
Transforming Fuzzy Description Logic ALCFL

into Classical Description Logic ALCH

Yining Wu

Overseeing Professor: Prof. Steffen Hölldobler
Supervisor: Dr. habil. Pascal Hitzler

Department of Computer Science
Artificial Intelligence Institute

TECHNISCHE UNIVERSITÄT DRESDEN
Germany March, 2007

TECHNISCHE UNIVERSITÄT DRESDEN

Author: Yining Wu
Matrikel-Nr.: 3085253
Title: Transforming Fuzzy Description Logic ALCFL

into Classical Description Logic ALCH
Degree: Master of Science
Date of submission: 30 March 2007

Declaration
Hereby I certify that the thesis has been written by me. Any help that I have received
in my research work has been acknowledged. Additionally, I certify that I have not used
any auxiliary sources and literature except those I cited in the thesis.

Signature of Author

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. habil. Pascal Hitzler of
Institute AIFB, Universität Karlsruhe who gave me the chance to do this thesis for his
advice, encouragement, enduring patience and constant support.

I also wish to thank Prof. Steffen Hölldobler of the Computer Science Department at
Technische Universität Dresden. He graciously volunteered to act as my supervisor since
Dr. habil. Pascal Hitzler works in Karlsruhe. His suggestions, comments and guidance
were invaluable to the completion of this work.

Additionally, I want to thank Nguyen Hoàng Ngà who was helpful in providing the
additional guidance and expertise I needed in order to accomplish this work.

Finally, I must thank my dear parents. They always stand behind me with contin-
uing, loving and financial support without complaint. I can’t finish this work without
their support.

i

ii Acknowledgments

Abstract

We consider ALCFL [5] in this thesis. ALCFL is a fuzzy Description Logic with hedges
as its fuzzy extension. Three example scenarios of ALCFL knowledge base are shown.
The linear symmetric hedge algebra [4, 9, 10] is introduced in order to represent the
truth domain of interpretations of the ALCFL knowledge base. The aim of this thesis is
to present a satisfiability preserving transformation of ALCFL into the description logic
ALCH, i.e., the extension of ALC by role hierarchies. The soundness and completeness
of this transformation are proved. A contribution of this transformation is that we
can do reasoning of ALCFL by using already existing Description Logic systems. The
transformation is implemented in both the programming language JAVA and Prolog.
Testing is done in JAVA using APIs of Jena,1 KAON22 and Racer.3

1http://jena.sourceforge.net/
2http://kaon2.semanticweb.org/
3http://www.racer-systems.com/

iii

iv Abstract

Contents

Acknowledgments i

Abstract iii

1 Introduction 1

1.1 An introduction to Description Logics 1

1.2 Motivation . 1

1.3 The structure of the thesis . 3

2 Preliminaries 5

2.1 ALCH . 5

2.2 Hedge Algebra . 7

2.2.1 Linear symmetric Hedge Algebra 7

2.2.2 Hedge Algebra as truth domain 10

2.2.3 Inverse mapping of hedges . 11

2.3 ALCFL . 12

2.4 Examples of applications of hedges . 13

3 Transforming ALCFL into ALCH 17

3.1 The basic idea . 17

3.2 The transformation of ABox . 18

3.2.1 The mapping θ . 18

3.2.2 The mapping ρ . 18

3.3 The transformation of TBox . 20

3.3.1 The newly introduced TBox . 21

3.3.2 The mapping κ . 22

3.4 The satisfiability preserving theorem . 22

v

vi CONTENTS

4 Implementation 33

4.1 OWL ontology . 33

4.1.1 Introduction to OWL ontology 33

4.1.2 A syntax for hedge . 34

4.2 Introduction to KAON2 . 34

4.3 Introduction to Jena . 35

4.4 Introduction to Racer . 35

4.5 The algorithm . 36

4.6 Testing . 37

4.7 KAON2 vs Racer . 37

5 Conclusions 39

A An example of running the program 41

B The implementation of producing ALCFL knowledge bases 43

Bibliography . 45

Chapter 1

Introduction

1.1 An introduction to Description Logics

Description Logics (DLs [1]) are a family of knowledge representation languages that
can be used to represent the knowledge of an application domain in a structured and
formally well-understood way. DLs are equipped with a formal, logic-based semantics.
Knowledge bases (KBs) can be set up by a knowledge representation (KR) system which
is based on DLs. A KB consists of two components, the TBox and the ABox. The TBox
introduces the terminology, i.e., the vocabulary of an application domain, while the ABox
contains assertions about named individuals in terms of this vocabulary. KR systems
also provide facilities to do reasoning about the content of KBs.

Reasoning is a central service of DLs. We can deduce implicitly represented knowl-
edge from the knowledge that is explicitly contained in the knowledge base by reasoning.
DLs support classification of concepts and individuals. Classification of concepts is called
subsumption relationships in DLs which determines subconcept/superconcept relation-
ships between concepts by that we can build a hierarchy structure to provide information
on the connection between concepts. Classification of individuals specifies whether an
individual is an instance of a concept in terms of the description of the individual and
the definition of the concept. Useful information about the properties of an individual
can be obtained.

DLs are the basis of the web ontology language OWL.1 OWL is intended to provide
a language that can be used to describe the classes and relations between them that are
inherent in web documents and applications. A concept in DL is referred to as a class
in OWL. A role in DL is a property in OWL.

1.2 Motivation

The concepts in classical DLs are usually interpreted as crisp sets, i.e., an individual
either belongs to the set or not. In the real world, the answers to some questions are

1Please visit http://www.w3.org/TR/owl-guide/ for more details

1

2 Chapter 1. Introduction

often not only yes or no, rather we may say that an individual is an instance of a
concept only to some certain degree. For instance, Y oung is a concept for which we can
usually not fix a boundary such that a person is old if he is older than the boundary
otherwise he is young. Actually the person is not old if he is only one year older than
that boundary. We prefer saying that an individual Tom is an instance of the concept
Y oung to some certain degree n ∈ [0, 1] depending on Tom’s age to just saying Tom
is young or not. Classical DLs whose semantics is based on classical first-order logic
cannot express vague or uncertain knowledge. To overcome this deficiency, approaches
for integrating fuzzy logic into DLs have been proposed. Fuzzy DLs can directly handles
the notion of vagueness and imprecision.

In [13] Umberto Straccia presents a quite general fuzzy DL, ALCF which is based on
the DL ALC (stands for Attributive Language with Complement) [1], a significant and
expressive representative of the various DLs. ALC is an extension of AL which is intro-
duced in [12] as a minimal language that is of practical interest. From a computational
complexity point of view, the additional expressive power has no impact on the com-
plexity of reasoning in ALCF . This is certainly important as the nice trade-off between
computational complexity and expressive power of DLs contributes to their popularity.
In ALCF , ABoxes are equipped with degrees. We can express that an individual is an
instance of a concept with a certain degree which is represented by a real number in the
interval [0, 1], e.g., Tom is Young with the degree which is greater than 0.8.

In real life, people use natural language to think, to reason, to deduce conclusions,
and to make decisions. It is more intuitional to say Tom is very young or, alternatively,
that Tom is Y oung with degree V eryTrue than to say Tom is young to the degree 0.8.
Fuzzy logics provides different options for fuzzy extensions. The fuzzy DL ALCFL is
presented in [5] which uses adverbs (or hedges) such as “very”,“possibly” and “less” to
express the fuzzy values instead of using real numbers.

The following table lists some fuzzy DLs. ALCF , ALCFH and ALCFLH use real
numbers to represent fuzzy values, while ALCFL uses hedges.

DL truth domain syntax

ALCF [0, 1] A,¬C, C ⊓ D, C ⊔ D,∀R.C,∃R.C

ALCFH [0, 1] A, MA,¬C, C ⊓ D, C ⊔ D,∀R.C,∃R.C

ALCFLH [0, 1] A, MC, MR,¬C, C ⊓ D, C ⊔ D,∀R.C,∃R.C

ALCFL HAs A, MC,¬C, C ⊓ D, C ⊔ D,∀R.C,∃R.C

ALCF [13] is an extension of the classical DL ALC. ALCFH [6], where primitive con-
cepts are modified by means of hedges, is strictly more expressive than ALCF . ALCFLH

[11] is based on ALCFH, but linear hedges are used instead of exponential ones. In
ALCFLH, roles and arbitrary concepts can be modified by hedges. This extends ALCFH

where only primitive concepts can be modified. ALCFL uses Hedge Algebras (HAs) [4]
to represent the truth domain of interpretations.

As we know, one feature of classical DLs is the emphasis on reasoning as a central
service. The fuzzy DLs have this feature as well, but there are few reasoners for fuzzy
DLs. Transforming fuzzy DLs into classical ones makes the reasoning in fuzzy DLs

1.3. The structure of the thesis 3

feasible using already existing DL systems and take advantages of their optimizations
to achieve efficiency. In this work we present a satisfiability preserving transformation
of ALCFL into ALCH.

1.3 The structure of the thesis

Chapter 2 introduces the formal foundation necessary for the subsequent presentation
of our transformation. In Section 2.1 the syntax and semantics of ALCH are defined. In
Section 2.2 we review the basic notions of linear symmetric hedge algebras, extend the
order relation to use it as truth domain and then define the inverse mapping of hedges.
Section 2.3 provides definitions of the syntax and semantics of ALCFL. We give some
examples in Section 2.4 to show why we need fuzzy DLs with hedges.

Chapter 3 presents the transformation of ALCFL into ALCH and the theorem which
claims that the transformation is satisfiability preserving. The proof of the theorem in
Section 3.4 needs two Lemmas which are also proved in the same Section.

In Chapter 4 we illustrate the implementation of the reduction using JAVA, Jena
and API of KAON2. We compare KAON2 and Racer by measuring the computing
time of reasoning the output of the transformation. We talk about conclusion and the
complexity of the transforming algorithm in the Chapter 5. At last, we give an example
and show the result of the transformation using the example knowledge base as the
input.

4 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 ALCH

Elementary descriptions are concept names and role names. Complex descriptions can be
built from them inductively with concept constructors. We consider the language ALCH
(Attributive Language with Complement and role Hierarchy). In abstract notation, we
use the letters A and B for concept names, the letter R for role names, and the letters
C and D for concept terms.

Definition 1 (Syntax of ALCH concept terms). Let NR and NC be disjoint sets of
role names and concept names. Let A ∈ NC and R ∈ NR. Concept terms in ALCH are
formed according to the following syntax rule:

C, D −→ A| (concept name)
⊤| (top concept)
⊥| (bottom concept)
C ⊓ D| (concept conjunction)
C ⊔ D| (concept disjunction)
¬C| (concept negation)
∀R.C| (universal quantification)
∃R.C| (existential quantification)

The semantics of concept terms are defined formally by interpretations.

Definition 2 (Semantics of ALCH concept terms). An interpretation I is a pair
(∆I , ·I), where ∆I is a nonempty set (interpretation domain) and ·I is an interpretation
function which assigns to each concept name A a set AI ⊆ ∆I and to each role name
R a binary relation RI ⊆ ∆I × ∆I . The interpretation of complex concept terms is
extended by the following inductive definitions:

5

6 Chapter 2. Preliminaries

⊤I = ∆I

⊥I = ∅
(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I \ CI

(∀R.C)I = {d ∈ ∆I | ∀d′.(d, d′) /∈ RI or d′ ∈ CI}
(∃R.C)I = {d ∈ ∆I | ∃d′.(d, d′) ∈ RI and d′ ∈ CI}

A concept term C is satisfiable iff there exists an interpretation I such that CI 6= ∅,
denoted by I |= C. Two concept terms C and D are equivalent (denoted by C ≡ D) iff
CI = DI for all interpretation I.

We have seen how we can form complex descriptions of concepts to describe classes
of objects. Now, we introduce terminological axioms, which make statements about how
concept terms and roles are related to each other respectively.

In the most general case, terminological axiom have the form

C ⊑ D or R ⊑ S,

where C, D are concept terms, R, S are role names. This kind of terminological axioms
are also called inclusions. A set of axioms of the form R ⊑ S is called role hierarchy. An
interpretation I satisfies an inclusion C ⊑ D (R ⊑ S) iff CI ⊆ DI (RI ⊆ SI), denoted
by I |= C ⊑ D (I |= R ⊑ S).

Definition 3 (TBox). A terminology, i.e., TBox, is a finite set of terminological
axioms.

