Introducing Ontologically Founded Roles in Object Oriented Programming:
powerJava

Matteo Baldoni and Guido Boella
Dipartimento di Informatica. Universitdi Torino - Italy
baldoni@di.unito.it, guido@di.unito.it

Abstract

In this paper we introduce a new view on roles in Object Ori-
ented programming languages. Our notion is based on an on-
tological analysis of social roles and attributes to roles the fol-
lowing properties: first, a role is always associated not only to
an object instance playing the role, but also to another object
instance which constitutes the context of the role and which
we call institution. Second, the definition of a role depends
on the definition of the institution which constitutes its con-
text. Third, this second property allows to endow players of
roles with powers to modify the state of the institution and of
the other roles of the same institution. As an example of this
model of roles in Object Oriented programming languages,
we introduce a role construct in Java.

Introduction

The concept of role is used quite ubiquitously in Computer
Science: from databases to multiagent systems, from con-
ceptual modelling to programming languages. According to
(Steimann 2000), the reason is that even if the duality of ob-
jects and relationships is deeply embedded in human think-
ing, yet there is evidence that the two are naturally comple-
mented by a third, equally fundamental notion: that of roles
Although definitions of the role concept abound in the lit-
erature, Steimann maintains that only few are truly origina
and that even fewer acknowledge the intrinsic role of roles
as intermediaries between relationships and the objeats th
engage in them. There are three main views:

e Names for association ends, e.g., in UML and Entity-

Relationship diagrams.

Dynamic specialization, like in the Fibonacci (Albaab
al. 1993) programming language.

Adjunct instances, like in the DOOR programming lan-
guage (Wong, Chau, & Lochovsky 1997).

The two last views are more relevant for modelling roles
in programming languages. Roles are modelled in (Albano
et al. 1993) by dynamically reclassifying an object, while in
(Wong, Chau, & Lochovsky 1997) they are seen as special

instances of a separate kind of classes which are associated

with traditional object instances.

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Leendert van der Torre
CWI Amsterdam and TUDelft
torre@cwi.nl

Both of them have pros and cons. For example, dynamic
specialization captures the dynamic relation betweensscla
and a role which can be played by it (e.g., a person can be-
come a student), but it less easily models the intuition that
roles can have their own state (e.g., an employee has a dif-
ferent phone number than the person playing that role). In
contrast, roles as adjunct instances can obviously have the
own state, but they may pose problems when role instances
are detached from the object which plays the role.

There is a wide literature on the introduction of the no-
tion of role in programming languages. However, most
works extend programming languages with roles starting
from practical considerations, starting from (Bachman &
Daya 1977) who use roles to reduce the heterogeneity of
a set of records. In contrast, the research question of #his p
per is the following: How to introduce in an Object Oriented
programming language a notion of role which is ontologi-
cally well founded? Our ontological analysis of the notion
of role is made in (Boella & van der Torre 2004c; 2004a;
2004b). In our model features which are sometimes already
present in previous models receive a new interpretation un-
der the light of a well founded underlying conceptual model.

The methodology we follow is to introduce a new pro-
gramming construct in a real programming language, Java,
since it is one of the most used Object Oriented languages
and one of the most principled. To prove its feasibility, we
translate the new language, called powerJava, to pure Java
by means of a precompilation phase. It is beyond the scope
of this paper to provide a formal semantics of the new con-
struct or to define the associated type theory. Moreover we
do not address other issues related to roles like the problem
of method delegation (Albanet al. 1993) or of roles play-
ing other roles (Wong, Chau, & Lochovsky 1997), but we
leave them for future work.

The role construct we introduce in Java promotes the sep-
aration of concerns between the core behavior of an object
and its context dependent behavior. In particular, the-inte
action among a player object, the institution and the other
roles is encapsulated inside the role the object plays.

First we present our ontological definition of roles and
then we introduce roles in Java with powerJava and we de-
scribe how powerJava can be translated in pure Java. Con-
clusion ends the paper.

Properties of roles

Consider as a running example the roles student and teacher.
A student and a teacher are always a student and a teache

of some school. Without the school the roles do not exist
anymore: e.g., if the school goes bankrupt, the actors, (e.g.
persons) of the roles cannot be called teachers and student
anymore. The institution (the school) also specifies thepro
erties of the student, which extend the properties of the per
son playing the role of student: the school specifies its en-
rolment number, its scores at examinations, and, above all,

also how it can behave as a student. For example, the studen

can take an exam by submitting some written examination.

