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Abstract Judgment aggregation is a field in which individuals are required to vote for

or against a certain decision (the conclusion) while providing reasons for their choice.

The reasons and the conclusion are logically connected propositions. The problem

is how a collective judgment on logically interconnected propositions can be defined

from individual judgments on the same propositions. It turns out that, despite the

fact that the individuals are logically consistent, the aggregation of their judgments

may lead to an inconsistent group outcome, where the reasons do not support the

conclusion. However, in this paper we claim that collective irrationality should not be

the only worry of judgment aggregation. For example, judgment aggregation would not

reject a consistent combination of reasons and conclusion that no member voted for.

In our view this may not be a desirable solution. This motivates our research about

when a social outcome is ‘compatible’ with the individuals’ judgments. The key notion

that we want to capture is that any individual member has to be able to defend the

collective decision. This is guaranteed when the group outcome is compatible with

its members views. Judgment aggregation problems are usually studied using classical

propositional logic. However, for our analysis we use an argumentation approach to

judgment aggregation problems. Indeed the question of how individual evaluations can

be combined into a collective one can also be addressed in abstract argumentation. We
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introduce three aggregation operators that satisfy the condition above, and we offer

two definitions of compatibility. Not only does our proposal satisfy a good number of

standard judgment aggregation postulates, but it also avoids the problem of individual

members of a group having to become committed to a group judgment that is in conflict

with their own individual positions.

Keywords Judgment aggregation · Discursive dilemma · Argumentation · Group

decision making

1 Introduction

Groups are often required to make decisions and to justify them. For example, courts

have to provide reasons for declaring a defendant liable or innocent, governments need

to allege raises in income taxes, hiring committees must be able to explain why they

decided to hire a certain candidate. Groups decisions are the result of the aggregation

of the individual judgments on the issues at stake.

Judgment aggregation is a recent discipline in which group members have to vote for

or against a certain decision (the conclusion) and also provide reasons for their choice.

Reasons, conclusion and the logical connections between them are given in the decision

problem. Judgment aggregation investigates how individual consistent judgments on

these logically interconnected propositions shall be mapped into an equally consistent

social judgment on the same propositions [23,22,24,26]. The difficulty lies in the fact

that a natural aggregation procedure, like the majority rule, turns out to generate

possibly inconsistent collective outcomes, where the reasons do not support the selected

conclusion. Even worse, it can be shown that any judgment aggregation procedure

that satisfies some desirable properties is condemned to produce sometimes irrational

outcomes.

Whereas the literature on judgment aggregation is concerned with the unpleasant

occurrence of irrational collective outcomes, our interest is not only to guarantee a con-

sistent group outcome, but also that such outcome is ‘compatible’ with the individual

judgments. Group inconsistency is not the only undesirable outcome. It may happen,

for example, that majority rule selects as social outcome a consistent combination of

reasons and conclusion that actually no member voted for. Such situation may be not

a desirable collective outcome as it may conflict with some of its members’ judgments.

This motivates our research question: when is a group outcome ‘compatible’ with its

members’ judgments? We are interested in group decision making in which any group

member is able to defend the group decision without having to argue against his own

private beliefs. This is what we call a ‘compatible’ group decision.

As an example of a judgment aggregation problem and of the desirability of our

property, suppose that three European leaders, Jan Peter, Yves and Jean-Claude, meet

to decide whether to proceed to a bailout of Hortis Bank by nationalizing it. They agree

that the bailout of Hortis Bank should be done if and only if the following are judged

to be both true: (i) the survival of Hortis Bank is critical for Europe’s financial sector,

and (ii) Hortis Bank can be legally nationalized under current European law. Suppose

that Jan Peter, Yves and Jean-Claude make their judgments according to Table 1.

It can then happen that, despite Jan Peter, Yves and Jean-Claude being logically

consistent individuals, they may have to face a situation in which two of them believe
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p =Critical survival? q=Legal nationalization? r=Bailout?
Jan Peter Yes No No

Yves No Yes No
Jean-Claude Yes Yes Yes

Majority Yes Yes No

Table 1 Discursive dilemma. The Hortis Bank should be nationalized only if it is the case
that its survival is critical for Europe’s financial sector and that it can be legally nationalized
under current European law.

that the Hortis Bank should not be nationalized. However, they will not be able to

justify their decision because two of them are also convinced that the survival of Hortis

Bank is critical for Europe’s financial sector and (another) majority deems that Hortis

Bank can be legally nationalized under current European law. So a majority believes

that both (i) and (ii) are true and that the Hortis Bank should not be nationalized,

which is a violation of the adopted decision rule. What should they decide? Should

the Hortis Bank not be nationalized despite the fact that there is a majority believing

that there are reasons for taking that action, or should they proceed to bailout Hortis

Bank on the basis of the favorable judgment of only one person? This is an instance

of the so-called discursive dilemma that troubles judgment aggregation. Now, suppose

that proposition-wise majority voting in the example above gives a logically consistent

solution (for this it is enough, for example, to switch Jan Peter’s judgment on the

critical survival issue from yes to no). However, Jean-Claude is the only one favoring

the bailout of Hortis Bank. Should Jean-Claude revise his belief and oppose the bailout?

Is the fact that Jean-Claude deems Jan Peter and Yves equally intelligent, informed

and impartial as himself enough for him to change his opinion? We claim that it should

not, as Jean-Claude must be able to defend the decision of the group he belongs to.

A set of arguments and a defeat relation among them is called argumentation frame-

work. Given an argumentation framework, argumentation theory identifies and char-

acterizes the sets of arguments (extensions) that can reasonably survive the conflicts

expressed in the argumentation framework, and therefore can collectively be accepted.

In general, there are several possible extensions for a set of arguments and a defeat

relation on them [13]. Formal argumentation can be seen as an abstract generalized

way of nonmonotonic reasoning, and several nonmonotonic formalisms including Nute’s

Defeasible Logic [18], Simari’s DeLP [16], logic programming and Default Logic [13]

have been reformulated in the form of formal argumentation.

In this paper we are interested in argumentation in a multi-agent setting [38,7].

Given an argumentation framework, different individuals may provide different evalua-

tions regarding what should be accepted and rejected. How can individual evaluations

be mapped into a collective one? Similarly as in judgment aggregation, where the accep-

tance or rejection of a proposition may yield to the acceptance or rejection of another

one, in argumentation the acceptance of one argument may force to reject another one

[34]. The aggregation of individual evaluations of a given argumentation framework

raises the same problems as the aggregation of individual judgments. We will see that

argument-by-argument majority voting may result in an unacceptable extension, as the

proposition-wise majority voting may output an inconsistent collective judgment set.

Judgment aggregation can be then addressed as the problem of combining different

individual evaluations of the situation represented by an argumentation framework.

The reason for using abstract argumentation is twofold: on the one hand, the exis-

tence of different argumentation semantics allows us to be flexible when defining which
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social outcomes are permissible. On the other hand, it allows us to bring judgment

aggregation from classical logic to nonmonotonic reasoning.

Any mechanism dealing with the aggregation of different positions needs to han-

dle conflicts. We define and investigate three operators, sceptical, credulous and super

credulous, and investigate their properties. We will show that, by iterating the aggre-

gation process, not only we ensure a collective consistent decision, but that this is also

unique. The operators introduced here are suitable aggregation operators for group

decisions where the participation of the group does not lead any individual to endorse

a position against his beliefs. Hence, they reflect a ‘compatible’ collective outcome with

the individual positions.

The paper is structured as follows: in Section 2 we present the problem of judgment

aggregation. Section 3 is devoted to outline the abstract argumentation framework, and

in Section 4 we express concepts like complete, grounded, preferred, stable or semi-

stable semantics in terms of argument labellings. In Section 5 we show how judgment

aggregation concepts can be applied to formal argumentation. The sceptical, credulous

and super-credulous outcomes are introduced in Sections 6, 7, 8 respectively. We then

prove some properties of these operators in Section 9. Section 10 on related work and

the conclusions end the paper.

2 Judgment Aggregation

The problem of judgment aggregation was discussed by Kornhauser and Sager [22,23].

In their example, a court has to make a decision on whether a person is liable of breach-

ing a contract. The judges have to reach a verdict following the legal doctrine. However,

the problem of aggregating individual judgments on logically connected propositions is

not confined to the domain in which the legal doctrine dictates that certain judgments

are to be made by reference to certain laws.

The judgment aggregation framework includes a set of issues (and their negations)

on which the judgments have to be made. This is called the agenda. The propositions

in the agenda are sentences in classical propositional logic, though more expressive

logics like modal, predicate, conditional and deontic can also be used [8]. Additional

constraints may be added. These are not part of the agenda, but restrict the sets of

admissible judgments. For example, if p, q, r, . . . are proposition variables, the agenda of

the bailout of the bank example contains the propositions {p,¬p, q,¬q, r,¬r} with the

additional requirement that (p ∧ q) ↔ r. An example of an agenda without additional

constraints is {p,¬p, p → q,¬(p → q), q,¬q}. It is assumed that all the individuals

express logically consistent judgments on the propositions of the agenda. How the

individual judgments on the propositions in the agenda should be aggregated into a

social consistent judgment on the same propositions is the question that judgment

aggregation aims to answer.

Let us consider the bailout of Hortis Bank example again and the judgments as in

Table 1. Jan Peter, Yves and Jean-Claude express a consistent opinion, i.e. they say

yes to the bailout if and only if they say yes to both p and q. However, proposition-wise

majority voting (consisting in the separate aggregation of the votes for each proposition

p, q and r via majority rule) results in a majority for p and q and yet a majority for

¬r. This is an inconsistent collective result, in the sense that {p, q,¬r, (p ∧ q) ↔ r} is

inconsistent in propositional logic. The problem lies in the fact that majority voting



5

can lead a group of rational agents to endorse an irrational collective judgment. The

literature on judgment aggregation refers to such situation as the discursive dilemma.

Majority voting fails to guarantee a consistent outcome whenever the agenda has a

minimally inconsistent subset of three or more propositions [31,10]. In the bailout of the

Hortis bank example, a minimally inconsistent set with three propositions is {p, q,¬r}.

Furthermore, the problem of aggregating individual judgments is not restricted to

majority voting, but it applies to all aggregation procedures satisfying some desirable

conditions. We now introduce the formal framework of judgment aggregation and the

properties imposed on the aggregation rule.

A set of agents N = {1, . . . , n} makes judgments on logically interconnected propo-

sitions. L is a language with atomic propositions p, q, r, . . ., including the complex for-

mulas ¬p, (p∧q), (p∨q), (p → q), (p ↔ q). The agenda is denoted by Φ ⊆ L. Φ is the set

of propositions on which the agents have to express a judgment and it does not contain

tautologies or contradictions. The agenda is assumed to be finite and is closed under

negation: if p ∈ Φ, then ¬p ∈ Φ.1 Each doubly negated proposition ¬¬p is identified

with the non negated proposition p. A subset J ⊆ Φ is called (individual or collective)

judgment set and it is the set of propositions believed by an individual or the group.

A judgment set is consistent if it is a consistent set in L, and is complete if, for any

p ∈ Φ, p ∈ J or ¬p ∈ J but not both. An n-tuple (J1, . . . , Jn) of agent judgment sets

is called a profile. Finally, a judgment aggregation rule F assigns a collective judgment

set J to each profile (J1, . . . , Jn) of agent judgment sets.

Judgment aggregation problems are a generalization of the preference aggregation

issues in the tradition of social choice theory [1,24,9]. Following an axiomatic approach

in the Arrowian style of social choice theory [1], List and Pettit [24,25] showed that,

given an agenda with at least two atomic propositions and at least one suitable com-

posite proposition (and their negations), there exists no judgment aggregation rule F

that satisfies universal domain, collective rationality, anonymity and systematicity.

Universal domain: The domain of F is the set of all profiles of consistent and

complete judgment sets.

Collective rationality: Only complete, consistent and deductively closed collective

judgments are permissible as outputs.

Anonymity: For any profiles (J1, . . . , Jn), (J ′
1, . . . , J ′

n) in the domain that are per-

mutations of each other, F (J1, . . . , Jn) = F (J ′
1, . . . , J ′

n). Intuitively, this means

that all agents have equal weight.

Systematicity: For any p, q ∈ Φ and any profiles (J1, . . . , Jn), (J ′
1, . . . , J ′

n) in the

domain, if ∀j ∈ N, p ∈ Jj ↔ q ∈ J ′
j , then p ∈ F (J1, . . . , Jn) ↔ q ∈ F (J ′

1, . . . J ′
n).

This condition ensures that the collective judgment on each proposition depends

only on the agent judgments on that proposition, and that the aggregation rule is

the same across all propositions.

Systematicity is a strong condition and can be weakened to independence:

Independence: For any p ∈ Φ and any profiles (J1, . . . , Jn), (J ′
1, . . . , J ′

n) in the

domain, if ∀j ∈ N, p ∈ Jj ↔ p ∈ J ′
j , then p ∈ F (J1, . . . , Jn) ↔ p ∈ F (J ′

1, . . . J ′
n).

In other words, independence is systematicity without the neutrality condition,

requiring that all propositions are equally treated.

1 To increase readability, only the positive issues of the agenda are listed in the tables. It
is assumed that, for any issue in the agenda, an individual deems that issue to be true if and
only if he deems its negation to be false.
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For many agendas, the independence condition is sufficient for an impossibility

result to occur [25]. A stronger impossibility theorem was proved by weakening the

anonymity condition to non-dictatorship [32]:

Non-dictatorship: There exists no i ∈ N such that, for any profile (J1, . . . , Jn) in

the domain, F (J1, . . . , Jn) = Ji.

One more result from the judgment aggregation literature should be mentioned. It is

the theorem that restate precisely Arrow’s famous impossibility theorem for judgment

aggregation: if an aggregation rule satisfies universal domain, collective rationality,

independence and unanimity, then it is dictatorial [9,11]. Unanimity corresponds to

Arrow’s weak Pareto principle and requires that, if all the members in the group adopt

the same position on a certain issue, that position will be adopted at the collective

level as well.

Inconsistent collective outcomes as in the example above rest upon the issue-by-

issue aggregation of propositions that are logically connected. Just like Arrow’s con-

dition of “independence of irrelevant alternatives” plays a central role in his famous

impossibility results, independence remains a controversial condition in judgment ag-

gregation. Our operators for aggregating individual evaluations of an argumentation

framework also use an argument-by-argument counting procedure. In this way we can

ensure the group to be responsive to the individuals’ evaluations. However, in order

to avoid incoherent collective outcomes, the process is iterated until a reasonable (ac-

cording to the semantics in place) extension is obtained.

