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Abstract In recent work[Kaci and van der Torre, 2005we de-
velop algorithms for a non-monotonic preference logic for
four kinds of preferences without a ceteris paribus proviso.
In this paper we raise the following four questions:

We are interested in systems which do not pre-
scribe one single kind of preference, but in which
varying kinds of preferences can be used simulta-

neously. In such systems it is essential to know 1. How can we extend the various kinds of preferences with
the interaction among the kinds of preferences be- a ceteris paribus proviso?
ing used, and we therefore introduce and study a 2. How can we extend the non-monotonic reasoning mech-

nonmonotonic logic to reason about sixteen strict
and non-strict kinds of preferences, includiog-
teris paribuspreferences. Moreover, we study “dis-

anism based on specificity principles to deal with all
kinds of preferences (both strict and non-strict)?

tinguished” preference orders based on specificity 3. Are the distinguished preference orders unique?
principles by showing when these distinguished 4. Which algorithms can be defined to calculate these
preference orders are unique, and by presenting al- unique preference orders?

gorithms to calculate the distinguished preference ) ] ] )

orders. Concerning the ceteris paribus proviso, as far as we know

this has only be defined for strong preferences (p. pre-
. ferred toq if eachp is preferred to aly). In the most general

1 Introduction setting we know of, Hanssd996 defined a ceteris paribus
We are interested in systems which do not prescribe one sirproviso as a filter over the pairs of worlds being compared by
gle kind of preference, but in which varying kinds of prefer- a strong preference. This works fine for such strong prefer-
ences can be used simultaneously. For example, when buyirgfices, but it is less clear how this can be used for weak pref-
a car a user may specify a weak preference for five-doors, @rences. We therefore use the more restricted approach of
ceteris paribus preference for a European car, and a non-stritoyle and Wellmar{1994, who define a contextual equiv-
preference for blue. Alternatively, a group decision makingalence relation to interpret the ceteris paribus proviso as “all
system may be combining preferences from several agengise being similar”. The equivalence relation is again used as
using distinct kinds of preference statements to communicata kind of filter (representing similarity).
their desires. In such systems it will be essential to know the Concerning the non-monotonic reasoning, we distinguish
interaction among kinds of preferences. minimal and maximal specificity principles. Non-monotonic

Preference logic can be used to study the interaction amongpnsequences of a logical theory are defined as all formulas
various kinds of preferences both in monotonic logic forwhich are true in the distinguished models of the theory. An
the definition of preference statements as well as in nonattractive property is case in which there is only one distin-
monotonic mechanisms for the way preference statements agelished model, because in that case it can be decided whether
used when reasoning under uncertainty. Several propositional formula non-monotonically follows from a logical theory
preference logics have been introduced and studied, such &y calculating the unique distinguished model, and testing
for example logics for ceteris paribus preferences (comparawvhether the formula is satisfied by the distinguished model.
tive statements under the proviso “all else being equal”) andLikewise, all non-monotonic consequences can be found by
weak preferences (e.gjs preferred tay if the bestp v g are  calculating the unique distinguished model and characteriz-
—q). For some of the preference logics non-monotonic reaing all formulas satisfied by this model. Therefore we are
soning mechanisms have been developed, most notably basigderested in developing algorithms for unique distinguished
on specificity principles such as gravitation towards the idealmodels.
also known as System Z, or compactness. To study the inter- The layout of this paper is as follows. In Section 2 we
action among kinds of preferences, we are interested in deéntroduce the logic of preferences, and in Section 3 we extend
veloping a non-monotonic preference logic for various kindsit with specificity principles. Section 4 introduces algorithms
of preferences. to calculate distinguished preference orders.



2 Logic of preferences Definition 3 (Language) Given a finite set of propositional

To describe ceteris paribus preferences, we use a general cd'ﬁpmSA = {a1,...,an}, we define the sel, of proposi-
struction proposed by Doyle and WellmEx994. They base tional formulas gnd_ the sel of p_reference formulas as the
their ceteris paribus preferences on a notion of contextuaimallest set satisfying the following.

equivalence. Lo>p,q ai|(pAg)|-p

Definition 1 (Contextual equivalence)[Doyle and Well- L3 &.%: p™>Yq | p=>Yq | p™>Zq|[p 2| = | (6 NY)
man, 1994, DefldLet W be a set of interpretations of a forz,y € {m, M}

propositional language, angl(W) be the set of equivalence Disjunction v, material implication> and equivalence—
relations onWV, i.e., the set of reflexive, transitive and sym- are defined as usual. Moreover, we define conditionals in
metric relationsC W x W. A contextual equivalence on terms of preferences hy™—"q =4t A ¢ ™>"p A —q, €tc.