A student can make the teacher evaluate its examination and
register the mark because the school defines both the studen

role and the teacher’s role: the school defines how an exam-
ination is evaluated by a teacher, and maintains the official
records of the examinations. Otherwise the student could no
have an effect on the teacher. But in defining such actions the
schoolempowerghe person who is playing the role of stu-
dent: This example highlights the following distinguistin
properties of roles (Boella & van der Torre 2004c; 2004a;
2004b):

e Foundation a (instance of) role, besides being associ-
ated with an instance of its player (see (Guarino & Welty
2002)), must always be associated with an instance of the

institution it belongs to,

Definitional dependencehe definition of the role must
be given inside the definition of the institution it belongs
to. This is a stronger version of the definitional depen-
dence notion proposed by (Masa@bal. 2004), where the
definition of a role must use the concept of the institution.

Institutional empowermentthe actions associated with
the role in the definition of the institution have access to
the state and actions of the institution and of the other
roles: they are powers.

Moreover, as (Guarino & Welty 2002) notice, contrary to
natural classes like person, roles lackrigiidity: a player
can enter and leave a role without losing its identity; ag@ers
can stop being a student but not being a person.

Finally, in this paper, we consider also (Steimann 2000)’s
analysis of roles. It highlights the polymorphism inhertnt
roles: a role can be played by different kinds of actors. For
example, the role of customer can be played by instances
both of person and of organization, i.e., two classes which d
not have a common superclass. The role must specify how to
deal with the different properties of the possible actotssT
requirement is in line with UML modelling language, which
relates roles and interfaces as partial descriptions odieh
ior. This last property compels to avoid modelling roles
as dynamic specializations as, e.g., (Albatoal. 1993;
Gottlob, Schrefl, & Rock 1996) do. If customer were a sub-

Introducing roles in Java
Roles are useful in programming languages for several rea-

sons, from dealing with the separation of concerns between

the core behavior of an object and its interaction possibili
ties, to reflecting the ontological structure of domains rghe

Joles are present (Baldoni, Boella, & van der Torre 2005a),

from modelling dynamic changes of behavior in a class to
fostering coordination among components (Baldoni, Boella
& van der Torre 2005b).

In this section we discuss how our ontological definition

[gf role (Boella & van der Torre 2004c; 2004a; 2004b) can

e introduced in Object Oriented programming languages.
As noticed, modelling roles as dynamic specializationsdoe

{not capture the idea that roles have their own state and lim-

its their polymorphism. Hence, we model roles as instances
of role classes, which can be associated at runtime to ob-
jects which can play a role. However, roles are a special
kind of objects, and instances of role classes do not exist on
their own, but they always require to be associated with an
object instance of its player and an object instance of the
related institution. The relations of a role with these two
instances are different. Concerning the former relatiba, t
player of the role is an object whose properties and behav-
ior are extended when it is seen under the perspective of the
role. Moreover, the role does not affect the core behavior of
the player, but the behavior of the role is determined in part
by its player. To do so, a player of a role is required to have
a certain behavior, i.e., methods. In contrast, concerthiag
latter relation, the object instance which representsrtbg-i
tution which the role belongs to gives the role powers: the
role is enabled to access the institution’s own state and the
state of other roles via its methods; thus, the role’s betravi
can affect the institution’s behavior. Accessing the tosti
tion state is possible only if the class defining the institut
and the class defining the role are connected. This is what
we call definitional dependence and it requires that the role
class belongs the namespace of the institution class.

In the same way as classes are distinguished from inter-
faces, we distinguish the class implementing a role in an in-
stitution from the role definition which specifies its abstra
behavior and which objects can play the role. In this way we
represent that giving exams is a feature of students, indepe
dently from the specific class of institution the student is a
student of. In order to capture such generalization of a role
with respect to the institution it belongs to, the definitmn
a role should be kept distinct from the implementation of a
role in a given type of institution. Moreover, such insticurt
when it implements the role definition can further specify
the role by adding fields and further methods. Playing a role
does not require any special preparation of the class whose
instances want to play a role, apart from exhibiting some
requested behavior, i.e., the class has to implement some
methods requested by the role as specified, e.g., by an in-
terface. In this way the implementation of the role and the

class of person, it could not be at the same time a subclassdefinition of the players can be developed independently.

of organization, since person and organization are disjoin

Finally, the constraint of foundation requires that the cre

classes. Symmetrically, person and organization cannot be ation of a role instance involves both an institution ins&an
subclass of customer, since a person can be a person withoutand an object instance, which must be specified in some way

ever becoming a customer.

