Change in Abstract Argumentation Systems: Addition and Removal of an Argument

PIERRE BISQUERT, CLAUDETTE CAYROL, FLORENCE DUPIN DE SAINT-CYR, MARIE-CHRISTINE LAGASQUIE-SCHIEX

IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France

DARC, April 2-3, 2012

Plan

- Introduction
- Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

Plan

- Introduction
- 2 Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

- Main topic of our work: abstract argumentation
 - Working with arguments and attacks without considering how they are obtained

- Main topic of our work: abstract argumentation
 - Working with arguments and attacks without considering how they are obtained
- Current subject: dynamics in argumentation

- Main topic of our work: abstract argumentation
 - Working with arguments and attacks without considering how they are obtained
- Current subject: dynamics in argumentation
- A lot of work has been done about addition of an argument

- Main topic of our work: abstract argumentation
 - Working with arguments and attacks without considering how they are obtained
- Current subject: dynamics in argumentation
- A lot of work has been done about addition of an argument
- What about removal? Is it useful? Are there links with addition?

Four Players Game

- Four entities interacting about an argument :
 - ▶ the **prosecutor** (P) wants to make Argument 1 accepted
 - ▶ the **defense lawyer** (D) tries to make Argument 1 rejected
 - ▶ the judge ensures that the hearing takes places under good conditions
 - ► the **jury** deliberates at the end of the hearing and decides whether Argument 1 is acceptable or not

Speakers' Arguments

	Argument	Known by
1	Mr. X is guilty of premeditated murder of Mrs. X, his wife.	P & D
2	The defendant has an alibi, his business associate having solemnly sworn that he had seen him at the time of the murder.	
3	The close working business relationships between Mr X. and his associate induce suspicions about his testimony.	Р
4	Mr. X loves his wife so extremely that he married her twice. Now, a man who loves his wife could not be her murderer.	P & D
5	Mr. X has a reputation for being promiscuous.	Р
6	The defendant would not have had any interest to kill his wife, since he was not the beneficiary of the enormous life insurance she had contracted.	Р
7	The defendant is a man known to be venal and his "love" for a very rich woman could be only lure of profit.	D

Table: Arguments concerning Mr. X's case.

Plan

- Introduction
- Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

Argumentation System

- According to Dung, an abstract argumentation system is a pair $\langle \mathbf{A}, \mathbf{R} \rangle$, where :
 - ▶ **A** is a finite nonempty set of *arguments* and
 - ▶ **R** is a binary relation on **A**, called attack relation
- ullet This system can be represented by a graph denoted ${\cal G}$

Prosecutor Defense lawyer 3 5 2 6 1 4 7

Conflict-free Set, Defense, Admissibility

• A set S is **conflict-free** if and only if there do not exist $A, B \in S$ such that A attacks B

Conflict-free Set, Defense, Admissibility

- A set S is **conflict-free** if and only if there do not exist $A, B \in S$ such that A attacks B
- $\mathcal S$ defends an argument A if and only if each attacker of A is attacked by an argument of $\mathcal S$; the set of arguments defended by $\mathcal S$ is denoted by $\mathcal F(\mathcal S)$

Conflict-free Set, Defense, Admissibility

- A set S is **conflict-free** if and only if there do not exist $A, B \in S$ such that A attacks B
- $\mathcal S$ defends an argument A if and only if each attacker of A is attacked by an argument of $\mathcal S$; the set of arguments defended by $\mathcal S$ is denoted by $\mathcal F(\mathcal S)$
- $m{\circ}$ ${\cal S}$ is an **admissible** set if and only if it is conflict-free and it defends all its elements

Prosecutor Conflict-free set: {1,3,5} Non conflict-free set: {1,6} Set defending Argument 5: {} Set defending Argument 1: none Admissible set: {3,5} Non-admissible set: {1,3}

Acceptability Semantics

- An extension is a particular set of arguments which is "conflict-free" and able to defend itself collectively
- Status of an argument :
 - Credulously accepted if the argument belongs at least to one extension
 - ▶ **Skeptically accepted** if the argument belongs to all the extensions
 - Rejected if the argument does not belong to any extension
- The set of extensions is denoted by **E** $(\mathcal{E}_1, \dots, \mathcal{E}_n)$ standing for the extensions

Example of Acceptability Semantics

- \mathcal{E} is a **preferred extension** if and only if \mathcal{E} is a maximal admissible set (with respect to set inclusion \subseteq)
- \mathcal{E} is the **only grounded extension** if and only if \mathcal{E} is the least fixed point (with respect to \subseteq) of \mathcal{F} .