W is a functionn . 22W N g(W) assigning to each set We abbreViate formulas USing the fO"OWing order on |Ogical
of propositional formulagp, ¢, ...} an equivalence relation connectives= | V, A | > | D, <. ForexamplepVg >r O s
n(p,q,...). We writew = w’ mod,p,q,.. .. is interpreted ag(p V q) > r) O s.

In our semantics, a ceteris paribus preference is evaluated
s a set of preference statements, for each equivalence class of
the equivalence relation. Like Doyle and Wellman, we define
preferences of overq as preferences g@f A —q overqg A —p.

This is standard and known as von Wright's expansion prin-
Definition 2 (Comparative greatness)[Doyle and Well-  ciple [von Wright, 1963. Additional clauses may be added
man, 1994, DeffLet - be a total pre-order ovefV, that  for the cases in which sets of worlds are nonempty, to prevent
is, a complete, reflexive and transitive relation oVer We  the satisfiability of preferences like>> T andp > L. In this

say thatp is weakly greater tham iff w = w’ whenever paper we do not consider this borderline condition.

/ j— /
w = pA=gw' = opAg andw = w' mod,pA=g, mpAG pefinition 4 (Monotonic semantics) Let A be a finite set of
The following proposition shows that this definition re- propositional atoms,L a propositional logic based om,
duces a strong preference with a ceteris paribus proviso tt/ the set of propositional interpretations @f, = a total

If the equivalence relation is the universal relation, i.e., an
equivalence relation with only one equivalence class, then th
ceteris paribus preference reduces to a strong conditi (
preferred ta; when eachp A —q is preferred to albp A q).

a set of strong preferences for each equivalence class of th@e-order onT, and , a contextual equivalence relation
equivalence relation. The advantage of this reduction is thadn WW. We writew = w’ for w > w’ withoutw’ > w.
the ceteris paribus proviso can be used for other kinds of preMoreover, ifz = M then we writex(p, =) = max(p, =)
erences, such as weak preferences. for fweW|wkEp Yo eW:w' Ep=w>=w'}, and

iy . . logously whenr = m we write z(p, =) = min(p, »)
Proposition 1 Assume a finite set of propositional atoms, 8N& p o 1=/ 1=
and lete(n, p, q) be the set of propositions which are true in ©°F {weW| wiEpYw €W w' Ep=w' s w}.
all worlds of an equivalence class 9fp, ¢), but false inall  =.n Fp ™>Y¢ if and only if vw € z(p A =¢,=) and

others{r | JuwVw'(w = w' mod,p,q iff w = r)}. We Vw' € y(=p A g, =) we havew = v’
have thatp is weakly greater tha iff for all propositions = 5 = p %>Yq if and only if Yw € =x(p A —¢,>) and
¢ € e(n,p A —g,—p A q), we have thatw > w’ whenever V' € y(=p A q, =) we havew = w’
/
wEpA-gAcw E-pAgh-e =nEp>Yqif and only ifVe € e(n,p A —q,—p A q),
The logical language extends propositional logic with six- YVw € xz(p A =g A c,x=) andVw' € y(-p AgAe, =)

teen kinds of preferences, based on four binary choices. First, we havew > w’

a preference can be strict or non-strict, represented bpd ) L, =>4 if and only if Ve € e(n,p A —q,—p A q),
>, respectively. Moreover, the left hand side and the right ™ " v, 6_;(;0 A=gAc=)andVw' € y(-p AgAc, =)
hand side of the preference can each be indexed by either a \ye havay = w’ N B
small m for ‘pessimistic’ min or a capitalM for an ‘opti- ~
mistic’ max, as is explained in the semantics in Definition 4.
In [Kaci and van der Torre, 200%ve introduce and motivate
the following terminology.

p M>Mg: Locally optimistic: optimistic aboufp andg.
p "™>"q: Locally pessimistic: pessimistic aboyt andgq.
Mom,,. fotine it T
p *>™q: Opportunistic: optimistic aboutp, pessimistic Example 1 = p MMy s (p A —q) V (=p A g) MM,
aboutg. ; . .
which expresses a well-known relation between a defeasible

p™>Mgq: Careful: pessimistic aboy, optimistic about. conditional M- and preferences>™. Moreover, we

Finally, the preference can be either evaluated without or witthave = p ">"¢q > p *>Mg, which expresses that strong
a ceteris paribus proviso, where the latter is represented by difeferences”>" imply weak preferences’>". Finally,
indexc. For examplep ™>q is a strict preference gfover =~ We havel= p ">"g¢ > p ™>M¢q, which expresses that pref-

¢ where left and right hand side are evaluated according trences without ceteris paribus proviso imply ceteris paribus
min and with a ceteris paribus proviso. preferences.

