic reasoning mech-
anism based on specificity principles to deal with all
kinds of preferences (both strict and non-strict)?

3. Are the distinguished preference orders unique?

4. Which algorithms can be defined to calculate these
unique preference orders?

Concerning the ceteris paribus proviso, as far as we know
this has only be defined for strong preferences (e.g.,p is pre-
ferred toq if eachp is preferred to allq). In the most general
setting we know of, Hansson[1996] defined a ceteris paribus
proviso as a filter over the pairs of worlds being compared by
a strong preference. This works fine for such strong prefer-
ences, but it is less clear how this can be used for weak pref-
erences. We therefore use the more restricted approach of
Doyle and Wellman[1994], who define a contextual equiv-
alence relation to interpret the ceteris paribus proviso as “all
else being similar”. The equivalence relation is again used as
a kind of filter (representing similarity).

Concerning the non-monotonic reasoning, we distinguish
minimal and maximal specificity principles. Non-monotonic
consequences of a logical theory are defined as all formulas
which are true in the distinguished models of the theory. An
attractive property is case in which there is only one distin-
guished model, because in that case it can be decided whether
a formula non-monotonically follows from a logical theory
by calculating the unique distinguished model, and testing
whether the formula is satisfied by the distinguished model.
Likewise, all non-monotonic consequences can be found by
calculating the unique distinguished model and characteriz-
ing all formulas satisfied by this model. Therefore we are
interested in developing algorithms for unique distinguished
models.

The layout of this paper is as follows. In Section 2 we
introduce the logic of preferences, and in Section 3 we extend
it with specificity principles. Section 4 introduces algorithms
to calculate distinguished preference orders.



2 Logic of preferences
To describe ceteris paribus preferences, we use a general con-
struction proposed by Doyle and Wellman[1994]. They base
their ceteris paribus preferences on a notion of contextual
equivalence.

Definition 1 (Contextual equivalence) [Doyle and Well-
man, 1994, Def.4] Let W be a set of interpretations of a
propositional language, andξ(W ) be the set of equivalence
relations onW , i.e., the set of reflexive, transitive and sym-
metric relations⊆ W × W . A contextual equivalence on
W is a functionη : 22W → ξ(W ) assigning to each set
of propositional formulas{p, q, . . .} an equivalence relation
η(p, q, . . .). We writew ≡ w′ modηp, q, . . ..

If the equivalence relation is the universal relation, i.e., an
equivalence relation with only one equivalence class, then the
ceteris paribus preference reduces to a strong condition (p is
preferred toq when eachp ∧ ¬q is preferred to all¬p ∧ q).

Definition 2 (Comparative greatness)[Doyle and Well-
man, 1994, Def.5] Letº be a total pre-order overW , that
is, a complete, reflexive and transitive relation overW . We
say thatp is weakly greater thanq iff w º w′ whenever
w |= p∧¬q, w′ |= ¬p∧q, andw ≡ w′ modηp∧¬q,¬p∧q.

The following proposition shows that this definition re-
duces a strong preference with a ceteris paribus proviso to
a set of strong preferences for each equivalence class of the
equivalence relation. The advantage of this reduction is that
the ceteris paribus proviso can be used for other kinds of pref-
erences, such as weak preferences.

Proposition 1 Assume a finite set of propositional atoms,
and letε(η, p, q) be the set of propositions which are true in
all worlds of an equivalence class ofη(p, q), but false in all
others{r | ∃w∀w′(w ≡ w′ modηp, q iff w |= r)}. We
have thatp is weakly greater thanq iff for all propositions
c ∈ ε(η, p ∧ ¬q,¬p ∧ q), we have thatw ≥ w′ whenever
w |= p ∧ ¬q ∧ c, w′ |= ¬p ∧ q ∧ ¬c.

The logical language extends propositional logic with six-
teen kinds of preferences, based on four binary choices. First,
a preference can be strict or non-strict, represented by> and
≥, respectively. Moreover, the left hand side and the right
hand side of the preference can each be indexed by either a
small m for ‘pessimistic’min or a capitalM for an ‘opti-
mistic’ max, as is explained in the semantics in Definition 4.
In [Kaci and van der Torre, 2005] we introduce and motivate
the following terminology.

p M>Mq: Locally optimistic: optimistic aboutp andq.

p m>mq: Locally pessimistic: pessimistic aboutp andq.

p M>mq: Opportunistic: optimistic aboutp, pessimistic
aboutq.

p m>Mq: Careful: pessimistic aboutp, optimistic aboutq.