Example

Prosecutor's preferred and grounded extension : $\mathcal{E} = \{3, 5, 6\}$

Defense lawyer's preferred and grounded extension : $\mathcal{E} = \{2,7\}$

Plan

- Introduction
- 2 Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

Change Operations

- Four elementary operations
 - Argument removal
 - Argument addition
 - Attack removal
 - Attack addition
- Same semantics before and after change

Change Operations

Definition – Removing an argument

Removing an argument $Z \in \mathbf{A}$ and $\mathcal{I}_z \subseteq \mathbf{R}$ is a change operation, denoted \ominus_i^a , providing a new argumentation system such that:

$$\langle \mathbf{A}, \mathbf{R} \rangle \ominus_{i}^{a} (Z, \mathcal{I}_{z}) = \langle \mathbf{A} \setminus \{Z\}, \mathbf{R} \setminus \mathcal{I}_{z} \rangle$$

where \mathcal{I}_z is the set of interactions concerning Z.

Definition - Adding an argument

Adding an argument $Z \notin \mathbf{A}$ and $\mathcal{I}_z \not\subseteq \mathbf{R}$ is a change operation, denoted \bigoplus_i^a , providing a new argumentation system such that:

$$\langle \mathbf{A}, \mathbf{R} \rangle \oplus_{i}^{a} (Z, \mathcal{I}_{z}) = \langle \mathbf{A} \cup \{Z\}, \mathbf{R} \cup \mathcal{I}_{z} \rangle$$

where \mathcal{I}_z is a set of interactions concerning Z.

Occultation: strategic removal of argument

Turns (active players during the turn)	Prosecutor's system	Defense lawyer's system	Jury's system
0 (P)	3 5	2 1 - 4 - X	1

Argument 1: Mr. X is guilty of premeditated murder of Mrs. X, his wife.

Arguing: addition of argument

Objection: forced removal of argument

Turns (active players during the turn)	Prosecutor's system	Defense lawyer's system	Jury's system
4 (P)	2 - 3 5	2 - 3 5	2 3 5
5 (D)	2-3 5?	2 - 3 5?	2 3 5?

End of the hearing

Turns (active players during the turn)	Prosecutor's system	Defense lawyer's system	Jury's system
6 – 9 (J;P;D)	2-3	2 - 3 🕱	2 × 3 1 × 4

Deliberation

• Jury's argumentation system at the end of the hearing

Jury's preferred extension : $\mathcal{E} = \{3,4\}$

• Jury's decision: "M. X is **not guilty**"

Deliberation

Jury's argumentation system if the objection had been rejected

Jury's preferred extension : $\mathcal{E} = \{1, 3, 5\}$

• The jury would have found M. X guilty

- Removal
 - Strategy (occultation)
 - Imposed by the context (objection)

- Addition
 - Natural way of arguing
 - Managing new pieces of information.

- Removal
 - Strategy (occultation)
 - Imposed by the context (objection)

- Addition
 - Natural way of arguing
 - Managing new pieces of information.
 - → Subject frequently addressed

Removal

- Strategy (occultation)
- Imposed by the context (objection)
 - → Subject scarcely addressed
 - → Removal cannot always be reduced to addition

Addition

- Natural way of arguing
- Managing new pieces of information.
 - → Subject frequently addressed

- Removal
 - Strategy (occultation)
 - Imposed by the context (objection)
 - → Subject scarcely addressed
 - → Removal cannot always be reduced to addition
- Addition
 - Natural way of arguing
 - Managing new pieces of information.
 - → Subject frequently addressed
- ⇒ **Focus** on the impact of the argument removal

Impact of the Removal of an Argument

Occulting Argument 7 and objecting to Argument 5 allowed the defense lawyer to effectively defend his client.

