Preference-Based Belief Revision for Rule-Based Agents

Brian Logan

School of Computer Science University of Nottingham, UK

Outline

- belief revision
- rule-based agents
- McAllester contraction
- preferences over beliefs
- McAllester revision

Belief revision

- agents interact with other agents or their environment is to acquire new information
- in general, it is impossible to ensure that such information will be consistent with the agent's current beliefs
- when an inconsistency is discovered the agent must revise its beliefs to restore consistency
- ideally, any revision operation should be
 - rational
 - forgo less preferred beliefs, e.g., those which are less certain, credible or useful
 - · computationally efficient

AGM

- AGM theory (Alchourrón, Gärdenfors, Makinson 1985) describes an idealised reasoner with a potentially infinite set of beliefs (belief set) closed under logical consequence
- inspired by work on normative reasoning
- revision is based on ideas of coherence and informational economy
- requires the changes to an agent's belief set resulting from a revision be as 'small' as possible
- if an agent has to give up a belief in A, it does not have to give up believing in things for which A was the sole justification, so long as they are consistent with its remaining beliefs

Operations on belief sets

- expansion K + A, adds a new belief A to K, and the resulting set is closed under logical consequence
- contraction $K \doteq A$, removes A from K and removes sufficient beliefs from K so that it no longer entails A
 - revision $K \dotplus A$, if A is inconsistent with K, K is modified (as little as possible) so that it no longer entails $\neg A$, A is then added to K, and the resulting set closed under logical consequence

Basic AGM postulates for contraction

$$(K\dot{-}1)$$
 $K\dot{-}A = Cn(K\dot{-}A)$

(
$$K\dot{-}2$$
) $K\dot{-}A\subseteq K$

(
$$K\dot{-}3$$
) if $A \notin K$, then $K\dot{-}A = K$

(K
$$\stackrel{.}{-}$$
4) if $\nvdash A$, then $A \notin K \stackrel{.}{-} A$

(
$$\dot{K}-5$$
) if $A \in K$, then $K \subseteq (K - A) + A$

(K-6) if
$$Cn(A) = Cn(B)$$
, then $K - A = K - B$

Concrete operations: partial meet contraction

Definition (Partial meet contraction)

a partial meet contraction of K by A is defined as an intersection of some maximal subsets of K which do not imply A

Theorem (Alchourrón, Gärdenfors, Makinson)

any contraction function which satisfies postulates (K-1)-(K-6) can be generated by a partial meet contraction function

Belief bases

- in general, belief sets are infinite, so AGM belief revision is not implementable
- one option is to focus on belief bases finite representations of belief sets
- B_K is a belief base for a belief set K if $Cn(B_K) = K$
- expansion, contraction and revision can be defined on belief bases instead of belief sets
- if *Cn* is classical propositional consequence operator, belief base contraction and revision are still NP-hard (Nebel 1994)

Truth maintenance systems

- truth (reason) maintenance style belief revision (Doyle 1977;
 McAllester 1980) keeps track of dependencies between beliefs
- each belief has a set of justifications, and the reasons for holding a belief can be traced back through these justifications to a set of foundational beliefs
- when a belief A must be given up, sufficient foundational beliefs have to be withdrawn to render A underivable
- if all the justifications for A are withdrawn, then A should no longer be believed

Tractable rational revision

- AGM approaches have a well defined notion of rational belief revision, but are generally intractable
- TMS approaches are tractable (polynomial time) but logically incomplete
 - e.g., McAllester's boolean constraint propagation algorithm does not find all the classical logical consequences of boolean formulas, sacrificing completeness for efficiency
 - not clear to what extent these systems are rational
- one way to define a tractable rational revision operation is to weaken the logic of the agent so that the consistency check is no longer an expensive operation (cf Nebel 1992)

Our approach

- we assume a simple rule-based agent with a finite state and a finite program
- the agent's state or working memory (WM) is a finite set of ground literals representing the beliefs of the agent
- the agent's program consists of a set of Horn clause rules of the form

$$A_1,\ldots,A_n\to B$$

- where A_1, \ldots, A_n, B are literals
- · we only revise by literals rules are not revised

Rule-based agents

the agent's language L_W contains

• literals (atomic formulas or their negations), e.g.,

$$PartOf(Bordeaux, France), PartOf(x, Bordeaux)$$

• rules $A_1 \wedge \ldots \wedge A_n \rightarrow B$, where A_1, \ldots, A_n, B are literals, e.g.,

$$Region(x, y) \land PartOf(y, z) \rightarrow Region(x, z)$$

variables in rules are assumed to be universally quantified

Agent's logic

 the agent's logic W in the language L_W contains a single inference rule, generalised modus ponens (GMP)

$$\frac{\delta(A_1),\ldots,\delta(A_n), A_1\wedge\ldots\wedge A_n\to B}{\delta(B)}$$

where δ is a substitution function

for example

Region(ChateauLafite, Pauillac),
$$PartOf(Pauillac, Bordeaux)$$
, $Region(x, y) \land PartOf(y, z) \rightarrow Region(x, z)$
Region(ChateauLafite, Bordeaux)

