
Introducing Ontologically Founded Roles in Object Oriented Programming:
powerJava

Matteo Baldoni and Guido Boella
Dipartimento di Informatica. Università di Torino - Italy

baldoni@di.unito.it, guido@di.unito.it

Leendert van der Torre
CWI Amsterdam and TUDelft

torre@cwi.nl

Abstract

In this paper we introduce a new view on roles in Object Ori-
ented programming languages. Our notion is based on an on-
tological analysis of social roles and attributes to roles the fol-
lowing properties: first, a role is always associated not only to
an object instance playing the role, but also to another object
instance which constitutes the context of the role and which
we call institution. Second, the definition of a role depends
on the definition of the institution which constitutes its con-
text. Third, this second property allows to endow players of
roles with powers to modify the state of the institution and of
the other roles of the same institution. As an example of this
model of roles in Object Oriented programming languages,
we introduce a role construct in Java.

Introduction
The concept of role is used quite ubiquitously in Computer
Science: from databases to multiagent systems, from con-
ceptual modelling to programming languages. According to
(Steimann 2000), the reason is that even if the duality of ob-
jects and relationships is deeply embedded in human think-
ing, yet there is evidence that the two are naturally comple-
mented by a third, equally fundamental notion: that of roles.
Although definitions of the role concept abound in the lit-
erature, Steimann maintains that only few are truly original,
and that even fewer acknowledge the intrinsic role of roles
as intermediaries between relationships and the objects that
engage in them. There are three main views:

• Names for association ends, e.g., in UML and Entity-
Relationship diagrams.

• Dynamic specialization, like in the Fibonacci (Albanoet
al. 1993) programming language.

• Adjunct instances, like in the DOOR programming lan-
guage (Wong, Chau, & Lochovsky 1997).

The two last views are more relevant for modelling roles
in programming languages. Roles are modelled in (Albano
et al. 1993) by dynamically reclassifying an object, while in
(Wong, Chau, & Lochovsky 1997) they are seen as special
instances of a separate kind of classes which are associated
with traditional object instances.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Both of them have pros and cons. For example, dynamic
specialization captures the dynamic relation between a class
and a role which can be played by it (e.g., a person can be-
come a student), but it less easily models the intuition that
roles can have their own state (e.g., an employee has a dif-
ferent phone number than the person playing that role). In
contrast, roles as adjunct instances can obviously have their
own state, but they may pose problems when role instances
are detached from the object which plays the role.

There is a wide literature on the introduction of the no-
tion of role in programming languages. However, most
works extend programming languages with roles starting
from practical considerations, starting from (Bachman &
Daya 1977) who use roles to reduce the heterogeneity of
a set of records. In contrast, the research question of this pa-
per is the following: How to introduce in an Object Oriented
programming language a notion of role which is ontologi-
cally well founded? Our ontological analysis of the notion
of role is made in (Boella & van der Torre 2004c; 2004a;
2004b). In our model features which are sometimes already
present in previous models receive a new interpretation un-
der the light of a well founded underlying conceptual model.

The methodology we follow is to introduce a new pro-
gramming construct in a real programming language, Java,
since it is one of the most used Object Oriented languages
and one of the most principled. To prove its feasibility, we
translate the new language, called powerJava, to pure Java
by means of a precompilation phase. It is beyond the scope
of this paper to provide a formal semantics of the new con-
struct or to define the associated type theory. Moreover we
do not address other issues related to roles like the problem
of method delegation (Albanoet al. 1993) or of roles play-
ing other roles (Wong, Chau, & Lochovsky 1997), but we
leave them for future work.

The role construct we introduce in Java promotes the sep-
aration of concerns between the core behavior of an object
and its context dependent behavior. In particular, the inter-
action among a player object, the institution and the other
roles is encapsulated inside the role the object plays.

First we present our ontological definition of roles and
then we introduce roles in Java with powerJava and we de-
scribe how powerJava can be translated in pure Java. Con-
clusion ends the paper.