Finally, the preference can be either evaluated without or with
a ceteris paribus proviso, where the latter is represented by an
indexc. For example,p m>m

c q is a strict preference ofp over
q where left and right hand side are evaluated according to
min and with a ceteris paribus proviso.

Definition 3 (Language) Given a finite set of propositional
atomsA = {a1, . . . , an}, we define the setL0 of proposi-
tional formulas and the setL of preference formulas as the
smallest set satisfying the following.

L0 3 p, q: ai | (p ∧ q) | ¬p

L 3 φ, ψ: p x>yq | p x≥yq | p x>y
c q | p x≥y

c | ¬φ | (φ ∧ ψ)
for x, y ∈ {m,M}

Disjunction∨, material implication⊃ and equivalence↔
are defined as usual. Moreover, we define conditionals in
terms of preferences byp m→mq =def p ∧ q m>mp ∧ ¬q, etc.
We abbreviate formulas using the following order on logical
connectives:¬ | ∨,∧ |> | ⊃,↔. For example,p∨q > r ⊃ s
is interpreted as((p ∨ q) > r) ⊃ s.

In our semantics, a ceteris paribus preference is evaluated
as a set of preference statements, for each equivalence class of
the equivalence relation. Like Doyle and Wellman, we define
preferences ofp overq as preferences ofp ∧ ¬q overq ∧ ¬p.
This is standard and known as von Wright’s expansion prin-
ciple [von Wright, 1963]. Additional clauses may be added
for the cases in which sets of worlds are nonempty, to prevent
the satisfiability of preferences likep > > andp > ⊥. In this
paper we do not consider this borderline condition.

Definition 4 (Monotonic semantics) Let A be a finite set of
propositional atoms,L a propositional logic based onA,
W the set of propositional interpretations ofL, º a total
pre-order onW , and η a contextual equivalence relation
on W . We writew Â w′ for w º w′ without w′ º w.
Moreover, if x = M then we writex(p,º) = max(p,º)
for {w ∈ W | w |= p, ∀w′ ∈ W : w′ |= p ⇒ w º w′}, and
analogously whenx = m we write x(p,º) = min(p,º)
for {w ∈ W | w |= p, ∀w′ ∈ W : w′ |= p ⇒ w′ º w}.
º, η |= p x>yq if and only if ∀w ∈ x(p ∧ ¬q,º) and

∀w′ ∈ y(¬p ∧ q,º) we havew Â w′

º, η |= p x≥yq if and only if ∀w ∈ x(p ∧ ¬q,º) and
∀w′ ∈ y(¬p ∧ q,º) we havew º w′

º, η |= p x>y
c q if and only if ∀c ∈ ε(η, p ∧ ¬q,¬p ∧ q),

∀w ∈ x(p ∧ ¬q ∧ c,º) and ∀w′ ∈ y(¬p ∧ q ∧ c,º)
we havew Â w′

º, η |= p x≥y
c q if and only if ∀c ∈ ε(η, p ∧ ¬q,¬p ∧ q),

∀w ∈ x(p ∧ ¬q ∧ c,º) and ∀w′ ∈ y(¬p ∧ q ∧ c,º)
we havew º w′

We sometimes assume a fixedη, when we writeº|=η φ for
º, η |= φ. Moreover, logical notions are defined as usual, in
particular:

• η |= φ iff for all º, we haveº, η |= φ,

• S |=η φ iff for all º s.t.º, η |= S, we haveº, η |= φ.

Example 1 illustrates the logic of preferences.
Example 1 |= p M>Mq ↔ (p ∧ ¬q) ∨ (¬p ∧ q) M→Mp,
which expresses a well-known relation between a defeasible
conditional M→M and preferencesM>M . Moreover, we
have|= p m>Mq ⊃ p M>Mq, which expresses that strong
preferencesm>M imply weak preferencesM>M . Finally,
we have|= p m>Mq ⊃ p m>M

c q, which expresses that pref-
erences without ceteris paribus proviso imply ceteris paribus
preferences.



