Conditional Acceptance Functions

Tjitze Rienstra

April 3, 2012

Introduction

Argumentation Frameworks

Labelings

Acceptance Functions

Examples

A form of the closed world assumption

Conditional Acceptance Functions

Definition

Conditionally preferred, grounded, stable

Conditionally complete

Examples

Conclusions and future work

Argumentation Frameworks

Definition

An argumentation framework F is a pair (A_F, R_F) , where A_F is a set of arguments, and $R_F \subseteq A_F \times A_F$ is an attack relation. We denote the set of all argumentation frameworks by \mathcal{F} .

Labeling

Definition

Given a framework F, a labeling is a function $L: A_F \to V$, where $V = \{I, U, O\}$. We denote the set of all labelings by \mathbb{L}_F^{all} .

Acceptance Functions

Definition

An acceptance function is a function \mathbb{A} that returns, for any $F \in \mathcal{F}$, a set $\mathbb{A}_F \subseteq \mathbb{L}_F^{all}$.

Definition

Given a framework F, the *complete* acceptance function \mathbb{A}_F^{co} returns all labelings such that, $\forall a \in A_F$,

- $L(a) = I \text{ iff } \forall (b, a) \in R_F, L(b) = O$
- $L(a) = O \text{ iff } \exists (b,a) \in R_F, L(b) = I$

Acceptance Functions

- ▶ Preferred: $\mathbb{A}_{F}^{pr} = \{L \in \mathbb{A}_{F}^{co} \mid \nexists K \in \mathbb{A}_{F}^{co}, K^{-1}(I) \supset L^{-1}(I)\}$
- ▶ Grounded: $\mathbb{A}_F^{gr} = \{ L \in \mathbb{A}_F^{co} \mid \nexists K \in \mathbb{A}_F^{co}, K^{-1}(U) \supset L^{-1}(U) \}$
- Stable: $\mathbb{A}_F^{st} = \{ L \in \mathbb{A}_F^{co} \mid L^{-1}(U) = \emptyset \}$

Three complete labelings

Also stable and preferred

Also stable and preferred

Also grounded

A form of the closed world assumption

- ► The closed world assumption is the assumption that what is not currently known to be true, is false.
- Here we assume that arguments currently known to be attacked only by OUT labeled arguments, are labeled IN.
 - Or: If something is not falsified, then it is true.

A form of the closed world assumption

- ▶ If we view a framework as the theory of an agent, then complete semantics tells the agent what to believe, given that his knowledge is complete.
- This may be appropriate for some applications, but as a theory, an argumentation framework can be used more generally.
 - Persuading another agent, or persuading an audience
 - Counterfactual reasoning
 - Explanation

A form of the closed world assumption

Not complete, not admissible

Conditional Acceptance Functions

Definition

A conditional acceptance function is a function

 $\mathbb{C}\mathbb{A}_F:2^{\mathbb{A}_F} o 2^{\mathbb{A}_F}$ such that $\mathbb{C}\mathbb{A}_F(X)\subseteq X.$

Intuitively, $\mathbb{C}\mathbb{A}_F: 2^{\mathbb{A}_F} \to 2^{\mathbb{A}_F}(X)$ returns those labelings from X that are 'most rational'

Definition

A conditional acceptance function $\mathbb{C}\mathbb{A}_F$ generalizes an acceptance function \mathbb{A}_F if and only if $\mathbb{C}\mathbb{A}_F(\mathbb{L}_F^{all})=\mathbb{A}_F$.

Conditional Acceptance Functions

Definition

Given a framework F, the conditionally preferred, grounded and stable acceptance functions, denoted by \mathbb{CA}_F^{pr} , \mathbb{CA}_F^{gr} and \mathbb{CA}_F^{st} , respectively, are defined as follows.

- $\blacktriangleright \mathbb{C}\mathbb{A}_F^{pr}(X) = \{L \in X \cap \mathbb{A}_F^{co} \mid \nexists K \in X, K^{-1}(I) \supset L^{-1}(I)\}$
- $\blacktriangleright \mathbb{C}\mathbb{A}_F^{gr}(X) = \{ L \in X \cap \mathbb{A}_F^{co} \mid \nexists K \in X, K^{-1}(U) \supset L^{-1}(U) \}$

What if the input does not contain complete labelings. Which labelings can then be considered most complete?

Subcompleteness

A minimal condition we impose is subcompleteness:

Definition

Given a framework F, we say that a labeling L is *subcomplete* iff: if $\forall a \in A$,

▶ if L(a) = I then for every neighbor b of a, L(b) = O, where a neighbor of a is an argument b such that $(a, b) \in R_F$ or $(b, a) \in R_F$.

We denote the set of subcomplete labelings by \mathbb{L}_F^{sc} .

Embeddability of subcomplete labelings

Subcompleteness is motivated by the 'embeddability property'. Informally:

Definition

A labeling of F is *embeddable* if it is part of a complete labeling of some bigger framework G, that extends F with additional arguments and attacks.

Embeddability of subcomplete labelings (examples)

Given a set of subcomplete labelings X, how do we determine which are 'most complete'?

Definition

Given a framework F and a set $X \subseteq \mathbb{L}_F^{sc}$, we say that a labeling $L \in X$ is complete given X iff $\forall a \in A_F$:

- 1. If L(a) = U then either $(\forall K \in X, K(a) \leq U)$ or $\exists (b, a) \in R_F, L(b) = U$.
- 2. If L(a) = O then either $(\forall K \in X, K(a) = O)$ or $\exists (b, a) \in R_F, L(b) = I$.

Definition

Given a framework F, the conditionally complete acceptance function $\mathbb{C}\mathbb{A}_F^{co}$ is a conditional acceptance function defined by $\mathbb{C}\mathbb{A}_F^{co}(X)=\{L\in X\cap \mathbb{L}_F^{sc}\mid L \text{ is complete given } X\cap \mathbb{L}_F^{sc}\}.$

Example (1)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000 U00 I00 000 UUU 000 UUU 000 000

Example (1)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000 U00 I00

UUO

OUO

Example (1)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000

OUO

OIO

UOO

UUO

Example (1)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000

OUO

010

UOO

UUO

Example (1)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000

OUO

010

UOO

UUO

100

Note: According to directionality, c should not affect a and b. One complete labeling assigns (UUU). But there is no complete labeling (UUO). Limiting ourselves to complete labelings would have destroyed the option of assigning U to a and b, when restricting c to O.

Example (2)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000 U00 I00 000 UUU 000 UUU 000 000

Example (2)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

Example (2)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000

OOU

Example (2)

Subcomplete labelings:

$$(v_1v_2v_3 \text{ means } L(a) = v_1, L(b) = v_2, L(c) = v_3)$$
:

000 00U **00I**

Note: There was no complete labeling assigning I to c.

Conclusions and future work

Conclusions:

- We have generalized the concept of an acceptance function.
- With this generalization, argumentation frameworks can be applied more generally.

Future work:

- Refine our new concepts.
- Try to apply this in an instantiated setting.
- Apply this to models of persuasion dialogs.