

Attack Semantics for Abstract Argumentation

Preferences and Arguments

If abstract arguments are instantiated, then we know whether there is an attack or not: how can this attack be attacked?

Three Challenges

Merging by voting on attacks

Attack relations follow from instantiated arguments.

Belief Revision and Argumentation

Complementary disciplines for receiving and evaluating new information, changing beliefs, inference.

- •Reinstatement like recovery in belief revision
- •Argument absorption
 The party will raise taxes
 (... attack...) to the rich

Should Dung's theory be replaced by a new one?

Our answer

No, but it has to be rephrased in terms of attack semantics.

Our central idea

An argument is accepted iff none of the attacks on it are successful.

Three Immediate Challenges

- 1 Attacks not successful only if from accepted arguments: two arguments attack each other, then neither argument accepted, both attacks successful. Undecided arguments: argument not accepted but its attacks successful.
- 2 Point 1 too weak to characterize admissibility semantics: AF with single argument and empty attack relation, two admissible extensions. Distinction between them not representable by attack semantics.
- 3 SCC recursive scheme for attack semantics. Distinction among attacks successful because attacking argument accepted, or attacking argument not accepted.

Results

- Attack Semantics
- SCC algorithm for attack semantics

Open Issue

Partial acceptance

arguments partly accepted, since their beliefs can be revised.

EXAMPLE

¬p attacks p Λ q then ¬p and q accepted Attack ¬p → p Λ q successful

¬p attacks p Λ q then only q accepted Attack ¬p→ p Λ q successful

p not accepted as part of the argument, but successful as part of the attack

Open Issue

Instantiating attacks instead of arguments

References

[Baroni et al., 2005] Scc-recursiveness: a general schema for argumentation semantics. Artif. Intell., 168(1-2): 162–210, 2005.

[Caminada, 2006] On the issue of reinstatement in argumentation. In JELIA, LNCS 4160, Springer, p. 111–123, 2006.

[Dung, 1995] On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[Falappa et al., 2009] Belief revision and argumentation theory. In Argumentation in Artificial Intelligence, p. 341–360, 2009.

Contact Information

http://argumentationpatterns.com

