Jury Theorem under Uncertainty

Patricia Everaere Sébastien Konieczny Pierre Marquis

CNRS - Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille 1, France patricia.everaere@univ-lille1.fr
CNRS - Centre de Recherche en Informatique de Lens (CRIL)
Université d'Artois, Lens, France
konieczny@cril.fr, marquis@cril.fr

Merging

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

- Base $K=$ a set of propositional formulae
- Profile $E=\left\{K_{1}, \ldots, K_{n}\right\}$
- Integrity Constraints = a propositional formula μ
- Merging operator
$\triangle: E, \mu \longrightarrow K$

Merging

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{ccc}
K_{1} & K_{2} & K_{3} \\
a, b \rightarrow c & a, b & \neg a \\
\triangle\left(\left\{K_{1}, K_{2}, K_{3}\right\}\right)= &
\end{array}
$$

Merging

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{ccc}
\begin{array}{c}
K_{1} \\
a, b \rightarrow c
\end{array} & K_{2} & K_{3} \\
& a, b & \neg a \\
\triangle\left(\left\{K_{1}, K_{2}, K_{3}\right\}\right)=b \rightarrow c, b &
\end{array}
$$

Merging

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{ccc}
\begin{array}{c}
K_{1} \\
a, b \rightarrow c
\end{array} & K_{2} & K_{3} \\
\triangle\left(\left\{K_{1}, K_{2}, K_{3}\right\}\right)=b \rightarrow c, b, a
\end{array}
$$

Merging vs Judgment Aggregation

Merging
A profile of belief bases

Judgment Aggregation
A profile of individual judgments

Merging vs Judgment Aggregation

Merging
A profile of belief bases
Fully informed process

Judgment Aggregation
A profile of individual judgments
Partially informed process

Merging vs Judgment Aggregation

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\rightarrow	Fully informed process	Partially informed process
Computation	Global	Local

Merging vs Judgment Aggregation

Merging
A profile of belief bases
Fully informed process
Computation
Consequences - computational complexity + computational complexity

Judgment Aggregation
A profile of individual judgments
Partially informed process
Local

Merging vs Judgment Aggregation

Merging
A profile of belief bases
Fully informed process
Computation
Consequences - computational complexity

+ logical properties - logical properties

Judgment Aggregation
A profile of individual judgments
Partially informed process
Local

+ computational complexity

Merging vs Judgment Aggregation

Merging
A profile of belief bases
Fully informed process
Computation
Consequences - computational complexity

+ logical properties
Ideal Process

Judgment Aggregation
A profile of individual judgments
Partially informed process
Local

+ computational complexity
- logical properties

Practical Process

Definitions

- A base φ is a (finite set of) propositional formula
- A profile E is a multi-set of bases $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$
- $\wedge E$ denotes the conjunction of the bases of E, i.e. $\wedge E=\varphi_{1} \wedge \ldots \wedge \varphi_{n}$
- A profile E is consistent if and only if $\bigwedge E$ is consistent We will note $\operatorname{Mod}(E)$ the models of $\bigwedge E$
- Equivalence between profiles :
\square Let E_{1}, E_{2} be two profiles. E_{1} and E_{2} are equivalent, noted $E_{1} \equiv E_{2}$, iff there exists a bijection f from $E_{1}=\left\{\varphi_{1}^{1}, \ldots, \varphi_{n}^{1}\right\}$ to $E_{2}=\left\{\varphi_{1}^{2}, \ldots, \varphi_{n}^{2}\right\}$ such that $\vdash f(\varphi) \leftrightarrow \varphi$.

Belief Merging vs. Goal Merging

- Logical properties for merging
- Same properties for belief merging and goal merging
- Is it possible to discriminate these two tasks?

