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SUMMARY

Formal argumentation is an area of symbolic reasoning which mimics the way people
argue with each other, providing arguments to back their claims and counter-arguments to
attack opposing claims. These are then represented in an argumentation framework. The
acceptability of such arguments is then evaluated by abstracting away their internal content,
so that the process only considers the relation of attack between them. This then results
in extensions, representing reasonable, rational stances on the acceptability status of the
arguments. While rationality constraints are set within an extension, different extensions
are usually not compatible as they can represent opposing views on the same situation. In
this thesis, we focus on the aspect of moving from acceptability to commitment towards one
such extension. We present a framework for gradual commitment and study its properties
in different settings.

We later investigate how this framework allows for the combination of different seman-
tics, the functions which, given an argumentation framework, return a set of extensions.
This combination is done by allowing one to switch semantics in the middle of the commit-
ment process. We show that this combination allows one to recover an existing semantics
from two other existing ones and study how this method allows us to define new semantics.

The acceptability of arguments is derived from the attack relation, but other relations
have been introduced for formal argumentation, such as positive relations of support and ex-
planations, and more complex relations such as joint attacks. We then present a framework
which allows for not only attacks, but also necessary and deductive support, explanations
and incompatibilities between any set of elements. This enriched framework, which we
call extended explanatory argumentation framework, is then equipped with both labelling
semantics, where instead of extensions one has labeling functions which assign to each
element of the framework one of three acceptability statuses: in, out or undec. We also de-
fine extension-based semantics via a translation from an enriched framework to a simpler
framework using a flattening approach, and show that there is a correspondence between
the two approaches.

We then propose a structured argumentation framework, allowing for the construction
of arguments from a knowledge base and a set of rules. This framework has the particulari-
ties that it allows for hypothetical reasoning in the construction of arguments, and explana-
tions of other arguments and explananda, which are scientific observations the arguments
attempt to explain.

xii



Chapter 1

Introduction

1.1 Artificial Intelligence
Artificially intelligent machines are omnipresent in our daily lives, from smart TVs to lawn-
mowing robots, but also at the professional level, with autopilot for airplanes [1] and sur-
gical robots with near perfect precision [2].

The field is split in two main methodologies. One the one hand, there is the machine
learning approach, where large samples of data are fed into a learning algorithm, allowing
the machine to identify the most relevant features of the data with respect to the task and
how they affect it. For example, by feeding tens of thousands of images from ten different
classes, labelled with their corresponding class (one of them being dog), a well set up
machine is then able to identify from new images in which of the ten classes it belongs
(e.g. whether it is a picture of a dog or not) [3]. This approach takes advantages of the
computing power of machines, but unfortunately often lacks transparency. Once all the
data has been fed through the machine learning algorithm, even experts can have a hard
time understanding exactly how the machine interprets the new data and how it justifies its
output.

On the other hand, there is the symbolic reasoning approach, where instead the aim
is to teach the machine to reason in a manner more similar to how humans think, using
for instance logical rules of deduction and a knowledge base. One example would be
specifying to a machine that birds fly, and that the animal named Tweety is a bird. The
machine is then able to additionally deduce that Tweety flies. This results in general in
more transparency, since the machine can now mention these two facts as justification for
its conclusion.

This thesis focuses on a particular field of symbolic reasoning, namely the field of
formal argumentation, popularised by the work of Dung [4]. Here, the aim is to mimic
the kind of reasoning which occurs when humans argue with each other, putting forward
arguments to support their claims and counter-arguments to attack arguments they do not
agree with.

The field is further sub-divided into two main approaches. A higher-level approach of
abstract argumentation focuses on the reasoning aspects, investigating the acceptability of
arguments based solely on their relation with other arguments. Note that while the field
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of logic is mostly devoted to evaluating the truth of propositions, the field of formal argu-
mentation focuses on their acceptability. For example, two arguments with opposite con-
clusions might both be acceptable to the same degree, although not jointly. So even though
one might not be able to reasonably accept both arguments at the same time, accepting ei-
ther of them separately would be perfectly rational. In this sense, formal argumentation is
similar to answer set programming [5] which also focuses on providing multiple possible
answer sets which each solve the same given problem but might not be compatible with
each other. In Chapter 3, we investigate the process of committing towards one such set of
acceptable arguments.

On the other hand, the sub-field of structured argumentation focuses on the construc-
tion of arguments from various structures, for example a knowledge base with a set of
potentially defeasible rules. Various frameworks have been devised for structured argu-
mentation, most notably ASPIC+ [6], Assumption-Based Argumentation (ABA) [7] and
Defeasible Logic Programming (DeLP) [8]. In Chapter 6 we investigate an extension of
the ASPIC+ framework which allows for explanations and hypothetical reasoning.

