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Abstract. Automated theorem provers (ATPs) struggle to solve prob-
lems with large sets of possibly superfluous axiom. Several algorithms
have been developed to reduce the number of axioms, optimally only
selecting the necessary axioms. However, most of these algorithms con-
sider only single problems. In this paper, we describe an axiom selection
method for series of related problems that is based on logical and textual
proximity and tries to mimic a human way of understanding mathemat-
ical texts. We present first results that indicate that this approach is
indeed useful.

Key words: formal mathematics, automated theorem proving, axiom
selection

1 Introduction

Reducing the search space of ATP problems is a long standing problem in the
ATP community. In 1987 Larry Wos called a solution to the problem of defini-
tion expansion and contraction “one of the more significant advances in the field
of automated reasoning” [22]. In recent years, several algorithms have been de-
veloped to tackle this problem. (e.g. SRASS [17], SInE [8], Gazing [1], MaLARea
[18], and the work by Meng and Paulson [13]). In this paper, we describe an
axiom selection method for series of related problems that is based on logical
and textual proximity.

The Naproche project (NAtural language PROof CHEcking) studies the
semi-formal language of mathematics as used in mathematical journals and text-
books from the perspectives of linguistics, logic and mathematics. As part of the
Naproche project, we develop the Naproche system [5], a program that can auto-
matically check texts written in the Naproche controlled natural language (CNL)
for logical correctness. We test our system by reformulating parts of mathemati-
cal textbooks and the basics of mathematical theories in the Naproche CNL and
checking the resulting texts.

The checking process is similar to how a human reader would verify the cor-
rectness of a text. Each statement in the text that is not an axiom1, a definition
1 Here, axiom is used in the mathematical sense, e.g. the axiom of choice.
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or an assumption must follow from the information given so far. Using logical
terms, we can say that the statement has to follow from its premises. In the
Naproche system, such statements create proof obligations. A proof obligations
is an ATP problem with the statement as conjecture and the premises as axioms.

The longer a text is, the more premises are available, which makes proof
obligations harder to discharge. Thus, we need to find a way to reduce the number
of premises, i.e. reduce the search space of the ATP. For single ATP problems,
successful algorithms (e.g. SInE, SRASS) exist. There are also programs that
were developed for larger theories, e.g. Gazing and MaLARea. However, to our
knowledge there is no system that is based on a ’human’ understanding of a
proof. The texts we are dealing with read like normal mathematical proofs in
natural language. We developed a premise selection algorithm that tries to use
some of the information implicit in the human structuring of the proof text.

We first give a quick overview of the Naproche system. Section 2 explains
our premise selection algorithm. First results are presented in section 3.

2 The Naproche System

The Naproche system [5] checks texts that are written in a controlled natural
language for mathematics for correctness. We call this controlled natural lan-
guage the Naproche CNL. Texts written in the Naproche CNL read like normal
mathematical texts. The Naproche CNL is described in a separate paper (see
[3]). A quick overview can be found online2.

The input text is first translated into a linguistic representation called Proof
Representation Structure (PRS, see [3], [4]). From such a PRS the program
determines which statements have to be checked and creates the corresponding
proof obligations [10]. For the actual proving we use the TPTP infrastructure
[16]. The proof obligations are translated into ATP problems in the TPTP format
and then sent to an ATP.

There are two main long term goals of the Naproche Project: Firstly, to pro-
vide a more natural system for formalising mathematics, and secondly to function
as a tool that can help undergraduate students to learn how to write formally
correct proofs and thus get used to the semi-formal language of mathematics.

2.1 An Example Text

We present a short example texts taken from the Naproche translation of Eu-
clid’s Elements [7]. Note that Naproche uses LATEX-sourcecode as input. The
example shows the compiled version.

Example: Let a, b and c be distinct points. By Theorem 1 there is a point
d, such that da = db = ab. Let M be the line such that b and d are on M . Let
α be the circle such that b is the center of α, and c is on α.