Agent's belief set

- the agent's belief set K is the set of ground literals in the working memory (WM) and the set of its rules R
- if the agent runs its rules to quiescence, then $K = C_W(WM \cup R)$, where C_W is the closure of a set of formulas with respect to derivability in W

Example

rules

- R1 $Region(x, y) \land PartOf(y, z) \rightarrow Region(x, z)$
- R2 $Region(x, France) \rightarrow \neg Region(x, Australia)$

facts

- F1 Region(ChateauLafite, Pauillac)
- F2 PartOf(Pauillac, Bordeaux)
- F3 PartOf(Bordeaux, France)
- F4 PartOf(Tasmania, Australia)

Example continued

- · the agent derives
- F5 Region(ChateauLafite, Bordeaux) (from F1, F2, R1)
- F6 Region(ChateauLafite, France) (from F5, F3, R1)
- F7 ¬Region(ChateauLafite, Australia) (from F6, R2)

Example continued

- suppose the agent is informed
- F8 Region(ChateauLafite, Tasmania)

and derives

- F9 Region(ChateauLafite, Australia) (from F8, F4 and R1)
 - to restore consistency, the agent must contract by either F7 or F9

Preferred beliefs

- we assume that the agent prefers some (ground literal) beliefs to others
- the agent's preference order, ≤, is a total order on WM
- for each non-empty $\Gamma \subseteq WM$, $w(\Gamma)$ is the minimal element of Γ with respect to \preceq
- for example, the agent may prefer its initial beliefs (F1-F4) to beliefs communicated by other agents (F8)

McAllester contraction

for two ground literals $\delta(A)$ and $\delta(B)$, $\delta(B)$ depends on $\delta(A)$ in K, $\delta(A) \gg_K \delta(B)$, if either

- 2 $A_1, \ldots, A_n \to B \in K$, $\delta(A_1), \ldots, \delta(A_n) \in K$, and $\delta(A) = w(\delta(A_1), \ldots, \delta(A_n))$; or
- 3 $A_1, \ldots, A_n \to C \in K$, $\delta(A_1), \ldots, \delta(A_n) \in K$, $\delta(A) = w(\delta(A_1), \ldots, \delta(A_n))$, and $\delta(C) \gg_K \delta(B)$

Definition (McAllester contraction)

the McAllester contraction of K by a literal A is defined as

$$K \dot{-} A =_{df} K \setminus \{C : C \gg_K A\}$$

Characterising McAllester contractions

$$(K\dot{-}1) K\dot{-}A = C_W(K\dot{-}A)$$
 (closure)

$$(K\dot{-}2)$$
 $K\dot{-}A\subseteq K$ (inclusion)

(K
$$\stackrel{.}{-}$$
3) if $A \notin K$, then $K \stackrel{.}{-} A = K$ (vacuity – **derivable**)

$$(K-4)$$
 $A \notin K - A$ (success)

$$(K\dot{-}6)$$
 if $C_W(A)=C_W(B)$, then $K\dot{-}A=K\dot{-}B$ (equivalence – **trivial**)

(K
$$\stackrel{.}{-}$$
R) for each rule $A_1, \ldots, A_n \to B$, if $A_1, \ldots, A_n \to B \in K$, then $A_1, \ldots, A_n \to B \in K \stackrel{.}{-} B$

(K
$$\stackrel{.}{-}$$
F) If $C \in K$ and $C \notin K \stackrel{.}{-} A$ then $C \gg_K A$

Representation theorem

Theorem

every McAllester contraction satisfies the postulates $(K \dot{=} 1)$ - $(K \dot{=} F)$ and conversely, if a contraction operation satisfies $(K \dot{=} 1)$ - $(K \dot{=} F)$, then it is a McAllester contraction

note that the AGM recovery postulate (K-5) is not satisfied

(K
$$\stackrel{.}{-}$$
5) If $A \in K$, then $K \subseteq (K \stackrel{.}{-} A) + A$ (recovery)

- suppose we have a single rule $A \rightarrow B$ and $WM = \{A, B\}$
- after contraction by B, WM is empty when we expand by B, WM contains only B

Contraction algorithm: preliminaries

- we represent WM as a directed graph consisting of two kinds of nodes: beliefs and justifications
- a justification consists of a belief and a support list containing the premises of the rule used to derive this belief: for example,
 (A, [B, C]), where A is a derived belief and the rule used to derive it is B, C → A
- each justification has one outgoing edge to the belief it is a justification for, and an incoming edge from each belief in its support list
- a foundational belief D which is not derived has a justification of the form (D, [])

