

Knowledge Base Change and Abstract Dialectical Frameworks

Johannes Peter Wallner

Institute of Information Systems, Vienna University of Technology

DARC — April 2-3, 2012

FACULTY OF !NFORMATICS

- Argumentation is naturally situated in an evolving context
- Formal models of argumentation hence require change operators
- Usually argumentation frameworks (AFs) are used as the modeling language
- Abstract Dialectical Frameworks (ADFs) are a generalization, which express relations of arguments with propositional logic
- We want to study the relation between knowledge base change and ADFs
- We want to present preliminary considerations on this topic and future research directions

- Argumentation
 - Argumentation Frameworks
 - Argumentation Process
- Abstract Dialectical Frameworks
 - Motivation
 - Semantics
- Openamics and ADFs
 - Dynamic Argumentation Process
 - Knowledge Base Change and ADFs
- Future Work

- Argumentation
 - Argumentation Frameworks
 - Argumentation Process
- Abstract Dialectical Frameworks
 - Motivation
 - Semantics
- Openamics and ADFs
 - Dynamic Argumentation Process
 - Knowledge Base Change and ADFs
- Future Work

Argumentation Frameworks

Argumentation Framework [Dung, 1995]

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing the conflicts ("attacks")

Argumentation Frameworks

Argumentation Framework [Dung, 1995]

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing the conflicts ("attacks")

dbai

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

$$st(F) = \{\{a, d\}\}$$

Argumentation Semantics

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S of the following "algorithm":

- put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;
- emove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Argumentation Semantics

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S of the following "algorithm":

- put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;
- emove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

$$ground(F) = \{\{a\}\}$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \to \neg r, r \to \neg w, w \to \neg s\}$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

$$(\langle \{w, w \rightarrow \neg s\}, \neg s \rangle)$$

$$(\langle \{s, s \rightarrow \neg r\}, \neg r \rangle)$$

$$(\langle \{r, r \rightarrow \neg w\}, \neg w \rangle)$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \to \neg r, r \to \neg w, w \to \neg s\}$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \to \neg r, r \to \neg w, w \to \neg s\}$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \to \neg r, r \to \neg w, w \to \neg s\}$$

$$ground(\mathcal{F}_{\Delta}) = \{\emptyset\}$$

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \to \neg r, r \to \neg w, w \to \neg s\}$$

$$Cn_{ground}(\mathcal{F}_{\Delta}) = Cn(\top)$$

- Argumentation
 - Argumentation Frameworks
 - Argumentation Process
- Abstract Dialectical Frameworks
 - Motivation
 - Semantics
- Openamics and ADFs
 - Dynamic Argumentation Process
 - Knowledge Base Change and ADFs
- Future Work

- Abstract dialectical frameworks (ADF) generalize AFs to capture general relations between arguments
- ADF remain on the abstract level as AFs
- Relationships are modeled through acceptance conditions for each argument using propositional logic
- Notions like support and collective attack can be expressed easily in ADFs
- Related approaches: [Gabbay, 2009, Weydert, 2011]

An Argumentation Framework

An Abstract Dialectical Framework

Abstract Dialectical Framework

Abstract Dialectical Framework [Brewka and Woltran, 2010]

An abstract dialectical framework (ADF) is a pair D = (S, C) where

- $S = \{s_1, ..., s_n\}$ is a finite set of arguments
- and $C = \{C_1, ..., C_n\}$ is a set of propositional formulae over S.

Abstract Dialectical Framework

Abstract Dialectical Framework [Brewka and Woltran, 2010]

An abstract dialectical framework (ADF) is a pair D = (S, C) where

- $S = \{s_1, ..., s_n\}$ is a finite set of arguments
- and $C = \{C_1, ..., C_n\}$ is a set of propositional formulae over S.

ADF Model

Given an ADF D=(S,C). A set $M\subseteq S$ is a model of D if for each $s\in S$: $s\in M$ iff $C_s^M=1$.

ADF Model

Given an ADF D=(S,C). A set $M\subseteq S$ is a model of D if for each $s\in S$: $s\in M$ iff $C_s^M=1$.