as arguments. When a role is instantiated and its player

is associated with it, the methods representing the powers
of the roles can be invoked on its player object. To avoid
method clashes and preserve a sound type system, differ-
ently from other approaches, a power can be invoked from a
role player only by specifying the role which the player has
to play. Note that an object can play not only several roles,
but also the same role in different institutions at the same
time. Hence, the role under which a player is seen is speci-
fied using not only the role but also the institution instance
In summary, first a role is defined specifying what is re-
guested to play a role and what is offered by a role. Second,
the role definition is implemented in a class connected to the
institution class the role belongs to. Finally, the role leap
mentation class is instantiated connecting the playeaitst
with the institution instance. At this point, powers canibe i
voked on the player. However, the extension of an object
with roles is transparent to the programmer, who sees roles

only as perspectives on the player objects and he needs noty

a reference to the role instance itself to invoke its powers.

In this paper we map in Java these desired features of roles
in Object Oriented programming languages, taking advan-
tage from the existing features of the language when possi-
ble. First, when there is the need to specify abstract behav-
ior we use the notion of interface in Java, like in the case of
specifying the powers of a role and the methods required to

play a role. Second, since inner classes in Java allow a class
to belong to the namespace of another class, we use them to

give powers to roles in institutions. Moreover, implemagti
a role definition as an inner class of an outer class defining
an institution parallels exactly the definitional depermien
Third, the association of a role instance with an institutio
instance can be dealt with the implicit reference in Java of
an inner class from its outer class. So we are left only to
deal explicitly with the association of a role instance wath
player instance, to complete foundation. Finally, seeimg a
object under a role is paralleled with type casting in Java.

In the next sections we will detail this mapping. Since
powers are a distinguishing feature of roles in our model,
we call our language powerJava.

The definition of roles

The definition of a role has to specify both what is required
to play the role and which powers its players have in the in-
stitutions in which the role will be implemented. In order
to make role systems reusable, it is necessary that a role is
not played by a class only. For (Steimann & Mayer 2005),
roles define a certain behavior or protocol demanded in a
context independently of how or by whom this behavior is
to be delivered. Thus, roles must be specified independently
of the particular classes playing the role, so that the dbjec
which can play the role might be of different classes and
can be developed independently of the implementation of
the role. This is a form of polymorphism. To achieve such
polymorphism we associate with a role partial descriptions
of classes listing the signatures of the methods which are
requested to an object in order to play a role. Thus, roles
make no assumption about how a certain piece of function-
ality is achieved: they allow for unrelated types taking the
same role.

We thus have that a role definition must express two faces:

e The methods required from objects playing the rok:
quirementsFor the instances of a class to play a role, the
class must offer these methods. These are specified by the
role as an interface.

e The methods offered to objects playing the rofgow-
ers If an object of a class, offering the required methods,
plays the role, it is empowered with these new methods.

This double face pervades the life of a role: first, a role is
defined with its requirements and powers, then its powers are
implemented in a class which connects a role with a player
satisfying its requirements; finally, the class implemegti
the role is instantiated passing as argument to its coristruc
an instance of an object satisfying the requirements.

The definition of a role using the keyworal e in Figure

is similar to the definition of an interface; it is the speci-
cation of the powers acquired by the role in the form of
abstract methods signaturési er f acebody). The only
difference is that the role definition by means of the keyword
pl ayedby refers also to another interface, that in turn spec-
ifies the requirements which an object playing the role must
satisfy. This mechanism mirrors the idea traés have two
faces therequirementsand thepowers Moreover, differ-
ently than an interface, also static variables cannot be de-
clared. Thus, nothing is required for an object to become the
player of a role, apart implementing the appropriate behav-
ior required by the role as specified by the requirement-inter
face. In the example of Figure Bpl e specifies the powers
of St udent , whilst the interfaceSt udent Req specifies
its requirements. The implementation of the requirements
is given inside the class of the object playing the role. The
implementation of the powers is given in the definition the
class defining the institution the roles belong to.

1

Institutions and definitional dependence

In our model roles are always associated to an instance of,
and are definitionally dependent on, an institution. Thenter
“definition” of an object refers to the definition of the class
the object is an instance of; thus, the class defining anrinsti
tution includes the definition of the class implementing the
roles of the institution. How do these properties reflect on
which kind of methods can be invoked on a role? For the
notion of role to be meaningful, these methods should go
beyond standard methods whose implementation can access

roledef ::= "role" identifier
["extends" identifier*]
"pl ayedby" identifier interfacebody
roleinpl ::=[public | private] [static]
"class" identifier ["realizes" identifier]
["extends" identifier]

["inplenents" identifier*] classbody

rcast ::= (expr "." identifier) expr

Figure 1: The extension of the Java syntax in powerJava.

the private state of the role only. Rather, roles add powers nition St udent as bothFi r st Year St udent | npl and

to objects playing the roles. Power means the possibility to
modify also the state of the institution which defines therol

and the state of the other roles defined in the same institu-

tion. In our running example, we have that the method for
taking an exam in the school must be able to modify the pri-

SecondYear St udent | npl .