2 http://www.naproche.net/wiki/doku.php?id=dokumentation:language
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2.2 Related Work

There are several projects that are similar to Naproche. We will just name a few:
A. Trybulec’s Mizar [12] is arguably the most prominent. It was started in

1973, and by today many non-trivial mathematical theorems have been proved.
An active community continues to formulate and prove theorems in Mizar. The
results are published regularly in the journal Formalized Mathematics.

The Isabelle [14] team is working on Isar [21], a “human-readable structured
proof language”. The System for Automated Deduction (SAD, [19]) checks texts
that are written in its input language, ForThel [20], for correctness.

Claus Zinn did his PhD on Understanding Informal Mathematical Discourse
[23], but focused on only two examples. The DIALOG group [2] did experiments
with mathematical language in a tutoring context. Mohan Ganesalingam [6]
studied the language of mathematics in detail, but did not implement his ideas
(yet).

What distinguishes Naproche is our focus on deep linguistic analysis of non-
annotated natural language. We try to keep our input language as close as pos-
sible to the natural language of mathematics.

3 The Premise Selection Algorithm

When verifying the correctness of a proof, mathematicians basically face the
same problem as ATPs. They have a given set of premises, i.e. all their mathe-
matical knowledge, and have to derive the conjecture from these premises. Un-
derstanding the proof means knowing which premises were used in each step.
While the human selection process as a whole is very complicated, there are
three parts that can easily be used for automated premise selection.

– Explicit References:
Explicit references like “by theorem 4” are often used in mathematical texts.
Such a reference is a clear indication that the referenced object is useful, or
even necessary.

– Textual Adjacency:
While human proofs are not as detailed as formal derivations, they are still
done step by step. Usually, the proof steps just before a statement are rele-
vant. The most common example of this are assumptions: Assume ϕ. Then
ψ. Here, the proof step before Then ψ is Assume ϕ, and ϕ will most likely
be needed to prove ψ.

– Logical Relevance:
Quite often, ideas that were needed in one part of a proof are also needed
in another part. I.e. if a definition was needed for the first proof step, it will
probably be needed again later in the proof.

In order to capture these ideas we developed Proof Graphs. Each statement
of the proof becomes a node in this graph. Two nodes are connected by an
(untyped) edge if they are textually or logically close to each other, or if there is



4 M. Cramer, P. Koepke, D. Kühlwein, and B. Schröder

an explicit reference from one to the other. We define the distance between two
statements as the geodesic distance. i.e. the length of the shortest path from one
statement to the other.

Based on Proof Graphs, we can define a premise selection algorithm. Given a
proof obligation, the premise selection algorithm determines which of the avail-
able premises are given to the ATP. The algorithm was implemented as part of
the Naproche system.

Explicit references and textual adjacency are calculated during the linguistic
analysis of the text. We say that ϕ is logically close to ψ if ϕ was used in the
proof on ψ. In the implementation, we use Geoff Sutcliffes program Proof
Summary which analyses ATP proofs.

The premises selection algorithm proceeds as follows:

– Input: Conjecture, Axioms, Distance and Time
1 Determine the distance between the Conjecture and the Axioms.
2 Select all axioms whose nodes have distance less than Distance from the

conjecture Node.
3 Create a TPTP problem with the selected axioms and the Conjecture.
4 Run an ATP on the problem with time limit Time.
5 If the ATP cannot prove the conjecture from the axioms, the starting dis-

tance is less than the predefined maximum distance, and the starting time is
less than the predefined maximum time, define a new time limit and a new
starting distance (e.g. NewTime = 2∗Time and NewDistance = 2∗Distance)
and try again.

6 If the ATP finds a proof, use the proof given by the ATP to find out which
axioms where actually used. Determine the maximum distance of the used
axiom to define the new starting distance (e.g. NextDistance = (4∗Distance+
MaxUsedDistance)/5) and update the proof graph with this new information.

4 Results

To test the algorithm we checked a Naproche CNL version of the first chapter of
Landau’s Grundlagen der Analysis [11] with and without the premises selection
algorithm. This text contains 228 proof obligation with a total number of 7602
premises.