An interpretation I satisfies (is a model of) a terminology T iff I satisfies each
element in T , denoted by I |= T .

Assertions define how individuals relate with each other and how individuals relate
with concept terms.

Definition 4 (Assertion). Let NI be a set of individual names which is disjoint to NR

and NC . An assertion α is an expression of the form,
- a:C (concept assertion) or
- (a, b):R (role assertion),

where a, b ∈ NI , R ∈ NR and C ∈ NC .

An interpretation I satisfies a concept assertion a : C iff aI ∈ CI , denoted by I |=
a : C. I satisfies a role assertion (a, b) : R iff (aI , bI) ∈ RI , denoted by I |= (a, b) : R.

Definition 5 (ABox). A finite set of assertions is called ABox.

An interpretation I satisfies (is a model of) an ABox A iff I satisfies each assertion
in A, denoted by I |= A.

Definition 6 (Knowledge Base). A knowledge base is of the form 〈T ,A〉 where T
is a TBox and A is an ABox.

2.2. Hedge Algebra 7

Example 7. A KB K = 〈{A ⊑ ∀R.¬B}, {a : ∀R.C}〉.

An interpretation I satisfies (is a model of, denoted by I |= K) a knowledge base
K = 〈T ,A〉 iff I satisfies both T and A. We say that a knowledge base K entails an
assertion α, denoted K |= α iff each model of K satisfies α. Furthermore, let T be a
TBox and let C, D be two concept terms. We say that D subsumes C with respect to
T (denoted by C ⊑T D) iff for each model of T , I |= CI ⊆ DI .

The problem of determining whether K |= α is called entailment problem; the prob-
lem of determining whether C ⊑T D is called subsumption problem; and the problem of
determining whether K is satisfiable is called satisfiability problem. Entailment problem
and subsumption problem can be reduced to satisfiability problem.

2.2 Hedge Algebra

In daily life, we often say linguistic terms such as “Very True” and “More or Less false”
which are linguistic values of a linguistic variable “TRUTH” where “True” and “false”
are vague concepts of “TRUTH”. Adverbs as “Very”, “More or Less” and “Possibly” are
called hedges in fuzzy DLs. We observe that the set of linguistic values, or the domain
of a linguistic variable, can be represented as a formal algebra with operations being
hedges and generators being the vague concepts of this linguistic variable. Furthermore,
according to the meaning of hedges, linguistic values can be partially ordered, e.g.,
very true > true. Based on some properties of hedges, we introduce the hedge algebra
and the ordering relationship between vague concepts of a linguistic variable. We also
explain how the hedge algebra represents the truth domain of interpretations of ALCFL

knowledge bases.

2.2.1 Linear symmetric Hedge Algebra

In this section, we introduce linear symmetric Hedge Algebras (HAs). For general HAs,
please refer to [4, 9, 10].

Let us consider a linguistic variable TRUTH with the domain dom(TRUTH) =
{True, False, V eryTrue, V eryFalse, MoreTrue, MoreFalse, PossiblyTrue, Possibly
False . . .}. This domain is an infinite partially ordered set, with a natural ordering a < b
meaning that b describes a larger degree of truth if we consider True > False. This set is
generated from the basic elements (generators) G = {True, False} by using hedges, i.e.,
unary operations from a finite set H = {V ery, Possibly, More}. The dom(TRUTH)
which is a set of linguistic values can be represented as X = {δc | c ∈ G, δ ∈ H∗}, From
the algebraic point of view, the truth domain can be described as an abstract algebra
AX = (X, G, H, >).

To define relations between hedges, we introduce some notations first. We define that
H(x) = {σx | σ ∈ H∗} for all x ∈ X. Let I be the identity hedge, i.e., ∀x ∈ X.Ix = x.
The identity I is the least element. Each element of H is an ordering operation, i.e.,
∀h ∈ H, ∀x ∈ X, either hx > x or hx < x.

Definition 8. Let h, k ∈ H be two hedges, for all x ∈ X we define:

8 Chapter 2. Preliminaries

• h, k are converse if hx < x iff kx > x;

• h, k are compatible if hx < x iff kx < x;

• h modifies terms stronger or equal than k, denoted by h ≥ k if hx ≤ kx ≤ x or
hx ≥ kx ≥ x;

• h > k if h ≥ k and h 6= k;

• h is positive wrt k if hkx < kx < x or hkx > kx > x;

• h is negative wrt k if kx < hkx < x or kx > hkx > x.

ALCFL only considers symmetric HAs, i.e., there are exactly two generators as
in the example G = {True, False}. Let G = {c+, c−} where c+ > c−. c+ and c−

are called positive and negative generators respectively. Because there are only two
generators, the relations presented in Definition 8 divides the set H into two subsets
H+ = {h ∈ H | hc+ > c+} and H− = {h ∈ H | hc+ < c+}, i.e., every operation in H+

is converse w.r.t. any operation in H− and vice-versa, and the operations in the same
subset are compatible with each other.

Definition 9 (Linear Symmetric Hedge Algebra). An abstract algebra AX =
(X, G, H, >), where H 6= ∅, G = {c+, c−} and X = {σc | c ∈ G, σ ∈ H∗} is called a
linear symmetric hedge algebra if it satisfies the properties (A1)-(A5).

(A1) Every hedge in H+ is a converse operation of all operations in H−.

(A2) Each hedge operation is either positive or negative w.r.t. the others, including
itself.

(A3) The sets H+ ∪ {I} and H− ∪ {I} are linearly ordered with the least element I.

(A4) If h 6= k and hx < kx then h′hx < k′kx, for all h, k, h′, k′ ∈ H and x ∈ X.

(A5) If u /∈ H(v) and u ≤ v (u ≥ v) then u ≤ hv (u ≥ hv), for any hedge h.

Let AX = (X, G, H, >) be a linear symmetric hedge algebra and c ∈ G. We define
that,

c̄ =

{

c+ if c = c−

c− if c = c+

Definition 10 (Contradictory Element in Linear Symmetric HA). Let AX =
(X, G, H, >) be a linear symmetric hedge algebra, where G = {c+, c−}. Let x ∈ X and
x = σc, where σ ∈ H∗ and c ∈ G. The contradictory element to x is y = σc̄ written
y = −x.

[4] gave us the following proposition to compare elements in X.

2.2. Hedge Algebra 9

Proposition 11. Let AX = (X, G, H, >) be a linear symmetric HA, x = hn · · ·h1u
and y = km · · · k1u are two elements of X where u ∈ X. Then there exists an index
j ≤ min{n, m} + 1 such that hi = ki for all i < j, and

(i) x < y iff hjxj < kjxj, where xj = hj−1 · · ·h1u;

(ii) x = y iff n = m = j and hjxj = kjxj.

Because H+ ∪ {I}, H− ∪ {I} and G are linearly ordered, [4] presented the following
proposition.

Proposition 12. For a linear symmetric HA AX = (X, G, H, >), X is linearly or-
dered.

For x, y ∈ X we define that x ∧ y = min(x, y) and x ∨ y = max(x, y). Now we can
introduce an implication operation : x → y = −x ∨ y.

If H is not empty then X are infinite, according to [10], the greatest element and
the least element of X are sup(c+) and inf(c−) respectively, and inf(c+) = sup(c−). We
use W to represent inf(c+) and sup(c−), use 1 and 0 to represent sup(c+) and inf(c−)
respectively. The following proposition([10]) shows that each linear symmetric hedge
algebra can be taken as a logical foundation for reasoning methods:

Proposition 13. For every symmetric extended HA, the following properties hold:

1. −hx = h(−x), for any h ∈ H;

2. −− x = x; −1 = 0, −0 = 1, and −W = W ;

3. −(x ∨ y) = (−x ∧ −y) and −(x ∧ y) = (−x ∨ −y);

4. x ∧ −x < W < y ∨ −y;

5. x > y iff −x < −y;

6. x → y = −y → −x;

7. x → (y → z) = y → (x → z);

8. x → y > x′ → y′ if x < x′ and/or y > y′;

9. 1 → x = x, x → 1 = 1,
0 → x = 1, x → 0 = −x;

10. x → y > W iff x < W or y > W ;

11. x → y < W iff y < W and x > W ;

12. x → y = 1 iff x = 0 or y = 1.

In order to define the semantics of the hedge modification, we need to define some
restrictions for HAs. We will use “hedge algebra” instead of “linear symmetric hedge
algebra” in the rest of this paper.

10 Chapter 2. Preliminaries

2.2.2 Hedge Algebra as truth domain

Definition 14. A HA AX = (X, G, H, >) is monotonic if each h ∈ H+(H−) is positive
with respect to all k ∈ H+(H−), and negative with respect to all k ∈ H−(H+).

We know that H+ ∪ {I} and H− ∪ {I} are linearly ordered, while H ∪ {I} is not.
[5] extended the order relation on H+ ∪{I} and H− ∪{I} to one on H ∪{I} as follows.

Definition 15. Given h, k ∈ H ∪ {I}, h ≥h k iff

• h ∈ H+ and k ∈ H−; or

• h, k ∈ H+ ∪ {I} and h ≥ k; or

• h, k ∈ H− ∪ {I} and h ≤ k.

The following proposition which is presented in [5] shows that the hedge modifies
the meaning of a linguistic value independently of preceding hedges in the hedge chain
in monotonic HAs,

Proposition 16. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then

h >h k ⇔ hσc+ > kσc+

From Proposition 16 we have the following Corollary [5].

Corollary 17. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then

1. ∀h ∈ H+, k ∈ H−.hσc+ > σc+ and kσc+ < σc+.

2. h ≥ k ⇔ hσc+ ≥ kσc+.

Similarly, the first hedge does not affect the meaning of the other.

Proposition 18. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then

∀h ∈ H. σ1c
+ > σ2c

+ ⇔ σ1hc+ > σ2hc+

The property holds when the generator is either c+ or c−.

Proposition 19. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then for c ∈
{c+, c−} we have

∀h ∈ H. σ1c1 > σ2c2 ⇔ σ1hc1 > σ2hc2

The readers are referred to [5] for the proof of the last three propositions. A corollary
is shown in [5] such that if a hedge is the first hedge or the last hedge in the hedge chain,
then it is independent of other hedges and the generators.

Corollary 20. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then

∀δ ∈ H∗. σ1c1 > σ2c2 ⇔ σ1δc1 > σ2δc2

2.2. Hedge Algebra 11

2.2.3 Inverse mapping of hedges

Fuzzy description logics represent the assessment “It is true that Tom is very old” by

(V eryOld)I(Tom)I = True. (2.1)

In a fuzzy linguistic logic [15, 16, 17], the assessment “It is true that Tom is very old”
and the assessment “It is very true that Tom is old” are equivalent, which means

(Old)I(Tom)I = V eryTrue, (2.2)

and (2.1) has the same meaning. This signifies that the modifier can be moved from
concept term to truth value and vice versa. For any h ∈ H and for any σ ∈ H∗, the
rules of moving hedges [9] are as follows,

RT1 : (hC)I(d) = σc → (C)I(d) = σhc
RT2 : (C)I(d) = σhc → (hC)I(d) = σc.

where C is a concept term and d ∈ ∆I .

Definition 21. Consider a monotonic HA AX = (X, {c+, c−}, H, >) and a h ∈ H. A
mapping h− : X → X is called an inverse mapping of h iff it satisfies the following two
properties,

1. h−(σhc) = σc.

2. σ1c1 > σ2c2 ⇔ h−(σ1c1) > h−(σ2c2).

where c, c1, c2 ∈ G, h ∈ H and σ1, σ2 ∈ H∗.

Based on the definition of inverse mapping of a hedge, the rule RT2 has a generalized
version,

GRT2 : (C)I(d) = δc → (hC)I(d) = h−(δc)

where c,∈ {c+, c−}, h ∈ H and δ ∈ H∗, C is a concept term, h− is inverse mapping of
h.

The following Proposition [5] shows the general case of the Corollary 20.

Proposition 22. Consider a monotonic HA AX = (X, {c+, c−}, H, >). Then for c ∈
{c+, c−}, a hedge chain δ and its inverse mapping δ−. then,

σ1c1 > σ2c2 iff δ−(σ1c1) > δ−(σ2c2)

12 Chapter 2. Preliminaries

2.3 ALCFL

ALCFL is a Description Logic in which the truth domain of interpretations is represented
by a hedge algebra. The syntax of ALCFL is similar to that of ALCH except that ALCFL

allows concept modifiers and does not include role hierarchy.