Logical Properties

\triangle is a merging with integrity constraints operator (IC merging operator) if it satisfies the following properties :
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \equiv E_{2}$ and $\mu_{1} \equiv \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \equiv \triangle_{\mu_{2}}\left(E_{2}\right)$
(IC4) If $\varphi \vdash \mu$ and $\varphi^{\prime} \vdash \mu$, then $\triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi \nvdash \perp \Rightarrow \triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi^{\prime} \nvdash \perp$
(IC5) $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right) \vdash \triangle_{\mu}\left(E_{1} \sqcup E_{2}\right)$
(IC6) If $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$ is consistent, then $\triangle_{\mu}\left(E_{1} \sqcup E_{2}\right) \vdash \triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$
(IC7) $\triangle_{\mu_{1}}(E) \wedge \mu_{2} \vdash \triangle_{\mu_{1} \wedge \mu_{2}}(E)$
(IC8) If $\triangle_{\mu_{1}}(E) \wedge \mu_{2}$ is consistent, then $\triangle_{\mu_{1} \wedge \mu_{2}}(E) \vdash \triangle_{\mu_{1}}(E)$

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view		
epistemic view		

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Synthesis View vs. Epistemic View

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?
- justice: court trial

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?
- justice: court trial
- democracy: epistemic justification of representative assemblies

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?
- justice: court trial
- democracy: epistemic justification of representative assemblies
- voting methods

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?
- justice: court trial
- democracy: epistemic justification of representative assemblies
- voting methods
- Condorcet's Jury Theorem [Condorcet 1785]

Epistemic View: Truth Tracking

- Epistemic view: identify the true state of the world
- Truth Tracking
- Social Choice Theory
- Decision made by committees
- Why are decisions made by majority better than others?
- justice: court trial
- democracy: epistemic justification of representative assemblies
- voting methods
- Condorcet's Jury Theorem [Condorcet 1785]
- Merging?

Outline

- Condorcet's Jury Theorem
- Jury Theorem under Uncertainty
- Truth Tracking Postulate
- Some Experiments on Convergence Speed
- Conclusion

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose

■ 2 alternatives ω and ω^{\star}

- ω^{\star} is the correct answer
$\square n$ individuals that are
- independent
- reliable (more than half-a-chance to give the correct answer)
- homogeneous: all the individuals have the same reliability (\% of reporting the correct answer)

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose
- 2 alternatives ω and ω^{\star}
- ω^{\star} is the correct answer
- n individuals that are
- independent
- reliable (more than half-a-chance to give the correct answer)
- homogeneous: all the individuals have the same reliability (\% of reporting the correct answer)
- Then
- The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
- As the group size increases, the probability of the majority providing the correct answer tends to 1

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose
- 2 alternatives ω and ω^{\star}
- ω^{\star} is the correct answer
- n individuals that are
- independent
- reliable (more than half-a-chance to give the correct answer)
- homogeneous: all the individuals have the same reliability (\% of reporting the correct answer)
- Then
- The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
- As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
- This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose
- 2 alternatives ω and ω^{\star}
- ω^{\star} is the correct answer
- n individuals that are
- independent
- reliable (more than half-a-chance to give the correct answer)
- homogeneous: all the individuals have the same reliability (\% of reporting the correct answer)
- Then
- The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
- As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
- This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)
- It relies on very restrictive hypotheses

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose
- 2 alternatives ω and ω^{\star}
- ω^{\star} is the correct answer
- n individuals that are
- independent
- reliable (more than half-a-chance to give the correct answer)
- homogeneous: all the individuals have the same reliability (\% of reporting the correct answer)
- Then
- The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
- As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
- This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)
- It relies on very restrictive hypotheses

Jury Theorems

- [Condorcet 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer $\left(\omega^{\star}\right)$

Jury Theorems

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer $\left(\omega^{\star}\right)$
- [List Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative

Jury Theorems

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer $\left(\omega^{\star}\right)$
- [List Goodin 2001]
$\square k$ alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative

Jury Theorems

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer (ω^{\star})