Pmm PmM PMm PMM

least most – yes least – yes most least most least – yes[Pearl, 1990] most
no [Duboiset al., 2004b] [Benferhat and Kaci, 2001] yes no no [Benferhatet al., 1992] no

Table 1: Uniqueness of distinguished pre-orders

3 Non-monotonic logic of preferences
A preference specification consists of sets of preferences.

Definition 5 (Preference specification)Let P¤ be a set of
preferences of the form{pi¤qi : i = 1, · · · , n}. A preference
specification is a tuple〈P¤ | ¤ ∈ { x>y, x≥y, x>y

c , x≥y
c |

x, y ∈ {m,M}}〉). A total pre-orderº together with a con-
textual equivalence functionη is a model ofP¤ iff º, η satis-
fies each preferencepi ¤ qi in P¤.

The following definition illustrates how a preference order
can also be represented by a well ordered partition ofW . This
is an equivalent representation, in the sense that each pref-
erence order corresponds to one ordered partition and vice
versa. This equivalent representation as an ordered partition
makes the definition of the non-monotonic semantics easier
to read.

Definition 6 (Ordered partition) A sequence of sets of
worlds of the form(E1, . . . , En) is an ordered partition of
W iff ∀i, Ei is nonempty,E1 ∪ · · · ∪ En = W and ∀i, j,
Ei ∩ Ej = ∅ for i 6= j. An ordered partition ofW is
associated with pre-orderº on W iff ∀ω, ω′ ∈ W with
ω ∈ Ei, ω

′ ∈ Ej we havei ≤ j iff ω º ω′.

Shoham[1987] characterizes non-monotonic reasoning as
a mechanism that selects a subset of the models of a set of
formulas, which we call distinguished models in this paper.
Shoham calls these models “preferred models”, but we do not
use this terminology as this meta-logical terminology may be
confused with preferences in the logical language and prefer-
ence orders in the semantics.

In this paper we compare total pre-orders based on the so-
called specificity principle. The minimal specificity principle
is gravitating towards the least specific pre-order, while the
maximal specificity principle is gravitating towards the most
specific pre-order. These have been used in non-monotonic
logic to define the distinguished model of a set of conditionals
of the kind M→M , sometimes called defeasible conditionals.

Definition 7 (Minimal/Maximal specificity principle)
Let º and º′ be two total pre-orders on a set of worlds
W represented by ordered partitions(E1, · · · , En) and
(E′

1, · · · , E′
n) respectively. We say thatº is at least as

specific asº′, written asºvº′, iff ∀ω ∈ W , if ω ∈ Ei and
ω ∈ E′

j then i ≤ j. º is said to be the least (resp. most)
specific pre-order among a set of pre-ordersO if there is no
º′ in O s.t.º′@º, i.e.,º′vº withoutºvº′ (resp.º@º′).

The following example illustrates minimal and maximal
specificity principles.

Example 2 Consider the rulep x→yq. Applying the minimal
specificity principle onp M→Mq or p m→Mq gives the fol-
lowing modelº= ({pq,¬pq,¬p¬q}, {p¬q}). The preferred
worlds in this model are those which do not violate the rule.

More preciselypq belongs to the set of preferred worlds since
it satisfies the rule but¬pq and¬p¬q are preferred too since
they do not violate the rule even if they do not satisfy it. Now
applying the maximal specificity principle onp m→mq gives
the following modelº′= ({pq}, {¬pq, p¬q,¬p¬q}). We can
see that the preferred worlds are those which only satisfy the
rule.

Unique distinguished models have been computed for pref-
erences of typeM>M , m>M and m>m considered individu-
ally. Table 1 summarizes these results. Hence, no unique dis-
tinguished models can be calculated for careful preferences,
which does not seem very problematic since this kind of pref-
erences is rarely used, as they seem too weak. However it
may be useful when all other preference types give an empty
set of models[van der Torre and Weydert, 2001]:

Example 3 Letj andf be two propositional variables which
stand for marriage with John and Fred, respectively. Let
P x>y = {j x>y¬j, f x>y¬f,¬(j ∧ f) x>y(j ∧ f)} be a
set of Sue’s preferences about its marriage with John or Fred.
The first constraint means that Sue prefers to be married to
John over not being married to him. The second constraint
means that Sue prefers to be married to Fred over not being
married to him and the last constraint means that Sue prefers
not to be married to both. There is no pre-order satisfying any
of the setsP M>M , P m>M andP m>m while the following

pre-order({j¬f,¬jf}, {jf,¬j¬f}) satisfiesP M>m .

