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Abstract Abstract argumentation semantics provide a direct relation from an argu-
mentation framework to corresponding sets of acceptable arguments, or equivalently
to labeling functions. Instead, we study step-wise update relations on argumentation
frameworks whose fixpoints represent the labeling functions on the arguments. This
dynamic generalization is used to study the combination of abstract argumentation
semantics. We identify different orders of granularity between update relations with
the same reachable fixpoints, and provide a formal definition of the most granu-
lar update relation for a given direct semantics. We focus also on a particular case
where the combination of two update relations for different direct semantics leads
to an update relation for a third direct semantics.

1 Introduction
Following the methodology in non-monotonic logic, logic programming and belief
revision, formal argumentation theory defines a diversity of semantics. This diver-
sity has the advantage that a user can select the semantics best fitting her application,
but it leads also to various practical challenges. First of all, how to choose among
the considerable number of semantics existing in the argumentation literature for
a particular application? The behaviour of semantics on examples can already be
insightful, and [3] addresses the need for more systematic study and comparison of
semantics by presenting a classification of argumentation semantics based on a set of
principles. However, what to do when neither semantics is perfect? In general, how
do we know that the currently considered set of semantics is sufficient or complete?
May there be a better semantics that has not been discovered yet? How to guide
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the search for new and hopefully better argumentation semantics? In this paper, we
propose a new approach: the combination of abstract argumentation semantics.

1. How to combine two abstract semantics to yield a third semantics?
2. How to obtain the complete semantics by combining the preferred and grounded

semantics?

Concerning our first research question, there are various ways in which abstract
argumentation semantics can be combined. For example, in multi-sorted argumen-
tation [6, 1, 5], one part of the framework can be evaluated according to for example
grounded semantics, whereas another part of the framework is evaluated according
to the preferred semantics. Another approach manipulates directly the sets of exten-
sions. For example, the grounded and preferred can be combined by simply return-
ing both the grounded and preferred extensions. Neither of these two approaches
is very satisfactory. For multi-sorted argumentation, we need to specify explicitly
which semantics must be applied to which part of the framework. For the direct
combination method, the approach seems too coarse grained and the number of
ways to combine semantics seems relatively limited.

We therefore introduce a dynamic approach in this paper, which is based on the
labeling approach to argumentation semantics, in which the three labels in, out and
undec are used. In our dynamic approach, we define step-wise versions of stan-
dard semantics based on epistemic labellings, which associate with each argument
a nonempty set of labels from {in,out,undecided}. Intuitively, the set represents
uncertainty about the label. We start with labeling each argument of the framework
with the set {in,out,undecided}. This represents that we do not know the labeling
yet. Then in each step we refine the labels by removing some of the labels. Finally
we end up with a single label for each argument, and thus with a standard labeling.
To represent the possibility of multiple extensions, the steps are not deterministic.
The steps are represented by an abstract update relation, which mathematically is
simply a binary relation among epistemic labelings. Note that there are many distinct
update relations representing the same standard semantics, and it is this additional
expressive power that we will use when combining abstract argumentation seman-
tics. The steps can be interpreted as moves in a dialogue, or as steps in an algorithm,
or as learning a framework, or otherwise. Our dynamic semantic framework does
not depend on such particular interpretations.

Concerning our second research question, it is well known that the grounded se-
mantics returns the smallest complete extension, and that the preferred semantics re-
turns maximal complete extensions. This suggests that by combining the grounded
and preferred semantics, we can again recover all complete extensions. Note that
there may be complete extensions that are neither minimal nor maximal, and that
it is therefore non-trivial to recover exactly the complete extensions using only the
grounded and the preferred semantics, without obtaining additional extensions and
without loosing any complete extensions. Though the derivation of the complete
semantics from the grounded and preferred semantics does not serve any practical
purpose, it serves to show that the semantics framework has a considerable expres-
sive power to combine abstract semantics. We therefore pursue this second question.
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2 Preliminaries
An argumentation framework (AF) is a directed graph 〈A,R〉〉, where A is called
the set of arguments, and R is called the attack relation. In this work, we only
consider AFs. Standard argumentation semantics come in two variants. Extension-
based semantics associates with each AF a set of extensions (sets of the arguments).
Labelling-based semantics attribute to each argument the label in, out or undecided.
The two approaches are inter-definable, in the sense that an argument is labeled in
when it is in the extension, it is labeled out when it is not in the extension and there
is an argument in the extension attacking it, and it is undecided otherwise. Our dy-
namic approach uses an epistemic labelling, which associates with each argument a
nonempty set of labels. Intuitively, the set represents uncertainty about the label.