All the constructors of all role implementations have an
implicit first parameter which must be bound to the player
of the role and becomes the valuetdfat . The reason is
that to construct a role instance we need both the institutio

vate state of the school. E.g., if the exam is successful, the the role belongs to (the object the constmetvis invoked
grade should be added to the registry of exams in the school. on) and the player of the role (the implicit first parameter).

Analogously, the student’s method for taking an exam can
invoke the teacher's method of evaluating an examination.

For this reason, the parameter has as its type the require-
ments of the role: e.g., the construc&irudent | npl has

Powers, thus, seem to violate the standard encapsulationan implicit first parameter of typ8t udent Req. This first

principle, where the private variables are visible to thassl
they belong to only. However, here, the encapsulation prin-
ciple is preserved: all roles of an institution depend on the
definition of the institution; so it is the institution it$el

which gives to the roles access to its private fields and meth-

ods, thus allowing coordination inside the institutionnci
it is the institution itself which defines its roles, therenis
risk that a role abuses of its access possibilities.

Enabling a class to belong to the namespace of another returns an object of typ&chool . St udent | npl .

class without requiring it to be defined as friend (like C++
does at the cost of endangering encapsulation) is achiaved i

parameter must not be declared explicitly in the implemen-
tation of the role, but it is added by the precompiler. For
example, let us suppose thiaar var d is an instance of
School and thatchri s is a person who wants to became
a student ofhar vard. The instructionhar vard. new
Student | mpl (chris) expresses this fact, given that
St udent | npl is an inner class that implements the role
St udent inside the institutiorSchool . This expression

In
powerJava, the constructor of a role implementation must
always have a first parameter which is used to pass to the

Java by means of the inner class construct. Thus, we extendrole instance the value of the player of the role.

the notion of inner class to allow roles to be implemented in-
side an institutionr(ol ei npl). The inner class construct is
extended with the keywordeal i zes which specifies the
name of the role the inner class is implementing. An institu-
tion is simply a class with an inner class implementing roles
In the example of Figure 4t udent | npl implements the
role definitionSt udent , inside the institutiorschool .

Exercising the powers of a role

A role represents a perspective on an object. An object has
different (or additional) properties when it is seen in tee-p
spective of a certain role, and it can perform new activjties
which we call powers, as specified by the role definition. In
(Steimann 2000)’s terminology, a role is a sort of type spec-

In powerJava, an inner class that realizes a role must im- ifying behavior.

plement the corresponding role definition in the very same

When an object is seen under the perspective of a role,

way as a class implements an interface and it can add (non- we want that the object has a specific state for it. This state

static) fields and further (non-static) methods. Moreover,

is different from the player’s one, it is specific to each role

since a role implementation is a (inner) class, it can be an in each institution, and it can evolve with time by invoking

institution itself with its own role implementations, itrca

methods on the role (or on other roles of the same institution

enact other roles, it can extend other classes (unless theyas we have seen in the running example). This state is main-

realize roles), implement interfacestc. Analogously, the
institution is a class which can play a ro&c.

tained by a role instance which is associated to the player.
Since a role represents the perspective on an object, the ob-

Since the behavior of a role instance depends on the player ject playing it should be able to invoke the role’'s methods

of the role, in the method implementation, the role player in
stance can be retrieved via a new reserved keywioingit .

So this keyword refers tthat object which is playing the
role at issue, and it is visible only in the role implementa-
tion. The value ot hat is initialized when the constructor
of the role implementation is invoked. The referred object
has the type defined by the role requirements or a subtype.

without making any explicit reference to the instance of the
role: in this way the association between the object ingtanc
and the role instance is transparent to the programmer. The
object specifies only in which role it is invoking the method.
For example, if a person is a student and a student can be
asked to return its enrollment number, then we want to be
able to invoke the method on the person as a student without

We do not need a special expression for creating instances referring to the student role instance.
of the inner classes implementing roles, because we use The same methods will have a different behavior accord-
the Java inner classes syntax: starting from an institution ing to the role which the object plays when they are invoked.

instance, the keywordew allows the creation of an in-

stance of the role as an instance of the inner class (e.g.,

har vard. new Student | npl (chris)). Note, how-
ever, that it is not possible to instantiate a role definition
(in the same way as it is not possible to instantiate an in-
terface): what is instantiated is always the implementatio
of a role in an institution. Moreover, roles can be imple-
mented in different ways in the same institution. For ex-
ample, the clas$§chool could implement the role defi-

On the other hand, methods of a role can exhibit different
behaviors according to who is playing it. So a method of
student returning the name of the student together with the
name of the school returns different values for the name ac-
cording to whom is playing the role of student. This is possi-
ble since the implementation of methods representing pow-
ers uses the methods required by the role to its player in or-
der to play the role via thehat keyword. These required
methods obviously can access the state of the player since

they are part of the implementation of the player.
In our model, roles are always roles in an institution.