Judgment aggregation is traditionally studied in classical propositional logic, where

agents assign 0/1 values to logically connected propositions.2 However, the question of

how individual evaluations can be combined into a collective one can also be addressed

in abstract argumentation: given an argumentation framework and individual evalua-

tions of what to accept and what to reject, what is the resulting group evaluation? In

the next sections we define judgment aggregation problems in abstract argumentation.

After introducing the main notions of the abstract argumentation formalism, we show

how judgment aggregation concepts can be applied to formal argumentation.

3 Argumentation Preliminaries

An argumentation framework [13] consists of a set of arguments and a defeat rela-

tion on these arguments. In order to simplify the discussion, we only consider finite

argumentation frameworks.

Definition 1 Let U be the universe of all possible arguments. An argumentation

framework is a pair (Ar , def ) where Ar is a finite subset of U and def ⊆ Ar × Ar .

We say that an argument A defeats an argument B iff (A, B) ∈ def .

An argumentation framework can be represented as a directed graph in which the

arguments are represented as nodes and the defeat relations are represented as arrows.

For instance, argumentation framework (Ar , def ) where Ar = {A, B, C, D, E} and

def = {(A, B), (B, A), (B,C), (C, D), (D, E), (E, C)} is represented in Figure 1.

2 For representations of judgment aggregation problems in more expressive logics than stan-
dard propositional logic, see [8].
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E

A B
C

D

Fig. 1 An argumentation framework represented as a directed graph.

The shorthand notation A+ and A− stands for, respectively, the set of arguments

defeated by A and the set of arguments that defeat A. Likewise, if Args is a set of

arguments, then we write Args+ for the set of arguments that is defeated by at least

one argument in Args , and Args− for the set of arguments that defeat at least one

argument in Args . In the definition below, F (Args) stands for the set of arguments

that are acceptable in the sense of [13].

Definition 2 Let (Ar , def ) be an argumentation framework, A ∈ Ar and Args ⊆ Ar .

We define A+ as {B | A def B} and Args+ as {B | A def B for some A ∈ Args}.

We define A− as {B | B def A} and Args− as {B | B def A for some A ∈ Args}.
Args is conflict-free iff Args ∩Args+ = ∅.

Args defends an argument A iff A− ⊆ Args+.

We define the function F : 2Ar → 2Ar as F (Args) = {A | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable semantics are

described in terms of complete semantics, which has the advantage of making the proofs

in the remainder of this paper more straightforward. These descriptions are not literally

the same as the ones provided by Dung [13], but as was first stated in [2], these are in

fact equivalent to Dung’s original versions of grounded, preferred and stable semantics.

Definition 3 Let (Ar , def ) be an argumentation framework and let Args ⊆ Ar be a

conflict-free set of arguments.

- Args is admissible iff Args ⊆ F (Args).

- Args is a complete extension iff Args = F (Args).

- Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) complete

extension.

- Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion) complete

extension.

- Args is a stable extension iff Args is a complete extension that defeats every argu-

ment in Ar\Args .

- Args is a semi-stable extension iff Args is a complete extension where Args∪Args+

is maximal (w.r.t. set-inclusion).

As an example, in the argumentation framework of Figure 1 {B, D} is a stable

extension, {A} is a preferred extension which is not stable or semi-stable, ∅ is the

grounded extension, and {B} is an admissible set which is not a complete extension.

It is known that for every argumentation framework, there exists at least one ad-

missible set (the empty set), exactly one grounded extension, one or more complete
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extensions, one or more preferred extensions and zero or more stable extensions. More-

over, when the set of arguments in the argumentation framework is finite, as is assumed

in the current paper, there also exist one or more semi-stable extensions.

An overview of how the various extensions are related to each other is provided

in Figure 2. The fact that every stable extension is also a semi-stable extension, and

that every semi-stable extension is also a preferred extension was first stated in [2]. All

other relations shown in Figure 2 have originally been stated in [13].

stable extension

semi−stable extension

preferred extension grounded extension
is a

complete extension

is a

is a

is a

admissible set

conflict−free set

is a

is a

Fig. 2 An overview of argumentation semantics (extension based).

In essence, an argumentation semantics can be seen as a function that, given an ar-

gumentation framework, yields zero or more sets of arguments which can be collectively

accepted.

Definition 4 Let U be the universe of arguments, and let AF be the set of all possi-

ble argumentation frameworks using this universe. An extension based semantics is a

function S : AF → 22
U

.

For instance, if we have an argumentation framework AF = (Ar , def ) then:

– Sstable(AF ) = {Args | Args is a stable extension of AF}

– Ssemi−stable(AF ) = {Args | Args is a semi-stable extension of AF}
– Spreferred(AF ) = {Args | Args is a preferred extension of AF}

– Scomplete(AF ) = {Args | Args is a complete extension of AF}
– Sgrounded(AF ) = {Args | Args is the grounded extension of AF}

– Sadmissible(AF ) = {Args | Args is an admissible set of AF}
– Sconflict−free(AF ) = {Args | Args is a conflict-free set of AF}

As illustrated in Figure 2, it holds for any argumentation framework AF = (Ar , def )

that Sstable(AF ) ⊆ Ssemi−stable(AF ) ⊆ Spreferred(AF ) ⊆ Scomplete(AF ) as well as

that Sgrounded(AF ) ⊆ Scomplete(AF ) ⊆ Sadmissible ⊆ Sconflict−free.

4 Argument Labellings

The concepts of admissibility, as well as that of complete, grounded, preferred, stable

or semi-stable semantics were originally stated in terms of sets of arguments. It is
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equally well possible, however, to express these concepts using argument labellings.

This approach was pioneered by Pollock [35] and Jakobovits and Vermeir [20], and has

more recently been extended by Caminada [2,3], Vreeswijk [41] and Verheij [39]. The

idea of a labelling is to associate with each argument exactly one label, which can either

be in, out or undec. The label in indicates that the argument is explicitly accepted,

the label out indicates that the argument is explicitly rejected, and the label undec

indicates that the status of the argument is undecided, meaning that one abstains from

an explicit judgment whether the argument is in or out.

Definition 5 Let (Ar , def ) be an argumentation framework. A labelling is a total

function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and undec(L) for

{A | L(A) = undec}. Sometimes, we write a labelling L as a triple (Args1,Args2,Args3)

where Args1 = in(L), Args2 = out(L) and Args3 = undec(L).

We distinguish three special kinds of labellings. The all-in labelling is a labelling

that labels every argument in. The all-out labelling is a labelling that labels every

argument out. The all-undec labelling is a labelling that labels every argument undec.

Definition 6 Let L be a labelling of argumentation framework (Ar , def ). We say that

L is conflict-free iff for each A, B ∈ Ar , if L(A) = in and B defeats A then L(B) 6= in.

Definition 7 Let L be a labelling of argumentation framework (Ar , def ) and let A ∈

Ar . We say that:

1. A is illegally in iff A is labelled in but not all its defeaters are labelled out

2. A is illegally out iff A is labelled out but it does not have a defeater that is labelled

in

3. A is illegally undec iff A is labelled undec but either all its defeaters are labelled

out or it has a defeater that is labelled in.

We say that an argument is legally in iff it is labelled in and is not illegally in. We

say that an argument is legally out iff it is labelled out and is not illegally out. We say

that an argument is legally undec iff it is labelled undec and is not illegally undec.

Definition 8 An admissible labelling is a labelling without arguments that are illegally

in and without arguments that are illegally out.

Definition 9 A complete labelling is a labelling without arguments that are illegally

in, without arguments that are illegally out and without arguments that are illegally

undec.

From Definition 6, 8 and 9 it immediately follows that each complete labelling is also

an admissible labelling, and each admissible labelling is also a conflict-free labelling.

Lemma 1 (Lemma 1 [3]) Let L1 and L2 be complete labellings of argumentation

framework AF = (Ar , def ). It holds that in(L1) ⊆ in(L2) iff out(L1) ⊆ out(L2).

It is interesting to notice that an admissible labelling corresponds with the notion

of an admissible set.

Theorem 1 (Theorem 1, [3]) Let (Ar , def ) be an argumentation framework and

Args ⊆ Ar. Args is an admissible set iff there exists an admissible labelling L with

in(L) = Args.
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The notion of a complete labelling corresponds to the notion of a complete extension.

Theorem 2 (Theorem 2, [3]) Let (Ar , def ) be an argumentation framework and

Args ⊆ Ar. Args is a complete extension iff there exists a complete labelling L with

in(L) = Args.

As an aside, in [2], a slightly different definition of a (complete) labelling is given,

but equivalence can be shown.

Theorem 3 Let L be a labelling of argumentation framework (Ar , def ). It holds that

L is a complete labelling iff for each A ∈ Ar:

1. A is labelled in by L iff every defeater of A is labelled out by L, and

2. A is labelled out by L iff A has a defeater that is labelled in by L.

Proof

“=⇒”: Let L be a complete labelling. From the fact that L does not have any argument

illegally in or illegally out, it follows that if A is labelled in then every defeater of A

is labelled out (i). We now prove that if every defeater of A is labelled out then A

is labelled in. Let A be an argument of which all defeaters are labelled out. Then A

cannot be labelled out (because then A would be illegally out and L would not be

a complete labelling). Also, A cannot be labelled undec (because then A would be

illegally undec and L would not be a complete labelling). From the fact that A cannot

be labelled out or undec it follows that A is labelled in. So if every defeater of A is

labelled out then A is labelled in (ii).

From the fact that L does not have any argument illegally out it follows that if A is

labelled out, then A has a defeater that is labelled in (iii). We now prove that if A has

a defeater that is labelled in then A is labelled out. Let A be an argument that has a

defeater that is labelled in. Then A cannot be labelled in (because then A would be

illegally in and L would not be a complete labelling). Also, A cannot be labelled undec

(because then A would be illegally undec and L would not be a complete labelling).

From the fact that A cannot be labelled in or undec it follows that A is labelled out.

So if A has a defeater that is labelled in then A is labelled out (iv).

From (i) and (ii) it follows that (1). From (iii) and (iv) it follows that (2).

“⇐=”: Let L be a labelling of which every argument A satisfies (1) and (2). From (1)

it immediately follows that if A is labelled in then every defeater of A is labelled out,

so L does not have any argument illegally in. From (2) it immediately follows that if

A is labelled out then A has a defeater that is labelled in, so L does not have any

argument illegally out. We now prove that L also does not have any argument illegally

undec. Let A be an argument that is illegally undec. We distinguish two cases.

– All defeaters of A are labelled out. But then from (1) it follows that A is labelled

in. Contradiction.

– A has a defeater that is labelled in. But then from (2) it follows that A is labelled

out. Contradiction.

Both cases end in a contradiction, so A cannot be illegally undec.

Definition 10 Let L be a complete labelling.

– We say that L is a grounded labelling iff in(L) is minimal (w.r.t. set inclusion)

among all complete labellings.
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– We say that L is a preferred labelling iff in(L) is maximal (w.r.t. set inclusion)

among all complete labellings.

– We say that L is a stable labelling iff undec(L) = ∅.

– We say that L is a semi-stable labelling iff undec(L) is minimal (w.r.t. set inclusion)

among all complete labellings.

The notions of a grounded, preferred, stable and semi-stable labelling correspond

to the notions of a grounded, preferred, stable and semi-stable extension, respectively.

Theorem 4 Let (Ar , def ) be an argumentation framework and Args ⊆ Ar.

– Args is the grounded extension iff

there exists a grounded labelling L with in(L) = Args

– Args is a preferred extension iff

there exists a preferred labelling L with in(L) = Args.

– Args is a stable extension iff

there exists a stable labelling L with in(L) = Args.

– Args is a semi-stable extension iff

there exists a semi-stable labelling L with in(L) = Args.

Proof Using the results of Theorem 2 this then follows in a straightforward way from

Definition 3 and Definition 10.

An overview of how the various labellings are related to each other is provided in

Figure 3.

stable labelling

preferred labelling
is a

is a

is a

is a

semi−stable labelling

grounded labelling

complete labelling

admissible labelling

conflict−free labelling

is a

is a

Fig. 3 An overview of argumentation semantics (labelling based).

In essence, a labelling based semantics can be seen as a function that, given an

argumentation framework, yields zero or more labellings, each of which can be seen as

a reasonable position that one can take in the presence of the argumentation framework.

Definition 11 Let AF be the set of all possible argumentation frameworks using a

universe U . Let Labellings be {L | there exists an argumentation framework AF ∈ AF
such that L is a labelling of AF}. A labelling based semantics is a function T : AF →

2Labellings .
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For instance, if we have an argumentation framework AF = (Ar , def ) then:

– Tstable(AF ) = {L | L is a stable labelling of AF}
– Tsemi−stable(AF ) = {L | L is a semi-stable labelling of AF}

– Tpreferred(AF ) = {L | L is a preferred labelling of AF}
– Tcomplete(AF ) = {L | L is a complete labelling of AF}

– Tgrounded(AF ) = {L | L is the grounded labelling of AF}
– Tadmissible(AF ) = {L | L is an admissible labelling of AF}

– Tconflict−free(AF ) = {L | L is a conflict-free labelling of AF}

As illustrated in Figure 3, it holds that for any argumentation framework AF =

(Ar , def ) that Tstable(AF ) ⊆ Tsemi−stable(AF ) ⊆ Tpreferred(AF ) ⊆ Tcomplete(AF ) as

well as that Tgrounded(AF ) ⊆ Tcomplete(AF ) ⊆ Tadmissible(AF ) ⊆ Tconflict−free(AF ).

In [40], [5] and [28] it is shown how an admissible labelling corresponds to a posi-

tion that can be defended in a rational discussion. Consider again the argumentation

framework of Figure 1.

Proponent: “I accept argument D.”

Opponent: “If you accept D, then you must reject D’s defeater C. Based on which grounds?”

Proponent: “I reject C because I accept C’s defeater B.”

Opponent: “If you accept B, then you must reject B’s defeater A. Based on which grounds?”

Proponent: “I reject A because I accept A’s defeater B.”

The rules of the discussion, formally described in [5], allow for the opponent to

question the position of the proponent. If the proponent is able to answer these ques-

tions in a coherent way, the result will be an admissible labelling (arguments introduced

by the proponent are labelled in, arguments introduced by the opponent are labelled

out, and all unmentioned arguments are labelled undec).

In essence, an admissible labelling can be seen as a position in which one is able to

provide reasons for each argument that one accepts and reasons for each argument that

one rejects. If one is then also able to provide reasons for each argument one abstains

from, the position will also be a complete labelling. In the remaining part of this paper,

we mainly focus on admissible and complete labellings.

5 Applying Judgment Aggregation to Argumentation

Judgment aggregation studies the question of how various opinions of a group of agents

can be put together to form an overall outcome of the entire group. The idea is that

if each individual position is “reasonable”, then the overall outcome should also be

“reasonable”. When judgment aggregation is done using classical logic, “reasonable”

usually means that the set of formulas has to be consistent and closed under classi-

cal entailment. In formal argumentation, however, the wide variety of argumentation

semantics means there are different ways of defining what is “reasonable”.