We assume familiarity with 3-labeling semantics of argumentation frameworks
(AFs) as defined in [2]. Note that we will make use of the multi-labeling approach,
where a set of labels is assigned to each argument. This set represents the possible
labels for a given argument. The standard approach corresponds to the case where
arguments are given singleton sets as labels.

We will also make use of the notions of transitive closure of a relation and re-
striction of a relation to a subset of its domain.

Definition 1. Let rel be a relation. We define the transitive closure of rel to be the
smallest set rel∗ such that rel ⊆ rel∗ and if (a,b),(b,c) ∈ rel∗, then (a,c) ∈ rel∗.

Definition 2. Let A,B be sets, A′ ⊆ A and R a relation from A to B. We define the
restriction of R to A′ to be:

R ↓A′=

{
{(a,b) ∈ R | a,b ∈ A′} if A = B
{(a,b) ∈ R | a ∈ A′} otherwise

3 Update semantics
Standard labeling semantics provide a direct relation between an argumentation
framework and a set of labeling functions, which attach to each argument exactly
one label. We will now define update semantics, which formalize the idea that the
final labelings can be determined in a step-wise fashion.

Notice that it makes little sense to separate the labeling function from the under-
lying framework, as the labeling is meaningless without it. We will hence consider
pairs of argumentation framework and labeling functions, where frameworks with
no labels correspond to a pair of said framework with a trivial labeling function
which assigns to every argument the same initial value, which in our case of epis-
temic labeling will be the whole set of possible labels.

We define L= {in,out,undec} to be the set of possible labels.

Definition 3. We define a labeled argumentation framework (LAF) to be a pair
(〈A,R〉,Lab) where 〈A,R〉 is a finite argumentation framework and Lab a function
from A to P(L)\{ /0}, called an epistemic labeling. Additionally, let F be the class
of all labeled argumentation frameworks.
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Observe that a labeling function cannot assign the empty set of labels to an argu-
ment, as the set of labels represents the possible final labels for that argument, and
thus the empty set would mean that no label can be attached to it, which prevents us
from having a final labeling for the framework. We might use the term unlabeled,
by which we mean that all labels are still considered possible, and thus the argument
is attached the entire set of possible labels by the multi-labeling function.

We then introduce the notions of initial and final labeled frameworks, which
should correspond to the starting and end-points of a labeling process. In an initial
LAF, every label is possible for each argument, while in a final LAF, every argument
is assigned a singleton set of labels, representing the fact that a unique label has been
selected.

Definition 4. Let F =(〈A,R〉,Lab) be a LAF. If for all a∈A, Lab(a)∈{{in},{out},
{undec}}, we say that F is final. If for all a∈ A, Lab(a) =L, we say that F is initial.

We now define a precision ordering on the LAFs based on the subset relation
between the argument multi-labels, such that the final LAFs are the most precise
and the initial LAFs are the least precise. Note however that only LAFs with the
same underlying AF are comparable.

Definition 5. Let F = (〈A,R〉,Lab) and F ′ = (〈A′,R′〉,Lab′) be two labeled argu-
mentation frameworks. We say that F is at least as precise as F ′ (F ≥p F ′), iff
〈A,R〉 = 〈A′,R′〉, and for all a ∈ A, /0 ⊂ Lab(a) ⊆ Lab′(a). We say that F is more
precise than F ′ (F >p F ′) iff F ≥p F ′ and F 6=p F ′.

