
Combining Constitutive and Regulative Norms in
Input/Output Logic

Xin Sun and Leendert van der Torre

Individual and Collective Reasoning Group, University of Luxembourg

Abstract. In this paper we study three semantics to combine constitutive and
regulative norms. In the first semantics, called the simple-minded semantics, the
output of the constitutive norms are intermediate facts used as input for the regu-
lative norms. The second method is called throughput, and adds the input of the
constitutive norms to the intermediate facts. The third method is called reusable,
because it reuses the output of the regulative norms in the input. In addition, we
refine these three so-called abstract semantics such that the obligations are la-
beled with the intermediate facts used to derive them. These explanations in the
labels can be used for argumentation, norm change or interpretation. We present
complete axiomatisations for the abstract and refined version of the three seman-
tics.

Key words: deontic logic, input/output logic, constitutive norms

1 Introduction

Constitutive norms are one of the traditional developments of normative reasoning dis-
cussed in the handbook of deontic logic [6], besides permissive norms, prima facie
norms, and normative positions. They are usually contrasted with norms regulating the
behavior of human beings by indicating which behaviors are obligatory, permitted and
forbidden. Constitutive norms do not regulate actions or states-of-affairs, but rather
they define new possible actions or states of affairs. In this paper we have little to say
about constitutive norms themselves, and we refer the reader to the overview chapter
of Grossi and Jones in the handbook [8]. Instead, we are interested in the combination
of regulative and constitutive norms. As there are various ways to combine these two
kinds of norms, and we believe none of them is perfect, this raises a new question. Be-
sides choosing a logic for constitutive norms and a logic for regulative norms, the new
question is:

Research question. Which combination method to choose for combining constitutive
and regulative norms?

Our approach in this paper to answer this question is to define three ways of com-
bining these two kinds of norms, and axiomatize these combinations. As always, the ax-
iomatization presents the characteristic properties of the combination methods, which
can be used to choose the method appropriate for a particular application. Moreover, we

make as little commitments as possible about the representation of the norms. For ex-
ample, constitutive norms are often represented by count-as conditionals “X counts as
Y in the context Z” [22, 12, 9], but there does not seem to be a consensus on the repre-
sentation of the context. We therefore follow Lindahl and Odelstad [15] and Boella and
van der Torre [1, 2] and abstract away from the context. We thus represent constitutive
norms as rules “X counts as Y .” We use the general input/output logic approach [17, 18]
to represent both constitutive and regulative norms, and in particular we use a ‘minimal’
input/output logic recently introduced by Parent and van der Torre [19].

The research question breaks down into the following four subquestions. First, how
to axiomatize the simple-minded combination method of Lindahl and Odelstad [15],
visualized below in Figure 1? Here C and R are the set of constitutive and regula-
tive norms respectively. A is a set of formulas represents the facts. I is another set
of formulas representing the intermediate concepts generated by the fact A and con-
stitutive norms C. These intermediate concepts are the input of the regulative norms
R. O is the output of intermediate concepts I together with regulative norms R. If
we write I(C,A) for the intermediate facts derived from the facts A using the consti-
tutive norms C, and ©(R, I) for the obligations derived from the intermediate facts
I using the regulative norms R, then we can represent their combination method as
�∗(R,C,A) =©(R, I(C,A)).

Fig. 1. Lindahl & Odelstad’s combination Fig. 2. Aggregative input/output logic

Second, how to relate obligations explicitly to their intermediate facts, such that
these can be used for explanation tasks in argumentation, interpretation and norm change?
For example, assume that a piece of paper counts as a contract, represented by the con-
stitutive norm (paper,contract), and that the contract obliges us to pay money, repre-
sented by the regulative norm (contract, pay). From these two norms we want to de-
rive the intermediate fact contract from the fact paper, and the obligation paycontract,
which means we are obliged to pay because there is a contract. For example, in ar-
gumentation, we can present a rebutting argument there is no obligation to pay, or an
undercutting argument that there is no contract. As another example, consider the fa-
mous story of tû-tû introduced by Ross [21]. Suppose (eat, tû-tû) represents “If a person
has eaten the chief’s food she is tû-tû”, and (tû-tû, purification) represents “If a person
is tû-tû she is obligatory to be subjected to a ceremony of purification.” Given the fact
eat, from these two norms the institutional fact of tû-tû and the obligation purifica-
tiontû-tû, which means the person should be subjected to a ceremony of purification
because she is tû-tû. Likewise, an obligation congratulatecheckmate says that you have
to congratulate your opponent because you are check mate in chess, and the obligation

takecarefamilybeingmarried says that you have to take care of your family because you
are married.

Third, how to introduce the assumption that base facts are treated as intermedi-
ate facts too? Tosatto et al. [24] distinguish �∗(R,C,A) = ©(R, I(C,A)) from
�(R,C,A) = ©(R,A ∪ I(C,A)). For example, given R = {(a, x), (p, y)}, C =
{(b, p)} and A = {a, b}, we have �∗(R,C,A) = {y} because I(C,A) = {p} and
©(R, {p}) = {y}, and �(R,C,A) = {x, y} because A ∪ I(C,A) = {a, b, p} and
©(R, {a, b, p}) = {x, y}.

Fourth, how to ensure that the combined system has the same properties as the
individual systems? In particular, Parent and van der Torre [19] argue for a new form of
deontic detachment, called aggregative deontic detachment. The corresponding rule for
aggregative deontic detachment is called aggregative cumulative transitivity (ACT):

(ACT)
x ∈ ©(R, a) y ∈ ©(R, a ∧ x)

x ∧ y ∈ ©(R, a)

In this paper we use aggregative input/output logic to represent constitutive and regula-
tive norms. The two combinations mentioned by Tosatto et al. [24] are therefore repre-
sented by©(R,©(C,A)) and©(R,A ∪©(C,A)), where the operator© is defined
in Parent and van der Torre [19]. We show in this paper that even though aggregative
input/output logic satisfies ACT, both©(R,©(C,A)) and©(R,A∪©(C,A)) do not.
We therefore define a third combination of constitutive and regulative norms by forcing
©(R,A ∪©(C,A)) to satisfy ACT. We call these three combinations simple-minded,
throughput and reusable combination respectively. For each of the three combination,
we further distinguish the abstract combination, where the output of the combination is
obligation, and detailed combination, where the output of the combination is obligation
together with institutional facts.

Inspired by the input/output terminology, we use the following notation. We use
©◦ 1,©◦ +

1 and©◦ +
3 for the simple-minded, throughput and reusable abstract combination

respectively. For detailed combination, we use©• 1,©• +
1 and©• +

3 .
The layout of this paper is as follows. We survey aggregative input/output logic in

Section 2. Then we introduce basic, throughput and reusable combinations in Section 3
to 5 respectively. We then discuss related work and future research. We finish this paper
in Section 8.

2 Aggregative input/output logic

Parent and van der Torre [19] introduce aggregative input/output logic, based on the
following ideas. On the one hand, deontic detachment (DD) or cumulative transitivity
(CT) is fully in line with the tradition in deontic logic. For instance, the Danielsson-
Hansson-Lewis semantics [5, 10, 14] for conditional obligation validates such a law. On
the other hand, they also observe that potential counterexamples to DD may be found
in the literature. Parent and van der Torre illustrate this with the following example, due
to Broome [4, §7.4]:

You ought to exercise hard everyday
If you exercise hard everyday, you ought to eat heartily
?? You ought to eat heartily

Intuitively, the obligation to eat heartily no longer holds, if you take no exercise.
Like the others, Parent and van der Torre claim that this counterexample suggests an al-
ternative (they call it “aggregative”) form of detachment, which keeps track of what has
been previously detached. They therefore reject the CT rule, and they accept the weaker
ACT rule. As a consequence, and following amongst others [11, 7, 25, 23], weakening
the output is no longer accepted either.