Definition 23 (Syntax of ALCFL concept terms). Let H be a set of hedges. Let A
be a concept name and R a role, complex concept terms denoted by C, D in ALCFL are
formed according to the following syntax rule:

C, D −→ A| (concept name)
⊤| (top concept)
⊥| (bottom concept)
C ⊓ D| (concept conjunction)
C ⊔ D| (concept disjunction)
¬C| (concept negation)
δC| (modifier concept)
∀R.C| (universal quantification)
∃R.C| (existential quantification)

where δ ∈ H∗.

The semantics is based on the notion of interpretations.

Definition 24 (Semantics of ALCFL concept terms). Let AX be a monotonic HA
such that AX = (X, {True, False}, H, >). A fuzzy interpretation (f-interpretation) I
for ALCFL is a pair (∆I , ·I), where ∆I is a nonempty set and ·I is an interpretation
function mapping:

• individuals as for the classical case;

• a concept C into a function CI : ∆I → X;

• a role R into a function RI : ∆I × ∆I → X.

For all d ∈ ∆I the interpretation function satisfies the following equations

⊤I(d) = sup(True),
⊥I(d) = inf(False),

(¬C)I(d) = −CI(d),
(C ⊓ D)I(d) = min(CI(d), DI(d)),
(C ⊔ D)I(d) = max(CI(d), DI(d)),

(δC)I(d) = δ−(CI(d)),
(∀R.C)I(d) = infd′∈∆I{max(−RI(d, d′), CI(d′))},
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))},

where −x is the contradictory element of x, and δ− is the inverse of the hedge chain δ.

2.4. Examples of applications of hedges 13

In order to insure the satisfiability preserving property, we consider only witnessed
interpretations [2, 3]. For ALCFL, an interpretation I is a witnessed interpretation if
for all d ∈ ∆I , for each concept term of the form ∀R.C there exists a d′ ∈ ∆I such that
(∀R.C)I(d) = max(−RI(d, d′), CI(d′)), and for each concept term of the form ∃R.C
there exists a d′ ∈ ∆I such that (∃R.C)I(d) = min(RI(d, d′), CI(d′)).

Definition 25 (Fuzzy Assertion). A fuzzy assertion (fassertion) is an expression of
the form 〈α ⊲⊳ σc〉 where α is of the form a : C or (a, b) : R, ⊲⊳ ∈ {≥, >,≤, <} and
σc ∈ X.

Formally, an f-interpretation I satisfies a fuzzy assertion 〈a : C ≥ σc〉 (respectively
〈(a, b) : R ≥ σc〉) iff CI(aI) ≥ σc (respectively RI(aI , bI) ≥ σc). An f-interpretation I
satisfies a fuzzy assertion 〈a : C ≤ σc〉 (respectively 〈(a, b) : R ≤ σc〉) iff CI(aI) ≤ σc
(respectively RI(aI , bI) ≤ σc). Similarly for > and <.

Concerning terminological axioms, an ALCFL terminology axiom is of the form
C ⊑ D, where C and D are ALCFL concept terms. From a semantics point of view, a
f-interpretation I satisfies a fuzzy concept inclusion C ⊑ D iff ∀d ∈ ∆I .CI(d) ≤ DI(d).
Two concept terms C, D are said to be equivalent, denoted by C ≡ D iff CI = DI for
all f-interpretations I. Some properties concerning the hedge modification are showed
in the following proposition [5].

Proposition 26. We have the following semantical equivalence:

δ(C ⊓ D) ≡ δ(C) ⊓ δ(D)
δ(C ⊔ D) ≡ δ(C) ⊔ δ(D)
δ1(δ2C) ≡ (δ1δ2)C.

According to Proposition 26, V ery(MoreC) = (V eryMore)C which is not the case
in ALCFH [7] and ALCFLH [11].

Definition 27 (Fuzzy Knowledge Base). A fuzzy knowledge base (fKB) is a pair
〈T ,A〉, where T and A are finite sets of terminological axioms and fassertions respec-
tively.

Example 28. A fKB fK = 〈{A ⊑ ∀R.¬B}, {a : ∀R.C ≥ V eryTrue}〉.

An f-interpretation I satisfies (is a model of) a TBox T iff I satisfies each element
in T . I satisfies (is a model of) an ABox A iff I satisfies each element in A. I satisfies
(is a model of) a fKB fK = 〈T ,A〉 iff I satisfies both A and T . Given a fKB fK and a
fassertion fα. We say that fK entails fα (denoted fK |= fα) iff each model of fK satisfies
fα.

2.4 Examples of applications of hedges

In daily life, we often use hedges. We give three examples of applications of hedges to
show why we need hedge-algebra OWL.

14 Chapter 2. Preliminaries

Example 29 (DNA testing). DNA is the genetic material found within the cell nuclei
of all living things. In mammals the strands of DNA are grouped into structures called
chromosomes. With the exception of identical siblings (as in identical twins), the com-
plete DNA of each individual is unique. DNA was first developed as an identification
technique. Originally used to detect the presence of genetic diseases, it soon came to
be used in criminal investigations and legal affairs. In criminal investigations, DNA
derived from evidence collected at the crime scene are compared the DNA fingerprints
of suspects. Generally, courts have accepted the reliability of DNA testing and admitted
DNA testing results into evidence.

DNA is also used to determine the filiation. Because there might be gene mutage-
neses and human error which could lead to false results, the DNA of the child might
not match his parents’ DNAs completely. Therefore, the DNA of child probably is a
little different from his parents’. We can not say the fact of being the child of a certain
parent is true only if their DNAs match 100%. Generally, courts accept the probabil-
ity greater and equal to 90%. So it is more reasonable to say that if their DNAs are
V eryV eryV eryMatched then “they are son and father” holds to a degree True.

Hedges exist in our university as well.

Example 30. Every professor has ever written recommendations for students and all
students want their professors give them nice, veracious and just evaluations. If the
professor defines some boundaries which divide marks into several classes such as “ex-
cellent” or “good”, so that those who have marks better than 1.5 are excellent, and those
who have marks between 1.5 and 2.5 are good and so forth, maybe the students who get
marks of 1.6 are a little depressed because they are excluded from the excellent group
though they are so close to it.

By using hedges, that would be represented as the following. If John’s mark is 1.0, the
professor might think “John is a V ery excellent student” holds to a degree V eryTrue. If
John has mark of 1.6, that “John is an excellent student” holds to a degree True would
be appropriate. The following is an ALCFL knowledge base K of this situation.

K = { 〈John : ¬(∃mark.V eryV eryGood) ⊔ Excellent ≥ V eryTrue〉
〈(John, 1.0) : mark ≥ V eryTrue〉
〈1.0 : V eryV eryGood ≥ V eryeryTrue〉
〈Mike : ¬(∃mark.V eryV eryGood) ⊔ Excellent ≥ True〉
〈(Mike, 1.6) : mark ≥ V eryTrue〉
〈1.6 : V eryGood ≥ True〉
}

Usually, when we talk about the weight we say it is heavy or light instead of the
actual number. We can not fix a boundary such that a person is fat if his weight is
heavier than the boundary otherwise he is not. We would rather say that it is Probably
true that somebody is V ery fat according to his weight. The following is an example of
ALCFL knowledge base. Tom wants to know whether he is fat. He builds the knowledge
base and does the reasoning.

2.4. Examples of applications of hedges 15

Example 31. Consider a knowledge base K:
“A man is fat if it is very likely that he is very very heavy” holds to a degree at least

True. For a man named Tom who want to know whether he is over normal weight:

〈Tom : ¬(∃weight.V eryV eryHeavy) ⊔ Fat ≥ True〉 (2.3)

“The weight of Tom is 150kg ” holds to a degree more than more-or-less True:

〈(Tom, 150) : weight ≥ MolTrue〉 (2.4)

“150kg is heavy ” holds to a degree more than More True:

〈150 : Heavy ≥ MoreTrue〉 (2.5)

Let us show that K entails that “Tom is fat” to a degree more than True. To prove this
it suffices to prove K together with the following is unsatisfiable,

〈Tom : Fat < True〉 (2.6)

We use the calculus introduced in [5] to solve this unsatisfiability problem in ALCFL.
The rules we use here are included in the calculus.

According the rule (⊔≥), we have two branches:

〈Tom : ¬(∃weight.V eryV eryHeavy) ≥ True〉 (2.7)

〈Tom : Fat ≥ True〉 (2.8)

2.8 and 2.6 yield a clash. For 2.7, we apply the rule (¬≥) and obtain:

〈Tom : ∃weight.V eryV eryHeavy) ≤ False〉 (2.9)

Since 2.4 is conjugated to 〈(Tom, 150) : weight ≤ False〉, rule(∃≤) yields:

〈150 : V eryV eryHeavy ≤ False〉 (2.10)

rule (δ≤) yields:
〈150 : Heavy ≤ V eryV eryFalse〉 (2.11)

2.11 has clash with 2.5.
There is no a clash free completion of K ∪ {〈Tom : Fat < True〉}. Therefore

K ∪ {〈Tom : Fat < True〉} is unsatisfiable. We can see that K |= 〈Tom : Fat ≥ True〉.

After the reasoning, Tom obtains the result which means he needs to lose weight.

To the best of our knowledge, there exists no implemented reasoners working with
fuzzy DLs with hedges. Developing an optimized reasoner is a hard work and will cost a
lot of time and material resources. It will be convenient if we can use existing reasoners
to do reasoning in ALCFL, so we transform ALCFL into classical DLs. In the next
chapter, we will show such a transformation which is satisfiability preserving.

16 Chapter 2. Preliminaries

Chapter 3

Transforming ALCFL into ALCH

3.1 The basic idea

We will introduce a satisfiability preserving transformation from ALCFL into ALCH in
this section. First, we illustrate the basic idea the mapping relies on. The idea is similar
to the one in [14].

Consider a monotonic HA AX = (X, {True, False}, H, >). In the following, we
assume that c ∈ {c+, c−} where c+ = True, c− = False, σ ∈ H∗, σc ∈ X and ⊲⊳ ∈
{≥, >,≤, <}. Assume we have an ALCFL knowledge base, fK = 〈T ,A〉, where A =
{fα1, fα2, fα3, fα4} and fα1 = 〈a : A ≥ True〉, fα2 = 〈b : A ≥ V eryTrue〉, fα3 = 〈a :
B ≤ False〉, and fα4 = 〈b : B ≤ V eryFalse〉 where A, B are concept names. We
introduce four new concept names: A≥True, A≥V eryTrue, B≤False and B≤V eryFalse. The
concept name A≥True represents the set of individuals that are instances of A with
degree greater and equal to True. The concept name B≤V eryF lase represents the set of
individuals that are instances of B with degree less and equal to V eryFalse. We can
map the fuzzy assertions into classical assertions:

〈a : A ≥ True〉 → 〈a : A≥True〉,

〈b : A ≥ V eryTrue〉 → 〈b : A≥V eryTrue〉,

〈a : B ≤ False〉 → 〈a : B≤False〉,

〈b : B ≤ V eryFalse〉 → 〈b : B≤V eryFalse〉.

We also need to consider the relationships among the newly introduced concept names.
Because V eryTrue > True, it is easy to get if a truth value σc ≥ V eryTrue then
σc ≥ True. Thus, we obtain a new inclusion A≥V eryTrue ⊑ A≥True. Similarly for B,
because V eryFalse < False, a truth value σc ≤ V eryFalse implies σc ≤ False too.
Then the inclusion B≤V eryFalse ⊑ B≤False is obtained.

Now, let us proceed with the mappings. Let fK = 〈T ,A〉 be an ALCFL knowledge
base. We are going to transform fK into an ALCH knowledge base K. We assume
σc ∈ [inf(False), sup(True)] and ⊲⊳ ∈ {≥, >,≤, <}.

17

18 Chapter 3. Transforming ALCFL into ALCH

3.2 The transformation of ABox

In order to transform A, we define two mappings θ and ρ to map all the assertions
in A into classical assertions. Notice that we do not allow assertions of the forms
(a.b) : R < σc and (a.b) : R ≤ σc because they related to ‘negated role’ which is not
part of classical ALCH. Most of reasoners do not support ALCH(¬) which is ALCH
with negated role and the complexity of ALCH(¬) is still open.