Example

$$mod(D) = \{\{b, c, d\},\$$

FACULTY OF !NFORMATICS

ADF Model

Given an ADF D=(S,C). A set $M\subseteq S$ is a model of D if for each $s\in S$: $s\in M$ iff $C_s^M=1$.

$$mod(D) = \{\{b, c, d\}, \{a, b, c, e\}\}$$

ADF Stable Model

Given a bipolar ADF D = (S, C). A set $M \subseteq S$ is a stable model of D if it is a model and a minimal model of the reduct D^M , where

- all arguments outside of M are removed and
- all remaining attacks are removed

ADF Stable Model

Given a bipolar ADF D = (S, C). A set $M \subseteq S$ is a stable model of D if it is a model and a minimal model of the reduct D^M , where

- all arguments outside of M are removed and
- all remaining attacks are removed

$$a \leftarrow b \leftarrow b$$

$$st_mod(D) = \{\{a\}\}$$

Well-founded Model

Given an ADF D = (S, C). The unique well-founded model of D is defined as the outcome A of the following "algorithm":

- put each argument $a \in S$ into
 - A if it has a valid acceptance condition
 - ightharpoonup R if it has an unsatisfiable acceptance condition

if no such arguments exist, return A;

2 Replace in all conditions atoms in A with \top and atoms in R with \bot and remove $A \cup R$ from D; continue with Step 1.

Well-founded Model

Given an ADF D = (S, C). The unique well-founded model of D is defined as the outcome A of the following "algorithm":

- put each argument $a \in S$ into
 - ightharpoonup A if it has a valid acceptance condition
 - R if it has an unsatisfiable acceptance condition

if no such arguments exist, return A;

2 Replace in all conditions atoms in A with \top and atoms in R with \bot and remove $A \cup R$ from D; continue with Step 1.

- ADFs can be seen as a modeling tool for AFs
- Work on AFs can be shifted to ADFs, reducing auxiliary structure needs
- ADFs can then be transformed to AFs if needed ([Brewka et al., 2011])

- Argumentation
 - Argumentation Frameworks
 - Argumentation Process
- Abstract Dialectical Frameworks
 - Motivation
 - Semantics
- Openamics and ADFs
 - Dynamic Argumentation Process
 - Knowledge Base Change and ADFs
- Future Work

Dynamics in Argumentation

Process

- Knowledge-base
- Instantiation
- Abstract Framework
- Conflict Resolution
- Conclusions

Dynamics in Argumentation

Process

- Knowledge-base
- Instantiation
- Abstract Framework
- Conflict Resolution
- Conclusions

- Everything in the argumentation process is potentially dynamic:
 - Knowledge bases may change over time
 - Different semantics may be applied
 - Instantiation schemes may be changed
- Here we focus on change operations on the abstract laver
- Related work, e.g.: [Cayrol et al., 2010], [Rotstein et al., 2008].

Knowledge Base Change Introduction

- Knowledge base change deals with the following question:
 - Given a knowledge base KB
 - and I, the information that led to KB
 - how to change KB if I changes?
- In our context: how to change an ADF in light of new information?
- Change operations should not introduce inconsistencies
 - Inconsistency of conclusions (rationality postulates)
 - Inconsistency of acceptance conditions
- Knowledge base change provides well studied operations for changing propositional formulae
- Overview given in: [Peppas, 2008], and for knowledge base change: [Katsuno and Mendelzon, 1991]

Revision Postulates (Katsuno and Mendelzon Style)

- R1 $\phi \circ \mu \models \mu$
- R2 If $\phi \wedge \mu$ is satisfiable, then $\phi \circ \mu \equiv \phi \wedge \mu$
- R3 If μ is satisfiable, then so is $\phi \circ \mu$
- R4 If $\phi_1 \equiv \phi_2$ and $\mu_1 \equiv \mu_2$, then $\phi_1 \circ \mu_1 \equiv \phi_2 \circ \mu_2$
- R5 $(\phi \circ \mu) \land \psi \models \phi \circ (\mu \land \psi)$
- R6 If $(\phi \circ \mu) \wedge \psi$ is satisfiable, then $\phi \circ (\mu \wedge \psi) \models (\phi \circ \mu) \wedge \psi$

$$\Big(\langle\{a o b\},a o b
angle\Big)$$

$$(\langle \{a\},a\rangle)$$

$$\Big(\langle \{\neg b\}, \neg b \rangle\Big)$$

$$\neg a \lor \neg b$$

- Task: We learn new information and add an argument
- Idea: Revise affected acceptance condition by revision
- ullet Example: Add argument $\langle b,b
 angle$ by revision operator \circ