Properties of roles

Consider as a running example the roles student and teacher.
A student and a teacher are always a student and a teacher
of some school. Without the school the roles do not exist
anymore: e.g., if the school goes bankrupt, the actors (e.g.,
persons) of the roles cannot be called teachers and students
anymore. The institution (the school) also specifies the prop-
erties of the student, which extend the properties of the per-
son playing the role of student: the school specifies its en-
rolment number, its scores at examinations, and, above all,
also how it can behave as a student. For example, the student
can take an exam by submitting some written examination.
A student can make the teacher evaluate its examination and
register the mark because the school defines both the student
role and the teacher’s role: the school defines how an exam-
ination is evaluated by a teacher, and maintains the official
records of the examinations. Otherwise the student could not
have an effect on the teacher. But in defining such actions the
schoolempowersthe person who is playing the role of stu-
dent: This example highlights the following distinguishing
properties of roles (Boella & van der Torre 2004c; 2004a;
2004b):

• Foundation: a (instance of) role, besides being associ-
ated with an instance of its player (see (Guarino & Welty
2002)), must always be associated with an instance of the
institution it belongs to,

• Definitional dependence: the definition of the role must
be given inside the definition of the institution it belongs
to. This is a stronger version of the definitional depen-
dence notion proposed by (Masoloet al. 2004), where the
definition of a role must use the concept of the institution.

• Institutional empowerment: the actions associated with
the role in the definition of the institution have access to
the state and actions of the institution and of the other
roles: they are powers.

Moreover, as (Guarino & Welty 2002) notice, contrary to
natural classes like person, roles lack ofrigidity: a player
can enter and leave a role without losing its identity; a person
can stop being a student but not being a person.

Finally, in this paper, we consider also (Steimann 2000)’s
analysis of roles. It highlights the polymorphism inherentto
roles: a role can be played by different kinds of actors. For
example, the role of customer can be played by instances
both of person and of organization, i.e., two classes which do
not have a common superclass. The role must specify how to
deal with the different properties of the possible actors. This
requirement is in line with UML modelling language, which
relates roles and interfaces as partial descriptions of behav-
ior. This last property compels to avoid modelling roles
as dynamic specializations as, e.g., (Albanoet al. 1993;
Gottlob, Schrefl, & Rock 1996) do. If customer were a sub-
class of person, it could not be at the same time a subclass
of organization, since person and organization are disjoint
classes. Symmetrically, person and organization cannot be
subclass of customer, since a person can be a person without
ever becoming a customer.

Introducing roles in Java
Roles are useful in programming languages for several rea-
sons, from dealing with the separation of concerns between
the core behavior of an object and its interaction possibili-
ties, to reflecting the ontological structure of domains where
roles are present (Baldoni, Boella, & van der Torre 2005a),
from modelling dynamic changes of behavior in a class to
fostering coordination among components (Baldoni, Boella,
& van der Torre 2005b).

In this section we discuss how our ontological definition
of role (Boella & van der Torre 2004c; 2004a; 2004b) can
be introduced in Object Oriented programming languages.
As noticed, modelling roles as dynamic specializations does
not capture the idea that roles have their own state and lim-
its their polymorphism. Hence, we model roles as instances
of role classes, which can be associated at runtime to ob-
jects which can play a role. However, roles are a special
kind of objects, and instances of role classes do not exist on
their own, but they always require to be associated with an
object instance of its player and an object instance of the
related institution. The relations of a role with these two
instances are different. Concerning the former relation, the
player of the role is an object whose properties and behav-
ior are extended when it is seen under the perspective of the
role. Moreover, the role does not affect the core behavior of
the player, but the behavior of the role is determined in part
by its player. To do so, a player of a role is required to have
a certain behavior, i.e., methods. In contrast, concerningthe
latter relation, the object instance which represents the insti-
tution which the role belongs to gives the role powers: the
role is enabled to access the institution’s own state and the
state of other roles via its methods; thus, the role’s behavior
can affect the institution’s behavior. Accessing the institu-
tion state is possible only if the class defining the institution
and the class defining the role are connected. This is what
we call definitional dependence and it requires that the role
class belongs the namespace of the institution class.

In the same way as classes are distinguished from inter-
faces, we distinguish the class implementing a role in an in-
stitution from the role definition which specifies its abstract
behavior and which objects can play the role. In this way we
represent that giving exams is a feature of students, indepen-
dently from the specific class of institution the student is a
student of. In order to capture such generalization of a role
with respect to the institution it belongs to, the definitionof
a role should be kept distinct from the implementation of a
role in a given type of institution. Moreover, such institution
when it implements the role definition can further specify
the role by adding fields and further methods. Playing a role
does not require any special preparation of the class whose
instances want to play a role, apart from exhibiting some
requested behavior, i.e., the class has to implement some
methods requested by the role as specified, e.g., by an in-
terface. In this way the implementation of the role and the
definition of the players can be developed independently.