Since the uniqueness of the distinguished model is not sat-
isfied for M>m preferences, in the remainder of this pa-
per we only focus on locally optimistic, locally pessimistic
and careful preferences. We consider in[Kaci and van der
Torre, 2005] preferences of different types given together and
shown that there is a unique least specific model form>M

and M>M , and a unique most specific model form>M and
m>m. As far as we know, the following questions have not

been addressed yet.

1. Is a least specific pre-order of preference specification
〈P¤|¤∈{ x>y, x≥y, x>y

c , x≥y
c |x∈{m,M}, y = M}〉

unique?

2. Is a most specific model of preference specification
〈P¤|¤∈{ x>y, x≥y, x>y

c , x≥y
c |x = m, y ∈{m,M}}〉

unique?

3. How can we define a model of preference specification
〈P¤ | ¤ ∈ { x>y, x≥y, x>y

c , x≥y
c | x, y ∈ {m,M}}〉

based on the distinguished models computed in items 1
and 2.

In the following section the first two questions are answered
positively by providing algorithms for these unique most spe-
cific and most general pre-orders. Moreover, the third ques-
tion is answered by presenting a way to combine these two
unique pre-orders.



4 Algorithms for mixed preferences
In this section we provide algorithms to calculate minimal
and maximal specific pre-orders. We first replace ceteris
paribus preferences by sets of ordinary preferences without
a ceteris paribus proviso, by generalizing proposition 1 for
the other kinds of preferences.

Proposition 2 Let ε(η, p, q) be the set of propositions which
are true in all worlds of an equivalence class ofη(p, q),
but false in all others{r | ∃w∀w′(w ≡ w′ modηp, q iff
w |= r)}, ¤ ∈ { x>y, x≥y | x, y ∈ {m,M}}, and¤c ∈
{ x>y

c , x≥y
c | x, y ∈ {m,M}} for the same connective ex-

tended with a ceteris paribus proviso. We haveº, η |= p¤c q
iff for all propositionsc ∈ ε(η, p ∧ ¬q,¬p ∧ q), we have
º, η |= p ∧ ¬q ∧ c ¤ ¬p ∧ q ∧ c.

Consequently, we can restrict ourselves to the eight types
of preferences without ceteris paribus clauses. In these calcu-
lations, we do not refer to the contextual equivalence relation
η anymore.

4.1 A distinguished model for locally optimistic
and careful preferences

We consider the following preference specifications
〈P¤ | ¤ ∈ { x>y, x≥y, x>y

c , x≥y
c | x ∈ {m,M}, y = M}〉,

and since we assume that preference specifications with
ceteris paribus provisos have been reduced to sets of prefer-
ences without such provisos, we consider the following four
sets of preferences:
PM>M = {Ci1 : pi1

M>Mqi1},PM≥M = {Ci2 : pi2
M≥Mqi2},

Pm>M = {Ci3 : pi3
m>Mqi3}, Pm≥M = {Ci4 : pi4

m≥Mqi4}.
Moreover, we refer to the constraints of these preferences by
C =

⋃
k=1,··· ,4{Cik

= (L(Cik
), R(Cik

))}, where the left and
right hand side of these constraints areL(Cik

) = |pik
∧¬qik

|
and R(Cik

) = |¬pik
∧ qik

|, respectively. Algorithm 1
computes the least specific model of locally optimistic and
careful preferences with and without ceteris paribus, strict
and non-strict. The basic idea of the algorithm is to construct
the least specific pre-order by calculating the sets of worlds
of the ordered partition, going from the ideal to the worst
worlds.
Let us first explain the algorithm, then we illustrate it by an

example and finally we show that the distinguished model
computed by the algorithm is the unique least specific one.
At each step of the algorithm, we look for worlds which can
have the actual highest ranking in the preference order. This
corresponds to the actual minimal valuel. These worlds
are those which do not falsify any constraint inC. We first
put in El worlds which do not falsify any strict preferences.
These worlds are those which do not appear in the right hand
sides of the strict preferencesCi1 andCi3 . Now we remove
from El worlds which falsify constraints of the non-strict
preferencesCi2 andCi4 . Locally optimistic constraintsCi2
are violated ifL(Ci2) ∩ El = ∅ andR(Ci2) ∩ El 6= ∅, while
the careful constraintsCi4 are violated ifL(Ci4) 6⊆ El and
R(Ci4) ∩ El 6= ∅. OnceEl is fixed, satisfied constraints
are removed. Note that constraintsCik

s.t. k ∈ {1, 2} are
satisfied ifL(Cik

) ∩ El 6= ∅ since in this case, worlds of
R(Ci1) are necessarily inEh with h > l and worlds of