3.2.1 The mapping θ

θ maps fuzzy assertions into classical assertions using ρ. We define it as follows.

Definition 32. Let fα be a fassertion in A, then,

θ(fα) =

{

a : ρ(C, ⊲⊳ σc) if fα = 〈a : C ⊲⊳ σc〉
(a, b) : ρ(R, ⊲⊳ σc) if fα = 〈(a, b) : R ⊲⊳ σc〉.

We extend θ to a set of fassertions A point-wise,

θ(A) = {θ(fα) | fα ∈ A}.

Let’s see how the mapping ρ is defined next.

3.2.2 The mapping ρ

The mapping ρ combines the ALCFL concept term, the ⊲⊳ and the fuzzy value σc
together into an ALCH concept term.

Let A be a concept name, C, D be concept terms and R be a role name. For roles
we have simply

ρ(R, ⊲⊳ σc) = R⊲⊳σc.

Example 33. Let fα be a role assertion and fα = 〈(a, b) : R ≥ V eryTrue〉, then
θ(fα) = (a, b) : ρ(R,≥ V eryTrue) = (a, b) : R≥V eryTrue.

For concept terms, the mapping ρ is inductively defined on the structures of concept
terms:
For ⊤,

ρ(⊤, ⊲⊳ σc) =































⊤ if ⊲⊳ σc = ≥ σc
⊤ if ⊲⊳ σc = > σc, σc < sup(c+)
⊥ if ⊲⊳ σc = > sup(c+)
⊤ if ⊲⊳ σc = ≤ sup(c+)
⊥ if ⊲⊳ σc = ≤ σc, σc < sup(c+)
⊥ if ⊲⊳ σc = < σc.

3.2. The transformation of ABox 19

For ⊥,

ρ(⊥, ⊲⊳ σc) =































⊤ if ⊲⊳ σc = ≥ inf(c−)
⊥ if ⊲⊳ σc = ≥ σc, σc > inf(c−)
⊥ if ⊲⊳ σc = > σc
⊤ if ⊲⊳ σc = ≤ σc
⊤ if ⊲⊳ σc = < σc, σc > inf(c−)
⊥ if ⊲⊳ σc = < inf(c−).

For concept name A,

ρ(A, ⊲⊳ σc) = A⊲⊳σc.

For concept conjunction C ⊓ D,

ρ(C ⊓ D, ⊲⊳ σc) =

{

ρ(C, ⊲⊳ σc) ⊓ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
ρ(C, ⊲⊳ σc) ⊔ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <}.

Example 34. Let fα = 〈a : A ⊓ B ≥ V eryTrue〉, then

θ(fα) = a : ρ(A ⊓ B,≥ V eryTrue)
= a : ρ(A,≥ V eryTrue) ⊓ ρ(B,≥ V eryTrue)
= a : A≥V eryTrue ⊓ B≥V eryTrue.

For concept disjunction C ⊔ D,

ρ(C ⊔ D, ⊲⊳ σc) =

{

ρ(C, ⊲⊳ σc) ⊔ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
ρ(C, ⊲⊳ σc) ⊓ ρ(D, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <}.

Example 35. Let fα = 〈a : A ⊔ B ≤ V eryTrue〉, then

θ(fα) = a : ρ(A ⊔ B,≤ V eryTrue)
= a : ρ(A,≤ V eryTrue) ⊓ ρ(B,≤ V eryTrue)
= a : A≤V eryTrue ⊓ B≤V eryTrue.

For concept negation ¬C

ρ(¬C, ⊲⊳ σc) = ρ(C,¬ ⊲⊳ σc̄),

where ¬ ≥ = ≤,¬ > = <,¬ ≤ = ≥, ¬ < = > and

c̄ =

{

c+ if c = c−

c− if c = c+.

Example 36. Let fα = 〈a : ¬A ≥ LessTrue〉, then

θ(fα) = a : ρ(¬A,≥ LessTrue) = a : ρ(A,≤ LessFalse) = a : A≤LessFalse.

For modifier concept δC,

20 Chapter 3. Transforming ALCFL into ALCH

ρ(δC, ⊲⊳ σc) = ρ(C, ⊲⊳ σδc).

Example 37. Let fα = 〈a : V ery(A ⊓ B) ≤ LessFalse〉, then

θ(fα) = a : ρ(V ery(A ⊓ B),≤ LessFalse)
= a : ρ((A ⊓ B),≤ LessV eryFalse)
= a : ρ(A,≤ LessV eryFalse) ⊔ ρ(B,≤ LessV eryFalse)
= a : A≤LessV eryTrue ⊔ B≤LessV eryTrue.

For existential quantification ∃R.C,

ρ(∃R.C, ⊲⊳ σc) =

{

∃ρ(R, ⊲⊳ σc).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
∀ρ(R,− ⊲⊳ σc).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <},

where − ≤ = > and − < = ≥.

Example 38. Let fα = 〈a : ∃R.A ≤ V eryTrue〉, then

θ(fα) = a : ρ(∃R.A,≤ V eryTrue)
= a : ∀ρ(R, > V eryTrue).ρ(A,≤ V eryTrue)
= a : ∀R>V eryTrue.ρ(A,≤ V eryTrue)
= a : ∀R>V eryTrue.A≤V eryTrue.

For universal quantification ∀R.C,

ρ(∀R.C, ⊲⊳ σc) =

{

∀ρ(R, + ⊲⊳ σc̄).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≥, >}
∃ρ(R,¬ ⊲⊳ σc̄).ρ(C, ⊲⊳ σc) if ⊲⊳ ∈ {≤, <},

where + ≥ = > and + > = ≥.

Example 39. Let fα = 〈a : ∀R.B > V eryTrue〉, then

θ(fα) = a : ρ(∀R.B, > V eryTrue)
= a : ∀ρ(R,≥ V eryFalse).ρ(B, > V eryTrue)
= a : ∀R≥V eryFalse.ρ(B, > V eryTrue)
= a : ∀R≥V eryFalse.B>V eryTrue.

According to the rules above, we can see that |θ(A)| is linearly bounded by |A|.

3.3 The transformation of TBox

The new TBox is a union of two terminologies. One is the newly introduced TBox
(denoted by T (N fK) which is the terminology relating to the newly introduced concept
names and role names. The other one is κ(fK, T) which is reduced by a mapping κ from
the TBox of an ALCFL knowledge base.

3.3. The transformation of TBox 21

3.3.1 The newly introduced TBox

Many new concept names and role names are introduced when we transform an ABox.
We need a set of terminological axioms to define the relationships among those new
names.

We collect all the linguist terms σc that might be the subscript of a concept name
or a role name. Let A be a concept name, R be a role name.

XfK = {σc | 〈α ⊲⊳ σc〉 ∈ A}
∪ {σc | ρ(A, ⊲⊳ σc)}
∪ {σc | ρ(R, ⊲⊳ σc)}.

We define a sorted set of linguistic terms,

N fK = {inf (False), W, sup (True)}
∪ XfK ∪ {σc̄ | σc ∈ XfK}

= {n1, . . . , n|N fK|}

where W = inf (True) = sup (False), ni < ni+1 for 1 ≤ i ≤ |N fK | − 1 and n1 =
inf (False), n|N fK | = sup (True).

Example 40. Consider Example 28, the sorted set is,

N fK = {inf (False), V eryFalse, W, V eryTrue, sup (True)}.

Let T (N fK) be the set of terminological axioms relating to the newly introduced
concept names and role names.

Definition 41 (T (N fK)). Let AfK and RfK be the sets of concept names and role
names occurring in fK respectively. For each A ∈ AfK, for each R ∈ RfK, for each
1 ≤ i ≤ |N fK | − 1 and for each 2 ≤ j ≤ |N fK |, T (N fK) contains

A≥ni+1
⊑A>ni

,
A>ni

⊑A≥ni
,

A<nj
⊑A≤nj

,
A≤ni

⊑A<ni+1
,

A≥nj
⊓ A<nj

⊑⊥,
A>ni

⊓ A≤ni
⊑⊥,

⊤⊑A≥nj
⊔ A<nj

,
⊤⊑A>ni

⊔ A≤ni
,

R≥ni+1
⊑R>ni

,
R>ni

⊑R≥ni
.

where n ∈ N fK .

ni+1 > ni because N fK is a sorted set. Then if an individual is an instance of a
concept name with degree ≥ ni+1 then the degree is also > ni. The first terminological

22 Chapter 3. Transforming ALCFL into ALCH

axiom shows that if an individual is an instance of A≥ni+1
then it is an instance of

A>ni
as well. Similarly, if an individual is an instance of a concept name with degree

≤ ni then the degree is also < ni+1. The third terminological axiom shows that if an
individual is an instance of A≤ni

then it is also an instance of A<ni+1
. A≥nj

⊓A<nj
⊑ ⊥

because there is no individual such that it is an instance of a concept name with degree
≥ nj and with degree < nj at the same time.

T (N fK) contains 8|AfK|(|N fK| − 1) plus 2|RfK|(|N fK| − 1) terminological axioms.

Example 42. Consider the ALCFL knowledge base in Example 28, the following is an
excerpt of the T (N fK),

T (N fK) = {A≥sup(True) ⊑ A>V eryTrue, A≥V eryTrue ⊑ A>W ,

A≥W ⊑ A>V eryFalse, A≥V eryFalse ⊑ A>inf(False)}
∪ {. . . , A≥V eryTrue ⊓ A<V eryTrue ⊑ ⊥, . . .}
∪ {. . . ,⊤ ⊑ A≥V eryTrue ⊔ A<V eryTrue, . . .}
∪ {. . . , R≥sup(True) ⊑ R>V eryTrue, . . .}.

3.3.2 The mapping κ

κ maps the fuzzy TBox into classical TBox.

Definition 43 (κ(fK, T)). Let C, D be two concept terms and C ⊑ D ∈ T . For all
n ∈ N fK

κ(fK, C ⊑ D) =
⋃

n∈N fK,⊲⊳∈{≥,>}{ρ(C, ⊲⊳ n) ⊑ ρ(D, ⊲⊳ n)}
⋃

n∈N fK,⊲⊳∈{≤,<}{ρ(D, ⊲⊳ n) ⊑ ρ(C, ⊲⊳ n)}
(3.1)

We extend κ to a terminology T point-wise. For all τ ∈ T

κ(fK, T) = ∪τ∈T κ(fK, τ).

κ reduces a terminological axiom in ALCFL into a set of ALCH terminology axioms.

3.4 The satisfiability preserving theorem

We now have all the ingredients to complete the reduction of an ALCFL knowledge base
into an ALCH knowledge base. The reduction of fK into an ALCH knowledge base,
denoted K(fK), is defined as

K(fK) = 〈T (N fK) ∪ κ(fK, T), θ(A)〉.

The soundness and completeness of the algorithm can be guaranteed by the following
satisfiability preserving reduction theorem.

Theorem 44. Let fK be an ALCFL knowledge base. Then fK is satisfiable iff the ALCH
knowledge base K(fK) is satisfiable.

3.4. The satisfiability preserving theorem 23

Proof. Let fK = 〈T ,A〉 be an ALCFL knowledge base , K(fK) = 〈T ′,A′〉 be the trans-
formed ALCH knowledge base, where T ′ = T (N fK) ∪ κ(fK, T) and A′ = θ(A). We
define that ⊲∈ {≥, >} and ⊳∈ {≤, <}.

Our goal is to prove ∃I.I |= fK ⇔ ∃I ′.I ′ |= K(fK), where I is a fuzzy interpretation
and I ′ is an ALCH interpretation.

⇒ .) Assume I is a witnessed interpretation, such that I |= fK. We construct an
ALCH interpretation I ′:

- ∆I′

:= ∆I ,

- aI
′

:= aI for all individual a,

- AI′

⊲⊳σc := {d ∈ ∆I′

| AI(d) ⊲⊳ σc}, for all concept name A⊲⊳σc,

- RI′

⊲⊳σc := {(d, d′) ∈ ∆I′

× ∆I′

| RI(d, d′) ⊲⊳ σc}, for all role name R⊲⊳σc.

(1) First, let’s prove the follow Lemma.

Lemma 45. Let C be a concept term in ALCFL. C 6= ⊤ and C 6= ⊥. It follows that
(ρ(C, ⊲⊳ σc))I

′

= {d ∈ ∆I′

| CI(d) ⊲⊳ σc}.