Using powerJava

Hence, an object can play at the same moment the same role

more than once, albeit in different institutions. For exam-
ple, one can at the same time be a student at the high school
a student of foreign languages in another schetud, So a
method returning the name of the student together with the
name of the school returns a different name of school ac-
cording to which school the student role is played in. An
object can play several roles in the same institution. B.g.,

person can be an MP and a minister at the same time (evenexamination {akeExanj, and so forth.

if it is not required to be an MP to become minister).

In order to specify the role under which an object is re-
ferred, we evocatively use the same terminology used for
casting by Java. For example, if a person is playing the role
of student and we want to invoke a method on it as a student,
we say that there is a casting from the object to the role. To
refer to an object in a certain role, both the object and the
institution where it plays the role must be specified. We call
this methodologyole casting Type casting in Java allows to
see the same object under different perspectives while-main
taining the same structure and state. In contrast, role cast
ing views an object as having a different state and different
behaviors when playing different roles. This is because it
conceals alelegationmechanism: the player instance has a
hidden delegation to the role instance the execution of the
method. The delegated object can only act as allowed by the
powers of the role, but it can access the state of the institu-
tion and, by exploiting the construthat , it can also refer
to the delegating object to invoke the requirements. Role
casting allows to make transparent to the programmer the

In Figures 3—6, we present our running example in pow-

.erJava. In Figure 3, the definitions of the rotsudent

and Teacher are introduced. The role definitions spec-
ify, like an interface, the signatures of the methods that
correspond to the powers that are assigned to the objects
playing the role. For example, returning the name of
the St udent (get Name), submitting a homework as an
Moreover, we
couple a role definition with the specification of its re-
quirements by the keyworgl ayedby. This specifica-
tion is given by means of the name of a Java interface,
e.g., St udent Req, imposing the presence of methods
get Nane andget Soci al SecNunber).

As explained, role definitions must be implemented inside
institutions. In our example, the rolét udent is imple-
mented as an inner class®fhool calledSt udent | npl
whichreal i zes St udent (see Figure 4). Being an in-
stance of a class, a role instance has a state, specified by
its private fields, in this examplst udent | D. It is worth
noticing that the methodet St udent | Dis not part of the
role definitionSt udent in Figure 3. Powers have access
to private variables and methods of the institution and ef th
sibling roles: e.g., the methddak eExamdirectly accesses
the private variablerar k of the institution, and the method
eval HomeWbr k of the teacher.

The methoceval HomeWor k of Teacher | npl in Fig-
ure 4 deserves a remark. Such a method is invoked by

association of a role and an object instance: the programmer the method akeExamin St udent | npl , that records a

invokes a method of a role on the object playing it casted
into the role; the language transforms this method invoca-

mark in the registry of the school. Of course, the role
teacher has not the actual ability to perform the evaluation

tion in a message sent to the delegated role instance, whichof the homework of a student, this ability is a feature of the

is hidden in its player.

So, the last syntactic change in powerJava is the intro-
duction of role casting expressionsxtending the original
Java syntax for casting. Acast specifies both the role
and the instance of the institution the role belongs to, e.g.
in (harvard. TeacherI npl) george the person
geor ge is casted to its rolear var d. Teacher | npl of
typeSchool . Teacher | npl .

Figure 2 reports the relations among the main concepts, in
the form of a simple UML diagram. Requirements of a role
(Role Requiremeptcorrespond to an interface, specifying

which methods must be defined in a class whose instances

play the role. Powers are a new concept proper of thlee
construct: they are the specification of the new methods
(Role Powey. Role Power Implementatida specified as an
inner class ofnstitution Inner classes express the fact that
the namespace of the institution is visible from the role im-
plementation: i.e., the institution defines a namespacetwhi

is shared by all the roles The fact that inner classes belong
to the namespace of the outer class in UML is represented
by the arrow with a plus sign within a circle at the end at-

Per son that plays the role of the teacher. For this reason
eval HomeWor k uses the methodead of the object ref-
erenced by hat , which plays the role of the teacher.