We will now define the central notion of this paper, namely update relations, i.e.
relations between LAFs which, starting from an initial LAF, monotonically increase
precision, until a fixpoint is reached, at which point the LAF should be final and
correspond to a desired output.

Definition 6. We say that upd : F×F is an update relation iff:
• for all F ′ ∈ F such that upd(F,F ′), F ′ ≥p F ;
• if upd(F,F), then F is final.

We now define correspondence between update relations and direct semantics
that formalizes the idea that an update relation can be viewed as a step-wise proce-
dure that gives rise to a certain direct semantics. For this we first need some auxiliary
definitions.

Definition 7. Let Rel be a relation onF and F an LAF. We say that F is reachable in
Rel iff there exists an initial LAF Fi such that there is a path in Rel from Fi to F . We
say that F is a reachable fixpoint in Rel iff F is reachable in Rel and (F,F) ∈ Rel.

Definition 8. Given an AF 〈A,R〉 and a 3-labeling L of 〈A,R〉, define the epistemic
labeling T (L) by T (L)(a) := {L(a)} for all a ∈ A.

Definition 9. Let upd be an update relation and sem a semantics. We say that upd
gives rise to sem iff for each 3-labelling Lab of 〈A,R〉, (〈A,R〉,T (Lab)) is a reach-
able fixpoint in upd iff Lab is a sem labeling of 〈A,R〉.
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The following theorem, which easily follows from Definition 6, provides a simple
way of combining two given update relations to yield a third update relation:

Theorem 1. If upd1 and upd2 are update relations, than upd1 ∪ upd2 is an update
relation.

In Section 4.1 we will present an example where combining two update relations
with a union operation gives us not only the union of the final labelings reachable
by either of them, but also additional labelings. This means that the semantics that
upd1 ∪ upd2 gives rise is not necessarily induced by the semantics that upd1 and
upd2 separately give rise to.

We are now interested in the comparison of updates in terms of precision increase
per step, i.e. in the granularity of update relations. The idea is that an update relation
is more granular than another if it takes more steps to reach its final LAFs. First of
all, notice that such a comparison only makes sense for updates which output the
same final LAF, i.e. updates which give rise to the same semantics.

Definition 10. Let upd be an update relation. We define the restriction of upd to
relevant paths (upd) to be the set of pairs in upd that are in some upd-path from an
initial to a final LAF.

Definition 11. Let upd1 and upd2 be two update relations. We say that upd1 is at
least as fined-grained as upd2 (upd1 ≥g upd2) iff upd1

∗ ⊇ upd2.

We then abstractly define the most fine-grained update relation for a given label-
ing semantics.

Definition 12. Let sem be a labeling semantics. We define m f gsem to be the smallest
update relation such that for all update relations upd that give rise to sem, we have
m f gsem ≥g upd.

Lemma 1. For every standard semantics, there exists a unique m f gsem.

Proof: Define m f gsem as follows: (F,F ′) ∈ m f gsem iff either F = F ′ is a sem label-
ing, or the following three properties are satisfied:

• F ′ >p F ;
• @F ′′ such that F ′ >p F ′′ >p F ;
• there exists a final Ff which is a sem labeling such that Ff ≥p F ′.

By definition, m f gsem includes all possible links in any relevant path from an initial
to a final LAF which encompasses a sem labeling. Hence, for any update relation
upd which gives rise to sem, m f gsem

∗ ⊇ upd. Also, m f gsem includes by definition
only pairs which are on a relevant path, as the first alternative adds the endpoints of
these paths and the third item of the second alternative ensures that the pairs are on
a relevant path. The first and second items of the second alternative ensure also that
only the minimal amount of pairs are added, making m f gsem as small as possible.
ut
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4 Case analysis: Combining preferred and grounded

4.1 The algorithmic approach

Let us now have a look at an example of an update relation, which gives rise to
the grounded labeling. This update relation first identifies the arguments which are
only being attacked by arguments which are already labeled {out}, label them as
{in} and any argument they attack as {out}, and then repeat this process until no
arguments can be further labeled, at which point it will label all remaining arguments
as {undec}.