Before introducing the operators for the aggregation of individual labellings of a

given argumentation framework, we want to show how the classical discursive dilemma

of judgment aggregation can be represented as an argumentation framework. We recall

that in the discursive dilemma all individuals have to either accept or reject every issue

in the agenda. Using argumentation, the individuals have the possibility to abstain on

some arguments (this is represented by the undec labelling). Judgment aggregation

with abstention has been explored in [17,12], as we discuss in Section 10. Here, in

order to capture the discursive dilemma, undec(L) = ∅.
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Figure 4 shows the directed graph for the argumentation framework AF = (Ar , def )

where Ar = {p, q, r, p̄, q̄, r̄} (corresponding to the agenda of the Hortis Bank example),

and def = {(p, p̄), (p̄, p), (q, q̄), (q̄, q), (p̄, r), (q̄, r), (r, r̄)}.

The labellings corresponding to the three individuals taking part in the bailout

decision are indexed with the initials of the corresponding individual and are: LJP =

({p, q̄, r̄}, {q, p̄, r}, ∅), LY = ({q, p̄, r̄}, {p, q̄, r}, ∅) and LJC = ({p, q, r}, {p̄, q̄, r̄}, ∅).
All three labellings LJP , LY and LJC are admissible. However, if we apply majority

voting argument-by-argument, we obtain an inadmissible collective labelling LColl =

({p, q, r̄}, {p̄, q̄, r}, ∅), corresponding to the logically inconsistent collective judgment set

in the discursive dilemma example. This shows that judgment aggregation problems

can be mapped into an argumentation framework, though we do not claim here that

this is possible for all judgment aggregation problems.

p

q r r

p

q
_

_

_

Fig. 4 The discursive dilemma as an argumentation framework.

Given a set of individuals N = {1, . . . , n}, we now need to define a general la-

bellings aggregation operator FAF that assigns a collective labelling LColl to each

profile {L1, . . . ,Ln} of individual labellings. A note about notation is in order: while

in judgment aggregation profiles are n-tuples of individual judgment sets, the aggre-

gation operator FAF is defined on sets of individual labellings. The reason for using

n-tuples is that several individuals may submit the same judgment sets. However, the

motivation for our operators is to avoid situations in which any group member is forced

to commit herself to a position that goes against his opinions. Therefore, cardinality

considerations do not play a role in our approach, so we can take a profile to be a set

of individual labellings.

Definition 12 Let Labellings be the set of all possible labellings of argumentation

framework AF = (Ar , def ). A general labellings aggregation operator is a function

FAF : 2Labellings − {∅} → Labellings such that FAF ({L1, . . . ,Ln}) = LColl.

We can now state the corresponding conditions of universal domain, collective

rationality, anonymity, and independence for FAF .

Universal domain: The domain of FAF is the set of all profiles of individual la-

bellings belonging to semantics Tadmissible, Tconflict−free or Tcomplete.

Collective rationality: FAF ({L1, . . . ,Ln}) is a labelling belonging to semantics

Tadmissible, Tconflict−free or Tcomplete.

Anonymity: Anonymity requires that the labelling submitted by an individual is

indistinguishable from the labelling submitted by another individual. In our frame-

work profiles are sets of individual labellings. Since in sets the correspondence be-

tween an individual and his submitted labelling is not defined, anonymity trivially

holds.
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Independence: For any A ∈ Ar and any profiles {L1, . . . ,Ln}, {L
′
1, . . . ,L′

n} in the

domain, if for some label l(A) ∈ {in, out, undec}, we have that ∀j ∈ N,Lj(A) =

l(A) ↔ L′
j(A) = l(A), then FAF ({L1, . . . ,Ln}) and FAF ({L′

1, . . . ,L′
n}) must as-

sign the same label l to A.

Universal domain and collective rationality capture respectively the types of input

and output that an aggregation function can accept and must return. The correspond-

ing conditions in judgment aggregation fix that permissible inputs are consistent and

complete judgment sets, and the the aggregation function should return complete,

consistent and deductively closed judgment sets (the only exception being incomplete

judgment sets as in [17,12]). Argumentation is a flexible framework in which we can

define aggregation operators for individual labellings and study their behavior under

different semantics. This is reflected in the universal domain and collective rational-

ity conditions above, where the inputs can be admissible, conflict-free or complete

labellings (hence specifying to which semantics they belong).

The anonymity condition requires that all individuals count the same in the col-

lective decision. Finally, the independence condition states that, the collective label of

any argument A should depend exclusively on the labellings that the individuals in a

certain profile assign to A and not on other arguments. Thus, if the individuals of two

profiles assign the same labels to an argument A, then the collective labellings of A

assigned to the two profiles must also coincide.

Our general aim is to be flexible on the issue of argumentation semantics. Never-

theless, some semantics would be too restrictive for the aim of judgment aggregation.

As an example, consider argumentation framework AF = (Ar , def ) with Ar = {A, B}

and def = {(A, B), (B, A)}. If one, for instance, would apply preferred semantics, then

there would be two preferred labellings: L1 = ({A}, {B}, ∅) and L2 = ({B}, {A}, ∅).

However, aggregating these labellings to any preferred labelling would pose serious

difficulties, because one would have to make an arbitrary choice which of these two

preferred labellings would be selected as outcome labelling. Similar problems exist

when one applies stable or semi-stable semantics.

Applying a unique status semantics (such as grounded [13], ideal [14] or eager [4])

would make judgment aggregation trivial, since it would follow that for each argumen-

tation framework, only one reasonable position is possible. And if disagreement is not

possible in the first place, then there is also effectively no need for any form of judgment

aggregation. However, a unique status semantics can also be seen as over-restrictive,

which is why in the current work we focus on multiple status semantics.

In the remaining part of this paper, we will focus on conflict-free labellings, ad-

missible labellings and complete labellings. To see why this approach makes sense,

consider again the example mentioned above. Labellings L1 and L2 are both complete,

admissible and conflict-free labellings. It would be perfectly reasonable to define the

aggregated labelling LColl as (∅, ∅, {A, B}). That is, if agent 1 claims that A should be

accepted and B should be rejected (L1) and agent 2 claims that A should be rejected

and B should be accepted (L2) then it would be reasonable for the group as a whole

to abstain from any explicit opinion on A or B. Also, it holds that LColl is a complete,

admissible and conflict-free labelling.

Since each stable, semi-stable, preferred, or grounded labelling is also a complete

(and therefore admissible and conflict-free) labelling, we do not overly restrict ourselves

by requiring every input labelling to be complete (or admissible or conflict-free). The

general approach will be to make minimal assumptions about the input labellings when
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studying the properties of the proposed aggregation functions. Then, in some cases

we will observe that once one starts to have additional requirements on the input-

labellings, the aggregation function will satisfy more advanced properties as well.

6 The Sceptical Outcome

Conceptually, the idea of the sceptical aggregation is the following. All participants

gather in a meeting which is aimed at constructing the sceptical outcome. The chair

of the meeting then asks for each argument the opinion of the participants. If all

participants unanimously think the argument should be accepted, then the argument

is initially accepted. If all participants unanimously think the argument should be

rejected, then the argument is initially rejected. In all other cases, the group as a

whole does not have an explicit opinion about the argument. After all arguments have

been treated this way, the meeting goes to the second phase. The chairman then reviews

whether each accept or reject can still be justified from thus derived group outcome.

An argument that is accepted without every defeater being rejected can no longer

be accepted, since the position of the group as a whole does not provide sufficient

justification for this. An argument that is rejected without a defeater that is accepted

can no longer be rejected, since the position of the group as a whole does not provide

sufficient justification for this. In each of these two cases, the group has to abstain

from having an explicit opinion about the argument. This is an iterative process, since

once one abstains from having an explicit opinion about a particular argument, it can

cause explicit positions (accepts or rejects) of other arguments to be no longer justified.

Thus, one has to go on until the group no longer has explicit opinions that are not

justified. After this second phase is over, the result will be a position that is “smaller or

equal” (less or equally committed) to each individual position of the participants. That

is, each argument that is accepted by the group is also accepted by each individual

participant, and each argument that is rejected by the group is also rejected by each

individual participant. Furthermore, the group outcome is also self-justifying (each

rejected argument has a defeater that is accepted, and each accepted argument has

all its defeaters rejected). Within these constraints, the sceptical outcome is the most

committed (biggest) position possible.

Definition 13 Let L1 and L2 be two labellings of argumentation framework AF =

(Ar , def ). We say that L1 is less or equally committed as L2 (L1 ⊑ L2) iff in(L1) ⊆

in(L2) and out(L1) ⊆ out(L2).

It can be observed that ⊑ is a partial order on labellings. That is:

1. L ⊑ L (reflexive)

2. if L1 ⊑ L2 and L2 ⊑ L3 then L1 ⊑ L3 (transitive)

3. if L1 ⊑ L2 and L2 ⊑ L1 then L1 = L2 (anti-symetric)

Since “⊑”is a partial order, we will sometimes talk about labelling L2 being “bigger

or equal” to labelling L1, when L1 ⊑ L2. Similarly, for certain sets of labellings we can

also refer to a maximal or minimal, sometimes even to the biggest or smallest labelling,

all with respect to the partial order defined by “⊑”.

Before continuing the formalization of the above described procedure, we first need

to introduce some additional properties of labellings with respect to the order imposed

by “⊑”.
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Theorem 5 Let L be a labelling of argumentation framework AF = (Ar , def ). The set

of admissible labellings that are smaller or equal to L has a (unique) biggest element.

Proof The all-undec labelling is admissible and smaller or equal to L. Hence, there

exists at least one admissible labelling that is smaller or equal to L. Since we only

consider finite argumentation frameworks, it follows that there exists only a finite

number of admissible labellings smaller or equal to L. It then directly follows that

among the admissible labellings smaller or equal to L, there exists at least one maximal

one. We now prove that this maximal labelling is also unique. Let Lma1
be a maximal

labelling satisfying that Lma1
is admissible and Lma1

⊑ L. Also, let Lma2
be a maximal

labelling satisfying that Lma2
is admissible and Lma2

⊑ L. Now let Lma3
be {(A, in) |

Lma1
(A) = in ∨ Lma2

(A) = in} ∪ {(A, out) | Lma1
(A) = out ∨ Lma2

(A) = out} ∪

{(A, undec) | Lma1
(A) = undec ∧ Lma2

(A) = undec}. It is relatively straightforward

to observe that Lma3
assigns at least one label to each argument. The fact that Lma3

also assigns at most one label to each argument can be seen as follows. Suppose Lma3

would assign more than one label to argument A. Then A would be labelled both in and

out. This means that either Lma1
(A) = in and Lma2

= out, or that Lma1
(A) = out

and Lma2
(A) = in. From the fact that Lma1

(A) ⊑ L and Lma2
(A) ⊑ L it would

then follow that L assigns both in and out to A, which is impossible. Therefore, Lma3

assigns at most one label to each argument. This, together with the earlier observed

fact that Lma3
assigns at least one label to each argument, implies that Lma3

assigns

exactly one label to each argument. Hence, Lma3
is a well-defined labelling of AF .

Also, it is relatively straightforward to observe that Lma1
⊑ Lma3

and Lma2
⊑ Lma3

.

We now prove that Lma3
is an admissible labelling. If Lma3

(A) = in then we can see as

follows that Lma3
(B) = out for every defeater B of A. Let B be an arbitrary defeater

of A. From the fact that Lma3
(A) = in it follows that Lma1

(A) = in or Lma2
(A) = in.

Assume without loss of generality that Lma1
(A) = in (the case of Lma2

(A) = in goes

similar). Then, from the fact that Lma1
is an admissible labelling, it follows that A’s

defeater B is labelled out by Lma1
. This then implies that B is also labelled out by

Lma3
.

If Lma3
(A) = out then we can see as follows that Lma3

(B) = in for at least one

defeater B of A. From the fact that Lma3
(A) = out it follows that Lma1

(A) = out or

Lma2
(A) = out. Assume without loss of generality that Lma1

(A) = out (the case of

Lma2
(A) = out goes similar). Then, from the fact that Lma1

is an admissible labelling,

it follows that A has a defeater B that is labelled in by Lma1
. This implies that B is

also labelled in by Lma3
.

From the fact that each argument that is labelled in by Lma3
has all its defeaters

labelled out by Lma3
, and that each argument that is labelled out by Lma3

has at

least one defeater that is labelled in by Lma3
, it follows that Lma3

is an admissible

labelling. The fact that Lma3
is a labelling satisfying both admissibility and being

less or equal to L, together with the fact that Lma1
is a maximal labelling satisfying

both admissibility and being less or equal to L means that Lma3
cannot be bigger

than Lma1
. The fact that Lma1

⊑ Lma3
then implies that Lma1

= Lma3
. The fact

that Lma3
is a labelling satisfying both admissibility and being less or equal to L,

together with the fact that Lma2
is a maximal labelling satisfying both admissibility

and being less or equal to L means that Lma3
cannot be bigger than Lma2

. The fact

that Lma2
⊑ Lma3

then implies that Lma2
= Lma3

. From Lma1
= Lma3

and that

Lma2
= Lma3

then implies that Lma1
= Lma2

. This means that the set of admissible
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labellings that are smaller or equal to L has exactly one maximal element, which is

then automatically also the biggest element.

It should be mentioned that Theorem 5 is one of the points where the labellings

approach to argumentation differs from the traditional sets and extensions approach.

In general it is not the case that for each set of arguments Args , the set of all admissible

subsets of Args has a biggest element. The possible existence of more than one preferred

extension is a clear counterexample of this. The labellings approach to argumentation

therefore satisfies a property that is not satisfied by the sets and extensions approach;

a property that will be quite useful for current purposes. For instance, it allows for the

well-definedness of the down-admissible labelling.

Definition 14 Let L be a labelling of argumentation framework AF = (Ar , def ).

The down-admissible labelling of L is the biggest element of the set of all admissible

labellings that are smaller or equal to L.

The contraction function is meant to relabel an argument from in or out to undec.

Definition 15 Let Labellings be the set of all possible labellings of argumentation

framework AF = (Ar , def ). The contraction function is a function cAF : Labellings×
Ar → Labellings such that cAF (L, A) = (L − {(A, in), (A, out)}) ∪ {(A, undec)}.

The idea of a contraction sequence is to keep applying contraction steps until the

result is an admissible labelling.