This pattern, in which the methods of the actual player
of a role that are specified by the requirements are invoked
resembles the OBSERVER pattern, where the player is the
observer. The observer contains a set of behaviors that are
invoked as a consequence of an event, that occurred in the
observable (in our case the corresponding role). The differ
ence is that the observable role is plugged inside an insti-
tution that realizes the coordination of the events that can
occur (and, so, coordinates the reactions of the players).

Moreover, this pattern allows a form of exogenous co-
ordination (Baldoni, Boella, & van der Torre 2005b): the
Per sons in theTeacher andSt udent role are simply
components whose behavior is used at the right moment
without requesting it of being aware of which is the student
taking the examination. Symmetrically, the person playing
the role is a component which does not know anything about
which teacher will evaluate his homework. Connecting the

tached to the namespace. An inner class that implements thetwo components is responsibility of the institution which

power of a role has always two references to two objects:
the institution that defines it and the player that plays it.

works as a coordinator as in the IWIM model of (Arbab
1996; Guillen-Scholteet al. 2003).

bt Wk P role instances do not exist by themselves and are always as-
x ‘ sociated to their players: when it is necessary to invoke a
layed by _ method of the student it is sufficient to have a reference to
s 5 e - = * its player object. For this reason, it is not necessary to put
5 z the result of thenew operation in a variable. Methods can
JE \ } be invoked directly from their players, given that the playe
|

/ ‘ i e is seen in its role (e.gSt udent | npl). This is done in
[Player | | that
that | plays
arole

—
~
< hasarole

finstitution) """ """ [Role Power implementation] ,_ powerJava by casting the player of the role to the role im-
—— X ‘ plementation we want to refer to.

e

Institution's inner class)
that implements a role

Since roles do not exist out of an instance of the in-
stitution defining them, in order to specify a role, it is
necessary to specify the institution it belongs to. In
the syntax of powerJava the structure of a role cast-
ing is captured by the constructcast shown in Fig-
ure 1. For instance,((harvard. Teacher| npl)

In order for an object to play a role it is sufficient george).get Nanme() takes george in the role of
that it conforms to the role requirements. Since the teacher in the institutiorharvard. As a result, if
role requirements are a Java interface, it is sufficient that get Name applied togeor ge returns only the person’s
the class of the object implements the methods of such name ¢eor ge. get Nane()), with the cast, the same in-

Figure 2: Roles and Institutions in UML.

an interface. In Figure 5, the clag®rson can play vocation will return “George, teacher at Harvard”. Ob-
the role St udent , because it conforms to the interface viously, if we castgeor ge to the role of teacher at
St udent Req by implementing the methodget Name mt ((nit. Teacherlnpl) george). get Nane(),
andget Soci al SecNunber . we obtain “George, teacher at MIT".

A role instance is created by means of the constnest
and by specifying the name of the inner class implementing s
the role. In Figure 6, the object referred biar i s can be
assigned the role of a student of the schioal var d by
executing the following instruction:
har var d. new Student | npl (chris)

With respect to type casting, role casting does not only
elect the methods available for the object, but it views
the object as having a different state and its methods as
having a different meaning: the name returned by the role
is different from the name of the player since the method
has a different behavior. It is important to observe that

In this context, i.e., within the role implementation, the role casting is done to the inner class implementing the
keywordt hat will refertochri s. role but the role instance can always be type casted to
the role definition as well as it can be done with Java

Moreover, note that the same person can play the interfaces: ((Teacher) (harvard. Teacher! npl)

same role in more than one school. In the exam- george). get Nane().

ple george is both a teacher ofmt, mit.new While in the previous case it was possible to use all
Teacher | npl (george), and a teacher olfar var d, the methods of the specific implementation, in this case,
har var d. new Teacher | npl (george) . only the methods that are specified in the role definition

. . , , can be applied. E.g., the methggt Teacher | D and

It is not necessary to assign to a variable the object re- get st ydent I D are not accessible because they are
turngd by the constructpr. Differently from other objects, not part of the role definition§eacher and St udent
role instances do not exist by themselves and are always aS-respectively. Hence, as it is done in Java for the interfaces
sociated to their players: when it is necessary to invoke a qe definitions can be viewed as types, and, as such
method of the student it is sufficient to have a referent to its they can be used also in variable declara’ltions,’ paramete’r
player object. However, itis possible to assign role insé8n gecjarations, and as method return types. Thus, roles allow
to variables as in: programmers to conform to (Gamragal. 1995)'s principle
Student st2 = sc2.new MyStudent (pe2); of “programming to an interface”. It is possible to define