Definition 13. For any labeled argumentation framework F = (〈A,R〉,Lab), we de-
fine the set of unattacked arguments to be unattacked(F) = {a ∈ A | Lab(a) %
{in}∧∀b ∈ A.((b,a) ∈ R→ Lab(b) = {out})}.

Definition 14. We define step grnd : F×F to be the relation such that
((〈A,R〉,Lab),(〈A,R〉,Lab′)) ∈ step grnd iff one of the following conditions holds:

• unattacked((〈A,R〉,Lab)) 6= /0, and (〈A,R〉,Lab′) is the least precise LAF that is
more precise than (〈A,R〉,Lab) such that for all a ∈ unattacked((〈A,R〉,Lab)),
Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c), Lab′(c) =
{out}.

• unattacked((〈A,R〉,Lab)) = /0, there is an a ∈ A such that Lab(a) % {undec},
and (〈A,R〉,Lab′) is the least precise LAF that is more precise than (〈A,R〉,Lab)
such that for all a ∈ A such that Lab(a)% {undec}, Lab′(a) = {undec}.

• (〈A,R〉,Lab) = (〈A,R〉,Lab′) is a final LAF.

Note that before labeling arguments out, we ensure that it is a possibility, e.g.
by having the condition out ∈ Lab(c) in the first item of Definition 14. While this
requirement will straightforwardly be fulfilled in any reachable LAF, it is required
to ensure that the increase in precision is satisfied even for those LAFs that are not
reachable from an initial LAF.

The following lemma now easily follows from the above definition:

Lemma 2. step grnd is an update relation.

The following theorem states that step grnd does indeed have the intended prop-
erty that it gives rise to the grounded labeling:

Theorem 2. step grnd gives rise to the grounded semantics.

Proof sketch. One can easily see that whenever step grnd changes the label of an
argument a to {in},{out} or {undec}, argument a is legally labeled {in},{out} or
{undec} respectively. Thus the final labeling reachable in step grnd is a complete
labeling. To show that the final labeling reachable in step grnd is the complete la-
beling that maximizes undec, suppose that there is some A′ ⊆ A and some complete
labeling Lab of 〈A,R〉 such that for all a ∈ A′, Lab(a) = undec. It is now enough to
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show that step grnd never labels any a ∈ A′ {in} or {out}. Consider for a proof by
contradiction the first step where step grnd does label some a ∈ A′ {in}. Since a is
legally labeled undec in Lab, some a′ ∈ A′ must attack a, so by Definitions 13 and
14, a′ must already be labeled {out} in a previous step, which is a contradiction.
ut

Let us now examine step pre f , a similar update relation which computes the pre-
ferred labelings. For this, we first define the notion of minimal non-trivial admissible
sets of arguments.

Definition 15. Let F = (〈A,R〉,Lab) be a labeled argumentation framework. We
define min adm(F) ⊆P(A) to be the set of all minimal subsets S of A that satisfy
the following conditions:

• S 6= /0;
• for all a ∈ S, Lab(a)% {in};
• for all a,b ∈ S, (a,b) /∈ R;
• for all a∈ S and b∈ A such that Lab(b) 6= {out} and (b,a)∈ R, there exists a′ ∈ S

such that (a′,b) ∈ R.

So the function min adm(F) returns all minimal non-empty admissible sets of ar-
guments whose label could still be changed to {in}. The update relation step pre f
proceeds with a process similar to the one in the step grnd update, iteratively la-
beling {in} all arguments with all attackers {out}, and then labeling all arguments
attacked by those as {out}. The difference lies in the case where unattacked(F) is
empty, where the preferred update relation looks for minimal non-trivial admissible
sets, label them {in} and arguments they attack {out}.

Definition 16. We define step pre f : F × F to be the relation such that
((〈A,R〉,Lab),(〈A,R〉,Lab′)) ∈ step pre f iff one of the following conditions holds:

• unattacked((〈A,R〉,Lab)) 6= /0, and (〈A,R〉,Lab′) is the least precise LAF that is
more precise than (〈A,R〉,Lab) such that for all a ∈ unattacked((〈A,R〉,Lab)),
Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c), Lab′(c) =
{out}.