We sometimes assume a fixgdvhen we write-|=, ¢ for
=,n = ¢. Moreover, logical notions are defined as usual, in
particular:

e 1 = ¢iffforall =, we have-,n = ¢,
o S|, ¢iffforall = s.t.=,n |= S, we have-, 1 = ¢.
Example 1 illustrates the logic of preferences.



Prvm Pinm Prim Prym
least most — yes least — yes most || least| most || least —yegPearl, 199D [ most
no | [Duboiset al, 20048 | [Benferhat and Kaci, 2001| yes || no no || [Benferhattal, 1994 | no

Table 1: Uniqueness of distinguished pre-orders

3 Non-monotonic logic of preferences
A preference specification consists of sets of preferences.

Definition 5 (Preference specification)Let P.. be a set of
preferences of the forgp;>¢q; : i = 1,--- ,n}. A preference
specification is a tupléP, | > € { >V, >V Y >V |
x,y € {m, M }})). A total pre-order- together with a con-
textual equivalence functiapis a model ofP;, iff >, n satis-
fies each preferengg > ¢; in Py

More preciselypq belongs to the set of preferred worlds since
it satisfies the rule butpq and —p—q are preferred too since
they do not violate the rule even if they do not satisfy it. Now
applying the maximal specificity principle grn™—"q gives

the following modetr-"= ({pq}, {—pq, p—q, 7p—q}). We can
see that the preferred worlds are those which only satisfy the
rule.

Unique distinguished models have been computed for pref-
erences of type'>M, ™M and ™>™ considered individu-

The following definition illustrates how a preference orderally. Table 1 summarizes these results. Hence, no unique dis-

can also be represented by a well ordered partitidirofT his

tinguished models can be calculated for careful preferences,

is an equivalent representation, in the sense that each prefhich does not seem very problematic since this kind of pref-
erence order corresponds to one ordered partition and vicgrences is rarely used, as they seem too weak. However it
versa. This equivalent representation as an ordered partitionay be useful when all other preference types give an empty
makes the definition of the non-monotonic semantics easieset of model§van der Torre and Weydert, 2001

to read.

Definition 6 (Ordered partition) A sequence of sets of

worlds of the form(E4, ..., E,) is an ordered partition of
W iff Vi, E; is nonempty,f, U---U E, = W andVi,j,
E;NE; = 0 fori # j. An ordered partition ofi¥ is
associated with pre-order on W iff Vw,w’ € W with
w€ E;,w' € E;wehave < jiffw = w'.

Example 3 Letj and f be two propositional variables which
stand for marriage with John and Fred, respectively. Let
Pasy = {j>V=j, [ >Y=f,=( A f)™>Y(j A f)} be a

set of Sue’s preferences about its marriage with John or Fred.
The first constraint means that Sue prefers to be married to
John over not being married to him. The second constraint
means that Sue prefers to be married to Fred over not being
married to him and the last constraint means that Sue prefers

Shohan1987 characterizes non-monotonic reasoning asnot to be married to both. There is no pre-order satisfying any
a mechanism that selects a subset of the models of a set gf the sets® 1, 1/, P 1. 1 andP m-m while the following

formulas, which we call distinguished models in this pape
Shoham calls these models “preferred models”, but we do n

“ore-order({j~f, ~jif}, {if, ~j~f}) satisfiesP ar_m.

use this terminology as this meta-logical terminology may beSince the uniqueness of the distinguished model is not sat-
confused with preferences in the logical language and prefeisfied for >™ preferences, in the remainder of this pa-

ence orders in the semantics.

per we only focus on locally optimistic, locally pessimistic

In this paper we compare total pre-orders based on the s@nd careful preferences. We considefitaci and van der
called specificity principle. The minimal specificity principle Torre, 2005 preferences of different types given together and
is gravitating towards the least specific pre-order, while theshown that there is a unique least specific model for™
maximal specificity principle is gravitating towards the mostand > and a unique most specific model f6r>* and
specific pre-order. These have been used in non-monotoni€>". As far as we know, the following questions have not
logic to define the distinguished model of a set of conditionaldeen addressed yet.

of the kind ¥—M  sometimes called defeasible conditionals.