Let P = {p0, p1, . . .} be a countable set of propositional letters and L be the propo-
sitional logic built upon P. We write φ a` ψ for logical equivalence in the logic L.
Let R be a set of ordered pairs of formulas of L. A pair (a, x) ∈ R, call it a regu-
lative norm, is read as “given a, it ought to be x”. Let A ⊆ L be a set of formulas,
R(A) = {x ∈ L|(a, x) ∈ R, a ∈ A} be set theoretically understood as the image
of A under function R. The semantics of aggregative input/output logic is defined as
following:

Definition 1. (aggregative input/output logic [19]) For every R ⊆ L × L, A ⊆ L,
x ∈ ©(R,A) iff there is finite R′ ⊆ R with R′(A) 6= ∅ such that ∀B = Cn(B), if
A ∪R′(B) ⊆ B then x a`

∧
R′(B).

The above definition can be visualized by Figure 2. In the definition there is a qual-
ification over a logically closed set B, which represents the input of R. B is required to
extend A ∪ R′(B) because the left arrow is labeled by A and there is influx from the
right arrow (representing R′(B)) to the left arrow.

The following example illustrates aggregative deontic detachment.

Example 1. Let regulative norms be R = {(a, x), (a ∧ x, y)} and input A = {a}.
We have ©(R,A) = {x, x ∧ y, . . .}. The table below illustrates how to calculate
©(R,A), where B∗ is the smallest set of formulas such that we have B∗ = Cn(B∗)
andA∪R′(B∗) ⊆ B∗. We can then derive the obligation for x∧y, but not an obligation
for y, which means ACT hold in aggregative input/output logic but CT does not.

A R′ B∗ R′(B∗)
∧
R′(B∗)

{a} {(a, x)} Cn({a, x}) {x} {x, . . .}
{a} R Cn({a, x, y}) {x, y} {x∧y, . . .}

The proof system contains three rules: strengthening of the antecedent (SI), output
equivalence (OEQ) and aggregative cumulative transitivity (ACT).

Definition 2. (Proof system of aggregative input/output logic [19]) Let D(R) be the
smallest set of arguments such that R ⊆ D(R) and D(R) is closed under the following
rules:

– SI: from (a, x) and b ` a to (b, x)
– OEQ: from (a, x) and x a` y to (a, y)
– ACT: from (a, x) and (a ∧ x, y) to (a, x ∧ y).

The rule AND is derivable in aggregative input/output logic.

– AND: from (a, x) and (a, y) to (a, x ∧ y)

Parent and van der Torre define x ∈ D(R,A) iff there exist a1, . . . , an ∈ A such
that (a1 ∧ . . . ∧ an, x) ∈ D(R). The following completeness result is proved [19].

Theorem 1. (Completeness of aggregative input/output logic [19]) Given an arbi-
trary normative system R and a set A of formulas, D(R,A) =©(N,A).

3 Simple-minded combination

The idea of simple-minded combination is illustrated by Figure 1. There is a set of
constitutive normsC ⊆ L×L and a set of regulative normsR ⊆ L×L. The input is a set
A of formulas representing facts. I =©(C,A) is the output produced by the semantics
of aggregative input/output logic given C and A. I is understood as the intermediate
facts and further used as the input to regulative norms R to generate obligations O =
©(R, I).

Fig. 3. Basic combination

We use aggregative input/output logic as our tool to analyze both constitutive and
regulative norms. Since aggregative input/output logic is reusable in the sense its out-
put can be reused as input, we represent basic combination by Figure 3 with arrows
representing reusability.

3.1 Simple-minded abstract combination

Simple-minded abstract combination can be built straightforwardly by a composition
of two aggregative input/output logic.

Definition 3. Let C,R ⊆ L × L,A ⊆ L, the semantics of simple-minded abstract
combination is:

©◦ 1(C,R,A) =©(R,©(C,A)).

We use the following example to illustrate simple-minded abstract combination:

Example 2. LetA = {eat},C = {(eat, tû-tû)},R = {(tû-tû, purification), (eat, sorry)}.
Here (eat, sorry) means “if a person has eaten the chief’s food she should say sorry.”
Then we have©(C,A) = {tû-tû,. . . },©◦ 1(C,R,A) = {purification,. . . }. Note we do
not have sorry ∈ ©◦ 1(C,R,A) because eat /∈ ©(C,A).

The proof system of simple-minded abstract combination is defined as follows:

Definition 4. Let C,R ⊆ L×L, the proof system of simple-minded abstract combina-
tion is defined as follows:

D◦ 1(C,R) = {(a, x) | there is p ∈ L such that (a, p) ∈ D(C) and (p, x) ∈ D(R)}

We call the rule to derives (a, x) ∈ D◦ 1(C,R) from (a, p) ∈ D(C) and (p, x) ∈ D(R)
constitutive/regulative transitivity (CR-T). The following is an example to illustrate the
proof system of simple-minded abstract combination:

Example 3. From C = {(a, x), (a ∧ x, y)}, R = {(y, z)} we can derive (a, z) ∈
D◦ 1(C,R) as following:

(a,x)∈C (a∧x)∈C
(a,x∧y)∈D(C) (ACT) (y,z)∈R

(x∧y,z)∈D(R) (SI)

(a, z) ∈ D◦ 1(C,R)
(CR-T)

The semantics and proof theory of simple-minded abstract combination are con-
nected by the following completeness result:

Theorem 2 (Completeness of simple-minded abstract combination). For two sets
C,R ⊆ L× L, we have

x ∈ ©◦ 1(C,R, a) iff (a, x) ∈ D◦ 1(C,R).1

Proof. (sketch) Assume x ∈ ©◦ 1(C,R, a), then x ∈ ©(R,©(C, a)). By Theorem 1
we know there exist p1, . . . , pn ∈ ©(C, a) such that x ∈ ©(R, {p1, . . . , pn}). Then
we can further deduce (a, p1 ∧ . . . ∧ pn) ∈ D(C) and (p1 ∧ . . . ∧ pn, x) ∈ D(R).
Therefore (a, x) ∈ D◦ 1(C,R).

The other direction is easier and left to the reader. �

It can be verified that the simple-minded abstract combination satisfies SI, OEQ and
AND.

Proposition 1. SI, OEQ and AND are valid in simple-minded abstract combination.

Proof. The proof is relatively easy and safely left to the reader. �

3.2 Simple-minded detailed combination

For detailed combinations, the tricky thing is we want to produce not obligation, but
obligation with institutional facts. Formally, the output for detailed combination is of
the form xp, where x, p ∈ L. Such output has never been defined in the input/output
logic literature. Technically, the semantics of simple-minded detailed combination is
defined as follows, in a flavor similar to aggregative input/output logic:

Definition 5. Let C,R ⊆ L × L,A ⊆ L, we define xp ∈ ©• 1(C,R,A) iff there exist
finite C ′ ⊆ C,R′ ⊆ R such that ∀B1 = Cn(B1), B2 = Cn(B2), if A ∪ C ′(B1) ⊆ B1

then p a`
∧
C ′(B1), if C ′(B1) ∪R′(B2) ⊆ B2, then x a`

∧
R′(B2).

1 The proofs of theorems of this paper can be found in a technical report on the first author’s
website.

In the semantics of aggregative input/output logic (Definition 2), we pick a setR′ of the
norms and qualify over a set of formulasB, which is closed under logic consequence. In
the semantics of basic detailed combination, we pick two setsC ′ andR′, and we qualify
over two sets of formulas B1, B2, which are both closed under logic consequence.

The set B1 is the input for C ′. As it is shown in Figure 3 , we require it to extend
A∪C ′(B1) because there is an arrow labelledA inject to C ′ and there is another arrow,
the arrow from I to A, also inject to C ′. Here note that I is understood as C ′(B1).

Similarly, the set B2 is the input for R′. We require it to contain C ′(B1) ∪ R′(B2)
because there is an arrow labelled I inject to R and there is another arrow, the arrow
from O to I , also inject to R. Here note that O can be understood as R′(B2).

Definition 6 (Proof theory of simple-minded detailed combination). For two sets
C,R ⊆ L× L, the proof theory of simple-minded detailed combination is:

D• 1(C,R) = {(a, xp) | there is p ∈ L such that (a, p) ∈ D(C) and (p, x) ∈ D(R)}

We call the rule which derives (a, xp) ∈ D• 1(C,R) from (a, p) ∈ D(C) and (p, x) ∈
D(R) constitutive/regulative transitivity (CR-T′).