- Task: We learn new information and add an argument
- Idea: Revise affected acceptance condition by revision
- ullet Example: Add argument $\langle b,b
 angle$ by revision operator \circ

- Task: We learn new information and add an argument
- Idea: Revise affected acceptance condition by revision
- ullet Example: Add argument $\langle b,b
 angle$ by revision operator \circ

- Task: We learn new information and add an argument
- Idea: Revise affected acceptance condition by revision
- Example: Add argument $\langle b,b \rangle$ by revision operator \circ

- In case of consistent revision: $\phi \circ \psi \equiv \phi \wedge \psi$
- Future work: Generalize for different instantiations and investigation of updates, e.g. change attack to support

Argument Removal

- Task: Remove arguments
- Idea: Use "forget" operator in affected acceptance conditions
- Example: Remove argument c by forget operator ●

- Task: Remove arguments
- Idea: Use "forget" operator in affected acceptance conditions
- Example: Remove argument c by forget operator

- Task: Remove arguments
- Idea: Use "forget" operator in affected acceptance conditions
- Example: Remove argument c by forget operator ●

- Task: Remove arguments
- Idea: Use "forget" operator in affected acceptance conditions
- Example: Remove argument c by forget operator

- Removal in this case does not require non-abstract knowledge
- Future work: Again generalization for other instantiation schemes is required

- Argumentation
 - Argumentation Frameworks
 - Argumentation Process
- Abstract Dialectical Frameworks
 - Motivation
 - Semantics
- Opposition of the state of t
 - Dynamic Argumentation Process
 - Knowledge Base Change and ADFs
- Future Work

- Generalization of AFs by incorporating propositional formulae eases expressing relations
- Dynamics of ADF seems to be strongly related to the field of knowledge base change
- Future work: rigorous investigation of knowledge base change operators for ADFs
- Provide change operations on ADFs for different needs
- Can we formulate postulates for ADF change as was done for knowledge base change?

🔈 Brewka, G., Dunne, P. E., and Woltran, S. (2011).

Relating the Semantics of Abstract Dialectical Frameworks and Standard AFs.

In Walsh, T., editor, <u>IJCAI 2011</u>, <u>Proceedings of the 22nd</u> <u>International Joint Conference on Artificial Intelligence</u>, <u>Barcelona</u>, <u>Catalonia</u>, <u>Spain</u>, <u>July 16-22</u>, 2011, pages 780–785. <u>IJCAI/AAAI</u>.

Brewka, G. and Woltran, S. (2010).
Abstract Dialectical Frameworks.

In Lin, F., Sattler, U., and Truszczynski, M., editors, <u>Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010, page 102–111. AAAI Press.</u>

Cayrol, C., de Saint-Cyr, F. D., and Lagasquie-Schiex, M.-C. (2010). Change in Abstract Argumentation Frameworks: Adding an Argument.

J. Artif. Intell. Res. (JAIR), 38:49-84.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358.

Gabbay, D. M. (2009).
Fibring argumentation frames.
Studia Logica, 93(2-3):231–295.

Natsuno, H. and Mendelzon, A. O. (1991).

On the difference between updating a knowledge base and revising it.

In KR, pages 387-394.

Peppas, P. (2008).

Belief revision.

Foundations of Artificial Intelligence, 3:317–359.

Rotstein, N. D., Moguillansky, M. O., Falappa, M. A., García, A. J., and Simari, G. R. (2008).

Argument theory change: Revision upon warrant.

In Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, May 28-30, 2008, pages 336–347.

Semi-stable extensions for infinite frameworks.

In <u>Procs. of the 23nd Benelux Conference on Artificial Intelligence</u> (BNAIC '11), pages pp. 336 – 343.