Algorithm 1: Handling locally optimistic and careful pref-
erences.

begin
l ← 0;
while W 6= ∅ do

– l ← l + 1, j ← 1 ;
/** strict constraints **/
– El = {ω : ∀Ci1 , Ci3 ∈ C, ω 6∈ R(Ci1) ∪R(Ci3)} ;
while j = 1 do

j ← 0;
for eachCi2 andCi4 in C do

/** non-strict constraints **/
if (L(Ci2) ∩El = ∅ andR(Ci2) ∩El 6= ∅) or
(L(Ci4) 6⊆ El andR(Ci4) ∩ El 6= ∅) then

El = El −R(Cik );
j ← 1

if El = ∅ then Stop (inconsistent constraints);
– remove fromW elements ofEl ;
/** remove MM satisfied constraints **/
– remove fromC constraintsCik k ∈ {1, 2} such that
L(Cik ) ∩ El 6= ∅ ;
/** update mM constraints **/
– replace constraintsCik (k ∈ {3, 4}) by (L(Cik ) −
El, R(Cik )) ;
/** remove satisfied mM constraints **/
– remove fromC constraintsCik (k ∈ {3, 4}) with empty
L(Cik ).
return (E1, · · · , El)

end

R(Ci2) are inEh′ with h′ ≥ l. However careful constraints
Cik

(for k ∈ {3, 4}) are satisfied only whenL(Cik
) ⊆ El

otherwise they should be replaced by(L(Cik
)−El, R(Cik

)).
The least specific criterion can be checked by construction.

At each stepl we put inEl all worlds which do not appear
in any R(Cik

) for k ∈ {1, 3} and which are not yet put in
someEl′ with l′ < l. If ω ∈ El then it necessarily falsifies
some constraints which are not falsified by worlds ofEl′ for
l′ < l. If we would put someω of El in El′ with l′ < l then
we get a contradiction. To show the uniqueness of the least
specific model ofP, we follow the line of the proof given in
[Benferhatet al., 1999].

Lemma 1 The total pre-order computed by Algorithm 1 be-
longs to the set of least specific models ofP.

We now define the maximum of two preference orders.

Definition 8 Let º and º′ be two preference orders rep-
resented by their well ordered partitions(E1, · · · , En) and
(E′

1, · · · , E′
n′) respectively. We define theMAX opera-

tor by MAX (º,º′) = (E′′
1 , · · · , E′′

min(n,n′)), such that
E′′

1 = E1∪E′
1 andE′′

k = (Ek ∪E′
k)− (

⋃
i=1,··· ,k−1 E′′

i ) for
k = 2, · · · ,min(n, n′), and the empty setsE′′

k are eliminated
by renumbering the non-empty ones in sequence.

Lemma 2 proves the uniqueness of the least specific model of
P.

Lemma 2 If there is a minimal specific model ofP, then it is
unique.



Proof. LetM(P) be the set of models ofP. We first show
that MAX (º,º′) ∈ M(P) (1). Letº= (E1, · · · , Eh),
º′= (E′

1, · · · , E′
h′), º′′= (E′′

1 , · · · , E′′
min(h,h′)), and

p M≥Mq ∈ P. º,º′∈ M(P), i.e., º|= p M≥Mq and
º′|= p M≥Mq. In other words,max(p ∧ ¬q,º) ⊆ Ei and
max(¬p ∧ q,º) ⊆ Ej s.t. i ≤ j andmax(p ∧ ¬q,º′) ⊆ E′

k
and max(¬p ∧ q,º′) ⊆ E′

l s.t. k ≤ l. Following Defini-
tion 8, max(p ∧ ¬q,º′′) ⊆ E′′

min(i,k) andmax(¬p ∧ q,º′′
) ⊆ E′′

min(j,l). Sincei ≤ j andk ≤ l we havemin(i, k) ≤
min(j, l). We concludeº′′|= p M≥Mq. The proofs for the
other constraints are analogous and can be found in[Benfer-
hatet al., 1999] . Consequently,MAX (º,º′) ∈M(C).