Proof. Let R be a role name,

(ρ(R, ⊲⊳ σc))I
′

= RI′

⊲⊳σc = {(d, d′) ∈ ∆I′

× ∆I′

| RI(d, d′) ⊲⊳ σc}.
We prove inductively on the structures of concept terms.
Let A be a concept name,

(ρ(A, ⊲⊳ σc))I
′

= AI′

⊲⊳σc = {d ∈ ∆I′

| AI(d) ⊲⊳ σc}.
Let C be a concept term. Assume

(ρ(C, ⊲⊳ σc))I
′

= {d ∈ ∆I′

| CI(d) ⊲⊳ σc}.

For ¬C,

(ρ(¬C, ⊲⊳ σc))I
′

= (ρ(C,¬ ⊲⊳ σc̄))I
′

I.H.
= {d ∈ ∆I′

| CI(d)¬ ⊲⊳ σc̄}

= {d ∈ ∆I′

| (¬C)I(d) ⊲⊳ σc}.

For δC,

(ρ(δC, ⊲⊳ σc))I
′

= (ρ(C, ⊲⊳ σδc))I
′

I.H.
= {d ∈ ∆I′

| CI(d) ⊲⊳ σδc}

= {d ∈ ∆I′

| (δC)I(d) ⊲⊳ σc}.

For C ⊓ D,

(ρ(C ⊓ D, ⊲ σc))I
′

= (ρ(C,⊲ σc) ⊓ ρ(D, ⊲ σc))I
′

I.H.
= {d ∈ ∆I′

| CI(d) ⊲ σc} ∩ {d ∈ ∆I′

| DI(d) ⊲ σc}.

= {d ∈ ∆I′

| CI(d) ⊲ σc ∧ DI(d) ⊲ σc}.

= {d ∈ ∆I′

| min(CI(d), DI(d)) ⊲ σc}.

= {d ∈ ∆I′

| (C ⊓ D)I(d) ⊲ σc}.

24 Chapter 3. Transforming ALCFL into ALCH

(ρ(C ⊓ D, ⊳ σc))I
′

= (ρ(C,⊳ σc) ⊔ ρ(D, ⊳ σc))I
′

I.H.
= {d ∈ ∆I′

| CI(d) ⊳ σc } ∪ {d ∈ ∆I′

| DI(d) ⊳ σc}

= {d ∈ ∆I′

| CI(d) ⊳ σc ∨ DI(d) ⊳ σc}

= {d ∈ ∆I′

| min(CI(d), DI(d)) ⊳ σc}

= {d ∈ ∆I′

| (C ⊓ D)I(d) ⊳ σc}.

For C ⊔ D,

(ρ(C ⊔ D, ⊲ σc))I
′

= (ρ(C,⊲ σc) ⊔ ρ(D, ⊲ σc))I
′

I.H.
= {d ∈ ∆I′

| CI(d) ⊲ σc } ∪ {d ∈ ∆I′

| DI(d) ⊲ σc}

= {d ∈ ∆I′

| CI(d) ⊲ σc ∨ DI(d) ⊲ σc}

= {d ∈ ∆I′

| max(CI(d), DI(d)) ⊲ σc}

= {d ∈ ∆I′

| (C ⊔ D)I(d) ⊲ σc}.

(ρ(C ⊔ D, ⊳ σc))I
′

= (ρ(C,⊳ σc) ⊓ ρ(D, ⊳ σc))I
′

I.H.
= {d ∈ ∆I′

| CI(d) ⊳ σc } ∩ {d ∈ ∆I′

| DI(d) ⊳ σc}

= {d ∈ ∆I′

| CI(d) ⊳ σc ∧ DI(d) ⊳ σc}

= {d ∈ ∆I′

| max(CI(d), DI(d)) ⊳ σc}

= {d ∈ ∆I′

| (C ⊔ D)I(d) ⊳ σc}.

For ∀R.C,

(ρ(∀R.C,⊲ σc))I
′

= (∀ρ(R, + ⊲ σc̄).ρ(C,⊲ σc))I
′

I.H.
= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) /∈ RI′

+⊲σc̄ ∨ CI(d′) ⊲ σc}

= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) ∈ RI′

¬⊲σc̄ ∨ CI(d′) ⊲ σc}

= {d ∈ ∆I′

|
∧

d′∈∆I′ (RI(d, d′)¬ ⊲ σc̄ ∨ CI(d′) ⊲ σc)}

= {d ∈ ∆I′

|
∧

d′∈∆I′ (−RI(d, d′) ⊲ σc ∨ CI(d′) ⊲ σc)}

= {d ∈ ∆I′

|
∧

d′∈∆I′ (max(−RI(d, d′), CI(d′)) ⊲ σc)}

= {d ∈ ∆I′

| infd′∈∆I′ (max(−RI(d, d′), CI(d′)} ⊲ σc)}

= {d ∈ ∆I′

| (∀R.C)I(d) ⊲ σc)}.

(ρ(∀R.C,⊳ σc))I
′

= (∃ρ(R,¬ ⊳ σc̄).ρ(C,⊳ σc))I
′

I.H.
= {d ∈ ∆I′

| ∃d′ ∈ ∆I′

.(d, d′) ∈ RI′

¬⊳σc̄ ∧ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

|
∨

d′∈∆I′ (RI(d, d′)¬ ⊳ σc̄ ∧ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

|
∨

d′∈∆I′ (−RI(d, d′) ⊳ σc ∧ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

|
∨

d′∈∆I′ (max(−RI(d, d′), CI(d′)) ⊳ σc)}

= {d ∈ ∆I′

| infd′∈∆I′ (max(−RI(d, d′), CI(d′)} ⊳ σc)}

= {d ∈ ∆I′

| (∀R.C)I(d) ⊳ σc)}.

3.4. The satisfiability preserving theorem 25

For ∃R.C,

(ρ(∃R.C,⊲ σc))I
′

= (∃ρ(R, ⊲ σc).ρ(C,⊲ σc))I
′

I.H.
= {d ∈ ∆I′

| ∃d′ ∈ ∆I′

.(d, d′) ∈ RI′

⊲σc ∧ CI(d′) ⊲ σc)}

= {d ∈ ∆I′

|
∨

d′∈∆I′ (RI′

(d, d′) ⊲ σc ∧ CI(d′) ⊲ σc)}

= {d ∈ ∆I′

|
∨

d′∈∆I′ (min(RI(d, d′), CI(d′)) ⊲ σc)}

= {d ∈ ∆I′

| supd′∈∆I′{min(RI(d, d′), CI(d′)} ⊲ σc)}

= {d ∈ ∆I′

| (∃R.C)I(d) ⊲ σc)}.

(ρ(∃R.C,⊳ σc))I
′

= (∀ρ(R,− ⊳ σc).ρ(C,⊳ σc))I
′

I.H.
= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) /∈ RI′

−⊳σc ∨ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) ∈ RI′

⊳σc ∨ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(RI(d, d′) ⊳ σc ∨ CI(d′) ⊳ σc)}

= {d ∈ ∆I′

|
∧

d′∈∆I′ (min(RI(d, d′), CI(d′)) ⊳ σc)}

= {d ∈ ∆I′

| supd′∈∆I′ (min(RI(d, d′), CI(d′)} ⊳ σc)}

= {d ∈ ∆I′

| (∃R.C)I(d) ⊳ σc)}.

In the following, we use C⊲⊳σc to represent ρ(C, ⊲⊳ σc).

(2) Now we prove that for all α ⊲⊳ σc ∈ A,

I |= α ⊲⊳ σc ⇒ I ′ |= θ(α ⊲⊳ σc).

For role assertion,

I |= (a, b) : R ⊲⊳ σc ⇒ RI(aI , bI) ⊲⊳ σc

⇒ (aI
′

, bI
′

) ∈ RI′

⊲⊳σc

⇒ I ′ |= (a, b) : R⊲⊳σc.

For concept assertions, we inductively prove on the structure of concept term:
For ⊤,
For all interpretation I and for all d ∈ ∆I , ⊤I(d) = sup(True), so a : ⊤ ≥ σc, a :
⊤ > σc if σc < sup(True) and a : ⊤ ≤ sup(True) are valid, a : ⊤ is valid too. While
a : ⊤ > sup(True), a : ⊤ ≤ σc if σc < sup(True) and a : ⊤ < σc are unsatisfiable, a : ⊥
is unsatisfiable as well.
For ⊥,
For all interpretation I and for all d ∈ ∆I , ⊥I(d) = inf(False), so a : ⊥ ≥ inf(False), a :
⊥ < σc if σc > inf(False) and a : ⊥ ≤ σc are valid, so is a : ⊤. While a : ⊥ <
inf(False), a : ⊥ ≥ σc if σc > inf(False) and a : ⊥ > σc are unsatisfiable. a : ⊥ is also
unsatisfiable.
For concept name A,
I |= a : A ⊲⊳ σc ⇒ AI(aI) ⊲⊳ σc ⇒ aI

′

∈ AI′

⊲⊳σc ⇒ I ′ |= a : A⊲⊳σc.

26 Chapter 3. Transforming ALCFL into ALCH

For concept negation ¬C,

I |= a : ¬C ⊲⊳ σc ⇒ (¬C)I(aI) ⊲⊳ σc
⇒ −CI(aI) ⊲⊳ σc
⇒ CI(aI)¬ ⊲⊳ σc̄

⇒ aI ∈ CI′

¬⊲⊳σc̄

⇒ aI
′

∈ CI′

¬⊲⊳σc̄

⇒ I ′ |= a : C¬⊲⊳σc̄.

For concept conjunction C ⊓ D,

I |= a : C ⊓ D ⊲ σc ⇒ (C ⊓ D)I(aI) ⊲ σc
⇒ min(CI(aI), DI(aI)) ⊲ σc
⇒ (CI(aI) ⊲ σc) ∧ (DI(aI) ⊲ σc)

⇒ aI ∈ CI′

⊲σc ∧ aI ∈ DI′

⊲σc

⇒ aI
′

∈ CI′

⊲σc ∧ aI
′

∈ DI′

⊲σc

⇒ aI
′

∈ CI′

⊲σc ∩ DI′

⊲σc

⇒ I ′ |= a : C⊲σc ⊓ D⊲σc.

I |= a : C ⊓ D ⊳ σc ⇒ (C ⊓ D)I(aI) ⊳ σc
⇒ min(CI(aI), DI(aI)) ⊳ σc
⇒ (CI(aI) ⊳ σc) ∨ (DI(aI) ⊳ σc)

⇒ aI ∈ CI′

⊳σc ∨ aI ∈ DI′

⊳σc

⇒ aI
′

∈ CI′

⊳σc ∨ aI
′

∈ DI′

⊳σc

⇒ aI
′

∈ CI′

⊳σc ∪ DI′

⊳σc

⇒ I ′ |= a : C⊳σc ⊔ D⊳σc.

For concept disjunction C ⊔ D,

I |= a : C ⊔ D ⊲ σc ⇒ (C ⊔ D)I(aI) ⊲ σc
⇒ max(CI(aI), DI(aI)) ⊲ σc
⇒ (CI(aI) ⊲ σc) ∨ (DI(aI) ⊲ σc)

⇒ aI ∈ CI′

⊲σc ∨ aI ∈ DI′

⊲σc

⇒ aI
′

∈ CI′

⊲σc ∨ aI
′

∈ DI′

⊲σc

⇒ aI
′

∈ CI′

⊲σc ∪ DI′

⊲σc

⇒ I ′ |= a : C⊲σc ⊔ D⊲σc.

I |= a : C ⊔ D ⊳ σc ⇒ (C ⊔ D)I(aI) ⊳ σc
⇒ max(CI(aI), DI(aI)) ⊳ σc
⇒ (CI(aI) ⊳ σc) ∧ (DI(aI) ⊳ σc)

⇒ aI ∈ CI′

⊳σc ∧ aI ∈ DI′

⊳σc

⇒ aI
′

∈ CI′

⊳σc ∧ aI
′

∈ DI′

⊳σc

⇒ aI
′

∈ CI′

⊳σc ∩ DI′

⊳σc

⇒ I ′ |= a : C⊳σc ⊓ D⊳σc.