Finally, the constraint of foundation requires that the cre-
ation of a role instance involves both an institution instance
and an object instance, which must be specified in some way
as arguments. When a role is instantiated and its player



is associated with it, the methods representing the powers
of the roles can be invoked on its player object. To avoid
method clashes and preserve a sound type system, differ-
ently from other approaches, a power can be invoked from a
role player only by specifying the role which the player has
to play. Note that an object can play not only several roles,
but also the same role in different institutions at the same
time. Hence, the role under which a player is seen is speci-
fied using not only the role but also the institution instance.

In summary, first a role is defined specifying what is re-
quested to play a role and what is offered by a role. Second,
the role definition is implemented in a class connected to the
institution class the role belongs to. Finally, the role imple-
mentation class is instantiated connecting the player instance
with the institution instance. At this point, powers can be in-
voked on the player. However, the extension of an object
with roles is transparent to the programmer, who sees roles
only as perspectives on the player objects and he needs not
a reference to the role instance itself to invoke its powers.

In this paper we map in Java these desired features of roles
in Object Oriented programming languages, taking advan-
tage from the existing features of the language when possi-
ble. First, when there is the need to specify abstract behav-
ior we use the notion of interface in Java, like in the case of
specifying the powers of a role and the methods required to
play a role. Second, since inner classes in Java allow a class
to belong to the namespace of another class, we use them to
give powers to roles in institutions. Moreover, implementing
a role definition as an inner class of an outer class defining
an institution parallels exactly the definitional dependence.
Third, the association of a role instance with an institution
instance can be dealt with the implicit reference in Java of
an inner class from its outer class. So we are left only to
deal explicitly with the association of a role instance witha
player instance, to complete foundation. Finally, seeing an
object under a role is paralleled with type casting in Java.

In the next sections we will detail this mapping. Since
powers are a distinguishing feature of roles in our model,
we call our language powerJava.

The definition of roles
The definition of a role has to specify both what is required
to play the role and which powers its players have in the in-
stitutions in which the role will be implemented. In order
to make role systems reusable, it is necessary that a role is
not played by a class only. For (Steimann & Mayer 2005),
roles define a certain behavior or protocol demanded in a
context independently of how or by whom this behavior is
to be delivered. Thus, roles must be specified independently
of the particular classes playing the role, so that the objects
which can play the role might be of different classes and
can be developed independently of the implementation of
the role. This is a form of polymorphism. To achieve such
polymorphism we associate with a role partial descriptions
of classes listing the signatures of the methods which are
requested to an object in order to play a role. Thus, roles
make no assumption about how a certain piece of function-
ality is achieved: they allow for unrelated types taking the
same role.

We thus have that a role definition must express two faces:

• The methods required from objects playing the role:re-
quirements. For the instances of a class to play a role, the
class must offer these methods. These are specified by the
role as an interface.

• The methods offered to objects playing the role:pow-
ers. If an object of a class, offering the required methods,
plays the role, it is empowered with these new methods.

This double face pervades the life of a role: first, a role is
defined with its requirements and powers, then its powers are
implemented in a class which connects a role with a player
satisfying its requirements; finally, the class implementing
the role is instantiated passing as argument to its constructor
an instance of an object satisfying the requirements.

The definition of a role using the keywordrole in Figure
1 is similar to the definition of an interface; it is the speci-
fication of the powers acquired by the role in the form of
abstract methods signatures (interfacebody). The only
difference is that the role definition by means of the keyword
playedby refers also to another interface, that in turn spec-
ifies the requirements which an object playing the role must
satisfy. This mechanism mirrors the idea thatroles have two
faces: the requirementsand thepowers. Moreover, differ-
ently than an interface, also static variables cannot be de-
clared. Thus, nothing is required for an object to become the
player of a role, apart implementing the appropriate behav-
ior required by the role as specified by the requirement inter-
face. In the example of Figure 3,role specifies the powers
of Student, whilst the interfaceStudentReq specifies
its requirements. The implementation of the requirements
is given inside the class of the object playing the role. The
implementation of the powers is given in the definition the
class defining the institution the roles belong to.

Institutions and definitional dependence
In our model roles are always associated to an instance of,
and are definitionally dependent on, an institution. The term
“definition” of an object refers to the definition of the class
the object is an instance of; thus, the class defining an insti-
tution includes the definition of the class implementing the
roles of the institution. How do these properties reflect on
which kind of methods can be invoked on a role? For the
notion of role to be meaningful, these methods should go
beyond standard methods whose implementation can access

roledef ::= "role" identifier
["extends" identifier*]
"playedby" identifier interfacebody

roleimpl ::= [public | private ] [static]
"class" identifier ["realizes" identifier]
["extends" identifier]
["implements" identifier*] classbody

rcast ::= (expr "." identifier) expr

Figure 1: The extension of the Java syntax in powerJava.



the private state of the role only. Rather, roles add powers
to objects playing the roles. Power means the possibility to
modify also the state of the institution which defines the role
and the state of the other roles defined in the same institu-
tion. In our running example, we have that the method for
taking an exam in the school must be able to modify the pri-
vate state of the school. E.g., if the exam is successful, the
grade should be added to the registry of exams in the school.
Analogously, the student’s method for taking an exam can
invoke the teacher’s method of evaluating an examination.