• unattacked((〈A,R〉,Lab)) = /0, and for some S ∈ min adm(F), (〈A,R〉,Lab′) is
the least precise LAF that is more precise than (〈A,R〉,Lab) such that for all
a ∈ S, Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c),
Lab′(c) = {out}.

• unattacked((〈A,R〉,Lab)) = min adm(F) = /0, and there is an a ∈ A such that
Lab(a)% {undec}, and (〈A,R〉,Lab′) is the least precise LAF that is more precise
than (〈A,R〉,Lab) such that for all a ∈ A such that Lab(a)% {undec}, Lab′(a) =
{undec}.

• (〈A,R〉,Lab) = (〈A,R〉,Lab′) is a final LAF.

The following lemma now easily follows from the above definition:

Lemma 3. step pre f is an update relation.
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The following theorem, which can be proved in a similar way as Theorem 2,
states that step pre f has the intended property that it gives rise to the preferred
labeling:

Theorem 3. step pre f gives rise to the preferred semantics.

We now find the interesting result that combining these two update relations with
a union operation gives us not only the union of the final labelings reachable by
either of them, but also the complete labelings which are neither grounded nor pre-
ferred:

Theorem 4. step grnd∪ step pre f gives rise to the complete semantics.

Proof. This follows from Theorems 3 and 4 in [4].

Example 1. Let us examine the initial LAF F = (〈A,R〉,Lab) where A = {a,b,c,d},
R = {(a,b),(b,a),(b,c),(c,d),(d,c)}. Since unattacked(F) = /0, step grnd will
send F to the fixpoint where all arguments are labeled {undec}. This is depicted
in Fig. 1.
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Fig. 1 Example path from the initial LAF F to the corresponding final LAF in step grnd.

Let us now consider the same LAF F under the step pre f update relation this
time. Again, unattacked(F) = /0, but min adm(F) = {{a},{b},{d}}. The relation
hence branches out in three paths. Let us focus the path with {a}. So the relation
step pre f sends F to the LAF Fpre f 1 where a is {in} and b is {out}, as depicted in
Fig. 2. unattacked(Fpre f 1) = /0, but min adm(Fpre f 1) = {{c},{d}}, which gives us
once again two possible directions in which to branch out. We will examine the one
which selects {c}. This then gives us the final fixpoint Fpre f 2 = (〈A,R〉,Labpre f 2),
where Labpre f 2(a) = Labpre f 2(c) = {in} and Labpre f 1(b) = Labpre f 1(d) = {out}.
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Fig. 2 Example path from the initial LAF F to one of the corresponding final LAFs in step pre f .
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We now consider the union of both relations. We can first send F to Fpre f 1 using
the same step from step pre f as above. However this time we can apply step grnd
to Fpre f 1, and since unattacked(Fpre f 1 = /0, the remaining arguments c and d are
assigned the {undec} label, sending Fpre f 1 to the fixpoint Fcomp, where a is {in}, b
is {out} and c,d are {undec}. Notice that Fcomp corresponds to a complete labeling
of F which is neither preferred nor grounded. This situation is depicted in Fig. 3.
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Fig. 3 Example path from the initial LAF F to one of the corresponding final LAFs in step grnd∪
step pre f which neither update can reach by itself.

4.2 The semantic approach

We will focus on the most fine-grained update relations for the preferred and
grounded semantics, and aim at combining them in order to obtain an update re-
lation for the complete semantics again. However, if we were to attempt to combine
m f gpre f and m f ggrnd by simply taking their union, as we have done in the algo-
rithmic approach, it follows from their definition that we would simply obtain as
reachable fixpoints the labelings which are either preferred or grounded. The main
issue is that m f gpre f and m f ggrnd are not applicable to LAFs which do not agree
with some final LAF of that semantics. Hence, once neither m f gpre f nor m f ggrnd
allow us to get closer to a desired complete labeling, we will focus on a particu-
lar sub-framework and draw analogies with another framework which also contains
that sub-framework and where it behaves similarly as in the original LAF. If a set
of conditions are met, we will allow for a step made in such a parallel framework
to be imported into the original LAF. The conditions are there to ensure that the
two frameworks agree on the behavior of the sub-framework. We split the original
framework into three parts, based on sets of arguments: S, the arguments we will
focus on; I, a set of arguments which already have a maximally precise label, i.e. a
singleton, and separate the set S from the rest of the framework; and lastly A\(S∪I),
the rest of the framework, on which the two frameworks may differ.