3.4. The satisfiability preserving theorem 27

For modifier concept δC,

I |= a : δC ⊲⊳ σc ⇒ I |= a : C ⊲⊳ σδc
⇒ CI(aI) ⊲⊳ σδc

⇒ aI ∈ CI′

⊲⊳σδc

⇒ aI
′

∈ CI′

⊲⊳σδc

⇒ I ′ |= a : C⊲⊳σδc.

For universal quantification ∀R.C,

I |= a : ∀R.C ⊲ σc
⇒ (∀R.C)I(aI) ⊲ σc
⇒ infd′∈∆I{max(−RI(aI , d′), CI(d′))} ⊲ σc
⇒

∧

d′∈∆I (max(−RI(aI , d′), CI(d′)) ⊲ σc)
⇒

∧

d′∈∆I ((−RI(aI , d′) ⊲ σc) ∨ (CI(d′) ⊲ σc))
⇒

∧

d′∈∆I ((RI(aI , d′)¬ ⊲ σc̄) ∨ (CI(d′) ⊲ σc))

⇒ ∀d′ ∈ ∆I .(((aI , d′) ∈ RI′

¬⊲σc̄) ∨ (d′ ∈ CI′

⊲σc))

⇒ ∀d′ ∈ ∆I .(((aI , d′) /∈ RI′

+⊲σc̄) ∨ (d′ ∈ CI′

⊲σc))

⇒ aI = {d ∈ ∆I | ∀d′ ∈ ∆I : (d, d′) /∈ RI′

+⊲σc̄ ∨ d′ ∈ CI′

⊲σc}

⇒ aI
′

= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

: (d, d′) /∈ RI′

+⊲σc̄ ∨ d′ ∈ CI′

⊲σc}

⇒ aI
′

∈ (∀R+⊲σc̄.C⊲σc)
I′

⇒ I ′ |= a : ∀R+⊲σc̄.C⊲σc.

I |= a : ∀R.C ⊳ σc
⇒ (∀R.C)I(aI) ⊳ σc
⇒ infd′∈∆I{max(−RI(aI , d′), CI(d′))} ⊳ σc
⇒

∨

d′∈∆I (max(−RI(aI , d′), CI(d′)) ⊳ σc)
⇒

∨

d′∈∆I ((−RI(aI , d′) ⊳ σc) ∧ (CI(d′) ⊳ σc))
⇒

∨

d′∈∆I ((RI(aI , d′)¬ ⊳ σc̄) ∧ (CI(d′) ⊳ σc))

⇒ ∃d′ ∈ ∆I .(((aI , d′) ∈ RI′

¬⊳σc̄) ∧ (d′ ∈ CI′

⊳σc))

⇒ aI = {d ∈ ∆I | ∃d′ ∈ ∆I : (d, d′) ∈ RI′

¬⊳σc̄ ∧ d′ ∈ CI′

⊳σc}

⇒ aI
′

= {d ∈ ∆I′

| ∃d′ ∈ ∆I′

: (d, d′) ∈ RI′

¬⊳σc̄ ∧ d′ ∈ CI′

⊳σc}

⇒ aI
′

∈ (∃R¬⊳σc̄.C⊳σc)
I′

⇒ I ′ |= a : ∃R¬⊳σc̄.C⊳σc.

For existential quantification ∃R.C,

I |= a : ∃R.C ⊲ σc
⇒ (∃R.C)I(aI) ⊲ σc
⇒ supd′∈∆I{min(RI(aI , d′), CI(d′))} ⊲ σc
⇒

∨

d′∈∆I (min(RI(aI , d′), CI(d′)) ⊲ σc)
⇒

∨

d′∈∆I ((RI(aI , d′) ⊲ σc) ∧ (CI(d′) ⊲ σc))

⇒ ∃d′ ∈ ∆I .(((aI , d′) ∈ RI′

⊲σc) ∧ (d′ ∈ CI′

⊲σc))

⇒ aI = {d ∈ ∆I | ∃d′ ∈ ∆I : (d, d′) ∈ RI′

⊲σc ∧ d′ ∈ CI′

⊲σc}

⇒ aI
′

= {d ∈ ∆I′

| ∃d′ ∈ ∆I′

: (d, d′) ∈ RI′

⊲σc ∧ d′ ∈ CI′

⊲σc}

⇒ aI
′

∈ (∃R⊲σc.C⊲σc)
I′

⇒ I ′ |= a : ∃R⊲σc.C⊲σc.

28 Chapter 3. Transforming ALCFL into ALCH

I |= a : ∃R.C ⊳ σc
⇒ (∃R.C)I(aI) ⊳ σc
⇒ supd′∈∆I{min(RI(aI , d′), CI(d′))} ⊳ σc
⇒

∧

d′∈∆I (min(RI(aI , d′), CI(d′)) ⊳ σc)
⇒

∧

d′∈∆I ((RI(aI , d′) ⊳ σc) ∨ (CI(d′) ⊳ σc))

⇒ ∀d′ ∈ ∆I .(((aI , d′) ∈ RI′

⊳σc) ∨ (d′ ∈ CI′

⊳σc))

⇒ ∀d′ ∈ ∆I .(((aI , d′) /∈ RI′

−⊳σc) ∨ (d′ ∈ CI′

⊲σc))

⇒ aI = {d ∈ ∆I | ∀d′ ∈ ∆I : (d, d′) /∈ RI′

−⊳σc ∨ d′ ∈ CI′

⊳σc}

⇒ aI
′

= {d ∈ ∆I′

| ∀d′ ∈ ∆I′

: (d, d′) /∈ RI′

−⊳σc ∨ d′ ∈ CI′

⊳σc}

⇒ aI
′

∈ (∀R−⊳σc.C⊳σc)
I′

⇒ I ′ |= a : ∀R−⊳σc.C⊳σc.

The proof shows that ∀α ⊲⊳ σc ∈ A.(I |= α ⊲⊳ σc ⇒ I ′ |= θ(α ⊲⊳ σc)) which implies
I |= A ⇒ I ′ |= θ(A).

(3) Our goal is I |= T ⇒ I ′ |= T (N fK) ∪ κ(fK, T).
It is trivial that I ′ |= T (N fK) according to our basic idea.
If C ⊑ D ∈ T , then for all σc ∈ N fK, C⊲σc ⊑ D⊲σc ∈ κ(fK, T) and D⊳σc ⊑ C⊳σc ∈

κ(fK, T).
I |= C ⊑ D ⇒ ∀d ∈ ∆I .CI(d) ≤ DI(d)

⇒ if CI(d) ⊲ σc then DI(d) ⊲ σc

⇒ if d ∈ CI′

⊲σc then d ∈ DI′

⊲σc

⇒ CI′

⊲σc ⊆ DI′

⊲σc

⇒ I ′ |= C⊲σc ⊑ D⊲σc.

I |= C ⊑ D ⇒ ∀d ∈ ∆I .CI(d) ≤ DI(d)
⇒ if DI(d) ⊳ σc then CI(d) ⊳ σc

⇒ if d ∈ DI′

⊳σc then d ∈ CI′

⊳σc

⇒ DI′

⊳σc ⊆ CI′

⊳σc

⇒ I ′ |= D⊳σc ⊑ C⊳σc.

So for all C ⊑ D ∈ T , I |= C ⊑ D ⇒ I ′ |= {C⊲σc ⊑ D⊲σc, D⊳σc ⊑ C⊳σc} which implies
that I |= T ⇒ I ′ |= κ(fK, T). Then we have proved I |= T ⇒ I ′ |= T ′.

⇐ .) Let I ′ be a finite model of K(fK) whose domain ∆I′

is finite. We build an
ALCFL interpretation I such that

- ∆I := ∆I′

,

- aI := aI
′

for all individual a,

- ∀d ∈ ∆I .AI(d) := σ′c′ for all concept name A, where
Let σ1c1 = sup{σc | d ∈ AI′

⊲σc}, σ2c2 = inf{σc | d ∈ AI′

⊳σc} and δ ∈ H∗ such that
for all δ′ ∈ H∗ and δ′ 6= δ, δ′σc > δσc > σc .

1. Since K(fK) is satisfiable, if σ1c1 = σ2c2 then σ′c′ = σ1c1 = σ2c2,

2. otherwise if σ1c1 < σ2c2, σ′c′ = δσ1c1.

If ∀σc.d /∈ AI′

⊲⊳σc, σ′c′ = inf(False).

3.4. The satisfiability preserving theorem 29

- ∀d, d′ ∈ ∆I .RI(d, d′) := σ′c′ for all role name R, where
Let σ1c1 = sup{σc | (d, d′) ∈ RI′

⊲σc}, σ2c2 = inf{σc | (d, d′) ∈ RI′

⊳σc} and δ ∈ H∗

such that for all δ′ ∈ H∗ and δ′ 6= δ, δ′σc > δσc > σc .

1. Since K(fK) is satisfiable, if σ1c1 = σ2c2 then σ′c′ = σ1c1 = σ2c2,

2. otherwise if σ1c1 < σ2c2, σ′c′ = δσ1c1.

If ∀σc.(d, d′) /∈ RI′

⊲⊳σc, σ′c′ = inf(False).

Because the domain ∆I is finite, the interpretation I is a witnessed interpretation.

(1) We have the following Lemma from our basic idea and the definition of the
interpretation I.

Lemma 46. For all σc and for all d, d′ ∈ ∆I′

, d ∈ CI′

⊲⊳σc ⇒ CI(d) ⊲⊳ σc and
(d, d′) ∈ RI′

⊲⊳σc ⇒ RI(d, d′) ⊲⊳ σc.

Proof. For role name R and concept name A, we obtain (d, d′) ∈ RI′

⊲⊳σc ⇒ RI(d, d′) ⊲⊳ σc
and d ∈ A⊲⊳σc ⇒ AI(d) ⊲⊳ σc from the definition of I immediately.

Assume for concept term C, d ∈ CI′

⊲⊳σc ⇒ CI(d) ⊲⊳ σc holds.

Let us prove inductively on the structures of concept terms.
For ¬C,

d ∈ (¬C)I
′

⊲⊳σc ⇒ d ∈ CI′

¬⊲⊳σc̄

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′)¬ ⊲⊳ σc̄} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| (¬C)I(d′) ⊲⊳ σc}
⇒ (¬C)I(d) ⊲⊳ σc.

For δC,

d ∈ (δC)I
′

⊲⊳σc ⇒ d ∈ CI′

⊲⊳σδc

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊲⊳ σδc} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| (δC)I(d′) ⊲⊳ σc}
⇒ (δC)I(d) ⊲⊳ σc.

For C ⊓ D,

d ∈ (C ⊓ D)I
′

⊲σc ⇒ d ∈ (C⊲σc ⊓ D⊲σc)
I′

⇒ d ∈ CI′

⊲σc ∩ DI′

⊲σc

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊲ σc} ∩ {d′ ∈ ∆I′

| DI(d′) ⊲ σc} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊲ σc ∧ DI(d′) ⊲ σc}

⇒ d ∈ {d′ ∈ ∆I′

| min(CI(d′), DI(d′)) ⊲ σc}

⇒ d ∈ {d′ ∈ ∆I′

| (C ⊓ D)I(d′) ⊲ σc}
⇒ (C ⊓ D)I(d) ⊲ σc.

30 Chapter 3. Transforming ALCFL into ALCH

d ∈ (C ⊓ D)I
′

⊳σc ⇒ d ∈ (C⊳σc ⊔ D⊳σc)
I′

⇒ d ∈ CI′

⊳σc ∪ DI′

⊳σc

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊳ σc} ∪ {d′ ∈ ∆I′

| DI(d′) ⊳ σc} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊳ σc ∨ DI(d′) ⊳ σc}

⇒ d ∈ {d′ ∈ ∆I′

| min(CI(d′), DI(d′)) ⊳ σc}

⇒ d ∈ {d′ ∈ ∆I′

| (C ⊓ D)I(d′) ⊳ σc}
⇒ (C ⊓ D)I(d) ⊳ σc.