Powers, thus, seem to violate the standard encapsulation
principle, where the private variables are visible to the class
they belong to only. However, here, the encapsulation prin-
ciple is preserved: all roles of an institution depend on the
definition of the institution; so it is the institution itself
which gives to the roles access to its private fields and meth-
ods, thus allowing coordination inside the institution. Since
it is the institution itself which defines its roles, there isno
risk that a role abuses of its access possibilities.

Enabling a class to belong to the namespace of another
class without requiring it to be defined as friend (like C++
does at the cost of endangering encapsulation) is achieved in
Java by means of the inner class construct. Thus, we extend
the notion of inner class to allow roles to be implemented in-
side an institution (roleimpl). The inner class construct is
extended with the keywordrealizes which specifies the
name of the role the inner class is implementing. An institu-
tion is simply a class with an inner class implementing roles.
In the example of Figure 4,StudentImpl implements the
role definitionStudent, inside the institutionSchool.

In powerJava, an inner class that realizes a role must im-
plement the corresponding role definition in the very same
way as a class implements an interface and it can add (non-
static) fields and further (non-static) methods. Moreover,
since a role implementation is a (inner) class, it can be an
institution itself with its own role implementations, it can
enact other roles, it can extend other classes (unless they
realize roles), implement interfaces,etc. Analogously, the
institution is a class which can play a role,etc.

Since the behavior of a role instance depends on the player
of the role, in the method implementation, the role player in-
stance can be retrieved via a new reserved keyword:that.
So this keyword refers tothat object which is playing the
role at issue, and it is visible only in the role implementa-
tion. The value ofthat is initialized when the constructor
of the role implementation is invoked. The referred object
has the type defined by the role requirements or a subtype.

We do not need a special expression for creating instances
of the inner classes implementing roles, because we use
the Java inner classes syntax: starting from an institution
instance, the keywordnew allows the creation of an in-
stance of the role as an instance of the inner class (e.g.,
harvard.new StudentImpl(chris)). Note, how-
ever, that it is not possible to instantiate a role definition
(in the same way as it is not possible to instantiate an in-
terface): what is instantiated is always the implementation
of a role in an institution. Moreover, roles can be imple-
mented in different ways in the same institution. For ex-
ample, the classSchool could implement the role defi-

nition Student as bothFirstYearStudentImpl and
SecondYearStudentImpl.

All the constructors of all role implementations have an
implicit first parameter which must be bound to the player
of the role and becomes the value ofthat. The reason is
that to construct a role instance we need both the institution
the role belongs to (the object the constructnew is invoked
on) and the player of the role (the implicit first parameter).
For this reason, the parameter has as its type the require-
ments of the role: e.g., the constructorStudentImpl has
an implicit first parameter of typeStudentReq. This first
parameter must not be declared explicitly in the implemen-
tation of the role, but it is added by the precompiler. For
example, let us suppose thatharvard is an instance of
School and thatchris is a person who wants to became
a student ofharvard. The instructionharvard.new
StudentImpl(chris) expresses this fact, given that
StudentImpl is an inner class that implements the role
Student inside the institutionSchool. This expression
returns an object of typeSchool.StudentImpl. In
powerJava, the constructor of a role implementation must
always have a first parameter which is used to pass to the
role instance the value of the player of the role.

Exercising the powers of a role
A role represents a perspective on an object. An object has
different (or additional) properties when it is seen in the per-
spective of a certain role, and it can perform new activities,
which we call powers, as specified by the role definition. In
(Steimann 2000)’s terminology, a role is a sort of type spec-
ifying behavior.

When an object is seen under the perspective of a role,
we want that the object has a specific state for it. This state
is different from the player’s one, it is specific to each role
in each institution, and it can evolve with time by invoking
methods on the role (or on other roles of the same institution
as we have seen in the running example). This state is main-
tained by a role instance which is associated to the player.
Since a role represents the perspective on an object, the ob-
ject playing it should be able to invoke the role’s methods
without making any explicit reference to the instance of the
role: in this way the association between the object instance
and the role instance is transparent to the programmer. The
object specifies only in which role it is invoking the method.
For example, if a person is a student and a student can be
asked to return its enrollment number, then we want to be
able to invoke the method on the person as a student without
referring to the student role instance.