Definition 16 Let L be a labelling of argumentation framework AF = (Ar , def ). A

contraction sequence from L is a list of labellings [L1, . . . ,Lm] such that:

1. L1 = L,

2. for each j ∈ {1, . . . , m}: Lj+1 = cAF (Lj , A), where A is an argument that is

illegally in or illegally out in Lj , and

3. Lm is a labelling without any illegal in or illegal out.

It should be mentioned that for every labelling L, there exists at least one contrac-

tion sequence for it. This is because we consider only finite argumentation frameworks,

from which it follows that the contraction sequence will terminate after a finite number

of steps.

The idea of Lemma 2 and 3 below is that if an argument is illegally in (or ille-

gally out) then it cannot be made legally in (or legally out) just by relabelling other

arguments to undec.

Lemma 2 Let L be a labelling where A is illegally in. It holds that in each labelling

L′ ⊑ L: if A is labelled in by L′, then A is illegally in in L′.

Proof The fact that A is illegally in in L implies that L(A) has at least one defeater

B with L(B) 6= out. We distinguish two cases:

1. L(B) = in. The fact that L′ ⊑ L implies that L′(B) is either in or undec. In both

cases, A has a defeater that is not labelled out by L′, so A is illegally in in L′.

2. L(B) = undec. The fact that L′ ⊑ L implies that L′(B) = undec, so A has a

defeater that is not labelled out by L′, so A is illegally in in L′.
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Lemma 3 Let L be a labelling where A is illegally out. It holds that in each labelling

L′ ⊑ L: if A is labelled out by L′, then A is illegally out in L′.

Proof The fact that A is illegally out in L implies that L(A) does not have a defeater

that is labelled in by L. That is, each defeater of A is either labelled out or undec by

L. Let B be an arbitrary defeater of A. We distinguish two cases:

1. L(B) = out. The fact that L′ ⊑ L implies that L′(B) is either out or undec. In

both cases, L′(B) 6= in.

2. L(B) = undec. The fact that L′ ⊑ L implies that L′(B) = undec, so L′(B) 6= in.

In both cases, we have that L′(B) 6= in. Since this holds for any arbitrary defeater B

of A, it follows that A does not have any defeater that is labelled in by L′, so A is

illegally out in L′.

The next thing to prove is that a contraction sequence calculates the down-admisssible

labelling.

Theorem 6 Let L be a labelling of argumentation framework AF = (Ar , def ), let Lda

be the down-admissible labelling of L and let [L1, . . . ,Lm] be a contraction sequence

from L. It holds that Lm = Lda.

Proof We first prove that for each Lj (j ∈ {1, . . . , m}) in the contraction sequence it

holds that Lj ⊑ L. We prove this by induction over j.

basis: From the fact that “⊑” is reflexive, it follows that L ⊑ L. From the fact that

L1 = L it then follows that L1 ⊑ L.

step: Suppose that Lj ⊑ L. From the fact that Lj+1 ⊑ Lj it then follows that Lj+1 ⊑

L, since “⊑” is transitive.

The next thing to be proved is that for each Lj (j ∈ {1, . . . , m}) in the contraction

sequence, it holds that Lda ⊑ Lj . We prove this by induction over j.

basis: From Definition 14 it immediately follows that Lda ⊑ L. From the fact that

L1 = L it then follows that Lda ⊑ L1.

step: Suppose that Lda ⊑ Lj with j ≤ m − 1. We now prove that Lda ⊑ Lj+1. Let A

be the argument such that Lj+1 = cAF (Lj , A). We distinguish two possibilities.

1. A is illegally in in Lj . From the fact that Lda ⊑ Lj (induction hypothesis) it

follows that (Lemma 2) if A is labelled in by Lda, A would be illegally in in

Lda. Since Lda is an admissible labelling, it does not have an argument that

is illegally in. Therefore, A cannot be labelled in by Lda. A also cannot be

labelled out by Lda (otherwise it would not hold that Lda ⊑ Lj) so A has to

be labelled undec by Lda.

2. A is illegally out in Lj . From the fact that Lda ⊑ Lj (induction hypothesis) it

follows that (Lemma 3) if A is labelled out by Lda, A would be illegally out

in Lda. Since Lda is an admissible labelling, it does not have an argument that

is illegally out. Therefore, A cannot be labelled out by Lda. A also cannot be

labelled in by Lda (otherwise it would not hold that Lda ⊑ Lj) so A has to be

labelled undec by Lda.

Using the thus derived fact that A is labelled undec by Lda, we now continue with

the prove that Lda ⊑ Lj+1

– Let B be an argument that is labelled in by Lda. Then B 6= A. From the fact

that Lda ⊑ Lj it follows that Lj(B) = in. From the fact that Lj+1(B) = Lj(B)

for each B 6= A it follows that Lj+1(B) = in.
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– Let B be an argument that is labelled out by Lda. Then B 6= A. From the fact

that Lda ⊑ Lj it follows that Lj(B) = out. From the fact that Lj+1(B) =

Lj(B) for each B 6= A it follows that Lj+1(B) = out.

From the thus derived fact that each argument labelled in by Lda is also labelled

in by Lj+1, and that each argument labelled out by Lda is also labelled out by

Lj+1 it follows that Lda ⊑ Lj+1.

We have now proved that for each Lj (j ∈ {1, . . . , m}) it holds that Lj ⊑ L and it

holds that Lda ⊑ Lj . In particular, this also holds for Lm. Furthermore, Lm does not

contain an illegal in or illegal out, and is therefore an admissible labelling. Hence,

Lm is an admissible labelling such that Lm ⊑ L. From the fact that Lda is the unique

biggest admissible labelling such that Lda ⊑ L, it then directly follows that Lm ⊑ Lda.

However, it also holds that Lda ⊑ Lm (since for each j ∈ {1, . . . , m}: Lda ⊑ Lj). From

the fact that Lm ⊑ Lda and Lda ⊑ Lm it then directly follows that Lm = Lda, since

“⊑” is a partial order satisfying anti-symmetry.

Now that the preliminary theory has been treated, we can return to the main

question of how to formalize the procedure of the meeting described in the beginning

of the section. The first phase of the meeting, which yields the initial outcome (Lsio),

can be described as follows.

Definition 17 Let Labellings be the set of all possible labellings of argumentation

framework AF = (Ar , def ). The sceptical initial aggregation operator is a function

sioAF : 2Labellings − {∅} → Labellings such that sioAF ({L1, . . . ,Ln}) =

{(A, in) | ∀i ∈ {1, . . . , n} : Li(A) = in}∪

{(A, out) | ∀i ∈ {1, . . . , n} : Li(A) = out}∪
{(A, undec) | ∃i ∈ {1, . . . , n} : Li(A) 6= in ∧ ∃i ∈ {1, . . . , n} : Li(A) 6= out}.

We first observe that sioAF ({L1, . . . ,Ln}) is well-defined in the sense that it assigns

exactly one label to each argument. We will sometimes write L1⊓L2 as an abbreviation

for sioAF ({L1,L2}).

Lemma 4 Let L1, . . . ,Ln (n ≥ 1) be admissible labellings of argumentation framework

AF = (Ar , def ) and Lsio = sioAF ({L1, . . . ,Ln}) be the associated sceptical initial

labelling. It holds that Lsio ⊑ Li (for each i ∈ {1, . . . , n}).

Proof This follows directly from Definition 17.

Proposition 1 Let L1, . . . ,Ln be conflict-free labellings of argumentation framework

AF = (Ar , def ). Let Lsio be sioAF ({L1, . . . ,Ln}). It holds that Lsio is also a conflict-

free labelling.

It is interesting to notice that if the semantics merely requires conflict-freeness,

then sioAF satisfies all the standard judgment aggregation conditions. This means that

sioAF satisfies universal domain, collective rationality, anonymity and independence.

However, if the semantics requires the stronger condition of admissibility, then

sioAF no longer satisfies coherence. As an example, consider the argumentation frame-

work AF = (Ar , def ) with Ar = {A, B, C, D} and def = {(A, B), (B, A), (A,C), (B,C),

(C, D)}. This argumentation framework is shown in Figure 5. Both L1 = ({A, D},
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{B, C}, ∅) and L2 = ({B, D}, {A, C}, ∅) are admissible labellings, but sioAF ({L1,L2}) =

({D}, {C}, {A, B}), which is not admissible. We will now define a new aggregation op-

erator (soAF ) which does yield admissible labellings. In exchange, we will have to give

up the property of unanimity. We will come back to this point at the end of this section.

A

B
C D

Fig. 5 The sceptical aggregation operator does not satisfy unanimity.

The result of the second phase of the meeting can then be characterized as follows.

Notice that this result can be calculated using a contraction sequence.

Definition 18 Let Labellings be the set of all labellings of argumentation framework

AF = (Ar , def ). The sceptical aggregation operator is a function soAF : 2Labellings −
{∅} → Labellings such that soAF ({L1, . . . ,Ln}) is the down-admissible labelling of

sioAF ({L1, . . . ,Ln}).

One positive feature of the thus described sceptical aggregation is that if an argu-

ment is accepted (or rejected) by the group outcome, it is also accepted (or rejected) by

each individual member of the group. Hence, if a member needs to explain (perhaps in

public) why his group accepts or rejects a particular argument, he will be able to do so

without having to go against his own private opinions. This is stated by the following

theorem.

Theorem 7 Let L1, . . . ,Ln (n ≥ 1) be labellings of argumentation framework AF =

(Ar , def ). Let Lso be soAF ({L1, . . . ,Ln}). It holds that Lso is the biggest admissible

labelling such that for every i ∈ {1, . . . , n}: Lso ⊑ Li.

Proof We first prove that for each Lso ⊑ Li (for each i ∈ {1, . . . , n}). Let Lsio =

sioAF ({L1, . . . ,Ln}). From Definition 18 it follows that Lso is the down-admissible

labelling of Lsio. Therefore, Lso ⊑ Lsio. Lemma 4 states that Lsio ⊑ Li (for each

i ∈ {1, . . . , n}). Therefore, Lso ⊑ Li (for each i ∈ {1, . . . , n}).
Now that we know that Lso is an admissible labelling such that Lso ⊑ Li (for each

i ∈ {1, . . . , n}), the next thing to show is that Lso is also the biggest admissible labelling

such that Lso ⊑ Li (for each i ∈ {1, . . . , n}). Let L′ be an admissible labelling with

L′ ⊑ Li (for each i ∈ {1, . . . , n}). From the fact that L′ ⊑ Li (for each i ∈ {1, . . . , n})
it follows that L′ ⊑ Lsio. This can be seen as follows.

– Let A ∈ in(L′). Then from L′ ⊑ Li it follows that A ∈ in(Li) (for each i ∈

{1, . . . , n}). From Definition 17 it then follows that A ∈ in(Lsio).

– Let A ∈ out(L′). Then from L′ ⊑ Li it follows that A ∈ out(Li) (for each i ∈

{1, . . . , n}). From Definition 17 it then follows that A ∈ out(Lsio).

From the fact that L′ is an admissible labelling that is smaller or equal to Lsio, and

the fact that Lso is the biggest admissible labelling that is smaller or equal to Lsio, it

then follows that L′ ⊑ Lso.
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It is interesting that we can also use soAF if the rationality requirement is changed

from “admissible” to “complete”. That is, if the input labellings are complete, then

the aggregated labelling will automatically also be complete.

Theorem 8 Let L1, . . . ,Ln (n ≥ 1) be complete labellings of argumentation framework

AF = (Ar , def ). It holds that the sceptical outcome labelling Lso = soAF ({L1, . . . ,Ln})
is a complete labelling.

Proof From the fact that L is an admissible labelling, it immediatelly follows that every

argument labelled in is legally in, and that every argument labelled out is legally out.

So the only thing still to be proved for Lso to be a complete labelling is that every

argument labelled undec is legally undec. Let A be an arbitrary argument such that

L(A) = undec. Suppose A would be illegally undec. We distinguish two possibilities.

1. A has a defeater that is labelled in by Lso. But then Lso would not be maximal

because it would be possible to relabel A to out (since A is also labelled out by

every Li (i ∈ {1, . . . , n})).

2. A has all its defeaters labelled out by Lso. But then Lso would not be maximal

because it would be possible to relabel A to in (since A is also labelled in by every

Li (i ∈ {1, . . . , n})).

In both cases, the result is a contradiction. Therefore, A cannot be illegally undec in

Lso.

Before we move to the credulous outcome, we want to return to the observation that

the aggregation operator sioAF preserves unanimity at the expense of losing coherence

when coherence is interpreted as admissibility. If collective rationality requires the

group labelling to be admissible, sioAF cannot guarantee to output an admissible

labelling even under admissible inputs. We have then defined the operator soAF that

guarantees admissible outputs but does not preserve unanimity.

The argumentation system of Figure 5 is an example of what in the literature is

known as floating conclusions [27], i.e. statements that are supported in each extension

but by different arguments. In default logic, when a theory has multiple extensions, the

sceptical approach states that a conclusion should be endorsed only if it is contained in

every extension. Horty [19] considers the sceptical policy applied to multiple argument

extensions and questions it. The reason for not accepting floating conclusions is that

they are precarious:

The point is not that floating conclusions might be wrong; any conclusion drawn

through defeasible reasoning might be wrong. The point is that a statement

supported only as floating conclusion seems to be less secure than the same

statement when it is uniformly supported by a common argument. ([19], p.65)

The instance shown in Figure 5 and the discussion above about floating conclusions

reminds the Paretian dilemma, a variation of the discursive dilemma presented by

Nehring in [30]. The Pareto criterion says that, if every individual prefers one collective

outcome over another, that outcome should be socially selected. In [30], a three-judges

court has:

to decide whether a defendant has to pay damages to the plaintiff. Legal doc-

trine requires that damages are due if and only if the following three premises

are established: 1) the defendant had a duty to take care, 2) the defendant

behaved negligently, 3) his negligence caused damage to the plaintiff. [p.1]
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p = Duty q = Negligence r = Causation s = Damages
Judge 1 1 1 0 0
Judge 2 0 1 1 0
Judge 3 1 0 1 0
Majority 1 1 1 0

Table 2 Paretian dilemma. p = Duty, q = Negligence, r = Causation, s = (p ∧ q ∧ r) =
Damages.

Suppose that the three judges vote as in Table 2.

The table above shows that, when aggregating issue-by-issue, the reason-based

collective judgment (the judgments on p, q and r) can conflict with the Pareto criterion.

A majority agrees on each p, q and r, supporting the decision that the defendant has

to pay damages to the plaintiff, contrary to the unanimous judgment that damages

should be denied. Like sioAF , proposition-wise majority voting preserves unanimity

but cannot ensure a consistent social outcome.

