
Computing Maximally Satisfiable Terminologies
for the Description Logic ALC with GCIs

Kevin Lee and Thomas Meyer
National ICT Australia and University of New South Wales,

Sydney, Australia
{kevin.lee, thomas.meyer}@nicta.com.au

Jeff Z. Pan
Department of Computing Science, University of Aberdeen,

Aberdeen, UK
jpan@csd.abdn.ac.uk

Introduction

Existing description logic reasoners provide the means to detect logical errors
in ontologies, but lack the capability to resolve them. We present a tableau-
based algorithm for computing maximally satisfiable terminologies in ALC. Our
main contribution is the ability of the algorithm to handle GCIs, using a refined
blocking condition that ensures termination is achieved at the right point during
the expansion process. Our work is closely related to that of [1], which considered
the same problem for assertional (Abox) statements only, and [2], which deals
only with unfoldable terminologies for ALC.

Computing Maximally Satisfiable Terminologies

The algorithm receives as input a Tbox T and a concept name A, represented
in ALC, and returns as output the A-MSSs of T . Each sentence in T is labelled
with a unique propositional atom, hence T will be a set of labelled axioms of
the form (C v D)p and (C

.
= D)p. Our algorithm starts by creating an Abox A

containing only the labelled assertion A(x)>, where x is an individual name. It
then proceeds by continuously applying the expansion rules below, first toA, and
then to the Aboxes created subsequently, until none of the rules are applicable.
Note that the algorithm does not teminate even when a clash is detected, also we
assume that all concept assertions are in negation normal form. The expansion



u-rule if C1 u C2(x)φ ∈ A, and either C1(x)φ or C2(x)φ is A-insertable,
then A′ := (A⊕ C1(x)φ)⊕ C2(x)φ.

t-rule if C1 t C2(x)φ ∈ A, and both C1(x)φ and C2(x)φ are A-insertable,
then A′ := A⊕ C1(x)φ, A′′ := A⊕ C2(x)φ.

∃-rule if ∃R.C(x)φ ∈ A, x is not blocked, and either R(x, y)φ or C(y)φ is A-insertable,
then A′ := (A⊕R(x, y)φ)⊕C(y)φ, where y is a new individual name and y > y′ for all individual
names y′ in A.

∀-rule if {∀R.C(x)φ, R(x, y)ψ} ⊆ A, and C(y)φ∧ψ is A-insertable,
then A′ := A⊕ C(y)φ∧ψ .

v-rule if (C v D)φ ∈ T , (¬C tD)(x)φ is A-insertable for some individual name x,
then A′ := A⊕ (¬C tD)(x)φ.

.
=-rule if (C

.
= D)φ ∈ T , (¬C tD) u (C t ¬D)(x)φ is A-insertable for some individual name x,

then A′ := A⊕ (¬C tD) u (C t ¬D)(x)φ.

rules make use of the following abbreviations and definitions: A⊕C(x)φ stands
for: (A \ {C(x)ψ}) ∪ {C(x)φ∨ψ} if C(x)ψ ∈ A, and A ∪ {C(x)φ} otherwise.
Similarly, A⊕R(x, y)φ stands for: (A\{R(x, y)ψ})∪{R(x, y)φ∨ψ} ifR(x, y)ψ ∈ A,
and A∪{R(x, y)φ} otherwise. We refer to a labelled concept assertion C(x)φ as
A-insertable iff, whenever there is a ψ such that C(x)ψ ∈ A, then φ 6|= ψ. After
constructing an expansion tree using the above expansion rules, we compute
a propositional formula called the clash-resolve formula as follows: Suppose
A1, . . . ,An are the complete Aboxes obtained from the expansion. A particular
clash {C(x)φ1 ,¬C(x)φ2} ⊆ Ai is expressed by the propositional formula φ1∧φ2.
Now suppose there are ki clashes in Ai, and let ψi,1, . . . , ψi,ki be the formulas
expressing all the clashes in Ai. The clash-resolve formula associated with T
and A is:

∨n
i=1

∧ki
j=1 ¬ψi,j. To compute the A-MSSs , simply find the prime

implicants of the clash-resolve formula. Each prime implicant is of the form
(¬p1 ∧ . . . ∧ ¬pm), and the corresponding A-MSS can be found by removing
from the original set of axioms T the axioms whose labels are p1, . . . , pm. Our
result also show that classical blocking does not always block correctly at the
right point, hence it will not always yield the desired results. The reason is that
the labels associated with sentences are not taken into account when blocking
is performed. Therefore, we define the refined blocking condition as follows: An
individual y is blocked by x iff y > x and for every C(y)ψ ∈ A, it is the case
that C(x)φ ∈ A for some φ such that ψ |= φ.

Conclusion and Future Work

We presented an algorithm for computing maximally satisfiable for description
logic represented in ALC. Unlike the existing algorithms, our proposed algo-
rithm could also handle GCIs. We outlined some limitations with the classic
subset blocking in the labelled satifiablity algorithm and addressed these issues
by proposing a refined blocking condition. For future work, we will investigate
on extending our algorithm to more expressive description logics, such as SI
and ALCN .



References

[1] Franz Baader and Bernhard Hollunder. Embedding Defaults into Termi-
nological Knowledge Representational Formalisms. Journal of Automated
Reasoning, 14:149–180, 1995.

[2] Stefan Schlobach. Diagnosing terminologies. In Proceedings of AAAI05,
pages 670–675, 2005.