■ No uncertainty: each individual vote for exactly one alternative

- [List Goodin 2001]
$\square k$ alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative

Jury Theorems

- [Condorcet 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer (ω^{\star})

■ No uncertainty: each individual vote for exactly one alternative

- [List Goodin 2001]
$\square k$ alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Belief Merging

Jury Theorems

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer (ω^{\star})

■ No uncertainty: each individual vote for exactly one alternative

- [List Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Belief Merging
- Each belief base represents the uncertainty of the corresponding agent about the state of the world

Jury Theorems

- [Condorcet 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer (ω^{\star})

■ No uncertainty: each individual vote for exactly one alternative

- [List Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Belief Merging
- Each belief base represents the uncertainty of the corresponding agent about the state of the world
■ 9 propositional variables $\rightarrow 512$ interpretations

Jury Theorems

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: probability more than .5 to find the correct answer (ω^{\star})

■ No uncertainty: each individual vote for exactly one alternative

- [List Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Belief Merging
- Each belief base represents the uncertainty of the corresponding agent about the state of the world
- 9 propositional variables $\rightarrow 512$ interpretations
- Jury Theorem under Uncertainty

Jury Theorem under Uncertainty

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: the probability to point out the correct answer (ω^{\star}) is greater than 0.5

■ No uncertainty: each individual votes for exactly one alternative

- [List Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative

Jury Theorem under Uncertainty

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: the probability to point out the correct answer $\left(\omega^{\star}\right)$ is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIst Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
- No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty

Jury Theorem under Uncertainty

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: the probability to point out the correct answer $\left(\omega^{\star}\right)$ is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIst Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty

■ k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$

Jury Theorem under Uncertainty

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: the probability to point out the correct answer $\left(\omega^{\star}\right)$ is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIst Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
- No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$

■ Uncertainty: each individual i may vote for any subset X_{i} of alternatives

Jury Theorem under Uncertainty

- [CONDORCET 1785]
- Two alternatives: $\left\{\omega^{\star}, \omega\right\}$
- Reliability: the probability to point out the correct answer (ω^{\star}) is greater than 0.5

■ No uncertainty: each individual votes for exactly one alternative

- [LISt Goodin 2001]
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
■ No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty
- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Majority rule: $M(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times 1 / 2\right\}$
κ-Quota rule: $Q_{\kappa}(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times \kappa\right\} \quad(\kappa \in] 0,1[)$

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Majority rule: $M(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times 1 / 2\right\}$
κ-Quota rule: $Q_{\kappa}(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times \kappa\right\} \quad(\kappa \in] 0,1[)$

- If all individuals share the same reliability $p>\kappa$, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Majority rule: $M(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times 1 / 2\right\}$
κ-Quota rule: $Q_{\kappa}(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times \kappa\right\} \quad(\kappa \in] 0,1[)$

- If all individuals share the same reliability $p>\kappa$, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ achieves the same result !

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Majority rule: $M(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times 1 / 2\right\}$
κ-Quota rule: $Q_{\kappa}(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times \kappa\right\} \quad(\kappa \in] 0,1[)$

- If all individuals share the same reliability $p>\kappa$, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ achieves the same result !

Jury Theorem under Uncertainty II

- k alternatives : $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$
- Uncertainty: each individual i may vote for any subset X_{i} of alternatives
- Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^{\star} \in[0,1[$ and a profile E from a set of n independent agents who have the same reliability $p>p^{\star}$. The probability that the score of the correct answer exceeds $n p^{\star}$ tends to 1 when n tends to infinity.

$$
P\left(s_{a}\left(\omega^{\star}\right)>n p^{\star}\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

$$
s_{a}(\omega)=\mid\left\{K_{i} \in E \text { s.t. } \omega \models K_{i}\right\} \mid
$$

Majority rule: $M(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times 1 / 2\right\}$
κ-Quota rule: $Q_{\kappa}(E)=\left\{\omega\right.$ s.t. $\left.s_{a}(\omega)>n \times \kappa\right\} \quad(\kappa \in] 0,1[)$

- If all individuals share the same reliability $p>\kappa$, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ achieves the same result !