Nehring proves that, all well-behaved (i.e. anonymous or non-dictatorial) aggrega-

tion rules are prone to the Paretian dilemma, tantamount to saying that no reason-

based group decision can be guaranteed. How negative is this result? In [30] it is argued

that when the reasons are epistemically independent “all relevant information about

the outcome decision is contained in the agents’ premise judgments. [...] Indeed, under

epistemic independence of premises it is easy to understand how a group aggregation

rule can rightly override a unanimous outcome judgment” [ibid. p.36]. Furthermore,

the normative force of the Pareto criterion depends on the type of social decision. The

Pareto criterion should be ensured when the individuals have a shared self-interest in

the final outcome, whereas it can be relaxed when they share responsibility for the

decision. Judicial decisions are clear instances of shared responsibility situations, while

other group decisions may be self-interest driven. Nehring’s analysis concludes that the

Pareto criterion and reason-based group decisions are two principles that may come

into conflict. However, such conflict does not mean that one of these two principles is

ill-founded.

7 The Credulous Outcome

The idea of the credulous outcome is that it is not too bad for a group opinion to accept

or reject arguments that are not accepted or rejected by each individual member, as

long as each individual member’s private opinions are not directly against the group

outcome. That is, if the group outcome is that an argument should be accepted, then

each member either believes that this argument has to be accepted or simply has

no opinion about it. Similarly, if the group outcome is that the argument has to be

rejected, then each member either believes that this argument should be rejected or

has no opinion about it.

The first thing to define is what it means for two labellings to be compatible.

Definition 19 Let L1 and L2 be two labellings of argumentation framework (Ar , def ).

We say that L1 is compatible with L2, denoted as L1 ≈ L2, iff in(L1) ∩ out(L2) = ∅
and out(L1) ∩ in(L2) = ∅.

It can be shown that the compatibility relation “≈” satisfies reflexity (L ≈ L) and

symmetry (if L1 ≈ L2 then L2 ≈ L1) but not transitivity (from L1 ≈ L2 and L2 ≈ L3
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it does not follow that L1 ≈ L3). As an example of why ≈ does not satisfy transitivity,

consider the argumentation framework of Figure 5, with L1 = ({A, D}, {B, C}, ∅),
L2 = (∅, ∅, {A, B, C, D}) and L3 = ({B, D}, {A, C}, ∅). Here, L1 ≈ L2 and L2 ≈ L3

but L1 6≈ L3.

It is also possible to give a different equivalent description of “≈”.

Proposition 2 Let L1 and L2 be labellings of argumentation framework (Ar , def ).

It holds that L1 ≈ L2 iff in(L1) ⊆ in(L2) ∪ undec(L2) and out(L1) ⊆ out(L2) ∪

undec(L2).

For some of the proofs, we will use the results of Proposition 2 without explicitly

referring to it. That is, to prove that L1 ≈ L2 we simply prove that in(L1) ⊆ in(L2)∪

undec(L2) and out(L1) ⊆ out(L2) ∪ undec(L2).

It holds that “⊑” is a stronger condition than “≈”. That is, if L1 ⊑ L2 then

L1 ≈ L2.

Conceptually, the process of constructing the credulous outcome is done as follows.

All participants gather in a meeting. The chair of the meeting then asks for each argu-

ment the opinion of the participants. If at least one participant accepts the argument,

and nobody explicitly rejects it, then the argument is initially accepted. If at least one

participant rejects the argument and nobody explicitly accepts it, then the argument

is initially rejected. After all arguments have been treated this way, the meeting goes

to the second phase. The chairman then reviews whether each accept or reject can

still be justified from thus derived group outcome. Each argument that is accepted or

rejected without a justification can no longer be accepted or rejected, so the group

has to abstain from having an explicit opinion about it. This is an iterative process,

since once one abstains from having an explicit opinion about a particular argument,

it can cause explicit positions (accepts or rejects) of other arguments to be no longer

justified. Thus, one has to go on until the group no longer has explicit opinions that

are not justified.

Definition 20 Let Labellings be the set of all possible labellings of argumentation

framework AF = (Ar , def ). The credulous initial aggregation operator is a function

cioAF : 2Labellings − {∅} → Labellings such that cioAF ({L1, . . . ,Ln}) =

{(A, in) | ∃i ∈ {1, . . . , n} : Li(A) = in ∧ ¬∃i ∈ {1, . . . , n} : Li(A) = out}∪

{(A, out) | ∃i ∈ {1, . . . , n} : Li(A) = out ∧ ¬∃i ∈ {1, . . . , n} : Li(A) = in}∪
{(A, undec) | ∀i ∈ {1, . . . , n} : Li(A) = undec ∨ (∃i ∈ {1, . . . , n} : Li = in ∧ ∃i ∈

{1, . . . , n} : Li = out)}.

We will sometimes write L1 ⊔ L2 as an abbreviation for cioAF ({L1,L2}).

Theorem 9 Let L1, . . . ,Ln be labellings of argumentation framework AF = (Ar , def )

and let Lcio = cioAF ({L1, . . . ,Ln}) be the credulous initial labelling. It holds that

∀i ∈ {1, . . . , n} : Lcio ≈ Li.

Proof This follows directly from Definition 19 and Definition 20.

Definition 21 Let AdmLabellings be the set of all admissible labellings of argumen-

tation framework AF = (Ar , def ). The credulous aggregation operator is a function

coAF : 2AdmLabellings − {∅} → AdmLabellings such that coAF ({L1, . . . ,Ln}) is the

down-admissible labelling of cioAF ({L1, . . . ,Ln}).
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It holds that the credulous outcome labelling is compatible with each of the par-

ticipants’ individual labelling. For the proof, we first need the following lemma.

Lemma 5 Let L1, L2 and L3 be labellings of argumentation framework (Ar , def ). It

holds that if L1 ⊑ L2 and L2 ≈ L3 then L1 ≈ L3.

Proof We need to prove that in(L1) ⊆ in(L3) ∪ undec(L3) and that out(L1) ⊆
out(L3) ∪ undec(L3).

– Let A ∈ in(L1). Then, from the fact that L1 ⊑ L2 it follows that A ∈ in(L2).

From the fact that L2 ≈ L3 it then follows that A ∈ in(L3) ∪ undec(L3).

– Let A ∈ out(L1). Then, from the fact that L1 ⊑ L2 it follows that A ∈ out(L2).

From the fact that L2 ≈ L3 it then follows that A ∈ out(L3) ∪ undec(L3).

Theorem 10 Let L1, . . . ,Ln (n ≥ 1) be admissible labellings of argumentation frame-

work AF = (Ar , def ), let Lcio = cioAF ({L1, . . . ,Ln}) be the associated credulous

initial labelling, and let Lco = coAF ({L1, . . . ,Ln}) be the associated credulous outcome

labelling. It holds that Lco ≈ Li (for each i ∈ {1, . . . , n}).

Proof From Definition 21 and Definition 14, it immediately follows that Lco ⊑ Lcio.

Also, from Definition 19 and 20, it immediately follows that Lcio ≈ Li (for each i ∈

{1, . . . , n}). Lemma 5 then allows us to derive that Lco ≈ Li (for each i ∈ {1, . . . , n}).

Although for the sceptical aggregation, it holds that the outcome is a complete

labelling when the individual input labellings are complete (Theorem 8), this does not

hold for the credulous aggregation. That is, even if the input labellings L1, . . . ,Ln are

complete, the credulous outcome labelling coAF ({L1, . . . ,Ln}) does not need to be

complete. Take the example of (Ar , def ) where Ar = {A, B, C, D, E, F} and def =

{(A, B), (B, A), (C, D), (D, C), (B, E), (D, E), (E, F )}. This argumentation framework

is shown in Figure 6. Let L1 = ({A}, {B}, {C, D, E, F}) and L2 = ({C}, {D}, {A, B, E,

F}). Both L1 and L2 are complete, but the credulous outcome labelling Lco is ({A, C},

{B, D}, {E, F}) which is not complete.

A B

C D E F

Fig. 6 The credulous aggregation operator may not yield a complete labelling.

8 The Super Credulous Outcome

It is even possible to define a reasonable outcome that is even more credulous than the

credulous outcome; we call this new outcome super credulous. The idea is to start with

the credulous outcome and then “expand” it, that is, to make it bigger by relabelling
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illegal undecs to ins and outs. Conceptually, what happens is the following. After the

meeting has determined the credulous outcome, the chairman holds a third phase, in

which he tries to see whether the opinions can be extended. For this, he takes a look at

each argument where the meeting does not yet have an opinion about (that is accepted

neither rejected collectively). If there are sufficient grounds to accept it (that is, if all

its defeaters are already rejected) then the group will accept it. If there are sufficient

grounds to reject it (that is, if it has a defeater that is accepted) then it will be rejected.

This goes on until each argument that can be accepted is accepted and each argument

that can be rejected is rejected. The result will be the super credulous outcome.

Definition 22 Let Labellings be the set of all possible labellings of argumentation

framework AF = (Ar , def ). The expansion function eAF : Labellings×Ar → Labellings

is defined as follows.

– eAF (L, A) = (L − {(A, undec)}) ∪ {(A, in)} if A is illegally undec in L and all its

defeaters are out,

– eAF (L, A) = (L− {(A, undec)})∪ {(A, out)} if A is illegally undec in L and it has

a defeater that is in, and

– eAF (L, A) = L in all other cases.

Definition 23 Let La be an admissible labelling of argumentation framework AF =

(Ar , def ). An expansion sequence from La is a list of labellings [L1, . . . ,Lm] (m ≥ 1)

such that:

1. L1 = La,

2. for each j ∈ {1, . . . , m − 1}: Lj+1 = eAF (Lj , A), where A is an argument that is

illegally undec in Lj , and

3. Lm is a labelling that does not have any illegal undec.

It should be mentioned that for any admissible labelling La of AF , there exists at

least one super credulous expansion sequence. This is because there are only a finite

number of arguments to do an expansion step on.

Lemma 6 Let La be an admissible labelling of argumentation framework

AF = (Ar , def ), and let [L1, . . . ,Lm] be an expansion sequence from La. It holds

that Lm is a complete labelling with La ⊑ Lm.

Proof We first prove, by induction, that every Lj (j ∈ {1, . . . , m}) is bigger or equal

to La.

basis: From the fact that “⊑” is reflexive, it follows that La ⊑ La. From the fact that

L1 = La it then follows that La ⊑ L1.

step: Suppose that La ⊑ Lj (j ∈ {1, . . . , m − 1}). From the fact that Lj ⊑ Lj+1 it

follows that La ⊑ Lj+1 since “⊑” is transitive.

From the thus proved fact that every La ⊑ Lj (j ∈ {1, . . . , m}), it then directly follows

that La ⊑ Lm.

We now prove, by induction, that every Lj (j ∈ {1, . . . , m}) is an admissible labelling.

basis: L1 = La and La is an admissible labelling.

step: Suppose Lj is an admissible labelling. Let A be the argument on which the

expansion step to Lj+1 took place. That is, Lj+1 = eAF (Lj , A). We now prove

that Lj+1 is an admissible labelling. Let B be an argument labelled in by Lj+1.

We distinguish two cases.
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1. B 6= A. Then B is labelled in by Lj . Since Lj is an admissible labelling (in-

duction hypothesis), it follows that all defeaters of B are labelled out by Lj .

2. B = A. Then, from the fact that B qualified for an expension step resulting in

B being labelled in, it follows (Definition 22) that all defeaters of B are labelled

out by Lj .

In both cases, it holds that all defeaters of B are labelled out by Lj . Since out(Lj) ⊆
out(Lj+1) it follows that all defeaters of B are also labelled out by Lj+1. Hence,

B is legally in in Lj+1.

Now that we have proven that each argument labelled in by Lj+1 is legally in, the

next thing to prove is that each argument labelled out by Lj+1 is legally out. Let

B be an argument labelled out by Lj+1. We distinguish two cases.

1. B 6= A. Then B is labelled out by Lj . Since Lj is an admissible labelling

(induction hypothesis), it follows that B has a defeater (say C) that is labelled

in by Lj .

2. B = A. Then, from the fact that B qualified for an expension step resulting in

B being labelled out, it follows (Definition 22) that B has a defeater (say C)

that is labelled in by Lj .

In both cases, it holds that B has a defeater C that is labelled in by Lj . Since

in(Lj) ⊆ in(Lj+1) it follows that B’s defeater C is also labelled in by Lj+1. Hence,

B is legally out in Lj+1.

From the thus derived facts that each argument labelled in by Lj+1 is legally in,

and that each argument labelled out by Lj+1 is legally out it follows that Lj+1 is

an admissible labelling.

From the thus proved fact that for each j ∈ {1, . . . , m} it holds that Lj is an admissible

labelling, it directly follows that Lm is an admissible labelling. This, and the fact that

Lm does not have any illegal undec, implies that Lm is a complete labelling.

Theorem 11 Let La be an admissible labelling of argumentation framework AF =

(Ar , def ). The set of complete labellings that are bigger or equal to La has a (unique)

smallest element.

Proof Lemma 6 implies that there exists at least one complete labelling (namely Lm)

that is bigger or equal to La. This, together with the fact that there is only a finite

number of complete labellings bigger or equal to La implies that the set of complete

labellings that are bigger or equal to La has at least one minimal element. In order to

prove that this minimal element is also the smallest element, we have to prove that no

other minimal element exists.

Let Lmc1
and Lmc2

be minimal complete labellings such that La ⊑ Lmc1
and

La ⊑ Lmc2
. Now consider the sceptical outcome labelling associated with Lmc1

and

Lmc2
. That is, let Lmc3

= soAF ({Lmc1
,Lmc2

}). From the fact that Lmc1
and Lmc2

are complete labellings, it follows from Theorem 8 that Lmc3
is also a complete la-

belling. From Definition 18 it directly follows that Lmc3
⊑ Lmc1

and Lmc3
⊑ Lmc2

.

Let Lsi be Lmc1
⊓ Lmc2

. Then from the fact that La ⊑ Lmc1
and La ⊑ Lmc2

it

follows that La ⊑ Lsi. From the fact that Lmc3
is the (unique) biggest admissible

labelling such that Lmc3
⊑ Lsi it then follows that La ⊑ Lmc3

. So Lmc3
is a com-

plete labelling such that La ⊑ Lmc3
. From the fact that Lmc1

is a minimal complete

labelling such that La ⊑ Lmc1
and the earlier observed fact that Lmc3

⊑ Lmc1
it then

follows that Lmc3
= Lmc1

. Similarly, from the fact that Lmc2
is a minimal complete

labelling such that La ⊑ Lmc2
and the earlier observed fact that Lmc3

⊑ Lmc2
it then
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follows that Lmc3
= Lmc2

. From Lmc3
= Lmc1

and Lmc3
= Lmc2

it then follows that

Lmc1
= Lmc2

.

Using Theorem 11, we can then define the up-complete labelling of an admissible

labelling.

Definition 24 Let La be an admissible labelling of argumentation framework

AF = (Ar , def ). The up-complete labelling of La is the smallest element of the set

of all complete labellings that are bigger or equal to La.