Example 4. (continued) From C = {(a, x), (a ∧ x, y)}, R = {(y, z)} we can derive
(a, zx∧y) ∈ D◦ 1(C,R) as following:

(a,x)∈C (a∧x)∈C
(a,x∧y)∈D(C) (ACT) (y,z)∈R

(x∧y,z)∈D(R) (SI)

(a, zx∧y) ∈ D◦ 1(C,R)
(CR-T′)

The above proof theory relies heavily on the proof theory of aggregative input/output
logic. Moreover, it works separately on constitutive and regulative norms and combine
them together at the last step by the CR-T′ rule. We alternatively define an equivalent
proof theory more directly on expressions of the form (a, xp).

Definition 7. Given C,R, let D• ′1(C,R) be the smallest set of arguments such that
(>,>>) ∈ D• ′1(C,R), {(a,>p) | (a, p) ∈ C} ⊆ D• ′1(C,R) and D• ′1(C,R) is closed
under the following rules:

– SI: strengthening of the input: from (a, xp) to (b, xp) whenever b ` a
– IOEQ: intermediate and output equivalence: from (a, xp) to (a, yq) whenever p a`
q and x a` y

– ACTI: aggregative cumulative transitivity for the intermediate: from (a, xp) and
(a ∧ p, xq) to (a, xp∧q)

– ACTO: aggregative cumulative transitivity for output: from (a, xp) and (a ∧ x, yp)
to (a, x ∧ yp),

and the following indexed constitutive/regulative transitivity (ICR-T) rule:

– if (a,>p) ∈ D• ′1(C,R) and (p, x) ∈ D(R) then (a, xp) ∈ D• ′1(C,R).
Example 5. (continued) Given C = {(a, x), (a ∧ x, y)}, R = {(y, z)}, we first derive
(a,>x) and (a ∧ x,>y), then we derive (a, zx∧y) ∈ D◦ 1(C,R) as following:

(a,>x) (a∧x,>y)
(a,>x∧y)

(ACTI) (y,z)∈R
(x∧y,z)∈D(R) (SI)

(a, zx∧y)
(ICR-T)

The proof theory D• ′1(C,R) may look unusual at first glance, but it resembles the
proof theory of aggregative input/output logic. They both contain rule like strengthen-
ing of the input, output equivalence and aggregative cumulative transitivity. The equiv-
alence of D• 1(C,R) and D• ′1(C,R) is stated by the following proposition:

Proposition 2. For all C,R ⊆ L× L, (a, xp) ∈ D• 1(C,R) iff (a, xp) ∈ D• ′1(C,R).

Proof. (⇒) Assume (a, xp) ∈ D• 1(C,R). Then (a, p) ∈ D(C) and (p, x) ∈ D(R). By
Lemma 1 we know (a,>p) ∈ D• ′1(C,R). Then by the ICR-T rule we know (a, xp) ∈
D• ′1(C,R).

(⇐) Assume (a, xp) ∈ D• ′1(C,R). We prove by induction on the length of deriva-
tion. We have the following cases: Base cases:

– (a, xp) is (>,>>). Since we have (>,>) ∈ D(C), (>,>) ∈ D(R), we have
(>,>>) ∈ D• 1(C,R).

– (a, xp) is (a,>p) and it is derived by (a, p) ∈ C. Then we know (a, p) ∈ D(C).
More over, from (>,>) ∈ D(R) and using SI rule we have (p,>) ∈ D(R). Then
we have (a,>p) ∈ D• 1(C,R).

Inductive cases:

– (a, xp) is derived from (a,>p) ∈ D• ′1(C,R) and (p, x) ∈ D(R). Then by induction
hypothesis we have (a, p) ∈ D(C) and (p,>) ∈ D(R). From (a, p) ∈ D(C) and
(p, x) ∈ D(R) we know(a, xp) ∈ D• 1(C,R).

– (a, xp) is derived by using SI rule. Then there exist (b, xp) ∈ D• ′1(C,R) and a ` b.
Then by induction hypothesis we have (b, p) ∈ D(C) and (p, x) ∈ D(R). From
a ` b and (b, p) ∈ D(C) we know (a, p) ∈ D(C). This plus (p, x) ∈ D(R) we
can derive (a, xp) ∈ D• 1(C,R).

– (a, xp) is derived by using IOEQ rule. Then there exist (a, yq) ∈ D• ′1(C,R) such
that x a` y and p a` q. Then by induction hypothesis we have (a, y) ∈ D(C),
(y, q) ∈ D(R). Now by applying OEQ rule to D(C) we have (a, x) ∈ D(C). By
applying SI rule to D(R) we have (x, q) ∈ D(R), and by OEQ (x, p) ∈ D(R).
Now we can derive (a, xp) ∈ D• ′1(C,R).

– (a, xp∧q) is derived the ACTI rule. Then there exist (a, xp), (a∧p, xq) ∈ D• ′1(C,R).
By induction hypothesis we know (a, p) ∈ D(C), (p, x) ∈ D(R), (a ∧ p, q) ∈
D(C), (q, x) ∈ D(R). Applying ACT to (a, p) ∈ D(C) and (a ∧ p, q) ∈ D(C)
we can derive (a, p ∧ q) ∈ D(C). Applying SI to (q, x) ∈ D(R) we can derive
(p ∧ q, x) ∈ D(R). Therefore (a, xp∧q) ∈ D• 1(C,R).

– (a, x ∧ yp) is derived the ACTO rule. Then there exist (a, xp), (a ∧ x, yp) ∈
D• ′1(C,R). By induction hypothesis we know (a, p) ∈ D(C), (p, x) ∈ D(R),
(a ∧ x, p) ∈ D(C), (p, y) ∈ D(R). Applying AND rule to D(R) we have (p, x ∧
y) ∈ D(R). Therefore (a, x ∧ yp) ∈ D• 1(C,R).

Lemma 1. Given an arbitrary constitutive normative system C, if (a, p) ∈ D(C) then
(a,>p) ∈ D• ′1(C,R).

Proof. (sketch) If (a, p) ∈ C, then by the definition of D• ′1(C,R) we know (a,>p) ∈
D• ′1(C,R).
If (a, p) ∈ D(C) is derived by SI, then there exist (b, p) ∈ D(C), a ` b. By induc-
tion hypothesis we know (b,>p) ∈ D• ′1(C,R). Therefore by SI we know (a,>p) ∈
D• ′1(C,R).
If (a, p) is derived by OEQ, then there exist (a, q) ∈ D(C), p ` q. By induction hypoth-
esis we know (a,>q) ∈ D• ′1(C,R). Therefore by IOEQ we know (a,>p) ∈ D• ′1(C,R).
If (a, p∧ q) is derived by ACT, then there exist (a, p), (a∧ p, q) ∈ D(C). By induction
hypothesis we know (a,>p), (a ∧ p,>q) ∈ D• ′1(C,R). Therefore by ACTI we know
(a,>p∧q) ∈ D• ′1(C,R). �

With the proof theory and semantics as defined, we have the following completeness
result.

Theorem 3 (Completeness of basic detailed combination). For all C,R ⊆ L× L,
(a, xp) ∈ D• 1(C,R) iff xp ∈ ©• 1(C,R, a).

(soundness) The soundness is relative easy to prove. Here we skip it.
(Completeness) Assume (a, xp) ∈ D• 1(C,R), then (a, p) ∈ D(C), (p, x) ∈ D(R).
Then by the Theorem 1 we know p ∈ ©(C, a) and x ∈ ©(R, p). By the semantics
of aggregative input/output logic we can check that xp ∈ ©• 1(C,R, a). The process is
routine, here we skip it.

4 Throughput combination

In this section strengthen simple-minded combination to throughput combination such
that the fact A can directly be used by regulative norms R, see Figure 4.

Fig. 4. Throughput combination

4.1 Throughput abstract combination

Throughput abstract combination can be built with the help of Figure 4, where both A
and the output©(C,A) are part of the input of R.

Definition 8 (Semantics of throughput abstract combination). Let C,R ⊆ L × L,
A ⊆ L,©◦ +

1 (C,R,A) =©(R,A ∪©(C,A)).

