Jury Theorem under Uncertainty

Patricia Everaere Sébastien Konieczny Pierre Marquis

CNRS - Laboratoire d'Informatique Fondamentale de Lille (LIFL) Université de Lille 1, France patricia.everaere@univ-lille1.fr

CNRS - Centre de Recherche en Informatique de Lens (CRIL) Université d'Artois, Lens, France konieczny@cril.fr, marquis@cril.fr

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

- Base K = a set of propositional formulae
- Profile $E = \{K_1, ..., K_n\}$
- Integrity Constraints = a propositional formula μ
- Merging operator $\triangle: E, \mu \longrightarrow K$

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} eta_1 & eta_2 & eta_3 & eta_3$$

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$egin{array}{ccccc} egin{array}{ccccccccc} K_1 & K_2 & K_3 \ a, \, b
ightarrow c & a, \, b &
onumber \ \Delta(\{K_1, K_2, K_3\}) = b
ightarrow c, b \end{array}$$

- Contradictory beliefs/goals coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

Merging

Input

A profile of belief bases

Judgment Aggregation

A profile of individual judgments

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\longrightarrow	Fully informed process	Partially informed process

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\longrightarrow	Fully informed process	Partially informed process
Computation	Global	Local

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\longrightarrow	Fully informed process	Partially informed process
Computation	Global	Local
Consequences	- computational complexity	+ computational complexity

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\longrightarrow	Fully informed process	Partially informed process
Computation	Global	Local
Consequences	– computational complexity+ logical properties	 + computational complexity – logical properties

	Merging	Judgment Aggregation
Input	A profile of belief bases	A profile of individual judgments
\longrightarrow	Fully informed process	Partially informed process
Computation	Global	Local
Consequences	 – computational complexity + logical properties 	 + computational complexity – logical properties
	Ideal Process	Practical Process

- A base φ is a (finite set of) propositional formula
- A profile *E* is a multi-set of bases $E = \{\varphi_1, \dots, \varphi_n\}$
- $\bigwedge E$ denotes the conjunction of the bases of E, i.e. $\bigwedge E = \varphi_1 \land \ldots \land \varphi_n$
- A profile *E* is consistent if and only if ∧ *E* is consistent We will note *Mod*(*E*) the models of ∧ *E*
- Equivalence between profiles :
 - Let E_1, E_2 be two profiles. E_1 and E_2 are *equivalent*, noted $E_1 \equiv E_2$, iff there exists a bijection f from $E_1 = \{\varphi_1^1, \ldots, \varphi_n^1\}$ to $E_2 = \{\varphi_1^2, \ldots, \varphi_n^2\}$ such that $\vdash f(\varphi) \leftrightarrow \varphi$.

- Logical properties for merging
- Same properties for belief merging and goal merging
- Is it possible to discriminate these two tasks?

 \bigtriangleup is a merging with integrity constraints operator (IC merging operator) if it satisfies the following properties :

(IC0) $\triangle_{\mu}(E) \vdash \mu$ (IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent (IC2) If $\bigwedge E$ is consistent with μ , then $\triangle_{\mu}(E) = \bigwedge E \land \mu$ (IC3) If $E_1 \equiv E_2$ and $\mu_1 \equiv \mu_2$, then $\triangle_{\mu_1}(E_1) \equiv \triangle_{\mu_2}(E_2)$ (IC4) If $\varphi \vdash \mu$ and $\varphi' \vdash \mu$, then $\triangle_{\mu}(\varphi \sqcup \varphi') \land \varphi \nvDash \bot \Rightarrow \triangle_{\mu}(\varphi \sqcup \varphi') \land \varphi' \nvDash \bot$ (IC5) $\triangle_{\mu}(E_1) \land \triangle_{\mu}(E_2) \vdash \triangle_{\mu}(E_1 \sqcup E_2)$ (IC6) If $\triangle_{\mu}(E_1) \land \triangle_{\mu}(E_2)$ is consistent, then $\triangle_{\mu}(E_1 \sqcup E_2) \vdash \triangle_{\mu}(E_1) \land \triangle_{\mu}(E_2)$ (IC7) $\triangle_{\mu_1}(E) \land \mu_2 \vdash \triangle_{\mu_1 \land \mu_2}(E)$ (IC8) If $\triangle_{\mu_1}(E) \land \mu_2$ is consistent, then $\triangle_{\mu_1 \land \mu_2}(E) \vdash \triangle_{\mu_1}(E)$