In this case the variablgt 2 is typed with the rolename, ~ Variables with a role as their type, with assigned as values
as it is possible for interfaces. The role instance is thus up CPJECts with as types role implementations of that role
casted to the role type and the methods specific to the classP€l0nging to the same or to different institution classes.
My St udent are not visible anymore. In this way the vari-

ablest 2 can be assigned students of whatever type of insti- _Finally, powerJava allows the implementation of roles
tution implements them (e.g., we can have a driving school Which can be further articulated into other roles. For ex-
class which implements the ra8 udent). ample, a school can be articulated in teaching classes (an-

other social entity) which are, in turn, articulated inta-st
The player of a role is involved in the instantiation of the dent roles. In this way, it is possible to create a hierardhy o
role and, as soon as such instance is created, the player carsocial entities, where each entity defines the social eatiti
start exercising its powers. Differently than other obgect contains, like proposed by (Boella & van der Torre 2004b).

interface StudentReq cl ass School {
{ String getNane(); private int[][] marks;
i nt get Soci al SecNunber (); } private Teacher[] teachers;
private String school Nare;
rol e Student playedby StudentReq

{ String getName(); class Student|npl realizes Student ({
voi d takeExan(int exanCode, HomeWdrk hwk); private int studentlD;
int getMark(int exanCode); } public int getStudentlD()
{ return studentID; }
interface TeacherReq public void takeExan(int exanCode;
{ String getName(); HomeWor k hwk)
i nt get Soci al SecNunber(); } { marks[studentl| D] [exanCode] =

t eacher s[exantCode] . eval HomeWor k(hwk) ; }
rol e Teacher playedby Teacher Req
{ String getName(); public String getNanme()
i nt eval HoneWr k(HomeWor k hwk) ; } { return that.getNane() +
", student at " + school Nanme; }
}

cl ass Teacherlnpl realizes Teacher ({
private int teacherlD;
public int getTeacher! D()

Figure 3: Definition of roles and their requirements.

Translating roles in Java { return teacherID; }
public int eval HomeWor k(HomeWor k hwk)
{ ... return mark; ... }
In this section we summarize the translation of the role public String getName()

{ return that.getNanme() +

construct into Java, for giving a semantics to powerJava .
t eacher at + school Nane; }

and to validate our proposal. This is done by means of :
a precompilation phase. The precompiler (available at } }

htt p: // www. power j ava. or g together with the com-

plete translation of the above examples) has been imple-] o) . .
crosystems.

The role definition is simply an interface to be imple-
mented by the inner class defining the role. So the role ject can play a role, it is worth noticing that the ideal so-
powers and its requirements form a pair of interfaces used |ution would be that thelbj ect class itself implements
to match the player of the role and the institution the role Obj ect W t hRol e. The two methods that are introduced
belongs to. The relation between the role interface and the py the precompiler arget Rol e andget Rol e which re-
requirement interface is used in the constructor of an inner spectively adds a role to an object, specifying where the rol
class implementing a role. is played, and returns the role played in the institutiorspes
as parameter. Further methods can be added for leaving a

When an inner class implements a role, the role specified Lo
role, transferring itetc.

by thereal i zes keyword is simply added to the inter-
faces implemented by the inner class. The correspondence We present one possible implementation of these methods
between the player and the role object, represented by the which is supported by a private hashtablel el i st. As
construct hat , is precompiled in a field calledhat of the key in the hashtable we use the institution instance address
inner class. This field is automatically initialized by mean and the name of the inner class. As an example, the class
of the constructors which are extended by the precompiler Per son plays the roléfeacher . So its instances will have

by adding a first parameter to pass the suitable value. The a hash-table that keeps the many roles played by them. In
constructor adds to its player referred tigat also a ref- the case ofjeor ge there will be two role instances: he is a
erence to the role instancedt Rol e, see below). The re- teacher ohar vard and ofni t .

maining link between the instance of the inner class and the
outer class defining it is provided automatically by the lan-
guage Java3chool . t hi s in our running example).