Definition 25 Let Labellings be the set of all labellings of argumentation framework

AF = (Ar , def ). The super credulous aggregation operator is a function

scoAF : 2Labellings−{∅} → Labellings such that sco({L1, . . . ,Ln}) is the up-complete

labelling of coAF ({L1, . . . ,Ln}).

We now prove that the super credulous expansion sequence is a way of calculating

the super credulous outcome.

Theorem 12 Let L1, . . . ,Ln (n ≥ 1) be admissible labellings of argumentation frame-

work AF = (Ar , def ). Let Lco = coAF ({L1, . . . ,Ln}) be the associated credulous out-

come and Lsco = scoAF ({L1, . . . ,Ln}) be the associated super credulous outcome.

Let [L′
1, . . . ,L′

m] be an associated super credulous expansion sequence. It holds that

L′
m = Lsco.

Proof From Lemma 6 it follows that L′
m is a complete labelling that is bigger or equal

to Lco. From the fact that Lsco is the smallest complete labelling that is bigger or

equal to L′
m it then follows that Lsco ⊑ L′

m.

We now prove, by induction, that for every j ∈ {1, . . . , m}: L′
j ⊑ Lsco.

basis: From the fact that Lco ⊑ Lsco and that L′
1 = Lco it follows that L′

1 ⊑ Lsco.

step: Suppose L′
j ⊑ Lsco. Let A be the argument on which the expansion step is done.

That is, A is the argument such that eAF (L′
j , A) = L′

j+1. We now have to prove

that L′
j+1 ⊑ Lsco. That is, we have to prove that in(L′

j+1) ⊆ in(Lsco) and that

out(L′
j+1) ⊆ out(Lsco).

– Let B ∈ in(L′
j+1). If B 6= A then it follows that L′

j+1(B) = Lj(B), so from

the fact that L′
j+1(B) = in it follows that L′

j(B) = in, and from L′
j ⊑ Lsco

(the induction hypothesis) it then follows that Lsco(B) = in, so B ∈ in(Lsco).

If B = A (so the expansion step was done on B) then it follows that each de-

feater C of B is labelled out by L′
j . From L′

j ⊑ Lsco (the induction hypothesis)

it then follows that each defeater C of B is also labelled out by Lsco. From the

fact that Lsco is a complete labelling, it then follows that B is labelled in. So

B ∈ in(Lsco).

In both cases (both A 6= B and A = B) we have that B ∈ in(Lsco), so we have

that in(L′
j+1) ⊆ in(Lsco).

– Let B ∈ out(L′
j+1). If B 6= A then it follows that L′

j+1(B) = Lj(B), so from the

fact that L′
j+1(B) = out it follows that L′

j(B) = out, and from L′
j ⊑ Lsco (the

induction hypothesis) it then follows that Lsco(B) = out, so B ∈ out(Lsco).

If B = A (so the expansion step was done on B) then it follows that B has a

defeater C that is labelled in by L′
j . From L′

j ⊑ Lsco (the induction hypothesis)

it then follows that C is also labelled in by Lsco. From the fact that Lsco is a

complete labelling, it then follows that B is labelled out. So B ∈ out(Lsco).

In both cases (both A 6= B and A = B) we have that B ∈ out(Lsco), so we

have that out(L′
j+1) ⊆ out(Lsco).
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From the thus derived facts that in(L′
j+1) ⊆ in(Lsco), and that

out(L′
j+1) ⊆ out(Lsco) it follows that Lj+1 ⊑ Lsco.

From the thus obtained fact that for each j ∈ {1, . . . , m}: L′
j ⊑ Lsco it directly follows

that L′
m ⊑ Lsco. This, together with the earlier observed fact that Lsco ⊑ L′

m implies

that L′
m = Lsco.

Now that we have proved that the procedure of the super credulous expansion

sequence indeed produces the super credulous outcome, we are now getting ready to

prove that this super credulous outcome is also compatible with each individual input

labelling. To do this, we first need the following lemma.

Lemma 7 Let L1 and L2 be admissible labellings of argumentation framework

(Ar , def ), such that L1 ≈ L2. Let A be an argument that is illegally undec in L1.

It holds that L′
1 = eAF (L1, A) is again an admissible labelling with L′

1 ≈ L2.

Proof The fact that L′
1 is an admissible labelling follows from the proof of Lemma

6 (induction step of the second induction proof). We now prove that L′
1 ≈ L2. For

this, we need to prove that (Proposition 2) in(L′
1) ⊆ in(L2) ∪ undec(L2) and that

out(L′
1) ⊆ out(L2) ∪ undec(L2).

– Let B ∈ in(L′
1). If B 6= A then L′

1(B) = L1(B), so L1(A) = in. From the fact

that L1 ≈ L2 it follows that B ∈ in(L2) ∪ undec(L2).

If B = A then each defeater C of B is labelled out by L1. From the fact that

L1 ≈ L2 it follows that each defeater C of B is labelled either out or undec by L2.

This then means that B is labelled either in or undec by L2 (it cannot be labelled

out because then it would be illegally out). That is, B ∈ in(L2) ∪ undec(L2).

– Let B ∈ out(L′
1). If B 6= A then L′

1(B) = L1(B), so L1(A) = out. From the fact

that L1 ≈ L2 it follows that B ∈ out(L2) ∪ undec(L2).

If B = A then B has a defeater C that is labelled in by L1. From the fact that

L1 ≈ L2 it follows that C is labelled either in or undec by L2. This then means

that B is labelled either out or undec by L2 (it cannot be labelled in because then

it would be illegally in). That is, B ∈ out(L2) ∪ undec(L2).

From the thus observed facts that in(L′
1) ⊆ in(L2) ∪ undec(L2) and that

out(L′
1) ⊆ out(L2) ∪ undec(L2), it follows that L′

1 ≈ L2.

Using Lemma 7, it is not too difficult to show that Lsco is compatible with each

Li, assuming that each Li is admissible.

Theorem 13 Let L1, . . . ,Ln (1 ≤ n) be admissible labellings of argumentation frame-

work AF = (Ar , def ), and let Lsco = scoAF ({L1, . . . ,Ln}) be the associated super

credulous outcome. It holds that for every i ∈ {1, . . . , n}: Lsco ≈ Li.

Proof Let Li be an arbitrary element of {L1, . . . ,Ln}. Let [L′
1, . . . ,L′

m] be a super

credulous expansion sequence from Lco = coAF ({L1, . . . ,Ln}). We now prove, by

induction, that for each j ∈ {1, . . . , m} it holds that Li ≈ L′
j .

basis: From the fact that L′
1 = Lco and that Lco ≈ Li (Theorem 10) it follows that

L′
1 ≈ Li. Furthermore, it should be mentioned that L′

1 is an admissible labelling

step: Suppose that for some j ∈ {1, . . . , m − 1}, L′
j is an admissible labelling with

L′
j ≈ Li. Then Lemma 7 tells us that L′

j+1 is an admissible labelling with

L′
j+1 ≈ Li.
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From the thus obtained fact that for each j ∈ {1, . . . , m}: L′
j ≈ Li, it directly follows

that L′
m ≈ Li. And from the fact that L′

m = Lsco (Theorem 12) it then directly

follows that Lsco ≈ Li. The fact that the compatibility relation is symmetric then

directly implies that L1 ≈ Lsco.

9 Some Properties

In this section we examine some properties of the theory that has been developed

until now. In particular, we examine how the sceptical, credulous and super credulous

aggregation operators relate to each other.

9.1 Relating the sceptical, credulous and super credulous outcome

An interesting property is that the credulous outcome labelling is bigger or equal to

the sceptical outcome labelling.

Theorem 14 Let L1, . . . ,Ln be admissible labellings of argumentation framework

AF = (Ar , def ). Let Lso = soAF ({L1, . . . ,Ln}) be the sceptical outcome labelling

and let Lco = coAF ({L1, . . . ,Ln}) be the credulous outcome labelling. It holds that

Lso ⊑ Lco.

Proof First of all, it can be observed that Lsi ⊑ Lci. This can be seen as follows.

Let A be labelled in by Lsi. Then A is labelled in by every Li (i ∈ {1, . . . , n}). It then

also trivially follows that A is labelled in or undec by every Li (i ∈ {1, . . . , n}) so A

is labelled in by Lci. So in(Lsi) ⊆ in(Lci). Similarly, let A be labelled out by Lsi.

Then A is labelled out by every Li (i ∈ {1, . . . , n}). It then also trivially follows that

A is labelled out or undec by every Li (i ∈ {1, . . . , n}) so A is labelled out by Lci. So

out(Lsi) ⊆ out(Lci). From the facts that in(Lsi) ⊆ in(Lci) and out(Lsi) ⊆ out(Lci)

it follows that Lsi ⊑ Lci. This, together with the fact that Lso ⊑ Lsi, implies that

Lso ⊑ Lci (because “⊑” is transitive). So, Lso is an admissible labelling with Lso ⊑ Lci.

From the fact that Lco is the (unique) biggest admissible labelling such that Lco ⊑ Lci

it then follows that Lso ⊑ Lco.

Theorem 14, together with the fact that the super credulous outcome is bigger or

equal to the credulous outcome (which follows directly from Definition 25 and Defini-

tion 24) implies that Lso ⊑ Lco ⊑ Lsco. An interesting question is whether one could

define an aggregated outcome that is even bigger than the super credulous outcome,

while at the same time remaining compatible (“≈”) with each input labelling Li. Al-

though there are possibilities of doing so, the practical use would be quite limited. First

of all, we cannot simply define such an “ultra credulous” result as a maximal admis-

sible (or maximal complete) labelling that is compatible with each Li, because such

a labelling may not need to be uniquely defined. As an example, consider again the

argumentation framework shown in Figure 6. Let L1 = ({A}, {B}, {C, D, E, F}) and

L2 = ({B}, {A}, {C, D, E, F}). Then both ({C}, {D}, {A, B, E, F}) and ({D, F},
{C, E}, {A, B}) are maximal admissible (and maximal complete) labellings that are

compatible with L1 and L2. Another possibility for defining an ultra credulous aggre-

gation operator would be first to take all maximal admissible (or maximal complete)

labellings that are compatible with each Li, and then to calculate their (sceptical,
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credulous or super credulous) outcome. Although this approach would yield a unique

result (which is bigger or equal to Lsc) it still suffers from a problem. Consider the argu-

mentation framerwork (Ar , def ) with Ar = {A, B} and def = {(A, B), (B,A), (B, B)}

and let L1 = L2 = (∅, ∅, {A, B}). Then, our ultra credulous approach would yield the

outcome ({A}, {B}, ∅), although there is actually nothing in the input labellings that

provides a proper justification for such an outcome. Based on these observations, we

believe that the super credulous aggregation operator is probably the most credulous

aggregation operator that can still be perceived as reasonable.

9.2 Relevance of the participants’ input

There exists another interesting difference between the sceptical outcome and the cred-

ulous outcome. Consider the following scenario. There is a faculty meeting of which

Martin and Gabriella are invited. We assume that Martin has a more cautious view

of the world than Gabriella. That is, Martin’s position is smaller than Gabriella’s po-

sition. If the meeting applies the sceptical outcome procedure, then Gabriella might

as well stay at home, because her participation will not influence the outcome of the

meeting. However, if the meeting applies the credulous (or super credulous) procedure,

then it is Martin who might as well stay at home, because his participation will not

influence the outcome of the meeting. This is formalized by the following two theorems.

Theorem 15 Let L1, . . . ,Ln,Ln+1 be admissible labellings of argumentation frame-

work AF = (Ar , def ) such that Li ⊑ Ln+1 for some i ∈ {1, . . . , n}. It holds that

soAF ({L1, . . . ,Ln,Ln+1}) = soAF ({L1, . . . ,Ln}).

Proof We first prove that sioAF ({L1, . . . ,Ln,Ln+1}) = sioAF ({L1, . . . ,Ln}).
“⊑”: Let A ∈ in(sioAF ({L1, . . . ,Ln,Ln+1})). Then A ∈ in(Li) for each i ∈ {1, . . . , n+

1}, so also A ∈ in(Li) for each i ∈ {1, . . . , n}. It then follows that A ∈ in(sioAF ({L1, . . . ,

Ln})).

Let A ∈ out(sioAF ({L1, . . . ,Ln,Ln+1})). Then A ∈ out(Li) for each i ∈ {1, . . . , n+1},
so also A ∈ out(Li) for each i ∈ {1, . . . , n}. It then follows that A ∈ out(sioAF ({L1, . . . ,

Ln})).
“⊒”: Let A ∈ in(sioAF ({L1, . . . ,Ln})). Then A ∈ in(Li) for each i ∈ {1, . . . , n}. From

the fact that Li ⊑ Ln+1 for some i ∈ {1, . . . , n}, it then follows that A ∈ in(Ln+1).

So A ∈ in(Li) for each i ∈ {1, . . . , n + 1}. So A ∈ in(sioAF ({L1, . . . ,Ln,Ln+1})).
Let A ∈ out(sioAF ({L1, . . . ,Ln})). Then A ∈ out(Li) for each i ∈ {1, . . . , n}. From

the fact that Li ⊑ Ln+1 for some i ∈ {1, . . . , n}, it then follows that A ∈ out(Ln+1).

So A ∈ out(Li) for each i ∈ {1, . . . , n + 1}. So A ∈ out(sioAF ({L1, . . . ,Ln,Ln+1})).

From the thus proved fact that sioAF ({L1, . . . ,Ln,Ln+1}) = sioAF ({L1, . . . ,Ln}), it

then follows that soAF ({L1, . . . ,Ln,Ln+1}) = soAF ({L1, . . . ,Ln}).

Theorem 16 Let L1, . . . ,Ln,Ln+1 (1 ≤ n) be admissible labellings of argumentation

framework AF = (Ar , def ) such that Ln+1 ⊑ Li for some i ∈ {1, . . . , n}. It holds that

coAF ({L1, . . . ,Ln,Ln+1}) = coAF ({L1, . . . ,Ln}).

Proof We first prove that cioAF ({L1, . . . ,Ln,Ln+1}) = cioAF ({L1, . . . ,Ln}).
“⊑”: Let A ∈ in(cioAF ({L1, . . . ,Ln,Ln+1})). Then ∃i ∈ {1, . . . , n + 1} : Li(A) = in

and ¬∃i ∈ {1, . . . , n + 1} : Li(A) = out. We distinguish two cases:
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– A ∈ in(Ln+1). In that case, since Ln+1 ⊑ Li for some i ∈ {1, . . . , n}, it follows

that A ∈ in(Li) for some i ∈ {1, . . . , n}.
– A 6∈ in(Ln+1). Then, from the fact that ∃i ∈ {1, . . . , n+1} : Li(A) = in, it follows

that A ∈ in(Li) for some i ∈ {1, . . . , n}.