The same methods will have a different behavior accord-
ing to the role which the object plays when they are invoked.
On the other hand, methods of a role can exhibit different
behaviors according to who is playing it. So a method of
student returning the name of the student together with the
name of the school returns different values for the name ac-
cording to whom is playing the role of student. This is possi-
ble since the implementation of methods representing pow-
ers uses the methods required by the role to its player in or-
der to play the role via thethat keyword. These required
methods obviously can access the state of the player since



they are part of the implementation of the player.
In our model, roles are always roles in an institution.

Hence, an object can play at the same moment the same role
more than once, albeit in different institutions. For exam-
ple, one can at the same time be a student at the high school,
a student of foreign languages in another school,etc. So a
method returning the name of the student together with the
name of the school returns a different name of school ac-
cording to which school the student role is played in. An
object can play several roles in the same institution. E.g.,a
person can be an MP and a minister at the same time (even
if it is not required to be an MP to become minister).

In order to specify the role under which an object is re-
ferred, we evocatively use the same terminology used for
casting by Java. For example, if a person is playing the role
of student and we want to invoke a method on it as a student,
we say that there is a casting from the object to the role. To
refer to an object in a certain role, both the object and the
institution where it plays the role must be specified. We call
this methodologyrole casting. Type casting in Java allows to
see the same object under different perspectives while main-
taining the same structure and state. In contrast, role cast-
ing views an object as having a different state and different
behaviors when playing different roles. This is because it
conceals adelegationmechanism: the player instance has a
hidden delegation to the role instance the execution of the
method. The delegated object can only act as allowed by the
powers of the role, but it can access the state of the institu-
tion and, by exploiting the constructthat, it can also refer
to the delegating object to invoke the requirements. Role
casting allows to make transparent to the programmer the
association of a role and an object instance: the programmer
invokes a method of a role on the object playing it casted
into the role; the language transforms this method invoca-
tion in a message sent to the delegated role instance, which
is hidden in its player.

So, the last syntactic change in powerJava is the intro-
duction of role casting expressionsextending the original
Java syntax for casting. Arcast specifies both the role
and the instance of the institution the role belongs to, e.g.:
in (harvard.TeacherImpl) george the person
george is casted to its roleharvard.TeacherImpl of
typeSchool.TeacherImpl.

Figure 2 reports the relations among the main concepts, in
the form of a simple UML diagram. Requirements of a role
(Role Requirement) correspond to an interface, specifying
which methods must be defined in a class whose instances
play the role. Powers are a new concept proper of therole
construct: they are the specification of the new methods
(Role Power). Role Power Implementationis specified as an
inner class ofInstitution. Inner classes express the fact that
the namespace of the institution is visible from the role im-
plementation: i.e., the institution defines a namespace which
is shared by all the roles The fact that inner classes belong
to the namespace of the outer class in UML is represented
by the arrow with a plus sign within a circle at the end at-
tached to the namespace. An inner class that implements the
power of a role has always two references to two objects:
the institution that defines it and the player that plays it.

Using powerJava

In Figures 3–6, we present our running example in pow-
erJava. In Figure 3, the definitions of the rolesStudent
andTeacher are introduced. The role definitions spec-
ify, like an interface, the signatures of the methods that
correspond to the powers that are assigned to the objects
playing the role. For example, returning the name of
the Student (getName), submitting a homework as an
examination (takeExam), and so forth. Moreover, we
couple a role definition with the specification of its re-
quirements by the keywordplayedby. This specifica-
tion is given by means of the name of a Java interface,
e.g., StudentReq, imposing the presence of methods
getName andgetSocialSecNumber).

As explained, role definitions must be implemented inside
institutions. In our example, the roleStudent is imple-
mented as an inner class ofSchool calledStudentImpl
which realizes Student (see Figure 4). Being an in-
stance of a class, a role instance has a state, specified by
its private fields, in this example,studentID. It is worth
noticing that the methodgetStudentID is not part of the
role definitionStudent in Figure 3. Powers have access
to private variables and methods of the institution and of the
sibling roles: e.g., the methodtakeExam directly accesses
the private variablemark of the institution, and the method
evalHomeWork of the teacher.