Definition 7 (Minimal/Maximal specificity principle)

Let = and >’ be two total pre-orders on a set of worlds

W represented by ordered partition&Ey,--- , E,) and
(E1,---,E!) respectively. We say that is at least as
specific as=’, written as=C>-', iff Vvw € W, ifw € E; and

w € I theni < j. = is said to be the least (resp. most)

specific pre-order among a set of pre-ord€psf there is no
='inOs.t.>-'Cx,ie.,='Cx without=C*’ (resp.=C*’).

The following example illustrates minimal and maximal

specificity principles.

Example 2 Consider the rule “—¥q. Applying the minimal
specificity principle orp =M g or p ™—M ¢ gives the fol-
lowing model-= ({pq, —pq, —p—q}, {p—q}). The preferred

1. Is a least specific pre-order of preference specification
(Pol>e{ ™Y, v, Y, >Yze{m, M}y = M})
unique?

2. Is a most specific model of preference specification
(Pol>e{ ™Y, =Y, oY, ¥z =m,ye{m, M}})
unique?

3. How can we define a model of preference specification
<PI> | > € {I>y’ lzya z>(gJa lzg | €,y € {m7M}}>
based on the distinguished models computed in items 1
and 2.

In the following section the first two questions are answered
positively by providing algorithms for these unique most spe-
cific and most general pre-orders. Moreover, the third ques-
tion is answered by presenting a way to combine these two

worlds in this model are those which do not violate the rule.unique pre-orders.



4 A|gor|thms for m|Xed preferences AIgorlthm 1: HandIing |0C&”y optimistic and careful pref-

. . : . - erences.
In this section we provide algorithms to calculate minimal

and maximal specific pre-orders. We first replace ceteris begin
paribus preferences by sets of ordinary preferences without [0

a ceteris paribus proviso, by generalizing proposition 1 for while W # ( do
the other kinds of preferences. —l—=l+1,j—1;
. . . [** strict constraints **/

Proposition 2 Lete(n, p, ¢) be the set of propositions which — B = {w:¥C:,,Ci, € C,w & R(Ci,) UR(Ci,)} ;
are true in all worlds of an equivalence class 9fp, q), while j = 1 do
but false in all others{r | JwVw'(w = w’ mod,p,q iff je—0; L
w |: 7«)}, > € {1‘>U, >y | T,y € {m7M}}, andp>,. € for eachC;, andC;, in C do
{%Y, =¥ | z,y € {m, M}} for the same connective ex- /** non-strict constraints **/
tended with a ceteris paribus proviso. We have) = p>. ¢ if (L(Cs,) N E; = 0 and R(Cy, ) N Ey # 0) or
iff for all propositionsc € €(n,p A —q,—p A q), we have (L(Cis) £ ErandR(Ci,) N By # 0) then
=nEPA-gAcE>pAgAC fl:lEz*R(Cik),

Consequently, we can restrict ourselves to the eight types L

of preferences without ceteris paribus clauses. In these calcu-

lations, we do not refer to the contextual equivalence relation if £, = () then Stop (inconsistent constraints);

—remove fromiV elements off; ;

1 anymore. /** remove MM satisfied constraints **/

4.1 A distinguished model for locally optimistic z(rgm;"éeEtr;mgjc, constraintsCy, k € {1,2} such that
and careful preferences /= update mM constraints */

We consider the following preference specifications — replace constraint§;, (k € {3,4}) by (L(C;,) —

(Po | >e{ ™V, Y, &Y Y[z e{m M}y =M}), Ei, R(Ci\)): .

and since we assume that preference specifications with | /** remove satisfied mM constraints **/ _

ceteris paribus provisos have been reduced to sets of prefer- | — remove fromC constraint<Cy, (k € {3,4}) with empty

ences without such provisos, we consider the following four L(Ci).

sets of preferences: rewm (B, -+, Bi)

Pugm = {Ci, : piy M>MQi1},7DM>M ={Ci, : pi, ">Mqi,}, end

Py = {Ciy : pis ">Maqis }, Pmmr = {Ci; : piy >Mai ). ) o _

Moreover, we refer to the constraints of these preferences bg(ciz) are inEy, with 2’ > 1. However careful constraints