The following is the proof system:

Definition 9 (Proof system of throughput abstract combination). LetC,R ⊆ L×L,
the proof system of throughput abstract combination is:
D◦ +

1 (C,R) = {(a, x) | there is p ∈ L such that (a, p) ∈ D(C) and (a ∧ p, x) ∈ D(R)}

We call the rule to derives (a, x) ∈ D◦ 1(C,R) from (a, p) ∈ D(C) and (a ∧ p, x) ∈
D(R) constitutive/regulative cumulative transitivity (CR-CT).

The semantics and proof theory of basic abstract combination are connected by the
following completeness result:

Theorem 4 (Completeness of basic abstract combination). Let C,R ⊆ L × L, we
have x ∈ ©◦ +

1 (C,R, a) iff (a, x) ∈ D◦ +
1 (C,R).

Proof. The proof is similar to the proof of Theorem 2, here we skip it. �

4.2 Throughput detailed combination

In parallel to the simple-minded detailed combination, we introduce the semantics and
proof theory of throughput detailed combination. The semantics of simple-minded de-
tailed combination is similar to the semantics of aggregative input/output logic.

Definition 10. Let C,R ⊆ L× L,A ⊆ L, we define xp ∈ ©• +
1 (C,R,A) iff there exist

finiteC ′ ⊆ C,R′ ⊆ R such that ∀B1 = Cn(B1) and ∀B2 = Cn(B2), ifA∪C ′(B1) ⊆
B1 then p a`

∧
C ′(B1), if A ∪ C ′(B1) ∪R′(B2) ⊆ B2, then x a`

∧
R′(B2)

Like the semantics of simple-minded detailed combination, here we pick two set C ′

and R′, and we qualify over two sets of formulas B1, B2, which are both closed under
logic consequence. The only difference is: for B2, here we require it to extend A, while
in simple-minded detailed combination we don’t have such requirements. The reason
of such difference can be detected by comparing Figure 3 and 4. In Figure 4 there is an
arrow from A to I , while in Figure 3 there is not.

Definition 11 (Proof system of throughput detailed combination). Given two sets
C,R ⊆ L× L, the proof system of throughput detailed combination is:
D• +

1 (C,R) = {(a, xp) | there is p ∈ L such that (a, p) ∈ D(C) and (a ∧ p, x) ∈ D(R)}

As the proof theory D• 1, D• +
1 heavily relies on the proof theory of aggregative in-

put/output logic. A more independent proof theory is defined as follows:

Definition 12. Let D• +′

1 (C,R) be the smallest set such that (>,>>) ∈ D• +′

1 (C,R),
{(a,>p) | (a, p) ∈ C} ⊆ D• +′

1 (C,R), {(a, x>) | (a, x) ∈ R} ⊆ D• +′

1 (C,R) and

D• +′

1 (C,R) is closed under the rules SI, IOEQ, ACTI, ACTO and the following rule:

– if (a,>p) ∈ D• +′

1 (C,R) and (a ∧ p, x) ∈ D(R) then (a, xp) ∈ D• +′

1 (C,R)

One difference between D• +′

1 (C,R) and D• ′1(C,R) is: for D• +′

1 (C,R) we require it to
extend {(a, x>) | (a, x) ∈ R}. This feature in some sense reveals that regulative norms
can be derived directly in throughput combination.

The equivalence of D• +
1 and D• +′

1 is stated in the following proposition.

Proposition 3. For all C,R ⊆ L× L, (a, xp) ∈ D• +
1 (C,R) iff (a, xp) ∈ D• +′

1 (C,R)

Proof. Assume (a, xp) ∈ D• +
1 (C,R). Then (a, p) ∈ D(C) and (a ∧ p, x) ∈ D(R). By

Lemma 2 we know (a,>p) ∈ D• +′

1 (C,R). From (a,>p) ∈ D• +′

1 (C,R) and (a∧p, x) ∈
D(R) we derive (a, xp) ∈ D• +′

1 (C,R).

Assume (a, xp) ∈ D• +′

1 (C,R). We prove by induction on the length of derivation.
W have the following cases:
Base cases:

– If (a, xp) is (>,>>). Since (>,>) ∈ D(C), D(R), we know (>∧>,>) ∈ D(R),
therefore (>,>>) ∈ D• +

1 (C,R).
– If (a, x>) ∈ D• +′

1 (C,R) and it is derived by (a, x) ∈ R. Then we have (a ∧
>, x) ∈ D(R). From (>,>) ∈ D(C) we can use SI to derive (a,>) ∈ D(C).
From (a,>) ∈ D(C) and (a ∧ >, x) ∈ D(R) we know (a, x>) ∈ D• +

1 (C,R).
– If (a,>p) ∈ D• +′

1 (C,R) and it is derived by (a, p) ∈ C. From (>,>) ∈ D(R) we
can use SI to derive (a ∧ p,>) ∈ D(R). Therefore (a,>p) ∈ D• +

1 (C,R).

Inductive steps:

– if (a, xp) ∈ D• +′

1 (C,R) and it is derived by SI. Then there exist b such that a ` b
and (b, xp) ∈ D• +′

1 (C,R). By induction hypothesis we have (b, xp) ∈ D• +
1 (C,R).

Therefore (b, p) ∈ D(C) and (b ∧ p, x) ∈ D(R). By a ` b we can deduce (a, p) ∈
D(C) and (a ∧ p, x) ∈ D(R). Therefore (a, xp) ∈ D• +

1 (C,R).
– if (a, xp) ∈ D• +′

1 (C,R) and it is derived by IOEQ. Then there exist q, y such that

x a` y and p a` q and (a, yq) ∈ D• +′

1 (C,R). By induction hypothesis we have
(a, yq) ∈ D• +

1 (C,R). Therefore (a, q) ∈ D(C) and (a ∧ q, y) ∈ D(R). By p a` q
and x a` y we can deduce (a, p) ∈ D(C) by OEQ and (a ∧ p, x) ∈ D(R) by SI
and OEQ. Therefore (a, xp) ∈ D• +

1 (C,R).
– if (a, xp∧q) ∈ D• +′

1 (C,R) and it is derived by ACTI. Then (a, xp) ∈ D• +′

1 (C,R)

and (a∧p, xq) ∈ D• +′

1 (C,R). By induction hypothesis we have (a, xp) ∈ D• +
1 (C,R)

and (a ∧ p, xq) ∈ D• +
1 (C,R). Therefore (a, p) ∈ D(C), (a ∧ p, x) ∈ D(R),

(a∧p, q) ∈ D(C) and (a∧p∧q, x) ∈ D(R). Therefore by ACT we have (a, p∧q) ∈
D(C). This plus (a ∧ p ∧ q, x) ∈ D(R) we derive (a, xp∧q) ∈ D• +

1 (C,R).
– if (a, x∧yp) ∈ D• +′

1 (C,R) and it is derived by ACTO. Then (a, xp) ∈ D• +′

1 (C,R)

and (a∧x, yp) ∈ D• +′

1 (C,R). By induction hypothesis we have (a, xp) ∈ D• +
1 (C,R)

and (a ∧ x, yp) ∈ D• +
1 (C,R). Therefore (a, p) ∈ D(C), (a ∧ p, x) ∈ D(R),

(a ∧ x, p) ∈ D(C) and (a ∧ x ∧ p, y) ∈ D(R). Therefore by ACT we have
(a ∧ p, x ∧ y) ∈ D(R). This plus (a, p) ∈ D(C) we can derive (a, x ∧ yp) ∈
D• +

1 (C,R).
– (a, xp) is derived from (a,>p) ∈ D• +′

1 (C,R) and (a ∧ p, x) ∈ D(R). Then by
induction hypothesis we have (a, p) ∈ D(C) and (a∧p,>) ∈ D(R). From (a, p) ∈
D(C) and (a ∧ p, x) ∈ D(R) we know(a, xp) ∈ D• +

1 (C,R). �

Lemma 2. Given an arbitrary constitutive normative system C, if (a, p) ∈ D(C) then
(a,>p) ∈ D• +′

1 (C,R).