Role casting is precompiled using these methods. The
expression referring to an object in its role Par son
as a Teacher, e.g., (harvard. Teacher|npl)

To play a role an object must be enriched by some meth- geor ge) is translated into the selector returning the
ods and fields to maintain the correspondence with the dif- reference to the inner class instance, representing the

ferentrole instances it plays in the different institugomhis desired role with respect to the specified institution.
is obtained by adding, at precompilation time, to everyglas The translation will begeor ge. get Rol e(har vard,
a structure for bookkeeping its role instances. This stingct "Teacher | npl ") . The string’' Teacher | npl " is pro-

can be accessed by the methods whose signature is specivided because in our solution it is used as a part of the key
fied by theObj ect W t hRol e interface. Since every ob- of the hashtable.

cl ass Person inplenents Student Req, Teacher Req
{
private String nane;
private int social SecNunber;
String get Name()
{ return nane; }
i nt get Soci al SecNunber ()
{ return social SecNunber; }

}

Figure 5: Players of roles.
Person chris = new Person("Christine");
Person george = new Person(" George");
School harvard= new School ("Harvard");
School mt = new School ("M T");
harvar d. new Student | npl (chris);
har var d. new Teacher | npl (george);

m t. new Teacher | npl (george);

((harvard. StudentInpl) chris).getName();
((harvard. Teacher | npl) george).get Name();
((Teacher) (mt. Teacherl npl) george). get Nams()
((harvard. Studentlnpl) chris).takeExant.)

Figure 6: Using roles.

Conclusions

In this paper we introduce a new view on roles in Object
Oriented programming languages based on an ontological
analysis of the notion of role. We introduce this model of
roles in the new programming language powerJava, which
extends Java. First, roles are always associated not only to
an object instance playing the role, but also to anothermbbje
instance which constitutes the context of the role and which
we call institution. Second, the definition of a role depends
on the definition of the institution which constitutes iteo
text. Third, this second property allows to endow players of
roles with powers to modify the state of the institution and
of the other roles of the same institution.

Future work concerns directly compiling powerJava in the
Java bytecode, building a formal semantics of the new con-
structs and defining the associated type system. Moreover,
the role construct can be enriched with the possibility to

References

Albano, A.; Bergamini, R.; Ghelli, G.; and Orsini, R. 1993.
An object data model with roles. IRrocs. of VLDB’93
39-51.

Arbab, F. 1996. The IWIM model for coordination of con-
current activities. InCoordination Languages and Mod-
els, COORDINATION '96volume 1061 oL NCS 34-56.
Springer.

Bachman, C., and Daya, M. 1977. The role concept in data
models. InProcs. of VLDB'77 464—-476.

Baldoni, M.; Boella, G.; and van der Torre, L. 2005a.
Bridging agent theory and object orientation: Importing
social roles in object oriented languagesPhocs. of PRO-
MAS’'05 workshop at AAMAS'05

Baldoni, M.; Boella, G.; and van der Torre, L. 2005b. Roles
as a coordination construct: Introducing powerJava. In
Procs. of MTCoord’05 workshop at COORDINATION.05

Boella, G., and van der Torre, L. 2004a. An agent oriented
ontology of social reality. IProcs. of FOIS'04199-209.
Amsterdam: |OS Press.

Boella, G., and van der Torre, L. 2004b. Organiza-
tions as socially constructed agents in the agent oriented
paradigm. InLNAI n. 3451: Procs. of ESAW'Q4-13.
Berlin: Springer Verlag.

Boella, G., and van der Torre, L. 2004c. Regulative and
constitutive norms in normative multiagent systems. In
Procs. of KR'04255-265. AAAI Press.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Softwadgison-
Wesley.

Gottlob, G.; Schrefl, M.; and Rock, B. 1996. Extending
object-oriented systems with role&CM Transactions on
Information System$4(3):268 — 296.

Guarino, N., and Welty, C. 2002. Evaluating ontolog-
ical decisions with ontocleanCommunications of ACM
45(2):61-65.

Guillen-Scholten, J.; Arbab, F.; de Boer, F.; and Bon-
sangue, M. 2003. A channel based coordination model
for componentsENTCS68(3).

Masolo, C.; Vieu, L.; Bottazzi, E.; Catenacci, C.; Ferrario
R.; Gangemi, A.; and Guarino, N. 2004. Social roles and
their descriptions. IrProcs. of KR'04 267-277. AAAI
Press.

Steimann, F., and Mayer, P. 2005. Patterns of interface-
based programminglournal of Object Technology

Steimann, F. 2000. On the representation of roles in object-
oriented and conceptual modellinfata and Knowledge
Engineering35:83-848.

Wong, R.; Chau, H.; and Lochovsky, F. 1997. A data model

extend roles, to suspend and transfer roles, and other fea- and semantics of ObJeCtS with dynamic roles.Pics. of

tures. Finally, powerJava is used as a coordination largjuag
dealing with concurrency, given its ability to deal with the
separation of concerns (Baldoni, Boella, & van der Torre
2005b) and to model multiagent systems (Baldoni, Boella,
& van der Torre 2005a).

IEEE Data Engineering Conferencé02-411.