C=Ujer... 4{Ci, = (L(Ci,), R(C,))}, where theleftand  Ci, (for k € {3,4}) are satisfied only whed(C;,) < E

right hand side of these constraints &, ) = |p;, A—q;,|  Otherwise they should be replaced(@(Cs, ) — Ei, R(C, ).
and R(C;,) = |-ps, A g, |, respectively. Algorithm 1 The least specific criterion can be che(_:ked by construction.
computes the least specific model of locally optimistic and>t €ach sted we put in £; all worlds which do not appear
careful preferences with and without ceteris paribus, strict? @Y £(Ci,) f/or k € {1,3} and which are not yet put in
and non-strict. The basic idea of the algorithm is to construcBOMeEr with I < I. If w € E; then it necessarily falsifies
the least specific pre-order by calculating the sets of world§OMe constraints which are not falsified by_wotldsﬂpf for

of the ordered partition, going from the ideal to the worst! < !- If we would put somev of £, in £y with I < then

worlds. we get a contradiction. To show t'he uniqueness of the'least
Let us first explain the algorithm, then we illustrate it by an SPECific model of, we follow the line of the proof given in
example and finally we show that the distinguished mode[Benferhatet al, 1999.

computed by the algorithm is the unique least specific one.emma 1 The total pre-order computed by Algorithm 1 be-

At each step of the algorithm, we look for worlds which can longs to the set of least specific model$of

have the actual highest ranking in the preference order. Th
corresponds to the actual minimal valiie These worlds
are those which do not falsify any constraintdn We first  Definition 8 Let = and =’ be two preference orders rep-
put in £; worlds which do not falsify any strict preferences. resented by their well ordered partition{,, - - - , E,,) and
These worlds are those which do not appear in the right han@E?, - - - , E/,) respectively. We define th&{.AX opera-
sides of the strict preferencés, andC,,. Now we remove tor by MAX (=, =') = (EY, -, E] (. .»). such that

from E; worlds which falsify const_rai_nt_s of the n_on;strict EY = ByUE} andE} = (EyUE}) — (U,—y ... 1, EV) for
preferences’;, andC;,. Locally optimistic constraints’;, k=2, min(n,n'), and the empty seE,’j are eliminated
are violated ifL(C;,) N E; =  andR(Cy,) N By # O, while by renumbering the non-empty ones in sequence.

the careful constraints,, are violated ifL(C;,) € E; and : .
R(C;,) N E; # 0. Oncek, is fixed, satisfied constraints Lemma 2 proves the unigueness of the least specific model of

are removed. Note that constrairits s.t. k € {1,2} are

satisfied if L(C;, ) N E; # 0 since in this case, worlds of Lemma 2 If there is a minimal specific model &%, then it is

R(C;,) are necessarily irE), with » > [ and worlds of unique.

Ve now define the maximum of two preference orders.



Proof. LetM(P) be the set of models &f. We first show
that MAX(E, i’) S M(P) 1). Let>= (El, e 7Eh),
= (Bp B, == (Yo ), and
pM>Mg ¢ P. = ='e M(P), ie, = pM>Mq and
=" p M>Mg  In other wordsmax(p A ¢, =) C E; and
max(—pAgq,>) C E;s.t.i < jandmax(p A —¢q,>") C E},
andmax(-p A ¢,=") C E] s.t. k < [. Following Defini-
tion 8, max(p A —¢q,*") C E:I’lin(iyk) andmax(—p A ¢, ="

) € Elingiy- Sincei < jandk < | we havemin(i, k) <

min(j,1). We conclude-"= p M>Mq. The proofs for the

other constraints are analogous and can be foung3anfer-

hatet al, 1999. ConsequentlyMAX (=, =) € M(C).
Moreover, we have thaM AX (-, =') is less specific than

or identical to both= and >’ (2), the proof can be found also

in [Benferhatt al, 1999.

4.2 Locally pessimistic and careful preferences

Algorithm 2 is structurally similar to Algorithm 1.1., and the
proof that this algorithm produces the most specific model of
these preferences is analogous to the proof of Theorem 2.
Let P/ = (Ps | b € {®V, >V, Y >V | ¢ =
mandy € {m,M}}). Again we assume that preference
specifications with ceteris paribus provisos have been re-
duced to sets of preferences without such provisos, so we
consider the following four sets of preferences:

Pmgm ={Ciy 1 piy ">"qiy b, Posm = {Cliy : piy "> qin ks

P my M = {Cis < pig m>Mqi3}r P myM = {Ciy : piy mZMQi4}-

Let C = Upy 4{Ci = (L(Cy), R(C,))}, where
L(Cm) = |pik A _'Qik‘ andR(Clk) = |_'pik N iy, ‘

Finally, we prove that the lemma follows from the two items  Algorithm 2: Handling locally pessimistic and careful
by contradiction. So suppose that there are two distinct min- preferences.

imal specific orders- and =’. Then according to item (1),

MAX (=, =) is also a model of the preference specification

and according to item (2), it is less specific than eitheor
='. Contradiction.