The methodevalHomeWork of TeacherImpl in Fig-
ure 4 deserves a remark. Such a method is invoked by
the methodtakeExam in StudentImpl, that records a
mark in the registry of the school. Of course, the role
teacher has not the actual ability to perform the evaluation
of the homework of a student, this ability is a feature of the
Person that plays the role of the teacher. For this reason
evalHomeWork uses the methodread of the object ref-
erenced bythat, which plays the role of the teacher.

This pattern, in which the methods of the actual player
of a role that are specified by the requirements are invoked
resembles the OBSERVER pattern, where the player is the
observer. The observer contains a set of behaviors that are
invoked as a consequence of an event, that occurred in the
observable (in our case the corresponding role). The differ-
ence is that the observable role is plugged inside an insti-
tution that realizes the coordination of the events that can
occur (and, so, coordinates the reactions of the players).

Moreover, this pattern allows a form of exogenous co-
ordination (Baldoni, Boella, & van der Torre 2005b): the
Persons in theTeacher andStudent role are simply
components whose behavior is used at the right moment
without requesting it of being aware of which is the student
taking the examination. Symmetrically, the person playing
the role is a component which does not know anything about
which teacher will evaluate his homework. Connecting the
two components is responsibility of the institution which
works as a coordinator as in the IWIM model of (Arbab
1996; Guillen-Scholtenet al. 2003).



Figure 2: Roles and Institutions in UML.

In order for an object to play a role it is sufficient
that it conforms to the role requirements. Since the
role requirements are a Java interface, it is sufficient that
the class of the object implements the methods of such
an interface. In Figure 5, the classPerson can play
the roleStudent, because it conforms to the interface
StudentReq by implementing the methodsgetName
andgetSocialSecNumber.

A role instance is created by means of the constructnew
and by specifying the name of the inner class implementing
the role. In Figure 6, the object referred bychris can be
assigned the role of a student of the schoolharvard by
executing the following instruction:
harvard.new StudentImpl(chris)

In this context, i.e., within the role implementation, the
keywordthat will refer to chris.

Moreover, note that the same person can play the
same role in more than one school. In the exam-
ple george is both a teacher ofmit, mit.new
TeacherImpl(george), and a teacher ofharvard,
harvard.new TeacherImpl(george).

It is not necessary to assign to a variable the object re-
turned by the constructor. Differently from other objects,
role instances do not exist by themselves and are always as-
sociated to their players: when it is necessary to invoke a
method of the student it is sufficient to have a referent to its
player object. However, it is possible to assign role instances
to variables as in:
Student st2 = sc2.new MyStudent(pe2);

In this case the variablest2 is typed with the rolename,
as it is possible for interfaces. The role instance is thus up-
casted to the role type and the methods specific to the class
MyStudent are not visible anymore. In this way the vari-
ablest2 can be assigned students of whatever type of insti-
tution implements them (e.g., we can have a driving school
class which implements the roleStudent).

The player of a role is involved in the instantiation of the
role and, as soon as such instance is created, the player can
start exercising its powers. Differently than other objects,

role instances do not exist by themselves and are always as-
sociated to their players: when it is necessary to invoke a
method of the student it is sufficient to have a reference to
its player object. For this reason, it is not necessary to put
the result of thenew operation in a variable. Methods can
be invoked directly from their players, given that the player
is seen in its role (e.g.,StudentImpl). This is done in
powerJava by casting the player of the role to the role im-
plementation we want to refer to.

Since roles do not exist out of an instance of the in-
stitution defining them, in order to specify a role, it is
necessary to specify the institution it belongs to. In
the syntax of powerJava the structure of a role cast-
ing is captured by the constructrcast shown in Fig-
ure 1. For instance,((harvard.TeacherImpl)
george).getName() takes george in the role of
teacher in the institutionharvard. As a result, if
getName applied togeorge returns only the person’s
name (george.getName()), with the cast, the same in-
vocation will return “George, teacher at Harvard”. Ob-
viously, if we castgeorge to the role of teacher at
mit ((mit.TeacherImpl) george).getName(),
we obtain “George, teacher at MIT”.