Definition 17. Let F = (〈A,R〉,Lab) be a LAF and S ⊆ A. We define the sub-
framework of F generated by S to be Sub(F,S) = (〈S,R ↓S〉,Lab ↓S).

Definition 18. Let upd1 and upd2 be two update relations. We define the combina-
tion of upd1 and upd2 (upd1]upd2) as the smallest relation such that:
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1. upd1]upd2 ⊇ upd1;
2. upd1]upd2 ⊇ upd2;
3. ((〈A,R〉,Lab),(〈A,R〉,Lab′)) ∈ upd1 ] upd2 if there exist disjoint sets S, I ⊆ A

s.t.:

a. Lab′ ↓S 6= Lab ↓S
b. there is an LAF F2 = (〈A2,R2〉,Lab2) and an LAF F ′2 = (〈A2,R2〉,Lab′2) s.t.

(F2,F ′2) ∈ upd1∪upd2 and Sub(F2,S∪ I) = Sub(F,S∪ I);
c. ∀s ∈ S, ∀a ∈ A\ (I∪S), (s,a),(a,s) /∈ R,R2;
d. ∀a ∈ I, Lab(a) = Lab2(a) is a singleton;
e. ∀a /∈ S, Lab(a) = Lab′(a);
f. Sub(F,A\S) is reachable by upd1]upd2;
g. Lab′ ↓S= Lab′2 ↓S.

4. if F is final and reachable by upd1]upd2, then (F,F) ∈ upd1]upd2.

Theorem 5. m f gpre f ]m f ggrnd gives rise to the complete semantics.

Proof sketch. 1. Every complete labeling is reachable: Let AF be an argumentation
framework, and let L be the complete labeling of AF that we want to reach. First
do preferred update steps to ensure that every argument labeled {in} or {out} in L
is labeled {in} or {out} respectively. Note that at this point, we want to update the
labeling further in such a way that all argument currently labeled {in,out,undec}
are finally labeled {undec}. Define S to be the set of all arguments currently
labeled {in,out,undec}, and define I to be the set of all arguments labeled {out}.
It can be easily checked that S does not attack anything in A\(S∪ I), as otherwise
there would be an argument labeled undec in L that attacks an argument labeled
in in L. Also, similar reasoning about L shows that all the {out}-labeled argument
are legally out in A\ I. So S and I satisfy criteria d, e and f of Definition 18. Now
consider the argumentation framework AF ′ which is like AF only that all attacks
from {out}-labeled arguments to {in}-labeled arguments are removed. Now it is
easy to see that all {in,out,undec}-labeled arguments are part of a cycle and can
therefore be labeled just {undec} by a series of grounded update steps in AF ′

that can be taken over to AF .
2. Every reachable fixpoint is complete: Let F = (〈A,R〉,Lab) be a reachable LAF