Proof. (sketch) If (a, p) ∈ C, then by the definition of D• +′

1 (C,R) we know (a,>p) ∈
D• +′

1 (C,R).
If (a, p) ∈ D(C) is derived by SI, then there exist (b, p) ∈ D(C), a ` b. By induc-
tion hypothesis we know (b,>p) ∈ D• +′

1 (C,R). Therefore by SI we know (a,>p) ∈
D• +′

1 (C,R).
If (a, p) is derived by OEQ, then there exist (a, q) ∈ D(C), p ` q. By induction
hypothesis we know (a,>q) ∈ D• +′

1 (C,R). Therefore by IOEQ we know (a,>p) ∈
D• +′

1 (C,R).
If (a, p∧ q) is derived by ACT, then there exist (a, q), (a∧ p, q) ∈ D(C). By induction
hypothesis we know (a,>p), (a ∧ p,>q) ∈ D• +′

1 (C,R). Therefore by ACTI we know

(a,>p∧q) ∈ D• +′

1 (C,R). �

With the proof theory and semantics as defined, we have the following completeness
result.

Theorem 5 (Completeness of throughput detailed combination). For all C,R ⊆
L× L, (a, xp) ∈ D• +

1 (C,R) iff xp ∈ ©• +
1 (C,R, a).

Proof. (soundness) For soundness the proof is similar to the soundness part of Theorem
2. Here we skip it.
(Completeness) Assume (a, xp) ∈ D• +

1 (C,R). Then by the completeness of aggrega-
tive input/output logic we know p ∈ ©(C, a) and x ∈ ©(R, a ∧ p). By the semantics
of aggregative input/output logic we can check that xp ∈ ©• +

1 (C,R, a). The process is
routine, here we skip it. �

5 Reusable combination

Now we turn to reusable combinations. As illustrated by the arrow from O to A in Fig-
ure 5, reusable combination is the extension of throughput combination which allows
the output of regulative norms to be reused as input for constitutive norms. In this case
the input of C have three resource: the arrow A, the arrow from I to A, and the arrow
from O to A. The input of R have exactly the same resource. Therefore we can change
Figure 5 to Figure 6 such that C and R have the same input.

5.1 Reusable abstract combination

The fact that reusable combination is the extension of throughput combination which
allows the reusability of output from R suggests that reusable combination can be de-
fined as the extension of throughput combination which validates the ACT rule. While
the proof theory of reusable abstract combination is a straightforward extension of its
throughput companion, its semantics is more complex.

Fig. 5. Reusable combination Fig. 6. Serial visualization

Definition 13 (Semantics of reusable abstract combination). Let C,R ⊆ L×L, and
A ⊆ L, we define x ∈ ©◦ +

3 (C,R,A) iff there exist finite C ′ ⊆ C,R′ ⊆ R such that
∀B = Cn(B) : if A ∪ C ′(B) ∪R′(B) ⊆ B then x a`

∧
R′(B).

Definition 14 (Proof system of reusable abstract combination). Let C,R ⊆ L× L,
the proof system of reusable abstract combination is defined as follows:
D◦ +

3 (C,R) is the smallest set such that D◦ +
1 (C,R)(C,R) ⊆ D◦ +

3 (C,R) and D◦ +
3 (C,R)

is closed under the ACT rule.

The above semantics reflects the ideas illustrated by Figure 6. We qualify over a set
B, which is used as the input for C and R. Such B is an extension of A, I (representing
C(B)) and O (representing R(B)). That’s why we require A ∪ C ′(B) ∪R′(B) ⊆ B.

The semantics and proof theory of basic abstract combination are connected by the
following completeness result:

Theorem 6 (Completeness of basic abstract combination). Let C,R ⊆ L × L, we
have x ∈ ©◦ +

3 (C,R, a) iff (a, x) ∈ D◦ +
3 (C,R).

Proof. The proof is covered by the proof of Theorem 7, here we skip it.

5.2 Reusable detailed combination

The semantics of reusable detailed combination is an extension of its abstract compan-
ion.

Definition 15 (Semantics of reusable detailed combination). Let C,R ⊆ L×L, and
A ⊆ L, we define xp ∈ ©• +

3 (C,R,A) iff there exist finite C ′ ⊆ C,R′ ⊆ R such that
∀B = Cn(B) : if A ∪ C ′(B) ∪R′(B) ⊆ B then p a`

∧
C ′(B), x a`

∧
R′(B).

The following example is a variant from Makinson [16] to illustrate reusable com-
bination.

Example 6. Let C = {(A4, size),(t25×15, area)},R = {(size, t25×15), (area, ref10)}.
Here “A4” means “the paper is an A4 paper”, “size” means “It is of standard size”,
“t25×15” means “the text area is 25 by 15 cm”, “area” means “It is of standard text
area”, “ref10” means “the font size for the reference is 10 points.” In this setting we have
©◦ +

3 (C,R, {A4}) = {>, t25×15, t25×15 ∧ ref10, . . .}, ©• +
3 (C,R, {A4}) = {>>,

t25×15size, t25×15 ∧ ref10size∧area, . . .}. The calculation can be illustrated by the
following table, in which the column of A represents the input, C ′ and R′ represent the
subset of C and R, B∗ represents the smallest set such that that B∗ = Cn(B∗) and
A ∪ C ′(B∗) ∪R′(B∗) ⊆ B∗.

A C ′ R′ B∗ C ′(B∗) R′(B∗)

A4 ∅ ∅ Cn({A4}) ∅ ∅
A4 {(A4, size)} {(size, t25×15)} Cn({A4, size, t25×15}) {size} {t25×15}
A4 C R Cn({A4,size,t25×15,

area, ref10})
{size,
size }

{t25×15,
ref10}

The second row of the table explains the reason of > ∈ ©◦ +
3 (C,R, {A4}) and >> ∈

©• +
3 (C,R, {A4}). The third row explains the reason for t25×15 ∈ ©◦ +

3 (C,R, {A4}),
t25×15size ∈ ©•

+
3 (C,R, {A4}), and the fourth row for t25×15 ∧ ref10.

The following is the proof system of reusable detailed combination. It is an exten-
sion of D• +′

1 , but its formation is simpler in the sense we add one rule called ACTIO
but delete both ACTI and ACTO.

Definition 16 (Proof system of reusable detailed combination). Let D• +
3 (C,R) be

the smallest set such that (>,>>) ∈ D• +
3 (C,R), {(a, x>) | (a, x) ∈ R} ⊆ D• +

3 (C,R),
{(a,>p) | (a, p) ∈ C} ⊆ D• +

3 (C,R) and D• +
3 (C,R) is closed under the rules SI,

IOEQ, ACTIO

– ACTIO: aggregative cumulative transitivity for the intermediate and output: from
(a, xp) and (a ∧ p ∧ x, yq) to (a, x ∧ yp∧q).

and the following rule

– if (a,>p) ∈ D• +
3 (C,R) and (a ∧ p, x) ∈ D(R) then (a, xp) ∈ D• +

3 (C,R).

Example 7 (continued). From C = {(A4, size), (t25×15, area)},R = {(size, t25×15),
(area, ref10)}we can derive expressions (A4,>size), (t25×15,>area), (size, t25×15>)
and (area, ref10>). The following is the derivation:

(A4,>size)
(size, t25×15>)

(A4∧>∧size, t25×15>) (SI)

(A4, t25×15∧>size∧>
)

(ACTIO)

(A4, t25× 15size)
(IOEQ)

Theorem 7 (Completeness of reusable detailed combination). Given an arbitrary
constitutive normative system C, regulative normative system R and a set A of formu-
las, (a, xp) ∈ D• +

3 (C,R) iff xp ∈ ©• +
3 (C,R, a).

Proof. We prove the special case when A is a singleton {a}.
(completeness) Here we sketch the proof.
1. Assume xp ∈ ©• +

3 (C,R, a). Then there exist C ′ ⊆ C,R′ ⊆ R such that xp ∈⊙+
3 (C

′, R′, a)

2. By Lemma 4 we have x a`
∧
R(BC′,R′

a) and p a`
∧
C(BC′,R′

a).