• Synthesis view: define a base which best represents the input profile

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view		
epistemic view		

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view		

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view	\checkmark	

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view	\checkmark	×

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view	\checkmark	×
true world		

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view	\checkmark	×
true world	ω^{\star}	

- Synthesis view: define a base which best represents the input profile
- Epistemic view: identify the true state of the world (take advantage of the profile to reduce the uncertainty about the real world)

	beliefs	goals
synthesis view	\checkmark	\checkmark
epistemic view	\checkmark	×
true world	ω^{\star}	?

• Epistemic view: identify the true state of the world

· Epistemic view: identify the true state of the world

Truth Tracking

- Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory

- · Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees

- · Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?

- · Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?
 - justice: court trial

- Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?
 - justice: court trial
 - democracy: epistemic justification of representative assemblies

- Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?
 - justice: court trial
 - democracy: epistemic justification of representative assemblies
 - voting methods

- Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?
 - justice: court trial
 - democracy: epistemic justification of representative assemblies
 - voting methods
 - Condorcet's Jury Theorem [CONDORCET 1785]

- Epistemic view: identify the true state of the world
 - Truth Tracking
- Social Choice Theory
 - Decision made by committees
 - Why are decisions made by majority better than others?
 - justice: court trial
 - democracy: epistemic justification of representative assemblies
 - voting methods
 - Condorcet's Jury Theorem [CONDORCET 1785]
- Merging?

- Condorcet's Jury Theorem
- Jury Theorem under Uncertainty
- Truth Tracking Postulate
- Some Experiments on Convergence Speed
- Conclusion

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

Condorcet's Jury Theorem

When facing a yes/no question, listening to the majority is the best thing to do

- Suppose
 - **2** alternatives ω and ω^*
 - ω^{*} is the correct answer
 - n individuals that are
 - independent
 - reliable (more than half-a-chance to give the correct answer)
 - homogeneous: all the individuals have the same reliability (% of reporting the correct answer)
- Suppose
 - **2** alternatives ω and ω^*
 - ω^{*} is the correct answer
 - n individuals that are
 - independent
 - reliable (more than half-a-chance to give the correct answer)
 - homogeneous: all the individuals have the same reliability (% of reporting the correct answer)
- Then
 - The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
 - As the group size increases, the probability of the majority providing the correct answer tends to 1

- Suppose
 - **2** alternatives ω and ω^*
 - ω^{*} is the correct answer
 - n individuals that are
 - independent
 - reliable (more than half-a-chance to give the correct answer)
 - homogeneous: all the individuals have the same reliability (% of reporting the correct answer)
- Then
 - The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
 - As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
 - This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)

- Suppose
 - **2** alternatives ω and ω^*
 - ω^{*} is the correct answer
 - n individuals that are
 - independent
 - reliable (more than half-a-chance to give the correct answer)
 - homogeneous: all the individuals have the same reliability (% of reporting the correct answer)
- Then
 - The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
 - As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
 - This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)
 - It relies on very restrictive hypotheses

- Suppose
 - **2** alternatives ω and ω^*
 - ω^{*} is the correct answer
 - n individuals that are
 - independent
 - reliable (more than half-a-chance to give the correct answer)
 - homogeneous: all the individuals have the same reliability (% of reporting the correct answer)
- Then
 - The alternative chosen by the majority has a higher probability to be the correct answer (than the one reported by each individual)
 - As the group size increases, the probability of the majority providing the correct answer tends to 1
- Two remarks
 - This theorem is the main result justifying the use of committees for making decisions (court, democracy, vote, etc.)
 - It relies on very restrictive hypotheses