With respect to type casting, role casting does not only
select the methods available for the object, but it views
the object as having a different state and its methods as
having a different meaning: the name returned by the role
is different from the name of the player since the method
has a different behavior. It is important to observe that
role casting is done to the inner class implementing the
role but the role instance can always be type casted to
the role definition as well as it can be done with Java
interfaces: ((Teacher)(harvard.TeacherImpl)
george).getName().
While in the previous case it was possible to use all
the methods of the specific implementation, in this case,
only the methods that are specified in the role definition
can be applied. E.g., the methodgetTeacherID and
getStudentID are not accessible because they are
not part of the role definitionsTeacher andStudent,
respectively. Hence, as it is done in Java for the interfaces,
role definitions can be viewed as types, and, as such,
they can be used also in variable declarations, parameter
declarations, and as method return types. Thus, roles allow
programmers to conform to (Gammaet al. 1995)’s principle
of “programming to an interface”. It is possible to define
variables with a role as their type, with assigned as values
objects with as types role implementations of that role
belonging to the same or to different institution classes.

Finally, powerJava allows the implementation of roles
which can be further articulated into other roles. For ex-
ample, a school can be articulated in teaching classes (an-
other social entity) which are, in turn, articulated into stu-
dent roles. In this way, it is possible to create a hierarchy of
social entities, where each entity defines the social entities it
contains, like proposed by (Boella & van der Torre 2004b).



interface StudentReq
{ String getName();

int getSocialSecNumber(); }

role Student playedby StudentReq
{ String getName();

void takeExam(int examCode, HomeWork hwk);
int getMark(int examCode); }

interface TeacherReq
{ String getName();

int getSocialSecNumber(); }

role Teacher playedby TeacherReq
{ String getName();

int evalHomeWork(HomeWork hwk); }

Figure 3: Definition of roles and their requirements.

Translating roles in Java

In this section we summarize the translation of the role
construct into Java, for giving a semantics to powerJava
and to validate our proposal. This is done by means of
a precompilation phase. The precompiler (available at
http://www.powerjava.org together with the com-
plete translation of the above examples) has been imple-
mented by means of the tool javaCC, provided by Sun Mi-
crosystems.

The role definition is simply an interface to be imple-
mented by the inner class defining the role. So the role
powers and its requirements form a pair of interfaces used
to match the player of the role and the institution the role
belongs to. The relation between the role interface and the
requirement interface is used in the constructor of an inner
class implementing a role.

When an inner class implements a role, the role specified
by therealizes keyword is simply added to the inter-
faces implemented by the inner class. The correspondence
between the player and the role object, represented by the
constructthat, is precompiled in a field calledthat of the
inner class. This field is automatically initialized by means
of the constructors which are extended by the precompiler
by adding a first parameter to pass the suitable value. The
constructor adds to its player referred bythat also a ref-
erence to the role instance (setRole, see below). The re-
maining link between the instance of the inner class and the
outer class defining it is provided automatically by the lan-
guage Java (School.this in our running example).

To play a role an object must be enriched by some meth-
ods and fields to maintain the correspondence with the dif-
ferent role instances it plays in the different institutions. This
is obtained by adding, at precompilation time, to every class
a structure for bookkeeping its role instances. This structure
can be accessed by the methods whose signature is speci-
fied by theObjectWithRole interface. Since every ob-

class School {
private int[][] marks;
private Teacher[] teachers;
private String schoolName;

class StudentImpl realizes Student {
private int studentID;
public int getStudentID()

{ return studentID; }
public void takeExam(int examCode;

HomeWork hwk)
{ marks[studentID][examCode] =
teachers[examCode].evalHomeWork(hwk); }

public String getName()
{ return that.getName() +

", student at " + schoolName; }
}

class TeacherImpl realizes Teacher {
private int teacherID;
public int getTeacherID()

{ return teacherID; }
public int evalHomeWork(HomeWork hwk)

{ ... return mark; ... }
public String getName()

{ return that.getName() +
", teacher at " + schoolName; }

}
}

Figure 4: An institution and its role implementations.

ject can play a role, it is worth noticing that the ideal so-
lution would be that theObject class itself implements
ObjectWithRole. The two methods that are introduced
by the precompiler aresetRole andgetRole which re-
spectively adds a role to an object, specifying where the role
is played, and returns the role played in the institution passed
as parameter. Further methods can be added for leaving a
role, transferring it,etc.

We present one possible implementation of these methods
which is supported by a private hashtablerolelist. As
key in the hashtable we use the institution instance address
and the name of the inner class. As an example, the class
Person plays the roleTeacher. So its instances will have
a hash-table that keeps the many roles played by them. In
the case ofgeorge there will be two role instances: he is a
teacher ofharvard and ofmit.