For C ⊔ D,

d ∈ (C ⊔ D)I
′

⊲σc ⇒ d ∈ (C⊲σc ⊔ D⊲σc)
I′

⇒ d ∈ CI′

⊲σc ∪ DI′

⊲σc

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊲ σc} ∪ {d′ ∈ ∆I′

| DI(d′) ⊲ σc} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊲ σc ∨ DI(d′) ⊲ σc}

⇒ d ∈ {d′ ∈ ∆I′

| max(CI(d′), DI(d′)) ⊲ σc}

⇒ d ∈ {d′ ∈ ∆I′

| (C ⊔ D)I(d′) ⊲ σc}
⇒ (C ⊔ D)I(d) ⊲ σc.

d ∈ (C ⊔ D)I
′

⊳σc ⇒ d ∈ (C⊳σc ⊓ D⊳σc)
I′

⇒ d ∈ CI′

⊳σc ∩ DI′

⊳σc

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊳ σc} ∩ {d′ ∈ ∆I′

| DI(d′) ⊳ σc} (by I.H.)

⇒ d ∈ {d′ ∈ ∆I′

| CI(d′) ⊳ σc ∧ DI(d′) ⊳ σc}

⇒ d ∈ {d′ ∈ ∆I′

| max(CI(d′), DI(d′)) ⊳ σc}

⇒ d ∈ {d′ ∈ ∆I′

| (C ⊔ D)I(d′) ⊳ σc}
⇒ (C ⊔ D)I(d) ⊳ σc.

For ∀R.C,

d ∈ (∀R.C)I
′

⊲σc ⇒ (∀.R+⊲σc̄.C⊲σc)
I′

⇒ d ∈ {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) /∈ RI′

+⊲σc̄ ∨ d′ ∈ CI′

⊲σc} (by I.H.)

⇒ d ∈ {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) ∈ RI′

¬⊲σc̄ ∨ CI(d′) ⊲ σc}

⇒ d ∈ {d ∈ ∆I′

|
∧

d′∈∆I′ (RI(d, d′)¬ ⊲ σc̄ ∨ CI(d′) ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∧

d′∈∆I′ (−RI(d, d′) ⊲ σc ∨ CI(d′) ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∧

d′∈∆I′ (max(−RI(d, d′), CI(d′)) ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

| infd′∈∆I′ (max(−RI(d, d′), CI(d′)} ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

| (∀R.C)I(d) ⊲ σc}
⇒ (∀R.C)I(d) ⊲ σc.

d ∈ (∀R.C)I
′

⊳σc ⇒ d ∈ (∃R¬⊳σc̄.C⊳σc)
I′

⇒ d ∈ {d ∈ ∆I′

| ∃d′ ∈ ∆I′

.(d, d′) ∈ RI′

¬⊳σc̄ ∧ d′ ∈ CI′

⊳σc} (by I.H.)

⇒ d ∈ {d ∈ ∆I′

|
∨

d′∈∆I′ (RI(d, d′)¬ ⊳ σc̄ ∧ CI(d′) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∨

d′∈∆I′ (−RI(d, d′) ⊳ σc ∧ CI(d′) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∨

d′∈∆I′ (max(−RI(d, d′), CI(d′)) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

| infd′∈∆I′ (max(−RI(d, d′), CI(d′)} ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

| (∀R.C)I(d) ⊳ σc}
⇒ (∀R.C)I(d) ⊳ σc.

3.4. The satisfiability preserving theorem 31

For ∃R.C,

d ∈ (∃R.C)I
′

⊲σc ⇒ d ∈ (∃R⊲σc.C⊲σc)
I′

⇒ d ∈ {d ∈ ∆I′

| ∃d′ ∈ ∆I′

.(d, d′) ∈ RI′

⊲σc ∧ d′ ∈ CI′

⊲σc} (by I.H.)

⇒ d ∈ {d ∈ ∆I′

|
∨

d′∈∆I′ (RI′

(d, d′) ⊲ σc ∧ CI(d′) ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∨

d′∈∆I′ (min(RI(d, d′), CI(d′)) ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

| supd′∈∆I′{min(RI(d, d′), CI(d′)} ⊲ σc)}

⇒ d ∈ {d ∈ ∆I′

| (∃R.C)I(d′) ⊲ σc}
⇒ (∃R.C)I(d) ⊲ σc.

d ∈ (∃R.C)I
′

⊳σc ⇒ d ∈ (∀R−⊳σc.C⊳σc)
I′

⇒ d ∈ {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) /∈ RI′

−⊳σc ∨ d′ ∈ CI′

⊳σc} (by I.H.)

⇒ d ∈ {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(d, d′) ∈ RI′

⊳σc ∨ CI(d′) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

| ∀d′ ∈ ∆I′

.(RI(d, d′) ⊳ σc ∨ CI(d′) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

|
∧

d′∈∆I′ (min(RI(d, d′), CI(d′)) ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

| supd′∈∆I′ (min(RI(d, d′), CI(d′)} ⊳ σc)}

⇒ d ∈ {d ∈ ∆I′

| (∃R.C)I(d′) ⊳ σc}
⇒ (∃R.C)I(d) ⊳ σc.

(2) For ABox, the proof is exactly the reverse processes of that of the ⇒.) from
which we can prove I ′ |= θ(A′) ⇒ I |= A holds.

(3) For all σc ∈ N fK, C⊲σc ⊑ D⊲σc ∈ κ(fK, T), then for all d ∈ CI′

⊲σc, d ∈ DI′

⊲σc.
Therefore, if CI(d) ≥ σc then DI(d) ≥ σc.

Assume I ′ |= T ′ and I 2 C ⊑ D where C ⊑ D ∈ T . So there exists a d′ ∈ ∆I such
that CI(d′) > DI(d′). Consider CI(d′) = σ′c′. Of course CI(d′) ≥ σ′c′. Therefore,
DI(d′) ≥ σ′c′. From the hypothesis it follows that σ′c′ = CI(d′) > DI(d′) ≥ σ′c′, which
contradicts the hypothesis. So I ′ |= T ′ ⇒ I |= T .

32 Chapter 3. Transforming ALCFL into ALCH

Chapter 4

Implementation

In this section, we demonstrate the implementation of the transformation. The input of
the program is an OWL-DL ontology with an ALCFL knowledge base and the output is
a classical OWL-DL ontology with an ALCH knowledge base. The OWL-DL Ontology
and the KAON2 will be briefly explained soon.

4.1 OWL ontology

4.1.1 Introduction to OWL ontology

The term ontology is borrowed from philosophy in which an ontology is a theory about
the nature of existence, of what types of things exist. The Semantic Web is a vision
for the future of the Web in which information is given explicit meaning, making it
easier for machines to automatically process and integrate information available on the
Web. While as a basic component of the Semantic Web, an ontology is a collection of
information and is a document or file that formally defines the relations among terms.

OWL1 is a Web Ontology Language and is intended to provide a language that can
be used to describe the classes and relations between them that are inherent in Web doc-
uments and applications. OWL is a vocabulary extension of RDF.2 The OWL language
provides three increasingly expressive sublanguages: OWL Lite, OWL DL, OWL Full.
The input of our transformation program is an OWL DL ontology. OWL DL is so named
due to its correspondence with description logics. OWL DL was designed to support the
existing Description Logic business segment and has desirable computational properties
for reasoning systems. According to the corresponding relation between axioms of OWL
ontology and terms of Description Logic, we can represent the knowledge base contained
in the ontology in syntax of DLs.

In order to make the Semantic Web be able to handle applications that face uncer-
tain and imprecise information, many researchers have proposed extending OWL and

1Please visit http://www.w3.org/TR/owl-guide/ for more details.
2http://www.w3.org/RDF/

33

34 Chapter 4. Implementation

Description Logic to deal with such uncertainty. f-OWL,3 a fuzzy extension to OWL, can
capture imprecise and vague knowledge. The accompanying Fuzzy Reasoning Engine
lets f-OWL capture and reason about such knowledge. So far, OWL does not have any
syntax for hedges. In the following section, I develop an rdfs-based syntax for hedges.

4.1.2 A syntax for hedge

The following is an rdfs-based syntax for hedges. This Axiom represents a modifier
concept V eryC where V ery is a hedge and C is a concept term.

<owl:Class rdf:about=“VeryC”>
<owl:Hedge> Very </owl:Hedge>
<owl:modifierOf>

<owl:Class rdf:about=”http://www.w3.org/2002/07/owl#C”/>
</owl:modifierOf>

</owl:Class>

Table 1: a rdfs-based syntax for hedge

Example 47. For a concept V eryMoreA,
<owl:Class rdf:about=“VeryMoreA”>
<owl:Hedge> Very </owl:Hedge>
<owl:modifierOf>

<owl:Class rdf:about=”http://www.w3.org/2002/07/owl#MoreA”/>
<owl:Hedge> More </owl:Hedge>
<owl:modifierOf>

<owl:Class rdf:about=”http://www.w3.org/2002/07/owl#A”/>
</owl:modifierOf>

</owl:Class>
</owl:modifierOf>

</owl:Class>

4.2 Introduction to KAON2

KAON24 supports ontology languages. It is based on OWL and can read OWL syntax,
so we use KAON2 to manipulate OWL-DL ontologies. Table 2 gives the classes of
KAON2 we mainly use and their corresponding syntax in ALCH.

From Table 2, we know that ClassMember is concept assertion and ObjectProperty-

-Member is role assertion. SubClassOf, EquivalentClasses are concept terminological
axioms. Description corresponds to concept term.

3http://fowl.sourceforge.net/about.html
4KAON2 is an infrastructure for managing OWL ontologies. The API of KAON2 is capable of

manipulating OWL ontologies. Please visit http://kaon2.semanticweb.org/ for more details about how
to use KAON2.

4.3. Introduction to Jena 35

KAON2 Class DLs Syntax Example

Individual individual name a, b

thing top concept ⊤
nothing bottom concept ⊥
OWLClass concept name A

ObjectProperty role name R

Description concept term C, D

ObjectAnd concept conjunction C ⊓ D

ObjectOr concept disjunction C ⊔ D

ObjectNot concept negation ¬C

ObjectSome existential quantification ∃R.C

ObjectAll universal quantification ∀R.C

ClassMember concept assertion a : C

ObjectPropertyMember role assertion (a, b) : R

SubClassOf concept inclusion C ⊑ D

SubObjectPropertyOf role inclusion R ⊑ S

Table 2: OWL Descriptions

KAON2 implements a resolution-based decision procedure for general TBoxes (sub-
sumption, satisfiability, classification) and ABoxes (retrieval, conjunctive query answer-
ing). KAON2 treats all of OWL DL except nominals. Generally speaking, KAON2 seems
to do better on Abox reasoning tasks than reasoners which implement the tableaux cal-
culus do, in particular if ABox is large and TBox is of medium size [8].

4.3 Introduction to Jena

Jena5 is a Java framework for building Semantic Web applications. It provides a pro-
grammatic environment for RDF, RDFS and OWL, SPARQL6 and includes a rule-based
inference engine. It is a pretty writer for RDF. Jena can load and write ontologies with
syntax that KAON2 can not handle, e.g., the rdf-based syntax of hedges. For this
reason, I use Jena to load and read the ontologies with hedges.

4.4 Introduction to Racer

RACER7 stands for Renamed ABox and Concept Expression Reasoner. RacerPro is the
commercial name of the software. It is a lisp-based reasoner. It appeared in 2002 and
have been continuously improved. RacerPro is a knowledge representation system that
implements a highly optimized tableau calculus for a very expressive description logic.

5http://jena.sourceforge.net/
6http://www.w3.org/TR/rdf-sparql-query/
7http://www.racer-systems.com/

36 Chapter 4. Implementation

With the exception of nominals, which are very hard to optimize, RacerPro supports
the full OWL standard. Racer provides reasoning support for instances, consistency
checking and the subsumption problem.

To access RacerPro from our own application we can use these APIs to the native
command set of RacerPro. The libraries utilize the TCP/IP interface to access RacerPro.
Users of the Desktop or a time-limited trial or educational license of RacerPro can only
use these APIs on their local machine (local computation only).