- **Two alternatives:** $\{\omega^{\star}, \omega\}$
- Reliability: probability more than .5 to find the correct answer (ω^*)

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^*, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)

[LIST GOODIN 2001]

- *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)

[LIST GOODIN 2001]

- *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
- Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
- No uncertainty: each individual votes for exactly one alternative

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)
 - No uncertainty: each individual vote for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)
 - No uncertainty: each individual vote for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Belief Merging

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)
 - No uncertainty: each individual vote for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Belief Merging
 - Each belief base represents the uncertainty of the corresponding agent about the state of the world

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)
 - No uncertainty: each individual vote for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Belief Merging
 - Each belief base represents the uncertainty of the corresponding agent about the state of the world
 - **9** propositional variables \rightarrow 512 interpretations

- [CONDORCET 1785]
 - **Two alternatives:** $\{\omega^{\star}, \omega\}$
 - Reliability: probability more than .5 to find the correct answer (ω^*)
 - No uncertainty: each individual vote for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Reliability: probability to vote for the correct answer higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Belief Merging
 - Each belief base represents the uncertainty of the corresponding agent about the state of the world
 - **9** propositional variables \rightarrow 512 interpretations
 - Jury Theorem under Uncertainty

- **Two alternatives:** $\{\omega^*, \omega\}$
- Reliability: the probability to point out the correct answer (ω^*) is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
 - Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative

- **Two alternatives:** $\{\omega^*, \omega\}$
- Reliability: the probability to point out the correct answer (ω^*) is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
 - Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty

- **Two alternatives:** $\{\omega^*, \omega\}$
- Reliability: the probability to point out the correct answer (ω^*) is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
 - Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$

- **Two alternatives:** $\{\omega^*, \omega\}$
- Reliability: the probability to point out the correct answer (ω^*) is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
 - Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Uncertainty: each individual i may vote for any subset X_i of alternatives

- **Two alternatives:** $\{\omega^*, \omega\}$
- Reliability: the probability to point out the correct answer (ω^*) is greater than 0.5
- No uncertainty: each individual votes for exactly one alternative
- [LIST GOODIN 2001]
 - *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
 - Reliability: the probability to vote for the correct answer is higher than the probability to vote for any other alternative
 - No uncertainty: each individual votes for exactly one alternative
- Jury Theorem under Uncertainty
 - *k* alternatives : { $\omega^*, \omega_1, \ldots, \omega_{k-1}$ }
 - Uncertainty: each individual i may vote for any subset X_i of alternatives
 - Reliability: probability (p_i) than the correct answer is among the alternatives pointed out by the individual

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

- k alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^*) > np^*) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^{\star}) > np^{\star}) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

 $\begin{array}{ll} \text{Majority rule: } \mathcal{M}(\mathcal{E}) = \{ \omega \text{ s.t. } s_a(\omega) > n \times 1/2 \} \\ \kappa \text{-Quota rule: } \mathcal{Q}_{\kappa}(\mathcal{E}) = \{ \omega \text{ s.t. } s_a(\omega) > n \times \kappa \} & (\kappa \in]0,1[) \end{array}$

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^{\star}) > np^{\star}) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

 $\begin{array}{ll} \text{Majority rule: } \mathcal{M}(\mathcal{E}) = \{ \omega \text{ s.t. } s_a(\omega) > n \times 1/2 \} \\ \kappa \text{-Quota rule: } \mathcal{Q}_{\kappa}(\mathcal{E}) = \{ \omega \text{ s.t. } s_a(\omega) > n \times \kappa \} \\ & (\kappa \in]0,1[) \end{array}$

 If all individuals share the same reliability *p* > κ, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^{\star}) > np^{\star}) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

- If all individuals share the same reliability *p* > κ, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$ achieves the same result !

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^{\star}) > np^{\star}) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

- If all individuals share the same reliability *p* > κ, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$ achieves the same result !