In both cases, we have that A ∈ in(Li) for some i ∈ {1, . . . , n}. This, together with the

fact that ¬∃i ∈ {1, . . . , n + 1} : Li(A) = out implies that ∃i ∈ {1, . . . , n} : Li(A) = in

and ¬∃i ∈ {1, . . . , n} : Li(A) = out, so A ∈ in(cioAF ({L1, . . . ,Ln})).

Let A ∈ out(cioAF ({L1, . . . ,Ln,Ln+1})). Then ∃i ∈ {1, . . . , n + 1} : Li(A) = out and

¬∃i ∈ {1, . . . , n + 1} : Li(A) = in. We distinguish two cases:

– A ∈ out(Ln+1). In that case, since Ln+1 ⊑ Li for some i ∈ {1, . . . , n}, it follows

that A ∈ out(Li) for some i ∈ {1, . . . , n}.
– A 6∈ out(Ln+1). Then, from the fact that ∃i ∈ {1, . . . , n + 1} : Li(A) = out, it

follows that A ∈ out(Li) for some i ∈ {1, . . . , n}.

In both cases, we have that A ∈ out(Li) for some i ∈ {1, . . . , n}. This, together with the

fact that ¬∃i ∈ {1, . . . , n + 1} : Li(A) = in implies that ∃i ∈ {1, . . . , n} : Li(A) = out

and ¬∃i ∈ {1, . . . , n} : Li(A) = in, so A ∈ out(cioAF ({L1, . . . ,Ln})).

“⊒”: Let A ∈ in(cioAF ({L1, . . . ,Ln}). Then ∃i ∈ {1, . . . , n} : Li(A) = in and

¬∃i ∈ {1, . . . , n} : Li(A) = out. From the fact that Ln+1 ⊑ Li for some i ∈ {1, . . . , n},

it follows that Ln+1(A) 6= out, so ∃i ∈ {1, . . . , n + 1} : Li(A) = in and ¬∃i ∈
{1, . . . , n + 1} : Li(A) = out, so A ∈ in(cioAF ({L1, . . . ,Ln,Ln+1})).

Let A ∈ out(cioAF ({L1, . . . ,Ln}). Then ∃i ∈ {1, . . . , n} : Li(A) = out and ¬∃i ∈
{1, . . . , n} : Li(A) = in. From the fact that Ln+1 ⊑ Li for some i ∈ {1, . . . , n},

it follows that Ln+1(A) 6= in, so ∃i ∈ {1, . . . , n + 1} : Li(A) = out and 6= ∃i ∈
{1, . . . , n + 1} : Li(A) = in, so A ∈ out(cioAF ({L1, . . . ,Ln,Ln+1})).

From the thus derived facts that cioAF ({L1, . . . ,Ln,Ln+1}) ⊑ cioAF ({L1, . . . ,Ln})
and cioAF ({L1, . . . ,Ln}) ⊑ cioAF ({L1, . . . ,Ln,Ln+1}), together with the fact that

“⊑” is anti-symmetric, it follows that cioAF ({L1, . . . ,Ln,Ln+1}) = cioAF ({L1, . . . ,Ln}).

It then follows that also coAF ({L1, . . . ,Ln,Ln+1}) = coAF ({L1, . . . ,Ln}).

9.3 Characterizing the preferred and grounded labellings

Using the theory that has been developed in the previous part of this paper, we are now

able to provide different ways of characterizing the preferred labellings as well as the

grounded labelling. We start with distinguishing four different ways of characterizing

a preferred labelling (Theorem 17); notice that the first description of a preferred

labelling is equivalent with the description in Definition 10.

Theorem 17 Let L be a labelling of argumentation framework AF = (Ar , def ). The

following statements are equivalent.

1. L is a complete labelling where in(L) is maximal (w.r.t. ⊆)

2. L is a complete labelling where out(L) is maximal (w.r.t. ⊆)

3. L is a maximal complete labelling (w.r.t. ⊑)

4. L is a maximal admissible labelling (w.r.t. ⊑)

Proof Equivalence between 1 and 2 follows almost directly from Lemma 1.

We now show that 1 implies 3. Let L′ be a complete labelling with L ⊑ L′. That is,

in(L) ⊆ in(L′) and out(L) ⊆ out(L′). From the fact that L is a complete labelling
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where in(L) is maximal and where (by equivalence with 2) out(L) is maximal, it follows

that in(L′) = in(L) and out(L′) = out(L). Therefore also undec(L′) = undec(L), so

L′ = L.

We now show that 3 implies 1. Let L′ be a complete labelling with in(L) ⊆ in(L′).

Then, from Lemma 1 it follows that out(L) ⊆ out(L′), so it holds that L ⊑ L′. From

the fact that L is a maximal complete labelling it then follows that L′ = L.

We now prove that 3 implies 4. Let L be a maximal complete labelling. We now prove

that for any admissible labelling L′, if L ⊑ L′ then L = L′. Let L′ be an admissible

labelling with L ⊑ L′. Let L′′ be the up-complete labelling of L′. Naturally, it holds

that L′′ is a complete labelling with L′ ⊑ L′′. This and the fact that L ⊑ L′ implies

that L ⊑ L′′. But since L is a maximal complete labelling, it then follows that L = L′′,

and therefore also that L = L′.

We now prove that 4 implies 3. Let L be a maximal admissible labelling. Let L′ be

the up-complete labelling of L. Naturally, it holds that L′ is a complete labelling with

L ⊑ L′. From the fact that L′ is also an admissible labelling, and that L is a maximal

admissible labelling, it follows that L = L′. This means that L is a complete labelling.

We now prove that L is also a maximal complete labelling. Suppose L′′ is a complete

labelling with L ⊑ L′′. Then L′′ is also an admissible labelling, and the fact that L is

a maximal admissible labelling then implies that L = L′′.

It is also possible to distinguish five different ways of characterizing the grounded

labelling (Theorem 18). Notice that the first characterization of the grounded labelling

is equivalent with the description in Definition 10. The uniqueness of the grounded

labelling follows from description 5 in Theorem 18.

Theorem 18 Let L be a labelling of argumentation framework AF = (Ar , def ). The

following statements are equivalent.

1. L is a complete labelling where in(L) is minimal (w.r.t. ⊆)

2. L is a complete labelling where out(L) is minimal (w.r.t. ⊆)

3. L is a complete labelling where undec(L) is maximal (w.r.t. ⊆)

4. L is the smallest complete labelling (w.r.t. ⊑)

5. L is the up-complete labelling of the all-undec labelling.

Proof Equivalence between 1 and 2 follows almost directly from Lemma 1. Also equiv-

alence between 4 and 5 is straightforward. From 4, it directly follows that 1 and 2.

From 1 and 2 together, it directly follows that 4.

We now show that 4 implies 3. Let L be the smallest complete labelling. Let L′ be

a labelling with undec(L) ⊆ undec(L′). It holds that L ⊑ L′, so in(L) ⊆ in(L′) and

out(L) ⊆ out(L′), so undec(L) ⊇ undec(L′), so undec(L) = undec(L′).

We now prove that 3 implies 4. Let L be a complete labelling where undec(L) is max-

imal. Let L′ be the smallest complete labelling. Naturally, it holds that L′ ⊑ L, so

in(L′) ⊆ in(L) and out(L′) ⊆ out(L). Therefore, undec(L′) ⊇ undec(L). From the

fact that undec(L is maximal it then follows that undec(L′) = undec(L). From the fact

that in(L′) ⊆ in(L) and out(L′) ⊆ out(L) it then follows that L′ = L.

9.4 On the scalability of the aggregation operators

Since the proposed aggregation operators are not based on majority voting but instead

tend to make decisions on particular forms of (weak) consensus, it is interesting to
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examine the behavior when it comes to large groups in which there is a big diversity of

opinions. In particular, it is interesting to see the behavior of the sceptical, credulous

and super credulous aggregation operators when all admissible, complete or preferred

labellings are taken into account. It will turn out that several of these possibilities

converge to a single non-trivial outcome labelling.

We start the discussion by introducing the following lemma.

Lemma 8 Let L1 and L2 be admissible labellings of argumentation framework

AF = (Ar , def ) such that L1 ≈ L2, and let L3 be L1 ⊔ L2. It holds that L3 is an

admissible labelling with L1 ⊑ L3 and L2 ⊑ L3.

Proof From the fact that L1 ≈ L2 it follows that in(L1) ∩ out(L2) = ∅ and

out(L1)∩in(L2) = ∅. So in(L3) = in(L1)∪in(L2) and out(L3) = out(L1)∪out(L2).

It then immediately follows that L1 ⊑ L3 and L2 ⊑ L3. We now prove that L3 is also

admissible.

– Let A be an argument labelled in by L3. From the fact that in(L3) = in(L1) ∪
in(L2) it follows that A is labelled in by L1 or L2. Assume without loss of generality

that A is labelled in by L1 (the case of L2 goes similar). Then the fact that L1 is

an admissible labelling implies that all defeaters of A are labelled out by L1. And

because out(L3) = out(L1) ∪ out(L2) it follows that all defeaters of A are also

labelled out by L3. Therefore A is legally in in L3.

– Let A be an argument labelled out by L3. From the fact that out(L3) = out(L1)∪
out(L2) it follows that A is labelled out by L1 or L2. Assume without loss of

generality that A is labelled out by L1 (the case of L2 goes similar). Then the fact

that L1 is an admissible labelling implies that A has a defeater that is labelled in

by L1. And because in(L3) = in(L1) ∪ in(L2) it follows that this defeater is also

labelled in by L3. Therefore A is legally out in L3.

The first theorem to be proved is that for the set of all preferred labellings, the

sceptical outcome is the same as the credulous outcome.

Theorem 19 Let {L1, . . . ,Ln} be the set of all preferred labellings of argumentation

framework AF = (Ar , def ). Let Lso be soAF ({L1, . . . ,Ln}) and Lco be coAF ({L1, . . . ,

Ln}). It holds that Lso = Lco.

Proof Theorem 10 states that Lco ≈ Li (for each i ∈ {1, . . . , n}). Let L′
i be Lco ⊔ Li

(for an arbitrary i ∈ {1, . . . , n}). From Lemma 8 it follows that L′
i is an admissible

labelling with Li ⊑ L′
i. However, from the fact that Li is a preferred labelling, it follows

that Li is a maximal admissible labelling (Theorem 17). It then follows that Li = L′
i

and therefore also that Lco ⊔ Li = Li. We now show that Lco ⊑ Li.

– Let A ∈ in(Lco). That is, A is labelled in by Lco. Then A cannot be labelled out

by Li (otherwise A would have to be labelled undec by Lco ⊔Li, so Lco ⊔Li 6= Li:

contradiction). Also A cannot be labelled undec by Li (otherwise A would be

labelled in by Lco ⊔ Li, so Lco ⊔ Li 6= Li: contradiction). Therefore, A must be

labelled in by Li. That is, A ∈ in(Li).

– Let A ∈ out(Lco). That is, A is labelled out by Lco. Then A cannot be labelled in

by Li (otherwise A would have to be labelled undec by Lco ⊔Li, so Lco ⊔Li 6= Li:

contradiction). Also A cannot be labelled undec by Li (otherwise A would be

labelled out by Lco ⊔ Li, so Lco ⊔ Li 6= Li: contradiction). Therefore, A must be

labelled out by Li. That is, A ∈ out(Li).
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From the fact that in(Lco) ⊆ in(Li) and out(Lco) ⊆ out(Li) it follows that

Lco ⊑ Li (for each i ∈ {1, . . . , n}). This then implies that Lco ⊑ Lsio (where

Lsio = sioAF ({L1, . . . ,Ln}). From the fact that Lsio ⊑ Lso it then follows that

Lco ⊑ Lso. This, together with the fact that Lso ⊑ Lco (Theorem 14), implies that

Lso = Lco.

It also holds that for the set of all preferred labellings, the credulous outcome is

the same as the super credulous outcome.

Theorem 20 Let {L1, . . . ,Ln} be the set of all preferred labellings of argumentation

framework AF = (Ar , def ). Let Lco be coAF ({L1, . . . ,Ln}) and Lsco be scoAF ({L1, . . . ,

Ln}). It holds that Lco = Lsco.

Proof From the fact that each Li (i ∈ {1, . . . , n}) is a preferred labelling, it directly

follows that each Li is a complete labelling. From Theorem 8 it then follows that Lso

is a complete labelling. Since Lso = Lco (Theorem 19) it the follows that Lco is a

complete labelling. It then directly follows that the up-complete labelling of Lco is Lco

itself. That is, Lsco = Lco.

The credulous outcome of the set of all preferred labellings is the same as the

credulous outcome of the set of all complete labellings, which is also the same as

the credulous outcome of all admissible labellings. Recall that for any argumentation

framework AF it holds that Tpreferred(AF ) ⊆ Tcomplete(AF ) ⊆ Tadmissible(AF ).

Theorem 21 Let AF = (Ar , def ) be an argumentation framework and let {L1, . . . ,Lk}

be the set of all its preferred labellings, {L1, . . . ,Lk, . . . ,Lm} be the set of all its com-

plete labellings and {L1, . . . ,Lk, . . . ,Lm, . . . ,Ln} be the set of all its admissible la-

bellings. Let Lco−pref = coAF ({L1, . . . ,Lk}), Lco−comp = coAF ({L1, . . . ,Lk, . . .Lm})
and Lco−adm = coAF ({L1, . . . ,Lk, . . . ,Lm, . . . ,Ln}). It holds that Lco−pref =

Lco−comp = Lco−adm.

Proof Theorem 17 states that preferred labellings are maximal admissible labellings.

Together with the fact that complete labellings are also preferred labellings, this implies

that for each Li (i ∈ {1, . . . , n}) there exists an Lj (j ∈ {1, . . . , k}) with Li ⊑ Lj . Using

Theorem 16 it then follows that coAF ({L1, . . . ,Lk}) = coAF ({L1, . . . ,Lk, . . . ,Lm})
as well as that coAF ({L1, . . . ,Lk}) = coAF ({L1, . . . ,Lk, . . . ,Lm, . . . ,Ln}). That is,

Lco−pref = Lco−comp = Lco−adm.

The super credulous outcome of the set of all preferred labellings is the same as the

super credulous outcome of the set of all complete labellings, which is also the same as

the super credulous outcome of all admissible labellings.

Theorem 22 Let AF = (Ar , def ) be an argumentation framework and let {L1, . . . ,Lk}
be the set of all its preferred labellings, {L1, . . . ,Lk, . . . ,Lm} be the set of all its com-

plete labellings and {L1, . . . ,Lk, . . . ,Lm, . . . ,Ln} be the set of all its admissible la-

bellings. Let Lsco−pref = scoAF ({L1, . . . ,Lk}), Lsco−comp = scoAF ({L1, . . . ,Lk, . . .