4.5 The algorithm

The implementation goes as the following algorithm.

input: an ALCFL knowledge base fK = 〈T ,A〉
output: an ALCH knowledge base K = 〈T ′,A′〉
variables: i, j, k ∈ N

1 begin
2 A′ := ∅;
3 T ′ := ∅;
4 T (N fK) := ∅;
5 κ := ∅;
6 N fK := {n1, . . . , n|N fK|};

7 AfK := {A | A is a concept name and occurs in fK};
8 RfK := {R | R is a role name and occurs in fK};
9 for every 〈α ⊲⊳ σc〉 ∈ A do A′ := A′ ∪ {θ(α ⊲⊳ σc)};
10 for every C ⊑ D ∈ T do
11 for k := 1 to |N fK | do
12 κ := κ ∪ {ρ(C, > nk) ⊑ ρ(D, > nk), ρ(C,≥ nk) ⊑ ρ(D,≥ nk),

ρ(D, < nk) ⊑ ρ(C, < nk), ρ(D,≤ nk) ⊑ ρ(C,≤ nk)};
13 for every A ∈ AfK do
14 begin
15 for i := 1 to |N fK | − 1 do
16 T (N fK) := T (N fK) ∪ {A≥ni+1

⊑ A>ni
, A>ni

⊑ A≥ni
, A≤ni

⊑ A<ni+1
,

A>ni
⊓ A≤ni

⊑ ⊥,⊤ ⊑ A>ni
⊔ A≤ni

};
17 for j := 2 to |N fK | do
18 T (N fK) := T (N fK) ∪ {A<nj

⊑ A≤nj
, A≥nj

⊓ A<nj
⊑ ⊥,

⊤ ⊑ A≥nj
⊔ A<nj

};
19 for i := 1 to |N fK | − 1 do
20 T (N fK) := T (N fK) ∪ {R≥ni+1

⊑ R>ni
, R>ni

⊑≥ni
};

21 end
22 T ′ := T (N fK) ∪ κ;
23 K := 〈T ′,A′〉;
24 end.

Table 3. algorithm of transformation

4.6. Testing 37

The algorithm encodes the transformation presented previously and is implemented
with the programming language JAVA, the API of Jena and KAON2. The complexity
of this algorithm is polynomial time of the size of the knowledge base.

4.6 Testing

The data used to do the test is a number of ontologies which are generated by a program
written with programming JAVA and API of Jena. Since no existing reasoner generates
fuzzy knowledge bases and no fuzzy ontology is available yet, a program is written to
this end. Although KAON2 manipulates OWL, it can not create and load the ontology
with the syntax for hedge which is shown in Table 1. The API of Racer is not good at
manipulating ontology, while Jena can do all of these easily, so a JAVA program using
Jena to create ontologies is implemented. Please refer to Appendix B for the detail of
how to produce fuzzy ontologies with the program.

To test this algorithm, we generate a number of ontologies whose satisfiabilities are
known. After transforming them, we use KAON2 and Racer to test whether the output
ontologies have the same satisfiabilities with the input ontologies. The transformation
program shows the satisfiabilities of knowledge bases right after transforming them by
using KAON2.

4.7 KAON2 vs Racer

KAON2 and Racer are both excellent reasoners. Since they are based on different
algorithm, they have their own advantages and have different optimizations. KAON2
is resolution-based and Racer is tableau-based. KAON2 provides a stand-alone server
providing access to ontologies, while Racer supplies a client which offers a lean interface
to communicate with RacerPro via HTTP in the DIG protocol.

Figure 4.1: the performance of KAON2

It took KAON2 0.611 second on average to answer the satisfiability of a small ontol-
ogy like s1.owl which has a small TBox and an ABox with only one assertion. KAON2
spent more and more time along with the increasing of sizes of TBoxes. KAON2 used
6.99 seconds on average to do the same reasoning for ontologies (s9.owl) who have normal

38 Chapter 4. Implementation

size ABoxes and big TBoxes. We can see that KAON2 does better on Abox reasoning
tasks, but not good at dealing with TBox. In our case, the size of TBox is usually not
small. We can see in the Figure 4.1 , the bigger the size of a knowledge base is, the more
time it took KAON2 to do the reasoning.

KAON2 does not perform a separate ABox consistency test because ABox inconsis-
tency is discovered automatically during query evaluation. Figure 4.2 shows the Tbox-
consistency times for these ontologies. The results are sorted based on the size of the
TBox. Figure 4.2 shows that the performance of TBox reasoning in Racer lags behind
the performance of KAON2 when TBox is of medium size.

Figure 4.2: KAON2 vs Raver

Furthermore, when one uses JAVA, KAON2 is a much better tool to manipulate
ontologies than Racer.

Chapter 5

Conclusions

We have presented a satisfiability preserving transformation of ALCFL into ALCH.
Soundness and completeness of the transformation have been shown.

The difference between this transformation and the related work [14] which transform
fuzzy ALCH into classical ALCH is that truth domains of ALCFL and fuzzy ALCH
are different. ALCFL uses hedges as the fuzzy extension and the truth domain of
interpretations is represented by a hedge algebra. Moreover, the hedges occur not only
in the fuzzy values but also in concept terms. Thus there is one more rule for dealing
with modifier concept terms.

We have the same restriction as in [14] that fuzzy assertions of the form (a.b) : R < σc
or (a.b) : R ≤ σc are not allowed because they related to ‘negated role’ which is not part
of classical ALCH. In order to insure the satisfiability preserving property, we consider
only witnessed interpretations of ALCFL.

As far as I know, there are a few reasoners for fuzzy description logics, e.g., fuzzyDL1

and FiRE, 2 but no reasoner for fuzzy description logics with hedges. The reasoning in
ALCFL can employ already existing DL systems by transforming it into ALCH.

As for the complexity of the transformation, we know that,

1. |θ(A)| is linearly bounded by |A|;

2. |T (N fK)| = 8|AfK|(|N fK| − 1) + 2|RfK|(|N fK| − 1);

3. κ(fK, T) contains at most 4|T ||N fK|.

Therefore, the resulted classical knowledge base (at most polynomial size) can be con-
structed in polynomial time.

If T is an acyclic TBox, we can reduce reasoning problems with respect to T to
problems with respect to the empty TBox. That is good for KAON2, as the developing
staff claim KAON2 appears to be inferior on TBox reasoning tasks [8]. Unfortunately,
expanding TBox increases the complexity of reasoning up to Exp-Time. If one allows
cyclic terminological axioms the expanding of TBox may not terminate. It is even

1http://gaia.isti.cnr.it/˜straccia/
2http://www.image.ece.ntua.gr/˜nsimou/

39

40 Chapter 5. Conclusions

worse in our case, because ALCFL allows concept inclusions for which the expanding
is not applicable [1]. For concept inclusions, the expanding is not applicable, because
the expanding requires the left of the concept definition [1] is primitive concept, but
concept inclusions can not insure this condition, and a concept inclusion might be a
cyclic terminological axiom.

The extension of this work can be transformations of fuzzy DLs with different truth
domains of interpretations into classical DLs.

Appendix A

An example of running the

program

In this section, we use an example to test the program. Consider the knowledge base of
Example 31,

K = {〈Tom : ¬(∃weight.V eryV eryHeavy) ⊔ Fat ≥ True〉,
〈(Tom, 150) : weight ≥ MolTrue〉,
〈150 : Heavy ≥ MoreTrue〉}.

We want to know whether Tom is fat, i.e., whether the following holds,

K |= 〈Tom : Fat ≥ True〉. (A.1)

We can reduce this problem to the satisfiability of the knowledge base K′, such that
K′ = K ∪ {〈Tom : Fat < True〉}. If K′ is unsatisfiable then A.1 holds.

Let’s use K′ as the input knowledge base, the program transformed the knowledge
base and listed the ALCH knowledge base as the result (see Figure A.1). After that, a
message is shown by a reasoner called by the program which told us “The knowledge
base is unsatisfiable”. Thus A.1 holds. We conclude that Tom is fat.

The following is the new ABox,

{〈Tom : (∀weight>False.Heavy≤V eryV eryFalse) ⊔ Fat≥True〉,
〈(Tom, 150) : weight≥MolTrue〉,
〈150 : Heavy≥MoreTrue〉,
〈Tom : Fat< True〉}.

TBox is quite large so we just give a small part of it,

{Fat≥True ⊑ Fat>MoLTrue,
Fat>MoLTrue ⊑ Fat≥MoLTrue,
Fat≤MoLTrue ⊑ Fat<True,
Fat>MoLTrue ⊓ Fat≤MoLTrue ⊑ ⊥,
⊤ ⊑ Fat>MoLTrue ⊔ Fat≤MoLTrue, . . .}.

41

42 Chapter A. An example of running the program

Figure A.1: The transforming application

Appendix B

The implementation of producing

ALCFL knowledge bases

We introduce the program which produces fuzzy ontologies with ALCFL knowledge
bases (Figure B.3). We can produce concept assertions, role assertions and inclusions
by using this program. Individuals, concept names, role names and hedges can be added.

To build a concept term, the constructor should be chosen first from the first Combo
box, operands are selected next.

Example 48. “\not \and Very C \forall R D” represents ¬((V eryC) ⊓ (∀R.D)).

Figure B.1: The concept term panel

Given a HA AX = (X, G, H, >), if the greatest hedge in H is V ery, we represent
sup(True) as nV ery(True) and inf(False) as nV ery(False) respectively where we take
nV ery as the greatest element of H∗. If the least hedge in H is Less, we express
inf(True) as nLess(True) where nLess is the least element of H∗.

We input chains of hedges of the form “Hn . . . H3 H2 H1 ”. There must be a “ ” be-
tween any two hedges. The last character should be a “ ”. In Figure B.2, “V ery More ”
is a chain of hedges of the correct form.

Figure B.2: the TextField of hedge chains

43

44 Chapter B. The implementation of producing ALCFL knowledge bases

Figure B.3: The producer

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[2] Petr Hájek. Making fuzzy description logic more general. Fuzzy Sets and Systems,
154(1):1–15, 2005.

[3] Petr Hájek. What does mathematical fuzzy logic offer to description logic. In Fuzzy
Logic and the Semantic Web, 2006.

[4] N. Cat Ho and W. Wechler. Hedge algebras: an algebraic approach to structure of
sets of linguistic truth values. Fuzzy Sets and Systems, 35(3):281–293, 1990.

[5] Steffen Hölldobler, Dinh-Khac Dzung, and Tran Dinh-Khang. The fuzzy linguistic
description logic ALCFL. In Proceedings of the Eleventh International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU), pages 2096–2103, 2006.

[6] Steffen Hölldobler, Tran Dinh Khang, and Hans-Peter Störr. A fuzzy descrip-
tion logic with hedges as concept modifiers. In Nguyen Hoang Phuong, Hung T.
Nguyen, Nguyen Cat Ho, and Pratit Santiprabhob, editors, Proceedings In-
Tech/VJFuzzy’2002, pages 25–34, Hanoi, Vietnam, 2002. Institute of Information
Technology, Vietnam Center for Natural Science and Technology, Science and Tech-
nics Publishing House, Hanoi, Vietnam.

[7] Steffen Hölldobler, Hans-Peter Störr, and Dinh Khang Tran. The fuzzy description
logic ALCFH with hedge algebras as concept modifiers. Journal of Advanced Com-
putational Intelligence and Intelligent Informatics (JACIII), 7(3):294–305, 2003.

[8] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying
large description logic aboxes. In LPAR, pages 227–241, 2006.

[9] Cat-Ho Nguyen, Dinh-Khang Tran, Van-Nam Huynh, and Hai-Chau Nguyen.
Hedge algebras, linguistic-valued logic and their application to fuzzy reasoning.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
7(4):347–361, 1999.

45

46 BIBLIOGRAPHY

[10] Cat-Ho Nguyen and W. Wechler. Extended hegde algebras and their application to
fuzzy logic. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 52:259–281, 1992.

[11] H.-N. Nguyen S. Hölldobler and D.-K. Tran. The fuzzy description logic ALCFLH.
In Proc. 9th IASTED International Conference on Artificial Intelligence and Soft
Computing, pages 99–104, 2005.

[12] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artif. Intell., 48(1):1–26, 1991.

[13] Umberto Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res.
(JAIR), 14:137–166, 2001.

[14] Umberto Straccia. Transforming fuzzy description logics into classical description
logics. In Proceedings of the 9th European Conference on Logics in Artificial In-
telligence (JELIA-04), number 3229 in Lecture Notes in Computer Science, pages
385–399, Lisbon, Portugal, 2004. Springer Verlag.

[15] Lotfi A. Zadeh. The concept of a linguistic variable and its application to approxi-
mate reasoning - i. Information Sciences, 8(3):199–249, 1975.

[16] Lotfi A. Zadeh. The concept of a linguistic variable and its application to approxi-
mate reasoning - ii. Information Sciences, 8(4):301–357, 1975.

[17] Lotfi A. Zadeh. The concept of a linguistic variable and its application to approxi-
mate reasoning-iii. Information Sciences, 9(1):43–80, 1975.