3. By clause 5 of Lemma 6 we have x a`
∧
R(B∅,R

′

ω) and p a`
∧
C(BC′,∅

ω). Since
both C ′ and R′ are finite, by clause 1 of Lemma 6 we know there exist i such that for
all j ≥ i, x a`

∧
R(B∅,R

′

a∧...∧xj
). By clause 2 of Lemma 6 we know there exist i such

that for all j ≥ i, p a`
∧
C(BC′,∅

a∧...∧pj
)

4. From 3 we know there exist i such that p a`
∧
C(BC′,∅

a∧...∧pi
), x a`

∧
R(B∅,R

′

a∧...∧xi
),

hence p a` pi+1, x a` xi+1.
5. From 4 and clause 2 of Lemma 5 we know (a, xipi

) ∈ D• +
3 (C

′, R′), then use IOEQ
we have (a, xp) ∈ D• +

3 (C
′, R′) ⊆ D• +

3 (C,R)

(soundness) We will prove by induction on the length of derivation that if (a, xp) ∈
D• +

3 (C,R) then xp ∈ ©• +
3 (C,R, a) There we three base steps:

– (a, xp) is (>,>>): Let C ′ = ∅ and R′ = ∅. Then for all B = Cn(B), assume
{>} ∪ C ′(B) ∪ R′(B) ⊆ B. Then we have R′(B) = ∅ = C ′(B). Therefore
> a`

∧
∅ a`

∧
C ′(B). > a`

∧
∅ a`

∧
R′(B). Hence >> ∈ ©• +

3 (C,R,>).
– (a, xp) is (a,>p) with (a, p) ∈ C: Let C ′ = {(a, p)}, R′ = ∅. Then for all B =
Cn(B), assume {a} ∪ C ′(B) ∪ R′(B) ⊆ B. Then C ′(B) = {p} and R′(B) = ∅.
Therefore p a`

∧
C ′(B), > a`

∧
R′(B). Hence >p ∈ ©• +

3 (C,R, a).
– (a, xp) is (a, x>) with (a, x) ∈ R: Let Let C ′ = ∅, R′ = {(a, x)}. Then for all
B = Cn(B), assume {a} ∪ C ′(B) ∪R′(B) ⊆ B. Then C ′(B) = ∅ and R′(B) =
{x}. Therefore > a`

∧
C ′(B), x a`

∧
R′(B). Hence x> ∈ ©• +

3 (C,R, a).

Now we move to the inductive steps:

– (a, xp) is derived by SI:
1. there exist (b, xp) ∈ D• +

3 (C,R) such that a ` b.
2. By induction hypothesis, from 1 we know xp ∈ ©• +

3 (C,R, b). Therefore there
exist C1 ⊆ C and R1 ⊆ R such that for all B1 = Cn(B), if {b} ∪ C1(B) ∪
R1(B) ⊆ B then x a`

∧
R1(B) and p a`

∧
C1(B).

3. Take the C1 and R1 of 2. Let E = Cn(E), assume {a} ∪C1(E)∪R1(E) ⊆ E.
4. Since a ` b and E = Cn(E), from 3 we know b ∈ E. Therefore {b} ∪C1(E)∪
R1(E) ⊆ E. Then from 2 we know x a`

∧
R1(E) and p a`

∧
C1(E).

5. From 4 we have xp ∈ ©• +
3 (C,R, a).

– (a, xp) is derived by IOEQ:
1. there exist (a, yq) ∈ D• +

3 (C,R) such that x a` y and p a` q.
2. By induction hypothesis, from 1 we know yq ∈ ©• +

3 (C,R, b). Therefore there
exist C1 ⊆ C and R1 ⊆ R such that for all B1 = Cn(B), if {b} ∪ C1(B) ∪
R1(B) ⊆ B then y a`

∧
R1(B) and q a`

∧
C1(B).

3. From 2 and 1 we know x a`
∧
R1(B) and p a`

∧
C1(B). Therefore xp ∈

©• +
3 (C,R, a).

– (a, xp) is derived by ACTIO: Assume (a, x ∧ yp∧q) ∈ D• +
3 (C,R) and it is derived

by (a, xp) and (a ∧ p ∧ x, yq) using the ACTIO rule.
1. by induction hypothesis we have xp ∈ ©• +

3 (C,R, a) and yq ∈ ©• +
3 (C,R, a∧p∧

x).
2. From 1 we know there existC1 ⊆ C andR1 ⊆ R such that for allB1 = Cn(B1),

if {a} ∪ C1(B1) ∪ R1(B1) ⊆ B1 then x a`
∧
R1(B1) and p a`

∧
C1(B1).

Moreover there exist C2 ⊆ C and R2 ⊆ R such that for all B2 = Cn(B2), if
{a∧ p∧ x} ∪C2(B2)∪R2(B2) ⊆ B2 then y a`

∧
R2(B2) and q a`

∧
C2(B2).

3. Let C3 = C1 ∪ C2 and R3 = R1 ∪R2.
4. Let E1 = Cn(E1), assume {a} ∪ C3(E1) ∪R3(E1) ⊆ E1

5. From 4 and 3 we know {a} ∪ C1(E1) ∪R1(E1) ⊆ E1

6. From 5 and 2 we have x a`
∧
R1(E1) and p a`

∧
C1(E1).

7. From 6 and 4 we have x ∈ E1, p ∈ E1 and further a ∧ p ∧ x ∈ E1.
8. From 7 and 3 we know {a ∧ p ∧ x} ∪ C2(E1) ∪R2(E1) ⊆ E1.
9. From 8 and 2 we know y a`

∧
R2(E1) and q a`

∧
C2(E1).

10. From 3, 6 and 9 we know x ∧ y a`
∧
R3(E1) and p ∧ q a`

∧
C3(E1).

11. From 3, 4 and 10 we have x ∧ yp∧q ∈ ©• +
3 (C,R, a)

Remark: We define a function fC,R
A : 2L → 2L such that fC,R

A (X) = Cn(A ∪
C(X)∪R(X)). It can be proved that fC,R

A is monotonic with respect to the set theoret-
ical inclusion⊆, and (2L,⊆) is a complete lattice. Then by Tarski’s fixed point theorem
there exist a least fixed point of fC,R

A .

Lemma 3. Let BC,R
A be the least fixed point of the function fC,R

A . Then BC,R
A =⋃∞

i=0B
C,R
A,i , where BC,R

A,0 = Cn(A), BC,R
A,i+1 = Cn(A ∪ C(BC,R

A,i) ∪R(B
C,R
A,i)).

Proof. We first prove that
⋃∞

i=0B
C,R
A,i is a fixed point of fC,R

A . We prove by showing
the following:

1. A ⊆
⋃∞

i=0B
C,R
A,i : this is because A ⊆ Cn(A) = BC,R

A,0 ⊆
⋃∞

i=0B
C,R
A,i

2. C(
⋃∞

i=0B
C,R
A,i) ⊆

⋃∞
i=0B

C,R
A,i : For every x ∈ C(

⋃∞
i=0B

C,R
A,i), there exist k such

that x ∈ C(BC,R
A,k) ⊆ B

C,R
A,k+1 ⊆

⋃∞
i=0B

C,R
A,i .

3. R(
⋃∞

i=0B
C,R
A,i) ⊆

⋃∞
i=0B

C,R
A,i : this can be proved similarly to the above clause.

4. Cn(
⋃∞

i=0B
C,R
A,i) =

⋃∞
i=0B

C,R
A,i : the right-to-left direction is obvious; for the other

direction: assume x ∈
⋃∞

i=0B
C,R
A,i , then there exist x1, . . . xn ∈

⋃∞
i=0B

C,R
A,i .

Therefore there exist k such that x1, . . . xn ∈ BC,R
A,k . Hence x ∈ BC,R

A,k+1 ⊆⋃∞
i=0B

C,R
A,i .

With the above four clauses in hand, we can prove that fC,R
A (

⋃∞
i=0B

C,R
A,i) ⊆

⋃∞
i=0B

C,R
A,i .

For the other direction, we prove by induction on i that for every i,BC,R
A,i ⊆ f

C,R
A (

⋃∞
i=0B

C,R
A,i).

Here we omit the details.

So we have proved that
⋃∞

i=0B
C,R
A,i is a fixed point of fC,R

A . To prove that it is the
least fixed point, we can again prove by induction that for every i, BC,R

A,i ⊆ fC,R
A (B),

where B is a fixed point of fC,R
A . Here we omit the details.