- ⇒ Hence, our aim is to:
 - Allow agent to remove an argument in due course
 - ► Characterize the removal operation in order to guide such a decision
 - Study the change properties

Plan

- Introduction
- 2 Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

Change Properties

- A change property defines the impact that a change operation can have on . . .
 - the structure of the set of extensions E
 - the acceptability of a set of arguments
 - ▶ the status of a particular argument
- Typology of change properties
- It may concern both addition and removal of an argument

Before change

$$|\mathbf{E}| = 0$$

$$|\textbf{E}|=1,\,\mathcal{E}=\varnothing$$

$$|\textbf{E}|=1,\,\mathcal{E}\neq\varnothing$$

$$|{\bf E}| > 1$$

Before change

$$|\mathbf{E}| = 0$$

$$|\textbf{E}|=1,\,\mathcal{E}=\varnothing$$

$$|\textbf{E}|=1,\,\mathcal{E}\neq\varnothing$$

$$|\mathbf{E}| > 1$$

After change

$$|{\bf E}'| = 0$$

$$|\textbf{E}'|=1,\,\mathcal{E}'=\varnothing$$

$$|\textbf{E}'|=1,\,\mathcal{E}'\neq\varnothing$$

$$|\mathbf{E}'|>1$$

Impact on the Set of Extensions: an Example

Definition – Expansive change

- $\mathbf{E} \neq \emptyset$, $|\mathbf{E}| = |\mathbf{E}'|$
- $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_i' \in \mathbf{E}', \mathcal{E}_i \subset \mathcal{E}_i'$
- $\forall \mathcal{E}'_j \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}_i \subset \mathcal{E}'_j$

Example (argument removal)

Preferred semantics : $\mathbf{E} = \{ \{A, I\}, \{F, I\} \}$ and $\mathbf{E}' = \{ \{A, D, I\}, \{D, F, I\} \}$

Impact on the Set of Extensions: an Example

Definition – Expansive change

- $\mathbf{E} \neq \emptyset$, $|\mathbf{E}| = |\mathbf{E}'|$
- $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_i' \in \mathbf{E}', \mathcal{E}_i \subset \mathcal{E}_i'$
- $\forall \mathcal{E}'_i \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}_i \subset \mathcal{E}'_i$

Characterization (argument removal) — Necessary condition

When removing an argument Z under preferred semantics, if this change is expansive then

- ullet Z does not belong to any extension of ${\cal G}$ and
- Z attacks at least one element of \mathcal{G} .

Impact on the Set of Extensions: another Example

Definition – Narrowing change

- $\mathbf{E} \neq \varnothing$, $|\mathbf{E}| = |\mathbf{E}'|$
- $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_i' \in \mathbf{E}', \mathcal{E}_i' \subset \mathcal{E}_i$
- $\forall \mathcal{E}'_j \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}'_j \subset \mathcal{E}_i$

Example (argument removal)

Preferred semantics : $\mathbf{E} = \{ \{A, C, H, Z\}, \{A, D, H, Z\} \}$ and $\mathbf{E}' = \{ \{A, C\}, \{A, D\} \}$

Impact on the Set of Extensions: another Example

Definition - Narrowing change

- $\mathbf{E} \neq \varnothing$, $|\mathbf{E}| = |\mathbf{E}'|$
- $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_j' \in \mathbf{E}', \mathcal{E}_j' \subset \mathcal{E}_i$
- $\forall \mathcal{E}'_j \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}'_j \subset \mathcal{E}_i$

Characterization (argument removal) - Necessary condition

When removing Z under preferred semantics, if the change is narrowing then there exists one extension \mathcal{E} of \mathcal{G} such that $Z \in \mathcal{E}$.