We can now conclude:

Theorem 1 Algorithm 1 computes the least specific model of

P

Proof. Following Lemma 1 it computes a preference or-
der which belongs to the set of the least specific models and

following Lemma 2, this preference order is unique.

begin
[+ 0;
while W # 0 do
le—1+1,j«1,
E = {w : VCil,CiB inC,w € L(Cil) U L(Ci3)};
while j = 1do
J<=0; _ L
for eachC;, andC;, in C do
/** non-strict constraints **/
if (L(Clz) N E; 7& 0 andR(Ciz) NE = @) or
(L(Ci,)NE #DandR(C;,) € E;) then
L El = El 7L(Czk)r] — 1

Example 4 Let p, ¢ and r be three propositional variables
which stand respectively for sun, beach and cheap. Sup-
pose that an agent is looking for holidays destination. Let

P = (P M>M,’Pm>M,7?m>M> be the set of its prefer-
ences, wher® vy = {p A ¢ ">M=(p A g)},

Pomom = {pAr™>MpA—r}and

P 7n>M = {p AT TnZ]u‘!p A r,p A —r WZEMﬁp A ﬁr}_
Applying Algorithm # givesE; = {pqr},

E5 = {—p—qr,—pqr, p-qr} and

E3 = {=p—q—r, ~pq—r,pg—r,p—q-r}.

if F; = () then Stop (inconsistent constraints);

— Remove fromiV elements off;;

/** remove mm satisfied constraints **/

— Remove fronC constraint<;, (for k € {1,2}) s.t. E; N
R(Ciy) # 0

/** update mM constraints **/

— ReplaceC;, (for k € {3,4}) inC by (L(C,), R(C;,) —
z);

/** remove mM satisfied constraints **/

— Remove fronC constraint;, (k € {3,4}) with empty
R(Clk );

The computed model means that the preferred destinations ,
are cheap, sunny and where there is a beach, the next pre- | retum (£,
ferred ones are cheap but either not sunny or there is no end

beach. Lastly the least preferred destinations are those which

are not cheap whatever there is beach or the place is Sunny'ExampIe 5 Let P’

L E)DStVI<h<UE) =E_ny

= <P77 m,’P M7P M} with
The above algorithm is general. It captures all existing al- > > =

gorithms proposed for handling”>* and "> separately
[Pearl, 1990; Benferhat and Kaci, 2QQnixed preferences
MM and ™>M [Kaci and van der Torre, 2005 This al-
gorithm also generalizes the algorithm [Bfenferhatet al.,
2001 which captures “equal preferences”, dengted=" ¢,
which stands for “all besp worlds areq worlds and allg

e, M s P v @s in Example 4 an® mm = {~q ™>"q}.
Applying Algorithm 2 givest; = {p—qr,pgr}, E} =
{=p~g—r, ~pgr, pmg—r, pg-r} and £ = {—pg—r, —pgr}.

This model means that the preferred destinations are sunny
and cheap and the least preferred ones are not sunny and
there is a beach whatever they are cheap or not.

worlds arep worlds”. These equivalences can be representedheorem 2 Let P = (P | > € { %Y, &V, & =>v |

in our framework by two non-strict preferences>M ¢

x =mandy € {m,M}}). Then Algorithm 2 computes the

and g M>Mp, but our non-strict preferences cannot be rep-most specific model @F which is unique.

resented in their framework.

Proof (sketch). Follows the same lines as the proof of Theo-

1Due to the lack of space, we omit the details of the constructiof€M 2. It can also be derived from Theorem 2 using symmetry

of ».

of the two algorithms.



4.3 Careful, locally optimistic and locally unigue. Moreover, when locally optimistic and locally pes-
pessimistic preferences simistic preferences, the distinguished pre-orders have to be

To find a distinguished model of the sixteen kinds of pref-Merged again. This suggests that other mechanisms may be

erences given together, we combine the two algorithms. ifleveloped for nonmonotonic reasoning about preferences.

has been argued i[Benferhatet al, 2002; Duboiset al,
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