Moreover, we have thatMAX (º,º′) is less specific than
or identical to bothº andº′ (2), the proof can be found also
in [Benferhatet al., 1999] .

Finally, we prove that the lemma follows from the two items
by contradiction. So suppose that there are two distinct min-
imal specific ordersº andº′. Then according to item (1),
MAX (º,º′) is also a model of the preference specification
and according to item (2), it is less specific than eitherº or
º′. Contradiction.

We can now conclude:

Theorem 1 Algorithm 1 computes the least specific model of
P.

Proof. Following Lemma 1 it computes a preference or-
der which belongs to the set of the least specific models and
following Lemma 2, this preference order is unique.

Example 4 Let p, q and r be three propositional variables
which stand respectively for sun, beach and cheap. Sup-
pose that an agent is looking for holidays destination. Let
P = 〈P M>M ,P m>M ,P m≥M 〉 be the set of its prefer-

ences, whereP M>M = {p ∧ q M>M¬(p ∧ q)},
P m>M = {p ∧ r m>Mp ∧ ¬r} and

P m≥M = {p ∧ r m≥M¬p ∧ r, p ∧ ¬r m≥M¬p ∧ ¬r}.
Applying Algorithm 11 givesE1 = {pqr},
E2 = {¬p¬qr,¬pqr, p¬qr} and
E3 = {¬p¬q¬r,¬pq¬r, pq¬r, p¬q¬r}.
The computed model means that the preferred destinations
are cheap, sunny and where there is a beach, the next pre-
ferred ones are cheap but either not sunny or there is no
beach. Lastly the least preferred destinations are those which
are not cheap whatever there is beach or the place is sunny.

The above algorithm is general. It captures all existing al-
gorithms proposed for handlingM>M and m>M separately
[Pearl, 1990; Benferhat and Kaci, 2001], mixed preferences
M>M and m>M [Kaci and van der Torre, 2005]. This al-

gorithm also generalizes the algorithm of[Benferhatet al.,
2001] which captures “equal preferences”, denotedp M=Mq,
which stands for “all bestp worlds areq worlds and allq
worlds arep worlds”. These equivalences can be represented
in our framework by two non-strict preferencesp M≥Mq
andq M≥Mp, but our non-strict preferences cannot be rep-
resented in their framework.

1Due to the lack of space, we omit the details of the construction
of º.

4.2 Locally pessimistic and careful preferences
Algorithm 2 is structurally similar to Algorithm 1.1., and the
proof that this algorithm produces the most specific model of
these preferences is analogous to the proof of Theorem 2.
Let P ′ = 〈P¤ | ¤ ∈ { x>y, x≥y, x>y

c , x≥y
c | x =

m andy ∈ {m,M}}〉. Again we assume that preference
specifications with ceteris paribus provisos have been re-
duced to sets of preferences without such provisos, so we
consider the following four sets of preferences:
P m>m = {Ci1 : pi1

m>mqi1}, P m≥m = {Ci2 : pi2
m≥mqi2},

P m>M = {Ci3 : pi3
m>Mqi3}, P m≥M = {Ci4 : pi4

m≥Mqi4}.
Let C =

⋃
k=1,··· ,4{Cik

= (L(Cik
), R(Cik

))}, where
L(Cik

) = |pik
∧ ¬qik

| andR(Cik
) = |¬pik

∧ qik
|.

Algorithm 2: Handling locally pessimistic and careful
preferences.

begin
l ← 0;
while W 6= ∅ do

l ← l + 1, j ← 1;
El = {ω : ∀Ci1 , Ci3 in C, ω 6∈ L(Ci1) ∪ L(Ci3)};
while j = 1 do

j ← 0;
for eachCi2 andCi4 in C do

/** non-strict constraints **/
if (L(Ci2) ∩El 6= ∅ andR(Ci2) ∩El = ∅) or
(L(Ci4) ∩ El 6= ∅ andR(Ci4) 6⊆ El) then

El = El − L(Cik ), j ← 1

if El = ∅ then Stop (inconsistent constraints);
– Remove fromW elements ofEl;
/** remove mm satisfied constraints **/
– Remove fromC constraintsCik (for k ∈ {1, 2}) s.t. El ∩
R(Cik ) 6= ∅;
/** update mM constraints **/
– ReplaceCik (for k ∈ {3, 4}) in C by (L(Cik ), R(Cik ) −
El);
/** remove mM satisfied constraints **/
– Remove fromC constraintsCik (k ∈ {3, 4}) with empty
R(Cik );
return (E′