 Monotony: expresses a kind of continuity in the acceptability of sets of arguments

- Monotony: expresses a kind of continuity in the acceptability of sets of arguments
- Two types of monotony:
 - ► **Expansive**: the arguments accepted before change remain accepted after change (no loss of argument)
 - ► **Restrictive**: the arguments accepted after change were already accepted before change (no gain of argument)

- Monotony: expresses a kind of continuity in the acceptability of sets of arguments
- Two types of monotony:
 - Expansive: the arguments accepted before change remain accepted after change (no loss of argument)
 - ► **Restrictive**: the arguments accepted after change were already accepted before change (no gain of argument)
- Modulation of the notion of monotony with the different cases of acceptance of an argument (credulous or skeptical acceptance)

Definition – Simple expansive monotony

The change from \mathcal{G} to \mathcal{G}' satisfies simple expansive monotony if and only if $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_j' \in \mathbf{E}', \mathcal{E}_i \subseteq \mathcal{E}_j'$.

Example (argument removal)

Preferred semantics : $\mathbf{E} = \{ \{A\}, \{B, D, F\} \}$ and $\mathbf{E}' = \{ \{A, C\}, \{B, D, F\} \}$

Definition - Simple expansive monotony

The change from \mathcal{G} to \mathcal{G}' satisfies simple expansive monotony if and only if $\forall \mathcal{E}_i \in \mathbf{E}, \exists \mathcal{E}_i' \in \mathbf{E}', \mathcal{E}_i \subseteq \mathcal{E}_i'$.

Characterization (argument removal) – Necessary and sufficient condition

When removing an argument Z under preferred or grounded semantics, the change satisfies simple expansive monotony if and only if $\forall \mathcal{E} \in \mathbf{E}, Z \notin \mathcal{E}$.

Definition – Simple restrictive monotony

The change from \mathcal{G} to \mathcal{G}' satisfies simple restrictive monotony if and only if $\forall \mathcal{E}'_j \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}'_j \subseteq \mathcal{E}_i$.

Example (argument removal)

Preferred semantics : $\mathbf{E} = \{ \{A, C\}, \{B, Z\} \}$ and $\mathbf{E}' = \{ \{A, C\}, \{B\} \}$

Definition – Simple restrictive monotony

The change from \mathcal{G} to \mathcal{G}' satisfies simple restrictive monotony if and only if $\forall \mathcal{E}'_j \in \mathbf{E}', \exists \mathcal{E}_i \in \mathbf{E}, \mathcal{E}'_j \subseteq \mathcal{E}_i$.

Characterization (argument removal) - Sufficient condition

When removing an argument Z under preferred semantics, if Z does not attack any argument of \mathcal{G} then,

- $\forall \mathcal{E}_i \in \mathbf{E}, \ \mathcal{E}_i \setminus \{Z\}$ is a preferred extension of \mathcal{G}' .
- |E| = |E'|.

So, the change satisfies simple restrictive monotony.

- Let $\mathbf{E}_X = \{\mathcal{E}_i \in \mathbf{E} \mid X \in \mathcal{E}_i\}$
- $\bullet \ \ \mathsf{Let} \ \mathbf{E}_X' = \{\mathcal{E}_j' \in \mathbf{E}' \mid X \in \mathcal{E}_j'\}$

Before change

$$|\mathbf{E}_X| = 0$$

X is rejected in $\mathcal G$

$$|\mathbf{E}_X| < |\mathbf{E}|$$
X is only credulously accepted in \mathcal{G}

$$|\mathbf{E}_X| = |\mathbf{E}|$$
 X is skeptically accepted in $\mathcal G$

- Let $\mathbf{E}_X = \{\mathcal{E}_i \in \mathbf{E} \mid X \in \mathcal{E}_i\}$
- $\bullet \ \ \mathsf{Let} \ \mathbf{E}_X' = \{\mathcal{E}_i' \in \mathbf{E}' \mid X \in \mathcal{E}_i'\}$