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?
- An individual who always chooses all the alternatives is perfectly reliable

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?
- An individual who always chooses all the alternatives is perfectly reliable
- An individual is interesting (from a jury point of view) if she points out few alternatives
\rightarrow competence

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?
- An individual who always chooses all the alternatives is perfectly reliable
\square An individual is interesting (from a jury point of view) if she points out few alternatives
\rightarrow competence
- Competence: ensure that the other alternatives are not that often chosen by the individual

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?
- An individual who always chooses all the alternatives is perfectly reliable
- An individual is interesting (from a jury point of view) if she points out few alternatives
\rightarrow competence
- Competence: ensure that the other alternatives are not that often chosen by the individual
- Incompetence: (maximum) probability $\left(q_{i}\right)$ that an alternative different from the true world is among the alternatives pointed out by the individual

Reliability and Competence

- Reliability: ensure that the correct answer is often chosen by the individual

■ Reliability: probability $\left(p_{i}\right)$ than the correct answer is among the alternatives pointed out by the individual

- But how to consider an individual always reporting a large set of alternatives?
- An individual who always chooses all the alternatives is perfectly reliable
\square An individual is interesting (from a jury point of view) if she points out few alternatives
\rightarrow competence
- Competence: ensure that the other alternatives are not that often chosen by the individual

■ Incompetence: (maximum) probability $\left(q_{i}\right)$ that an alternative different from the true world is among the alternatives pointed out by the individual

- Improved reliability: an individual is R4-reliable if it is more reliable than incompetent

Jury Theorem under Uncertainty III

Theorem

Let $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e., $\forall i \in\{1, \ldots, k-1\}$,

$$
P\left(s_{a}\left(\omega^{\star}\right)>s_{a}\left(\omega_{i}\right)\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

Jury Theorem under Uncertainty III

Theorem

Let $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e., $\forall i \in\{1, \ldots, k-1\}$,

$$
P\left(s_{a}\left(\omega^{\star}\right)>s_{a}\left(\omega_{i}\right)\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

- R4-reliability extends reliability in [LIST GOodin 2001] and [CONDORCET 1785]
- Jury Theorem under Uncertainty extends [List Goodin 2001] Theorem and Condorcet's Jury Theorem

Jury Theorem under Uncertainty III

Theorem

Let $\left\{\omega^{\star}, \omega_{1}, \ldots, \omega_{k-1}\right\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e.,
$\forall i \in\{1, \ldots, k-1\}$,

$$
P\left(s_{a}\left(\omega^{\star}\right)>s_{a}\left(\omega_{i}\right)\right) \xrightarrow[n \rightarrow \infty]{ } 1
$$

- R4-reliability extends reliability in [List Goodin 2001] and [CONDORCET 1785]
- Jury Theorem under Uncertainty extends [List Goodin 2001] Theorem and Condorcet's Jury Theorem
- The majority method in this Jury Theorem under Uncertainty is approval voting. Thus this theorem shows that approval voting is the appropriate truth-tracking method for voting on $k(k>2)$ alternatives

Distance-based merging operators

- Let d be a distance between interpretations and f be an aggregation function. The merging operator $\triangle^{d, f}(E)$ is defined by:

$$
\bmod \left(\triangle_{\mu}^{d, f}(E)\right)=\min \left(\bmod (\mu), \leq_{E}\right)
$$

where the pre-order \leq_{E} on \mathcal{W} induced by E is defined by:
$\square \omega \leq_{E} \omega^{\prime}$ if and only if $d(\omega, E) \leq d\left(\omega^{\prime}, E\right)$, where