1, · · · , E′
l) s.t.∀1 ≤ h ≤ l, E′

h = El−h+1

end

Example 5 Let P ′ = 〈P m>m ,P m>M ,P m≥M } with

P m>M , P m≥M as in Example 4 andP m>m = {¬q m>mq}.
Applying Algorithm 2 givesE′

1 = {p¬qr, pqr}, E′
2 =

{¬p¬q¬r,¬p¬qr, p¬q¬r, pq¬r} andE′
3 = {¬pq¬r,¬pqr}.

This model means that the preferred destinations are sunny
and cheap and the least preferred ones are not sunny and
there is a beach whatever they are cheap or not.

Theorem 2 Let P = 〈P¤ | ¤ ∈ { x>y, x≥y, x>y
c , x≥y

c |
x = m andy ∈ {m,M}}〉. Then Algorithm 2 computes the
most specific model ofP which is unique.

Proof (sketch). Follows the same lines as the proof of Theo-
rem 2. It can also be derived from Theorem 2 using symmetry
of the two algorithms.



4.3 Careful, locally optimistic and locally
pessimistic preferences

To find a distinguished model of the sixteen kinds of pref-
erences given together, we combine the two algorithms. It
has been argued in[Benferhatet al., 2002; Duboiset al.,
2004a] that, in the context of preference modeling, the mini-
mal specificity principle models constraints which should not
be violated while the maximal specificity principle models
what is really desired by the agent. In our setting, this combi-
nation of the least specific and the most specific models leads
to a refinement of the former by the latter.

Definition 9 Letº′′ be the result of combiningº andº′ cor-
responding to the least specific and the most specific models
respectively. Then,

• if ω Â ω thenω Â′′ ω′,
• if ω ' ω′ then (ω º′′ ω′ iff ω º′ ω′).

Example 6 (Continued from Examples 4 and 5)We have
º′′= (E′′

1 , · · · , E′′
6 ) where E′′

1 = {pqr}, E′′
2 =

{p¬qr}, E′′
3 = {¬p¬qr}, E′′

4 = {¬pqr}, E′′
5 =

{¬p¬q¬r, pq¬r, p¬q¬r} andE′′
6 = {¬pq¬r}.

The best destinations are cheap, sunny and there is a beach
there and the least preferred destinations are those where
there is a beach however they are neither sunny nor cheap.

5 Concluding remarks
We develop a nonmonotonic logic to reason about the interac-
tion among kinds of preferences in systems in which varying
kinds of preferences can be used simultaneously. How to use
such a logic is still an open question. In[Kaci and van der
Torre, 2005] we propose the use of the preference types lo-
cally optimistic, locally pessimistic, opportunistic and careful
to guide the choice among these kinds of preferences. In the
logic proposed in this paper, an important question is when to
choose preferences with or without a ceteris paribus proviso.
Another question is how to define the contextual equivalence
relation, which can for example be inspired by CP nets or by
a more complicated mechanism.

We introduce a logic for sixteen kinds of preferences,
where the m>M ’s preference is the strongest one while
M≥m

c ’s preference is the weakest one. Some of the sixteen
preference statements – or simple variants of it – have been
discussed in the literature. For example, Doyle and Well-
man’s p m>M

c q is the comparative statement usually stud-
ied in the logic of preference, see, e.g.,[von Wright, 1963;
Hansson, 1996]. Sometimes it has been suggested that in for-
malizing preferences, there is a choice between these two op-
tions of ceteris paribusm>M

c and an optimizing preference
p M≥Mq. However, in our more general framework we de-
fine ceteris paribus and optimization as two dimensions of
preferences, which can also be combined byp M≥M

c q.
We show how specificity principles can be used to deter-

mine distinguished pre-orders from a preference specifica-
tion with either locally optimistic and careful strict and non-
strict preferences, or with locally pessimistic and careful strict
and non-strict preferences, in both case with and without ce-
teris paribus proviso. However, in case of opportunistic pref-
erences, such minimal and most specific pre-orders are not

unique. Moreover, when locally optimistic and locally pes-
simistic preferences, the distinguished pre-orders have to be
merged again. This suggests that other mechanisms may be
developed for nonmonotonic reasoning about preferences.
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