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Motivation

Extending the language of multidimensional dynamic logic
programs with explicit negation
Formulating principles on which existing semantics are based
Understanding design decisions and their consequences
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Preliminaries

Let I be an interpretation, P be a logic program nad ` be a level
mapping.

A rule r ∈ P supports a literal L if H(r) = L and I |= B(r).

A rule r ∈ P well-supports a literal L if r supports L and
`(L) > `(L′) for each L′ ∈ B(r).

A rule r ∈ P globaly well-supports a literal L if r well-supports L
and each literal in B+(r) is globaly well-supported by a rule in P .
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Multidimensional Dynamic Logic Program

P1 =


tv_on ←

watch_tv ← tv_on
sleep ← ∼ tv_on


P2 =

{
power_failure ←

∼ tv_on ← power_failure

}

P3 =
{
∼ power_failure ←

}

M = {tv_on,watch_tv}
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Multidimensional Dynamic Logic Program

A generalized extended logic program is a finite set of rules of the
form

L0 ← L1, . . . , Lm

where 0 ≤ n and each Li , 0 ≤ i ≤ n, is a literal (a default literal or
a classical literal).

A dynamic logic program is a linearly ordered finite set of logic
programs.

A multidimensional dynamic logic program is a partially ordered
finite set of logic programs.
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Causal Rejection Principle

P1 =


tv_on ←

watch_tv ← tv_on
sleep ← ∼ tv_on


P2 =

{
power_failure ←

∼ tv_on ← power_failure

}

P3 =
{
∼ power_failure ←

}

P1 ≺ P2 ≺ P3

M = {tv_on,watch_tv}
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Causal Rejection Principle

Let P = {Pi | i ∈ (V ,≺)} be a multidimensional dynamic logic
program.

An interpretation I satisfies the causal rejection principle in P if for
each rule r ∈ P not satisfied by I there exists a more preferred rule
r ′ ∈ P such that H(r ′) on H(r) and r ′ supports H(r ′).

Martin Baláž Multidimensional Dynamic Logic Programs



Principle of Inertia

Let P = {Pi | i ∈ (V ,≺)} be a multidimensional dynamic logic
program.

An interpretation I satisfies the principle of inertia in P if for each
rule r ∈ P holds:
If there does not exist a more preferred rule r ′ ∈ P such that
H(r ′) on H(r) and r ′ supports H(r ′), then I satisfies r .
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Reinstatement Principle

Should rejected rules reject?

P1 = {a←} P2 = {∼ a←} P3 = {a← a}

P1 ≺ P2 ≺ P3

M1 = ∅ M2 = {a}
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Reinstatement Principle

Let P = {Pi | i ∈ (V ,≺)} be a multidimensional dynamic logic
program.

An interpretation I is a backward stable model of P if I is a stable
model of

⋃
i∈(V ,≺)

{r ∈ Pi | I |= r}.

An interpretation I is a stable model of P if I is a stable model of⋃
i∈(V ,≺)

{r ∈ Pi \ Reject(P, i , I ) | I |= r} where

Reject(P, i , I ) = {r ∈ Pi | ∃r ′ ∈ Pj : i ≺ j , I |= B(r ′),
H(r ′) on H(r)}
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Immunity to Tautological Updates

P1 = {a←} P2 = {∼ a←} P3 = {a← a}

P1 = {∼ a←} P2 = {a←} P3 = {∼ a← ∼ a}

P1 ≺ P2 ≺ P3

M1 = ∅ M2 = {a}
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Immunity to Tautological Updates

Let P = {Pi | i ∈ (V ,≺)} be a multidimensional dynamic logic
program.

An interpretation I is immune to tautological updates in P if for
each rule r ∈ P not satisfied by I there exists a level mapping ` and
a more preferred rule r ′ ∈ P such that H(r ′) on H(r) and r ′ globaly
well-supports H(r ′) with respect to `.
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Immunity to Cyclic Updates

P1 =

{
a ←
b ←

}
P2 =

{
∼ a ←
∼ b ←

}
P3 =

{
a ← b
b ← a

}

P1 ≺ P2 ≺ P3

M1 = ∅ M2 = {a, b}
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Immunity to Cyclic Updates

Let P = {Pi | i ∈ (V ,≺)} be a multidimensional dynamic logic
program.

An interpretation I is immune to cyclic updates in P if there exists
a level mapping ` such that for each rule r ∈ P not satisfied by I
there exists a more preferred rule r ′ ∈ P such that H(r ′) on H(r)
and r ′ globaly well-supports H(r ′) with respect to `.
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Properties

Dynamic Justified Updates ≡ Stable Models satisfying the causal
rejection principle

Backward Dynamic Justified Updates ≡ Backward Stable Models
satisfying the causal rejection principle

Well-Supported Models ≡ Stable Models immune to cyclic updates

Backward Well-Supported Models ≡ Backward Stable Models
immune to cyclic updates
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Properties

Immunity to cyclic updates =⇒ Immunity to tautological updates
=⇒ Causal rejection principle

Well-Supported Models ⊆ Dynamic Justified Updates

Backward Well-Supported Models ⊆ Backward Dynamic Justified
Updates
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Properties

If we restrict the class of logic programs to generalized logic
programs or to extended logic programs (if we have only one type
of conflict in the heads):

Stable models ⊆ Backward stable models

Dynamic Justified Updates ⊆ Backward Dynamic Justified Updates

Well-Supported Models ≡ Backward Well-Supported Models
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Properties

P1 = {¬ a←} P2 = {a←} P3 = {∼ a←}

P1 ≺ P2 ≺ P3

M1 = ∅ M2 = {¬ a}
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What AF could learn from MDLP

P1 =

{
⇒ a
⇒ b

}
P2 =

{
⇒ ¬ a
⇒ ¬ b

}
P3 =

{
b ⇒ a
a ⇒ b

}
P1 ≺ P2 ≺ P3

A1 : [⇒ a]
A2 : [⇒ b]

A3 : [⇒ ¬a]
A4 : [⇒ ¬b]

A5 : [[⇒ b]⇒ a]
A6 : [[⇒ a]⇒ b]

A1

A2

A3

A4

A5

A6
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What MDLP could learn from AF

P1 =

{
a ←
b ← a

}
P2 =

{
∼ a ← ∼ b

}

P1 ≺ P2

M1 = ∅ M2 = {a, b}
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Conclusion

We have formalized few principles for MDLP:

causal rejection principle
principle of inertia
reinstatement principle
immunity to tautological updates
immunity to cyclic updates

We have characterized several existing semantics of MDLP in
terms of those principles
We have studied how relations between various semantics
change if we introduce explicit negation
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Thank you.
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