Before change

$$|\mathbf{E}_X| = 0$$
 X is rejected in $\mathcal G$

$$|\mathbf{E}_X| < |\mathbf{E}|$$
X is only credulously accepted in \mathcal{G}

$$|\mathbf{E}_X| = |\mathbf{E}|$$
 X is skeptically accepted in $\mathcal G$

After change

$$|\mathbf{E}_X'| = 0$$
 X is rejected in \mathcal{G}'

$$|\mathbf{E}_X'| < |\mathbf{E}'|$$
 X is only credulously accepted in \mathcal{G}'

$$|\mathbf{E}_X'| = |\mathbf{E}'|$$
 X is skeptically accepted in \mathcal{G}'

- Let $\mathbf{E}_X = \{\mathcal{E}_i \in \mathbf{E} \mid X \in \mathcal{E}_i\}$
- Let $\mathbf{E}_X' = \{\mathcal{E}_i' \in \mathbf{E}' \mid X \in \mathcal{E}_i'\}$

Definition – Conservation of the rejected status of X

The change from \mathcal{G} to \mathcal{G}' preserves the rejected status of X if and only if $\forall \mathcal{E}_i \in \mathbf{E}, X \notin \mathcal{E}_i$ and $\forall \mathcal{E}_j' \in \mathbf{E}', X \notin \mathcal{E}_j'$.

Example (argument addition)

Grounded semantics : $\boldsymbol{\mathsf{E}} = \{\{1,3,5\}\}$ and $\boldsymbol{\mathsf{E}}' = \{\{1,3,5\}\}$

Conservation of the rejected status of 4.

Definition – Conservation of the rejected status of X

The change from \mathcal{G} to \mathcal{G}' preserves the rejected status of X if and only if $\forall \mathcal{E}_i \in \mathbf{E}, X \notin \mathcal{E}_i$ and $\forall \mathcal{E}_i' \in \mathbf{E}', X \notin \mathcal{E}_i'$.

Characterization (argument addition) - Sufficient condition

When adding an argument Z under the grounded semantics, if $X \notin \mathcal{E}$ and Z does not indirectly defend X, then the change preserves the rejected status of X.

Plan

- Introduction
- 2 Background
- Change Operations
- Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

The duality represents the link between...

- two operations
- two properties
- \Rightarrow Enables to use the characterization of an operation to characterize its dual operation

• $\bigoplus_{i=1}^{a}$ dual of $\bigoplus_{i=1}^{a}$

• $\bigoplus_{i=1}^{a}$ dual of $\bigoplus_{i=1}^{a}$

ullet Property ${\mathcal P}$ dual of Property ${\mathcal P}^{-1}$

$$\mathbf{E}_{grounded} = \{ \{A, C\} \}$$

$$\mathbf{E}'_{grounded} = \{ \{A, C, Z\} \}$$

• \bigoplus_{i}^{a} dual of \bigoplus_{i}^{a}

• Property \mathcal{P} dual of Property \mathcal{P}^{-1}

- Intuitively:
 - ▶ If we <u>add</u> an argument defended by \mathcal{E} which does not attack any argument, then we have an *expansive change*.
 - \Rightarrow So, if we <u>remove</u> an argument defended by \mathcal{E} which does not attack any argument, then we have a *narrowing change*.

Duality: an Example of Result

Proposition: When adding an argument Z under the grounded semantics, if $X \in \mathcal{E}$ and Z does not indirectly attack X, then $X \in \mathcal{E}'$.

Proposition \ominus : When **removing** an argument Z under the grounded semantics, if $X \notin \mathcal{E}$ and Z does not indirectly attack X, then $X \notin \mathcal{E}'$.

Plan

- Introduction
- 2 Background
- Change Operations
- 4 Change Properties
- 5 Duality Between Addition and Removal
- 6 Conclusion and Perspectives

Our Contribution about Change in Abstract Argumentation

- Study of change in abstract argumentation (focus on the removal of an argument and its interactions)
- Creation of a new typology of change properties
- Characterization of these properties
- Use of duality in order to complete this characterization

Perspectives

- Study of the impact still remaining from a removed argument
- Study of attack addition and attack removal
- Characterization of minimal change

Thank you