in m f gpre f ] m f ggrnd . We show by induction that there exists a final com-
plete LAF which is at least as precise as F . Suppose there exists a final com-
plete LAF Ff = (〈A,R〉,Lab f ) which is at least as precise as F , and (F,F ′) ∈
m f gpre f ]m f ggrnd . We distinguish three cases:
(F,F ′) ∈ m f gpre f . Then, by the definition of m f gpre f , there exists a final LAF
which represents a preferred labeling of 〈A,R〉 and is at least as precise as F ′.
Since preferred labelings are also complete, we are done.
(F,F ′) ∈ m f ggrnd . Similarly to the case above, it follows from the definition of
m f ggrnd that there exists a complete final LAF which is at least as precise as F ′.
(F,F ′) /∈ m f gpre f ∪m f ggrnd . Then, it must be that there exist two disjoint sub-
frameworks FS and FI of F , as well as (F2,F ′2) ∈ m f gpre f ∪m f ggrnd satisfy-
ing the conditions of Def. 18, third item. So there exists a final LAF Ff 2 =
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(〈A2,R2〉,Lab f 2) which is complete and at least as precise as F ′2. We construct
the final LAF Fc = (〈A,R〉,Labc) where ∀a ∈ A \ S,Lab f (a) = Labc(a) and
∀a ∈ S,Lab f (a) = Lab f 2(a). Now one can easily show that all arguments are
legally labeled in Fc and so it is a complete labeling. Hence, there exists a final
complete LAF which is at least as precise as F ′. ut

Example 2. Let us consider the same LAF F as in Example 1. We can apply steps
from m f ggrnd to reach the LAF F ′ = (〈A,R〉,Lab′), where Lab′(a) = {in,undec},
Lab′(b) = {out,undec} and Lab′(c) = Lab′(d) = {undec}, as depicted in Fig. 4,
since F ′ is less precise than the final grounded labeling for F where all arguments
are {undec}. From here, we can set S = {a,b} and I = {c}, and observe that in the
framework F2 = (〈A,(R∪{d,d}) \ {c,d}〉,Lab′), there exists a more precise final
preferred labeling where a is {in} and b is {out}, as depicted in Fig. 5. F2 satisfies
the conditions for the third item of Def. 18 and we can thus import these steps and
apply them to F ′, giving us the final complete labeling where a is {in}, b is {out}
and c,d are {undec}, as shown in Fig. 6.
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Fig. 4 Example path from the initial LAF F to an intermediary LAF F ′ in m f gpre f ]m f ggrnd .

a

in
��ZZout

undec

b

�Ain
out

undec

c

�Ain
��ZZout

undec

d

�Ain
��ZZout

undec

a

in
��ZZout
��XXundec

b

�Ain
out

undec

c

�Ain
��ZZout

undec

d

�Ain
��ZZout

undec

a

in
��ZZout
��XXundec

b

�Ain
out
��XXundec

c

�Ain
��ZZout

undec

d

�Ain
��ZZout

undec

m f gpre f m f gpre f

Fig. 5 Example path on a parallel F2 framework with S = {a,b} and I = {c}, where m f gpre f is
applicable.

5 Conclusion and future work

In this paper we introduce a dynamic approach to combine two abstract semantics
to yield a third one. In particular, we provide a formal environment for the analy-
sis of step-wise relations between labeled framework with an increase in the label
precision, whose reachable fixpoints correspond to some standard direct semantics.
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Fig. 6 Importing the steps made in Fig. 5 into F ′ allows us to reach a complete labeling which is
neither grounded nor preferred.

We define and discuss two approaches to combining two given update semantics to
yield a third update semantics, and then examine how these two approaches allow us
to obtain update relations for the complete labeling by combining update relations
for the preferred and grounded labelings.

Our paper gives rise to various topics for further research. Concerning the com-
bination of abstract argumentation semantics, many questions remain. Though we
introduced our update relations to combine abstract argumentation semantics, we
believe that this dynamic semantics framework can be used for other applications
as well. Most importantly, one of the main challenges in formal argumentation is
the gap between graph based semantics and dialogue theory. Our more dynamic se-
mantics framework may be used to decrease or even close the gap. In particular, in
dialogue each statement may increase the knowledge and thus the set of arguments
of participants. This is also related to the formalisation of learning in the context of
formal argumentation. Moreover, an important approach in argumentation seman-
tics is the SCC recursive scheme. This scheme can be represented naturally using
update relations. Various algorithms have been proposed for abstract argumenta-
tion semantics, and these algorithmic approaches may be expressed naturally using
update relations. Finally, the principle based analysis of abstract argumentation se-
mantics can be extended to the more fine grained update relations.
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