- *k* alternatives : $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$
- Uncertainty: each individual *i* may vote for any subset X_i of alternatives
- Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

Proposition

Consider a real number $p^* \in [0, 1[$ and a profile E from a set of n independent agents who have the same reliability $p > p^*$. The probability that the score of the correct answer exceeds np^* tends to 1 when n tends to infinity.

$$P(s_a(\omega^{\star}) > np^{\star}) \xrightarrow[n \to \infty]{} 1$$

$$s_a(\omega) = |\{K_i \in E \text{ s.t. } \omega \models K_i\}|$$

Majority rule: $M(E) = \{\omega \text{ s.t. } s_a(\omega) > n \times 1/2\}$ κ -Quota rule: $Q_{\kappa}(E) = \{\omega \text{ s.t. } s_a(\omega) > n \times \kappa\}$ $(\kappa \in]0, 1[)$

- If all individuals share the same reliability p > κ, then the correct answer belongs to the set of states returned by the κ-quota rule in the limit.
- Problem: The rule which always returns the set of all alternatives $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$ achieves the same result !

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?
 - An individual who always chooses all the alternatives is perfectly reliable

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?
 - An individual who always chooses all the alternatives is perfectly reliable
 - An individual is interesting (from a jury point of view) if she points out few alternatives
 - $\rightarrow \text{competence}$

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?
 - An individual who always chooses all the alternatives is perfectly reliable
 - An individual is interesting (from a jury point of view) if she points out few alternatives
 - \rightarrow competence
- Competence: ensure that the other alternatives are not that often chosen by the individual

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?
 - An individual who always chooses all the alternatives is perfectly reliable
 - An individual is interesting (from a jury point of view) if she points out few alternatives
 - \rightarrow competence
- Competence: ensure that the other alternatives are not that often chosen by the individual
 - Incompetence: (maximum) probability (q_i) that an alternative different from the true world is among the alternatives pointed out by the individual

- Reliability: ensure that the correct answer is often chosen by the individual
 - Reliability: probability (*p_i*) than the correct answer is among the alternatives pointed out by the individual
- But how to consider an individual always reporting a large set of alternatives?
 - An individual who always chooses all the alternatives is perfectly reliable
 - An individual is interesting (from a jury point of view) if she points out few alternatives
 - $\rightarrow \text{competence}$
- Competence: ensure that the other alternatives are not that often chosen by the individual
 - Incompetence: (maximum) probability (q_i) that an alternative different from the true world is among the alternatives pointed out by the individual
- Improved reliability: an individual is R4-reliable if it is more reliable than incompetent

Theorem

Let $\{\omega^*, \omega_1, \ldots, \omega_{k-1}\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e., $\forall i \in \{1, \ldots, k-1\},\$

$$P(s_a(\omega^*) > s_a(\omega_i)) \xrightarrow[n \to \infty]{} 1$$

Theorem

Let $\{\omega^*, \omega_1, \dots, \omega_{k-1}\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e., $\forall i \in \{1, \dots, k-1\},\$

$$P(s_a(\omega^{\star}) > s_a(\omega_i)) \xrightarrow[n \to \infty]{} 1$$

- R4-reliability extends reliability in [LIST GOODIN 2001] and [CONDORCET 1785]
- Jury Theorem under Uncertainty extends [LIST GOODIN 2001] Theorem and Condorcet's Jury Theorem

Theorem

Let $\{\omega^*, \omega_1, \dots, \omega_{k-1}\}$ be a set of possible worlds and let E be a profile from a set of n independent, homogenous and R4-reliable individuals. Then the probability than the correct answer is identified (i.e., is the only chosen alternative) by the majority tends to 1 as the group size increases, i.e., $\forall i \in \{1, \dots, k-1\},\$

$$P(s_a(\omega^*) > s_a(\omega_i)) \xrightarrow[n \to \infty]{} 1$$

- R4-reliability extends reliability in [LIST GOODIN 2001] and [CONDORCET 1785]
- Jury Theorem under Uncertainty extends [LIST GOODIN 2001] Theorem and Condorcet's Jury Theorem
- The majority method in this Jury Theorem under Uncertainty is approval voting. Thus this theorem shows that approval voting is the appropriate truth-tracking method for voting on k (k > 2) alternatives