- $d(\omega, E)=f_{K \in E}(d(\omega, K))$, where
- $d(\omega, K)=\min _{\omega^{\prime} \vDash K} d\left(\omega, \omega^{\prime}\right)$
- Examples of distances:
\square drastic distance d_{D}
- Hamming (Dalal) distance d_{H}
- Examples of aggregation functions:
- sum (Σ)
- leximax (Gmax)
- leximin (Gmin)

Truth Tracking Postulate for Merging Operators

Let \triangle be a merging operator
(TT) Let E be a profile from n independent, homogeneous and R4-reliable agents. Let ω^{\star} be the real world.

$$
P\left([\triangle(E)]=\left\{\omega^{\star}\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Truth Tracking Postulate for Merging Operators

Let \triangle be a merging operator
(TT) Let E be a profile from n independent, homogeneous and R4-reliable agents. Let ω^{\star} be the real world.

$$
P\left([\triangle(E)]=\left\{\omega^{\star}\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Proposition

- $\triangle^{d_{H}, G m a x}$ does not satisfy (TT)

Truth Tracking Postulate for Merging Operators

Let \triangle be a merging operator
(TT) Let E be a profile from n independent, homogeneous and R4-reliable agents. Let ω^{\star} be the real world.

$$
P\left([\triangle(E)]=\left\{\omega^{\star}\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Proposition

- $\triangle^{d_{H}, G m a x}$ does not satisfy (TT)
- $\triangle^{d_{H}, \Sigma}$ does not satisfy (TT)

Truth Tracking Postulate for Merging Operators

Let \triangle be a merging operator
(TT) Let E be a profile from n independent, homogeneous and R4-reliable agents. Let ω^{\star} be the real world.

$$
P\left([\triangle(E)]=\left\{\omega^{\star}\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Proposition

- $\triangle^{d_{H}, G m a x}$ does not satisfy (TT)
- $\triangle^{d_{H}, \Sigma}$ does not satisfy (TT)
- $\triangle^{d_{D}, \Sigma}$ satisfies (TT)

Truth Tracking Postulate for Merging Operators

Let \triangle be a merging operator
(TT) Let E be a profile from n independent, homogeneous and R4-reliable agents. Let ω^{\star} be the real world.

$$
P\left([\triangle(E)]=\left\{\omega^{\star}\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Proposition

- $\triangle^{d_{H}, G m a x}$ does not satisfy (TT)
- $\triangle^{d_{H}, \Sigma}$ does not satisfy (TT)
- $\triangle^{d_{D}, \Sigma}$ satisfies (TT)
- For any pseudo-distance d, $\triangle^{d, G m i n}$ satisfies (TT)

Some Experimental Results: Convergence Speed (7 variables, $\mathrm{p}=0.9$)

- p: agents reliability $\left(p=P\left(\omega^{\star} \in K_{i}\right)\right)$
- q : agents incompetence $\left(q=P\left(\omega \neq \omega^{\star} \in K_{i}\right)\right)$

Probability of Success

Some Experimental Results: Convergence Speed (7 variables, $\mathrm{p}=0.3$)

- p : agents reliability $\left(p=P\left(\omega^{\star} \in K_{i}\right)\right)$
- q : agents incompetence $\left(q=P\left(\omega \neq \omega^{\star} \in K_{i}\right)\right)$
${ }_{100}$ Probability of success
Number of agenhts ${ }^{8}$ \%

Conclusion, Related Work and Perspectives

- Conclusion
- Jury Theorem under Uncertainty
- Difference between belief merging and goal merging
- Synthesis view versus epistemic view of merging
- Truth tracking postulate
- Related Work
- Truth Tracking for Judgement Aggregation
[Bovens Rabinowicz 2006] [Pigozzi Hartmann 2007]
- Perspectives

■ Releasing assumptions (homogeneity, etc...)

- [Owen-Grofman-Feld 1989]:

The average reliability is greater than 0.5

- Judgment Aggregation methods and Maximum likelihood