Lemma 4. Let xp ∈
⊙+

3 (C,R,A) iff ∀B = Cn(B) : if A ∪ C(B) ∪ R(B) ⊆
B then p a`

∧
C(B), x a`

∧
R(B). Let xp ∈ �+

3 (R,A) iff ∀B = Cn(B) : if A ∪
R(B) ⊆ B then x a`

∧
R(B).

(1) If xp ∈
⊙+

3 (C,R,A), then x a`
∧
R(BC,R

A) and p a`
∧
C(BC,R

A).
(2) If x ∈ �(R,A), then x a`

∧
R(B∅,RA) a`

∧
R(BR,∅

A).

Proof. Assume xp ∈
⊙+

3 (C,R,A). From Lemma 3, we know that A ⊆ BC,R
A .

From Lemma 3 and compactness theorem of propositional logic, it can be proved that
Cn(BC,R

A) = BC,R
A . To prove C(BC,R

A) ⊆ BC,R
A , assume x ∈ C(BC,R

A), then there
exist a ∈ BC,R

A such that (a, x) ∈ C. Then by Lemma 3 we know a ∈ BC,R
A,i for some

i. Hence x ∈ C(BC,R
A,i) ⊆ B

C,R
A,i+1 ⊆ B

C,R
A . Similarly we can proveR(BC,R

A) ⊆ BC,R
A .

Therefore we have Cn(BC,R
A) = BC,R

A , A∪C(BC,R
A,i)∪R(B

C,R
A,i) ⊆ B

C,R
A,i . Now from

xp ∈
⊙+

3 (C,R,A) we know x a`
∧
R(BC,R

A) and p a`
∧
C(BC,R

A).
The case for x ∈ �(R,A) is similar.

Lemma 5. Given two set of norms C,R and one formula a, we inductively define the
following:

– p0 a`
∧
C(BC,∅

a)

– x0 a`
∧
R(B∅,Ra∧p0

)

– pi+1 a`
∧
C(BC,∅

a∧p0∧x0∧...∧xi
)

– xi+1 a`
∧
R(B∅,Ra∧p0∧x0∧...∧p+i)

Then we have the following: for all i, j,

(1) if i > j, then pi ` pj and xi ` xj
(2) (a, xipi) ∈ D• +

3 (C,R)

Proof. (1) The proof is routine, here we omit it.
(2) We prove by induction on i.

• Base step: Let i = 0. By clause (2) of Lemma 4, we know p0 ∈ �(C, a) and
x0 ∈ ©(R, a ∧ p0). Therefore by the completeness so system © we know
(a, p0) ∈ D(C) and (a ∧ p0, x0) ∈ D(R). Then by we know (a, x0p0

) ∈
D• +

1 (C,R) ⊆ D• +
3 (C,R).

• Inductive step: Assume (a, xkpk
) ∈ D• +

3 (C,R). By clause (1) of this lemma
we know a ∧ xk ∧ pk a` a ∧ x0 ∧ p0 ∧ . . . ∧ xk ∧ pk. By the definition
of pk+1 and clause (2) of Lemma 4 we know pk+1 ∈ ©(C, a ∧ x0 ∧ p0 ∧
. . . ∧ xk ∧ pk), and similarly we have xk+1 ∈ ©(R, a ∧ x0 ∧ p0 ∧ . . . ∧
xk ∧ pk ∧ pk+1). Therefore we have (a ∧ x0 ∧ p0 ∧ . . . ∧ xk ∧ pk, pk+1) ∈
D(C), (a ∧ x0 ∧ p0 ∧ . . . ∧ xk ∧ pk ∧ pk+1, xk+1) ∈ D(R). Hence we know
(a∧x0∧p0∧ . . .∧xk∧pk, xk+1pk+1

) ∈ D• +
1 (C,R) ⊆ D• +

3 (C,R). Then apply
SI we (a∧xk∧pk, xk+1pk+1

) ∈ D• +
3 (C,R). Note that (a, xkpk

) ∈ D• +
3 (C,R),

hence by ACTIO we have (a, xk+1pk+1
) ∈ D• +

3 (C,R).

Lemma 6. Given two set of norms C,R and one formula a, we define the following:

– BC,∅
ω = BC,∅

a ∪
⋃∞

i=0B
C,∅
a∧p0∧x0∧...∧xi

– B∅,Rω =
⋃∞

i=0B
∅,R
a∧p0∧x0∧...∧pi

Then we have the following: for all i,

(1) for all i, B∅,Ra∧p0∧x0∧...∧pi
⊆ B∅,Ra∧p0∧x0∧...∧pi+1

(2) for all i, BC,∅
a∧p0∧x0∧...∧xi

⊆ BC,∅
a∧p0∧x0∧...∧xi+1

(3) for all i, B∅,Ra∧p0∧x0∧...∧pi
⊆ BC,∅

a∧p0∧x0∧...∧xi

(4) for all i, BC,∅
a∧p0∧x0∧...∧xi

⊆ B∅,Ra∧p0∧x0∧...∧pi+1

(5) BC,∅
ω = B∅,Rω = BC,R

a

Proof. The first four clauses can be proved routinely by careful check. Here we omit it.
With the first four clauses in hand, the fifth clause can be derived easily.

At a first glance it seems that such a reusable approach conflates the distinction be-
tween “p is the case” and “p is obligatory.” This is true in the sense that both facts and
detached obligations are used as input to detach new obligations. Of course “p is the
case” and “p is obligatory” are semantically different, but we believe such difference
is not a sufficient reason to reject aggregative deontic detachment. For defense of ag-
gregative deontic detachment the readers are suggested to consult to Parent and van der
Torre [19].

6 Related work

Grossi and Jones [8] track the distinction between constitutive norms and regulative
norms to at least Rawls [20]. Searle [22] uses ‘X counts as Y in context C” as a canon-
ical presentation of constitutive norms. Jones and Sergot [12] formalize the context as
an institution. Grossi et al. [9] formalize the context as a set norms.

Grossi and Jones [8] present a classification of approaches to formalize constitutive
norms, and we refer to their chapter for further background on the logic of constitutive
norms. On one hand all logics of constitutive norms are orthogonal to our work because
we focus on the combination of constitutive and regulative norms. On the other hand,
we adopt aggregative input/output logic as our logic for constitutive norms, which is
different from all the approaches summarized by Grossi and Jones [8].

Modalities can be combined using possible world semantics. Boutilier [3] intro-
duces a model M = (W,≥1,≥2, V) with ≥1,≥2 total pre-orders over W , reflecting
normality and preference respectively. Each pre-order defines a classical Danielsson-
Hansson-Lewis dyadic operator©i. Roughly, Boutilier defines a modality©12(B|A)
as the best of the most normal A worlds satisfy B:

– M,w |=©i(B | A) iff opt≥i
(‖A‖) ⊆ ‖B‖, for i = 1, 2

– M,w |=©12(B | A) iff opt≥2(opt≥1(‖A‖)) ⊆ ‖B‖

Here opt≥i(S) = {w ∈ S|∀u ∈ S,w ≥i u}, for every S ⊆ W . According to the
semantics, the combined modality does not satisfy the combination properties discussed
in this paper:

Observation 1 {©1(q | p),©2(r | q)} 2©12(r | p)

Lang and van der Torre [13] define©12(B | A) in the same models by: the most
normalA∧B is preferred to the most normalA∧¬B, and they compare their definition
with Boutilier’s. Observation 1 also hold for Lang and van der Torre’s combination. A
further comparison between these modal logic approaches and our approach is left for
further research.

7 Future research

The reusable combination is formed by adding ACT to throughput combination. We can
form a weaker version of reusable combination by adding ACT to basic combination.

Makinson and van der Torre [17] developed input/output logic not only for obliga-
tions:

“In a range of contexts, one comes across processes resembling inference, but
where input propositions are not in general included among outputs, and the
operation is not in any way reversible. Examples arise in contexts of conditional
obligations, goals, ideals, preferences, actions, and beliefs. Our purpose is to
develop a theory of such input/output operations.”

Therefore, in future research we want to investigate whether our framework can be
used also for combining other modalities. Consider the well known problem of combin-
ing beliefs and desires: you may desire to go to the dentist, you may believe that going
to the dentist means that you will have pain, but you do not desire to have pain.