Distance-based merging operators

 Let *d* be a distance between interpretations and *f* be an aggregation function. The merging operator △^{d,f}(*E*) is defined by:

$$mod(\triangle_{\mu}^{d,f}(E)) = min(mod(\mu), \leq_E)$$

where the pre-order \leq_E on W induced by E is defined by:

- $\omega \leq_E \omega'$ if and only if $d(\omega, E) \leq d(\omega', E)$, where
- $d(\omega, E) = f_{K \in E}(d(\omega, K))$, where
- $d(\omega, K) = \min_{\omega' \models K} d(\omega, \omega')$
- Examples of distances:
 - drastic distance d_D
 - Hamming (Dalal) distance d_H
- Examples of aggregation functions:
 - sum (Σ)
 - leximax (Gmax)
 - Ieximin (Gmin)

Let riangle be a merging operator

(TT) Let *E* be a profile from *n* independent, homogeneous and R4-reliable agents. Let ω^* be the real world.

$$P([\triangle(E)] = \{\omega^*\}) \xrightarrow[n \to \infty]{} 1$$
(TT) Let *E* be a profile from *n* independent, homogeneous and R4-reliable agents. Let ω^* be the real world.

$$P([\triangle(E)] = \{\omega^*\}) \xrightarrow[n \to \infty]{} 1$$

Proposition

• $\triangle^{d_H, Gmax}$ does not satisfy **(TT)**

(TT) Let *E* be a profile from *n* independent, homogeneous and R4-reliable agents. Let ω^* be the real world.

$$P([\triangle(E)] = \{\omega^*\}) \xrightarrow[n \to \infty]{} 1$$

Proposition

- $\triangle^{d_H,Gmax}$ does not satisfy **(TT)**
- $\triangle^{d_H,\Sigma}$ does not satisfy **(TT)**

(TT) Let *E* be a profile from *n* independent, homogeneous and R4-reliable agents. Let ω^* be the real world.

$$P([\triangle(E)] = \{\omega^*\}) \xrightarrow[n \to \infty]{} 1$$

Proposition

- $\triangle^{d_H,Gmax}$ does not satisfy **(TT)**
- $\triangle^{d_H,\Sigma}$ does not satisfy **(TT)**
- △^{d_D,Σ} satisfies (TT)

(TT) Let *E* be a profile from *n* independent, homogeneous and R4-reliable agents. Let ω^* be the real world.

$$P([\triangle(E)] = \{\omega^*\}) \xrightarrow[n \to \infty]{} 1$$

Proposition

- $\triangle^{d_H,Gmax}$ does not satisfy **(TT)**
- Δ^{d_H,Σ} does not satisfy (TT)
- △^{d_D,Σ} satisfies (TT)
- For any pseudo-distance d, △^{d,Gmin} satisfies (TT)

Some Experimental Results: Convergence Speed (7 variables, p=0.9)

- p: agents reliability ($p = P(\omega^* \in K_i)$)
- q: agents incompetence ($q = P(\omega \neq \omega^* \in K_i)$)

Some Experimental Results: Convergence Speed (7 variables, p=0.3)

- p: agents reliability ($p = P(\omega^* \in K_i)$)
- q: agents incompetence ($q = P(\omega \neq \omega^* \in K_i)$)

- Conclusion
 - Jury Theorem under Uncertainty
 - Difference between belief merging and goal merging
 - Synthesis view versus epistemic view of merging
 - Truth tracking postulate
- Related Work
 - Truth Tracking for Judgement Aggregation [Bovens Rabinowicz 2006] [Pigozzi Hartmann 2007]
- Perspectives
 - Releasing assumptions (homogeneity, etc...)
 - [OWEN-GROFMAN-FELD 1989]:

The average reliability is greater than 0.5

Judgment Aggregation methods and Maximum likelihood