Role casting is precompiled using these methods. The
expression referring to an object in its role (aPerson
as a Teacher, e.g., (harvard.TeacherImpl)
george) is translated into the selector returning the
reference to the inner class instance, representing the
desired role with respect to the specified institution.
The translation will begeorge.getRole(harvard,
"TeacherImpl"). The string"TeacherImpl" is pro-
vided because in our solution it is used as a part of the key
of the hashtable.



class Person implements StudentReq,TeacherReq
{

private String name;
private int socialSecNumber;
String getName()

{ return name; }
int getSocialSecNumber()

{ return socialSecNumber; }
}

Figure 5: Players of roles.

Person chris = new Person("Christine");
Person george = new Person("George");
School harvard= new School("Harvard");
School mit = new School("MIT");

harvard.new StudentImpl(chris);
harvard.new TeacherImpl(george);
mit.new TeacherImpl(george);

((harvard.StudentImpl) chris).getName();
((harvard.TeacherImpl) george).getName();
((Teacher)(mit.TeacherImpl) george).getName();
((harvard.StudentImpl) chris).takeExam(...,...);

Figure 6: Using roles.

Conclusions

In this paper we introduce a new view on roles in Object
Oriented programming languages based on an ontological
analysis of the notion of role. We introduce this model of
roles in the new programming language powerJava, which
extends Java. First, roles are always associated not only to
an object instance playing the role, but also to another object
instance which constitutes the context of the role and which
we call institution. Second, the definition of a role depends
on the definition of the institution which constitutes its con-
text. Third, this second property allows to endow players of
roles with powers to modify the state of the institution and
of the other roles of the same institution.

Future work concerns directly compiling powerJava in the
Java bytecode, building a formal semantics of the new con-
structs and defining the associated type system. Moreover,
the role construct can be enriched with the possibility to
extend roles, to suspend and transfer roles, and other fea-
tures. Finally, powerJava is used as a coordination language
dealing with concurrency, given its ability to deal with the
separation of concerns (Baldoni, Boella, & van der Torre
2005b) and to model multiagent systems (Baldoni, Boella,
& van der Torre 2005a).

References
Albano, A.; Bergamini, R.; Ghelli, G.; and Orsini, R. 1993.
An object data model with roles. InProcs. of VLDB’93,
39–51.
Arbab, F. 1996. The IWIM model for coordination of con-
current activities. InCoordination Languages and Mod-
els, COORDINATION ’96, volume 1061 ofLNCS, 34–56.
Springer.
Bachman, C., and Daya, M. 1977. The role concept in data
models. InProcs. of VLDB’77, 464–476.
Baldoni, M.; Boella, G.; and van der Torre, L. 2005a.
Bridging agent theory and object orientation: Importing
social roles in object oriented languages. InProcs. of PRO-
MAS’05 workshop at AAMAS’05.
Baldoni, M.; Boella, G.; and van der Torre, L. 2005b. Roles
as a coordination construct: Introducing powerJava. In
Procs. of MTCoord’05 workshop at COORDINATION’05.
Boella, G., and van der Torre, L. 2004a. An agent oriented
ontology of social reality. InProcs. of FOIS’04, 199–209.
Amsterdam: IOS Press.
Boella, G., and van der Torre, L. 2004b. Organiza-
tions as socially constructed agents in the agent oriented
paradigm. InLNAI n. 3451: Procs. of ESAW’04, 1–13.
Berlin: Springer Verlag.
Boella, G., and van der Torre, L. 2004c. Regulative and
constitutive norms in normative multiagent systems. In
Procs. of KR’04, 255–265. AAAI Press.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Software. Addison-
Wesley.
Gottlob, G.; Schrefl, M.; and Rock, B. 1996. Extending
object-oriented systems with roles.ACM Transactions on
Information Systems14(3):268 – 296.
Guarino, N., and Welty, C. 2002. Evaluating ontolog-
ical decisions with ontoclean.Communications of ACM
45(2):61–65.
Guillen-Scholten, J.; Arbab, F.; de Boer, F.; and Bon-
sangue, M. 2003. A channel based coordination model
for components.ENTCS68(3).
Masolo, C.; Vieu, L.; Bottazzi, E.; Catenacci, C.; Ferrario,
R.; Gangemi, A.; and Guarino, N. 2004. Social roles and
their descriptions. InProcs. of KR’04, 267–277. AAAI
Press.
Steimann, F., and Mayer, P. 2005. Patterns of interface-
based programming.Journal of Object Technology.
Steimann, F. 2000. On the representation of roles in object-
oriented and conceptual modelling.Data and Knowledge
Engineering35:83–848.
Wong, R.; Chau, H.; and Lochovsky, F. 1997. A data model
and semantics of objects with dynamic roles. InProcs. of
IEEE Data Engineering Conference, 402–411.