Lm}) and Lsco−adm = scoAF ({L1, . . . ,Lk, . . . ,Lm, . . . ,Ln}). It holds that

Lsco−pref = Lsco−comp = Lsco−adm.

Proof Let Lco−pref = coAF ({L1, . . . ,Lk}), Lco−comp = coAF ({L1, . . . ,Lk, . . .Lm})

and Lco−adm = coAF ({L1, . . . ,Lk, . . . ,Lm, . . . ,Ln}). Since it holds that
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Lco−pref = Lsco−comp = Lsco−adm (Theorem 21), it follows that the up-complete

labelling of Lco−pref is equal to the up-complete labelling of Lco−comp, which is then

also equal to the up-complete labelling of Lco−adm. That is, Lsco−pref = Lsco−comp =

Lsco−adm.

The sceptical outcome of the set of all complete labellings is the grounded labelling.

Theorem 23 Let LG be the grounded labelling and {L1, . . . ,Ln} be the set of complete

labellings of argumentation framework AF = (Ar , def ). It holds that

LG = soAF ({L1, . . . ,Ln}).

Proof Since the grounded labelling is also a complete labelling, it holds that

LG ∈ {L1, . . . ,Ln}. Since the grounded labelling is the smallest complete labelling

(Theorem 18) it directly follows that LG ⊑ Li (for each i ∈ {1, . . . , n}). Using

Theorem 15, we then obtain that soAF ({LG}) = soAF ({L1, . . . ,Ln}), and since

soAF ({LG}) = LG, it then follows that LG = soAF ({L1, . . . ,Ln}).

The sceptical outcome of the set of all admissible labellings is the all-undec labelling.

Theorem 24 Let {L1, . . . ,Ln} be the set of admissible labellings of argumentation

framework AF = (Ar , def ). It holds that soAF ({L1, . . . ,Ln}) is the all-undec labelling

of AF .

Proof Let LU be the all-undec labelling of AF . It holds that LU is an admissible

labelling. Moreover, it also holds that LU is smaller or equal to any admissible labelling.

That is LU ⊑ Li (for each i ∈ {1, . . . , n}). Using Theorem 15 we then obtain that

soAF ({LU}) = soAF ({L1, . . . ,Ln}), and since soAF ({LU}) = LU , we then obtain

that LU = soAF ({L1, . . . ,Ln}).

We will use the term ideal labelling for the sceptical, credulous and super credulous

outcome of all preferred labellings, which is, as has been shown, also equal to the

credulous and super credulous outcome of all complete or admissible labellings. It turns

out that there is an interesting similarity between the concept of an ideal labelling and

the concept of a maximal ideal set described by Dung, Mancarella and Toni [14].

Definition 26 ([14]) A set of arguments is ideal iff it is admissible and contained in

every preferred extension.

Theorem 25 ([14])

1. every argumentation framework has a unique maximal ideal set of arguments

2. the maximal ideal set of arguments is complete

We now prove that the ideal labelling can be seen as the labelling version of the

maximal ideal set.

Theorem 26 Let {L1, . . . ,Ln} be the set of all preferred labellings of argumentation

framework AF = (Ar , def ). Let Lideal be soAF ({L1, . . . ,Ln}). It holds that Lideal is

the maximal ideal set.
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Proof From Theorem 7 it follows that Lideal is the biggest admissible labelling such

that Lideal ⊑ Li (for each i ∈ {1, . . . , n}) from which it immediately follows that

in(Lideal) ⊆ in(Li) (i ∈ {1, . . . , n}). Since each Li is a preferred labelling, it fol-

lows that in(Li) is a preferred extension (Theorem 4). Also the fact that Lideal is

an admissible labelling implies that in(Lideal) is an admissible set (Theorem 1). So

in(Lideal) is an admissible set that is a subset of each preferred extension, hence

in(Lideal) is an ideal set. We now prove that it is also the unique biggest ideal set. Let

Args ⊇ in(Lideal) be an admissible set that is a subset of each preferred extension.

That is, let Args ⊇ in(Lideal) (for each i ∈ {1, . . . , n}). Let L′
ideal be a labelling with

in(L′
ideal) = Args . By definition, it then holds that in(L′

ideal) ⊆ in(Li) (for each i ∈
{1, . . . , n}). From Lemma 1 it then follows that out(L′

ideal) ⊆ out(Li), so L′
ideal ⊑ Li.

From the fact that Args ⊇ in(Lideal) it directly follows that in(L′
ideal) ⊇ in(Lideal),

so (Lemma 1) out(L′
ideal) ⊇ out(Lideal), so L′

ideal ⊒ Lideal. This, together with the

fact that Lideal is the biggest admissible labelling satisfying Lideal ⊑ Li (for each

i ∈ {1, . . . , n}) implies that L′
ideal = Lideal. Therefore, Args = in(Lideal).

When one takes all semi-stable labellings as input, then the sceptical, credulous and

super credulous outcome are all equal to each other. This can be proved by slightly

modifying the proofs of Theorem 19 and 20, and taking into account that each semi-

stable labelling is also a preferred labelling. We will call this outcome the eager labelling

(Leager) and it can be shown that in(Leager) is equal to the eager extension as de-

scribed in [4].

The overall results of the discussion are represented in Table 3.

sceptical credulous super credulous
outcome outcome outcome

all semi-stables eager eager eager
all preferreds ideal ideal ideal
all completes grounded ideal ideal
all admissibles all-undec ideal ideal

Table 3 Scalability of aggregation operators

Overall, we can observe that although the credulous outcome is more or equally

committed (bigger or equal) than the sceptical outcome, and the super credulous out-

come is more or equally committed (bigger or equal) than the credulous outcome, these

outcomes in many cases tend to converge to the same result if the group size is large

enough and opinions are diverse enough. In most of these cases, the outcome is the ideal

or eager labelling, in one case (sceptical complete) it is the grounded labelling, and in

only one case (sceptical admissible) the result collapses in the form of the all-undec

labelling.

10 Discussion and Related Work

In this paper, we have declaratively defined the sceptical, credulous and super credulous

outcome for judgment aggregation in the context of abstract argumentation. Moreover,

we also have defined proof procedures to obtain these outcomes, using the concept of
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contraction and expansion sequences. The super credulous outcome is more committed

than the credulous outcome, which is in its turn more committed than the sceptical

outcome. The sceptical outcome is less committed than the individual positions that

were used to generate it. For the credulous and super credulous outcome, this is in

general not the case, although these do satisfy the weaker condition that at least

the outcome is compatible with each individual position that was used to generate

it. For the sceptical outcome, input labellings that are more committed than other

input labellings do not influence the outcome, and can simply be omitted. For the

credulous and super credulous outcome, on the other hand, input labellings that are

less committed than other input labellings do not influence the outcome and can be

omitted. The proposed aggregation outcomes (sceptical, credulous and super credulous)

can be described as consensus oriented instead of as majority based, which raises the

question of how they behave in large groups with a great variety of opinions. However,

it turns out that in many cases, the outcome converges to a non-trivial well-defined

position (like the eager, ideal or grounded labelling).

Our paper is the first that applies abstract argumentation to judgment aggregation,

and that introduces operators that do not violate any of the members’ views. The only

two works that have investigated the aggregation of individual defeat relations into a

social one are by Coste-Marquis et al. [7] and Tohmé et al. [38]. These two proposals

differ substantially. In [7], an approach to merge Dung’s argumentation frameworks is

presented. The argumentation frameworks to be merged may be different, that is agents

may ignore arguments put forward by other agents. Conflicts between argumentation

frameworks are solved using merging techniques [21], in particular a distance-based

merging operator. The intuition is to minimize the distance between the profile and

the collective outcome. Typically, more than one argumentation system minimizes the

chosen distance. Hence, the final step consists in asking the individuals to vote on the

selected extensions to obtain the final group argumentation framework. Their approach

is shown to preserve at the collective level all the evaluations on which the individuals

do not disagree.

In Tohmé et al. the aggregation of individual attack relations is linked to the

aggregation of individual preferences in social choice. However, preferences and attack

relations are different: preferences are usually assumed to be weak orders, while such

restriction is not imposed on attack relations. Another difference is that, unlike attack

relations, preference relations have maximal elements. It is exactly in virtue of these

differences that Tohmé et al. can apply Arrow’s theorem conditions to argumentation

without this necessarily implying an impossibility result. They indeed show that, by

assuming argumentation frameworks in which the attack relations are acyclic, it is

possible to define an aggregation operator that satisfies Arrow’s theorem conditions.

Results in judgment aggregation usually assume complete judgment sets both at

the individual and collective level. However, in argumentation theory individuals are al-

lowed to be undecided regarding some arguments. Hence, in our framework individuals

can abstain. Gärdenfors [17] and Dokow and Holzman [12] have considered judgment

aggregation with incomplete judgment sets. Gärdenfors was the first to criticize the

completeness of judgment sets as being a too strong and unrealistic assumption. In his

approach, voters are allowed to abstain from expressing judgments on some proposi-

tions in the agenda. He proves that, if the judgment sets may not be complete (but

logically closed and consistent), then every aggregation function that is independent

and Paretian, must be oligarchic. An aggregation function is oligarchic if, for every issue

in the agenda, the group accepts or rejects that proposition if and only if all the mem-
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bers of a subset of the group (the oligarchy) accept or reject that proposition. Clearly,

when there is only one member in the oligarchy, oligarchy corresponds to dictatorship.

Gärdenfors’ framework requires the agenda to have a very rich logical structure (with

an infinite number of issues). Dokow and Holzman [12] showed that Gärdenfors’ result

holds also for finite agendas. Hence, when individuals are allowed to abstain, oligarchy

replaces dictatorship. However, as we have seen in Section 6, our aggregation operators

are not Paretian, since they cannot guarantee unanimity preservation.

In our search for aggregation procedures that select outcomes that do not oppose

the judgments of any of the group members, we had to rule out the majority rule. We

have observed that proposition-wise majority voting may return a consistent combina-

tion of reasons and conclusion that no member supported. All the members would then

be forced to take positions against their beliefs, and we have presented procedures that

avoid such pitfall. There have been recent discussions on whether it is appropriate that

an individual changes his mind in view of the different opinion of the majority. The

source of the debate is in the fact that, besides being perceived as a ‘fair’ aggregation

rule, the majority rule received also an epistemic justification from the Condorcet Jury

Theorem. This theorem states that under majority rule, if the individuals of a group

are independent of each other and are better than chance on some yes/no judgment,

then the probability that the whole group will select the right answer will approach

infallibility as the group size increases. So, in virtue of the Condorcet Jury Theorem,

an individual should surrender his judgment to the majority when he disagrees with

it. However, the normative value of such requirement has been questioned [15,6,29,

37], also with respect specifically to judgment aggregation by Pettit [33]. Criticizing

the view that requires an individual to surrender to the opinion of the majority, Pettit

[33] distinguishes between more or less embedded beliefs. You may be sure that the

car used by the robbers to flee was black. Nevertheless, when confronted with several

other equally reliable testimonies who are sure that the car was in fact blue, you may

reasonably be persuaded to be wrong and so to revise your belief. This is because per-

ceptual beliefs are weakly entrenched in our web of beliefs. Different is the situation in

which we express our opinion on issues that are strongly embedded with other beliefs

we hold, such as moral belief like whether the death penalty should be permissible, or

political and strategical views like whether our country should declare war to another.

Some other work on argument labellings and social preferences has been done

by Rahwan and Larson [36]. In their approach, each agent has a preference relation

between the various complete labellings. An example of such a preference relation

would be to try to maximize the in-labelling of a set of argument an individual agent

cares about. Thus, their work differs from ours in that an agent does not have a single

labelling but a preference ordering between labellings. Rahwan and Larson show that

different types of preference orderings result in different types of labellings becoming

Pareto optimal [36].

11 Conclusions

In this paper we have studied judgment aggregation as the aggregation of individual

labellings of a given argumentation framework. At the best of our knowledge, this is

the first time that argumentation theory is applied to judgment aggregation, bringing

in this way judgment aggregation into a nonmonotonic framework. Argumentation is

a well-established field, where the different notions of argumentation semantics allow
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us to be flexible when defining what kind of input and output labelling an aggregation

operator should accept and return.

Unlike previous contributions in judgment aggregation, our analysis did not focus

on the discursive dilemma. Collective irrationality is not the only problem that may

arise when individual judgments are aggregated. Our concern here was to define so-

cial outcomes that any individual participating at the decision could subscribe while

guaranteeing collective rationality. The operators we proposed are specifically meant

to capture the new property that the social outcome must not go against any judgment

that the individuals were asked to disclose in the deliberation phase. The participation

to a group should not put an individual in danger of being forced to support decisions

that go against his own beliefs. That is what we mean to be a ‘compatible’ collective

outcome.

We have presented three operators, each of which satisfies both the above prop-

erty and collective rationality. In particular, the operators define degrees in which the

collective judgment does not go against any of the individual judgments: the sceptical

operator is much stricter than the super credulous operator. Moreover, two definitions

of ‘compatibility’ between social outcome and individual judgments have been intro-

duced.

However, one property that is not satisfied is that of preservation of a unanimously

supported outcome. As our discussion on the Paretian dilemma and on the failure for

soAF to satisfy both unanimity and collective coherence illustrated, this is because

the aggregated judgment is not merely the sum of the individual judgments. It is very

well possible that the same argument is accepted by different participants for different

reasons, but that these reasons cancel each other out when being put together. Hence,

failing to preserve unanimity should neither be seen as the consequence of the use of

unreasonable aggregation rules nor as the individuals being paternalized by a superior

entity (the group) that replaces their opinions. It is rather a new entity, the group,

that emerges.

In our work we did not consider majority-based social rules. The aim of the paper

is to define group outcomes compatible with the view of any group member while

guaranteeing collective rationality. As seen in Section 2, the problem of aggregating

individual judgments is not restricted to majority voting but affects all aggregation

rules that satisfy some seemingly reasonable conditions. However, majority voting is

an appealing rule when many agents take part to the decision process. We leave the

investigation of majority-based social rules in an argumentation framework for future

work.

In this paper we have given an example of how to map a judgment aggregation

problem into an argumentation framework. However, whether such mapping exists for

all kinds of judgment aggregation problems is still an open question, which we plan to

address in future work. Judgment aggregation assumes that the individual and collec-

tive judgments are made on logically connected propositions. Such logical connection

may be already explicit in the agenda (like in {p,¬p, p → q,¬(p → q), q,¬q}) or

can be given as an additional constraint, like in the Hortis Bank example. How can

these different agendas and additional constraints be represented in an argumentation

framework?
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