Currently Proof Summary [16] only supports two ATPs, Metis [9] and EP
[15]. Both were used during testing. MaxDistance was set to 20, MaxTime was
set to 5 seconds, the start Distance was set to 1, and the start Time set to 1 sec.
The other values were defined as follows:

NewTime = 2 ∗ Time
NewDistance = 2 ∗Distance
NextDistance = d 4∗Distance+MaxUsedDistance

5 e

Table 1 shows the results for EP. Without the premises selection algorithm,
seven obligations could not be discharged by EP. With the premise selection
algorithm enabled, EP was able to discharge all 228 obligations.
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Without PS With PS
Total Theorem No Proof Theorem No Proof

obligations 228 221 7 228 0
premises 7602 7235 367 3964 0

premises/obligations 32.74 52.43 17.39 N/A
used premises/obligation 2.99 N/A 2.93 N/A
unused premises/obligation 29.75 52.43 5.96 N/A

average distance 8.2 8.15 5.53 N/A
average used distance 3.46 N/A 3.38 N/A
average unused distance 8.68 8.15 5.96 N/A

Table 1. Results for EP 1.0

We also determined the average distance of the used (3.46) and unused
premises (8.68). These numbers are a clear indicator that our distance definition
is indeed useful.

In Table 2 we see the results for Metis. Without the premises selection al-
gorithm, 44 obligations could not be discharged by Metis. With the premise
selection algorithm enabled, 26 obligations could not be discharged.

Without PS With PS
Total Theorem No Proof Theorem No Proof

obligations 228 184 44 202 26
premises 7602 5630 1972 2412 1176

premises/obligations 30.6 44.82 11.94 45.23
used premises/obligation 2.16 N/A 2.09 N/A
unused premises/obligation 28.43 44.42 9.85 45.23

average distance 8.98 9.64 5.22 9.49
average used distance 3.49 N/A 3.22 N/A
average unused distance 9.39 9.64 5.64 9.49

Table 2. Results for Metis 2.2

The reason why Metis ends up with a lower number of total premises with
premises selection enabled is that the fewer obligations an ATP is able to dis-
charge, the less information we have about logical relevance. This affects the
subsequent obligations since fewer formulas are within the search distance. Sim-
ilar to the EP results, the average distance of used premises is much lower (3.49)
than the average distance of unused premises (9.39).

For further testing, we created two problem batches. The first one contained
the original 228 problems. For the second batch we took all the modified problems
that were created when using EP 1.0 and the premises selection algorithm. We
sent the problems to Geoff Sutcliffe and he used his TPTP infrastructure
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to run seven ATP systems on the problems with a time limit of 300 seconds per
obligation. The results can be seen in Table 3.

ATP Solved(Modified) Solved(Original)

Bliksem 1.12 225 222
E 1.1 228 228
Geo 2007f 219 210
iProver 0.7 223 222
Metis 2.2 205 193
Prover9 0908 213 221
Vampire 11.0 227 227

Table 3. Results with more ATPs and time limit 300 sec

182 of the modified problems were solved by all the systems. Of the remaining
46, 39 were solved by 6 out of the 7 systems. 169 of the original problems were
solved by all the systems. Of the remaining 59, 50 were solved by 6 out of the 7
systems. 6 of the 9 are also in the set of 7 hard ones from the modified versions
of the problems.

Of all ATPs tested, only Prover9 performs worse on the modified problem
set. We assume that this is due to the fact that we used EP to create the mod-
ified problems. We hope that Prover9 would also perform better with premise
selection when being used directly in the Naproche system. Unfortunately this
cannot be tested at the moment since Prover9 does not provide Proof Summary
parseable output.

5 Conclusion and Future Work

While the details of the implementation are and should be up for discussion, the
results we received suggest that the ideas behind the premise selection algorithm:
textual adjacency, references and reusing the same ideas do seem to work and
improve the ATP performance.

For further testing, we would like to compare and combine our approach
with other axiom selection algorithms. Furthermore, it would be interesting to
see how important the different aspects of the proof graph are.

The main focus for the future will be to create longer and more mathemat-
ical texts. Once we do have more material, we will experiment with different
modification of the presented Proof Graph.
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