We can model this in our framework, if C stands for beliefs (or knowledge) and R
are desires (or obligations), then we have C = (dentist, pain) and R = (>, dentist).
In all the three abstract combinations we have dentist ∈ ©∗s(C,R, ∅) but not pain
∈ ©∗s(C,R, ∅).

8 Summary

To reason with constitutive and regulative norms, one has to choose a logic for the con-
stitutive norms, a logic for the regulative norms, and a semantics to combine these two
logics. In this paper we consider the question which semantics to choose for combining
constitutive and regulative norms, a topic which has not raised much attention thus far,
without committing ourselves to particular logics for constitutive or regulative norms.
To make our analysis general, we use the ‘minimal’ logic introduced by Parent and van
der Torre. Nevertheless, it contains two assumptions. First, strengthening of the input
seems to reflect that rules do not have exceptions, whereas both constitutive and regu-
lative norms encountered in practice often do have such exceptions. We do not consider
this a limitation, because if we add priorities or a normality relate to reflect prima fa-
cie norms, exactly the same analysis can be given. Second, Parent and van der Torre’s
logic satisfies aggregative deontic detachment. This is only a weak notion of deontic
detachment, and some kind of deontic detachment is needed in the logics to be able
to define the reusability semantics. We thus distinguished three semantics to combine
constitutive and regulative norms:

The simple-minded semantics is the least committed, and thus the safest one to use. It
clearly distinguishes the input, intermediate facts and output obligations, there is no
possible source for confusion. It may be used, for example, when the input may not
be true at the intermediate stage. For example, in legal interpretation the input may
contains a bicycle which is also a vehicle, but the bicycle may not count as a vehicle
in the legal sense. Using the basic semantics, the intermediate facts may not contain
a fact that the bicycle is a vehicle, whereas the input does. The proof system shows
that the extension of the semantic is minimal, in the sense that it contains only a
transitivity proof rule for the combination (Definition 4 and Theorem 2).

The throughput semantics includes the input among the intermediate facts. The proof
system shows that the difference with the simple-minded semantics is small, we just
have to replace the transitivity axiom by a cumulative transitivity rule (Theorem 4).
However, it means that for example in the bicycle case, we need to introduce an-
other concept in the intermediate facts to represent that the bicycle does not count as
a vehicle in the legal sense. In many common examples, it seems that the through-
put semantics is preferred to the basic semantics.

The reusability semantics considers as the intermediate state the facts closed under
both the constitutive and regulative norms. This seems very strong, but the proof
system shows that this corresponds precisely to the aggregative cumulative tran-
sitivity rule for the combined system (Theorem 6). So if this rule is desired, then
this semantics has to be chosen. For example, if we start from a system satisfying
ACT, and then refining it with systems for constitutive and regulative norms, then
we need to refine it in this way.

In this paper we introduce new logics for combining constitutive and regulative
norms, deriving expressions xp for x is obligatory because of the intermediate concepts
p, or simply x meaning x is obligatory without referring to intermediate concept. We
have extended each of the three above systems with a proof system for these refined
expressions.

We generalized input/output logic by considering two sets of norms. It can be further
extended to LIONS, as foreseen by Makinson and van der Torre. And to refer tot he
special topic of DEON14, it may be a first step towards a Kratzer style semantics of
natural language, because Kratzer’s semantics also combines various kinds of ordering
bases.

References

1. G. Boella and L. van der Torre. Regulative and constitutive norms in normative multi-agent
systems. In Didier Dubois, Christopher A. Welty, and Mary-Anne Williams, editors, Princi-
ples of Knowledge Representation and Reasoning, pages 255–266, Whistler, Canada, 2004.
AAAI Press.

2. G. Boella and L. Van Der Torre. A logical architecture of a normative system. In Lou Goble
and John-Jules Ch. Meyer, editors, Deontic Logic and Artificial Normative Systems, volume
4048 of Lecture Notes in Computer Science, pages 24–35, Utrecht, The Netherlands, 2006.
Springer.

3. C. Boutilier. Toward a logic for qualitative decision theory. In Jon Doyle, Erik Sandewall,
and Pietro Torasso, editors, Proceedings of the 4th International Conference on Principles
of Knowledge Representation and Reasoning, pages 75–86, Bonn, Germany, 1994. Morgan
Kaufmann.

4. J. Broome. Rationality Through Reasoning. Wiley-Blackwell, West Sussex, UK, 2013.
5. S. Danielsson. Preference and Obligation: Studies in the Logic of Ethics. Filosofiska frenin-

gen, Uppsala, 1968.
6. D. Gabbay, J. Horty, X. Parent, R. van der Meyden, and L. van der Torre, editors. Handbook

of Deontic Logic and Normative Systems. College Publications, London, 2013.
7. L. Goble. Murder most gentle: the paradox: deepens. Philosophical Studies, 64:217–227,

1991.
8. D. Grossi and A. Jones. Constitutive norms and counts-as conditionals. In J. Horty, D. Gab-

bay, X. Parent, R. van der Meyden, and L. van der Torre, editors, Handbook of Deontic Logic
and Normative Systems, pages 407–441. College Publications, London, 2013.

9. D. Grossi, J. J. Meyer, and F. Dignum. Counts-as: Classification or Constitution? An Answer
Using Modal Logic. In Lou Goble and John-Jules Ch. Meyer, editors, Deontic Logic and
Artificial Normative Systems, volume 4048 of Lecture Notes in Computer Science, pages
115–130. Springer, Berlin Heidelberg, 2006.

10. B Hansson. An analysis of some deontic logics. Noûs, pages 373–398, 1969.
11. S. O. Hansson. Preference-based deontic logic (PDL). Journal of Philosophical Logic,

19:75–93, 1990.
12. A. Jones and M. Sergot. A formal characterisation of institutionalised power. The Logic

Journal of IGPL, pages 427–443, 1996.
13. J. Lang and L. van der Torre. From belief change to preference change. In M. Ghallab,

C.D. Spyropoulos, N. Fakotakis, and N. Avouris, editors, Proceedings of the 2008 confer-
ence on ECAI 2008: 18th European Conference on Artificial Intelligence, pages 351–355,
Amsterdam, 2008. IOS Press.

14. D.K. Lewis. Counterfactuals. Blackwell, Oxford, 1973.
15. L. Lindahl and J. Odelstad. Normative systems and their revision: An algebraic approach.

Artificial Intelligence and Law, 11(2-3):81–104, 2003.
16. D. Makinson. On a fundamental problem in deontic logic. In P. McNamara and H. Prakken,

editors, Norms, Logics and Information Systmes, pages 29–54, Amsterdam, 1999. IOS Press.
17. D. Makinson and L. van der Torre. Input-output logics. Journal of Philosophical Logic,

29:383–408, 2000.
18. D. Makinson and L. van der Torre. Constraints for input/output logics. Journal of Philo-

sophical Logic, 30(2):155–185, 2001.
19. X. Parent and L. van der Torre. Put your parachute on, and jump out! Technical report, 2013.

Available at http://www.xavierparent.co.uk/.
20. J. Rawls. Two concepts of rules. The Philosophical Review, 64(1):3–32, 1955.
21. A. Ross. Tû-tû. Harvard Law Review, 70:812–825, 1957.
22. J.R. Searle. Speech Acts: an Essay in the Philosophy of Language. Cambridge University

Press, Cambridge (UK), 1969.
23. A. Stolpe. Normative consequence: The problem of keeping it whilst giving it up. In Ron

van der Meyden and Leendert van der Torre, editors, Proceedings of the 9th international
conference on Deontic Logic in Computer Science, DEON ’08, pages 174–188, Berlin, Hei-
delberg, 2008. Springer-Verlag.

24. S. Tosatto, G. Boella, L. van der Torre, and S. Villata. Abstract normative systems: Seman-
tics and proof theory. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning, pages 358–368, Rome, 2012. AAAI
Press.

25. L. van der Torre and Y. Tan. Contrary-to-duty reasoning with preference-based dyadic obli-
gations. Ann. Math. Artif. Intell., 27(1-4):49–78, 1999.