McAllester contraction by A

```
for all j = (B, s) with an edge from A do remove j (and all edges to and from j) from the graph for all j = (A, s) with an edge to A do

if s == [] then

remove j (and the edge from j to A)

else

contract by w(s)
```

 O(kr + n) where r is the number of rules, k is the maximal number of premises in a rule, and n the number of ground literals in WM

Example: assigning preferences to beliefs

- define preferences in terms of the quality of justifications
- the quality of a justification is an integer in the range $0, \ldots, m$, where 0 means lowest quality and m means highest quality
- the agent associates an *a priori* quality with each non-inferential justification for its foundational beliefs
- e.g., qualities are taken from the set $\{0, \dots, n-1\}$ where n is the number of foundational beliefs

Example: assigning preferences to beliefs

• the preference of a literal A, p(A), is given by its highest quality justification

$$p(A) = \max\{qual(j) : j \in \text{justification for } A\}$$

 the quality of an inferential justification is given by the least preferred belief in its support

$$qual(j) = min\{p(A) : A \in support of j\}$$

- i.e., the preference of a belief is determined by the best argument for it, and the quality of an argument is as high as that of its weakest component belief
- computing preferences requires $O(n \log n + kr)$ time

Least worth and minimal change

- a McAllester contraction that uses the quality of justifications minimises the preference of the literals removed as a result of contraction
- let the worth of a set of literals be $worth(\Gamma) = \max\{p(A) : A \in \Gamma\}$

Theorem

if a McAllester contraction of K by A results in the removal of the set of literals Γ , then for any other set of literals Γ' such that $K \setminus \Gamma'$ does not imply A, worth(Γ) \leq worth(Γ')

 it is possible to extend the algorithm for McAllester contraction so that the set of literals removed both has least worth and is minimal — the complexity of the algorithm remains polynomial

Revision

- for a reasoner in classical logic, revision and contraction operations are definable (via the Levi and Harper identities)
- for an agent which is not a classical reasoner, contraction and revision are not inter-definable when the consistency of K + A is not equivalent to $K \nvdash \neg A$
- for a rule-based agent which reasons in the logic W, applying the Levi identity to McAllester contraction results in a revision operation which does not satisfy (K+5)
- instead, we define revision by A as $(K + A) = \bot$, i.e., as expansion by A followed by elimination of all contradictions

McAllester revision

- note that we need to specify the order in which the contradictions are eliminated
- let $(B_1, \neg B_1), \dots, (B_n, \neg B_n)$ be the list of all contradictions in $K + A = Cn(K \cup \{A\})$, ordered by preference order on $w(B_i, \neg B_i)$, and let $\sim B_i = w(\{B_i, \neg B_i\})$

Definition (McAllester revision)

the revision of K by A using ordered contraction by contradictions (OCC) is given by

$$K \dotplus A \stackrel{df}{=} (K + A) \dotplus \sim B_1 \dotplus \sim B_2 \dotplus \ldots \dotplus \sim B_n$$

McAllester revision postulates

$$(K \dotplus 1) K \dotplus A = Cn(K \dotplus A)$$

(K
$$\dotplus$$
3) $K \dotplus A \subseteq K + A$

$$(K \dot{+} 4)$$
 if $\{A\} \cup K$ is consistent, then $K + A = K \dot{+} A$

$$(K \dot{+} 5)$$
 $K \dot{+} A$ is inconsistent iff A is inconsistent

$$(K \dot{+} 6)$$
 if $Cn(A) = Cn(B)$, then $K \dot{+} A = K \dot{+} B$

(K
$$\dotplus$$
R) for each rule $A_1, \ldots, A_n \to B, A_1, \ldots, A_n \to B \in K$ iff $A_1, \ldots, A_n \to B \in K \dotplus B$

(K
$$\dotplus$$
OCC) If $C \in K + A$ and $C \notin K \dotplus A$, then for some i ,

$$C \gg_{(K+A)\dot{-}\sim B_1\dot{-}...\dot{-}\sim B_{i-1}} \sim B_i$$

where
$$(B_1, \neg B_1), \dots, (B_n, \neg B_n)$$
 are all the contradictions in $K + A$, $\sim B_i = w(B_i, \neg B_i), \sim B_1 \leq \dots \leq \sim B_n$, and $i \in \{1, \dots, n\}$

Summary

- rule-based agents can be modelled as reasoners in a logic with a single inference rule of generalised modus ponens
- we can define a contraction operation for rule-based reasoners that satisfies all the basic AGM postulates for contraction (apart from the recovery postulate)
- contraction can be computed in polynomial time
- the contraction operation can be used to define a corresponding revision operation which is also polynomial time