1.2 Argumentation
In abstract argumentation, a semantics is a function which takes an abstract argumentation
framework and returns a set of extensions, where an extension is a set of jointly acceptable
arguments. Different semantics have been proposed in the literature [9], being more or
less appropriate depending on the application and context. Most of these semantics return
multiple extensions [10]. This gives rise to two crucial questions: On the one hand, from all
the semantics, which one should be applied? And on the other hand, how does one choose
from multiple extensions?

One avenue to helping with the first question is the principle-based approach for abstract
argumentation [11, 12, 10]. By defining guiding principles that may or may not be desirable
depending on the context, one can select a semantics which behaves best for the application
of interest.

For the second question, two approaches exist: one can define higher-level concepts
of acceptability based on whether an argument is in no extension, at least one, or all. For
example, an argument is said to be strongly accepted iff it is in all extensions for a given
semantics. The issue is that in this process, many of the desirable properties defined in the
aforementioned mentioned principles are lost. For instance, admissible sets of arguments
are sets of arguments which attack any argument attacking an element of the set, without
having any attack within the set. The preferred semantics returns ⊆-maximal admissible
sets of arguments. Interestingly, the set of strongly accepted arguments with respect to
preferred semantics is not necessarily admissible. This issue is avoided in the second ap-
proach, to select a single extension from the proposed ones. This further increases the
importance of methods for making this selection.

Many different methods for selecting an extension already exist, so we propose in-
stead to study the selection process itself. By refining the extraction of sets of acceptable
arguments from a framework into smaller steps, one can construct a graph which repre-
sents different levels of commitments towards some extensions, until a single one has been
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elected. We therefore introduce the notion of commitment graphs for choosing between
multiple extensions of an argumentation framework in a given semantics. The edges of a
commitment graph represent specific commitment steps that bring one closer to the final
commitment where no alternative subsist and only a single extension remains. Follow-
ing the distinction that Dung [4] introduced between abstract argumentation frameworks
and structured instantiations thereof, we propose to make a distinction between abstract
commitment graphs and concrete commitment graphs, allowing us to distinguish features
which arise from the structure alone of such a commitment graph, and study these sepa-
rately. Note also that our formal notion of concrete commitment graphs forces a specific
kind of instantiations, of which variations could be studied in the future. This separation be-
tween abstract and concrete commitment graphs further allows for transferability of some
results.

In the formal argumentation literature, the labeling approach [13] is often used to de-
termine the acceptability of arguments. Here, one derives labeling functions which assign
to each argument one of three labels: in, out or undec. The arguments that are labeled in
represent the arguments that are jointly acceptable, while the arguments that are out repre-
sent the ones that are defeated by those. The last label, undec (undecided), represents the
cases where one cannot, or decides with proper justification, not to assign either of these
two labels, because their situation allows for them to be rejected without the acceptance
of a counter-argument, such as in dilemmas or paradoxical structures. One advantage of
the labeling approach is that to verify that an argument is correctly labeled, one only needs
to check the labels of its direct ancestors. This allows for a more local evaluation, which
is still equivalent to other global approaches such as the extension-based approach, which
states what properties a set of arguments must satisfy in order to be an extension. In the
second chapter of this thesis, we propose one construction for concrete commitment graphs
which relies on the concept of partial extensions. Here one also distinguishes three statuses
for arguments: arguments which have been accepted, arguments which have been rejected,
and lastly arguments on whose status one hasn’t committed yet. We however draw a clear
distinction between the undec label and our ’uncommitted’ status, as we assign the re-
jected status to undec arguments, meaning one has committed not to accept the arguments
in question. Our uncommitted status on the other hand simply represents an abstention of
judgement on the argument, where it is still possible to either accept or reject the argument.

In Chapter 4 of this thesis, we refine the notion of partial extension into epistemic labels.
Here, every arguments is assigned the set of potential labels in, out and undec. One then
narrows it down until every argument only has a single possible label remaining, providing
more intermediary steps than in the partial extension approach. This more granular con-
struction is then used to combine different semantics, allowing for the systematic creation
of new semantics based on existing ones.

Several methods for combining argumentation semantics have been studied. For exam-
ple, in multi-sorted argumentation [14, 15, 16], one part of the framework can be evaluated
according for example to the grounded semantics, whereas another part of the framework
is evaluated according to the preferred semantics. Another approach manipulates directly
the sets of extensions. For example, the grounded and preferred can be combined by sim-
ply returning both the grounded and preferred extensions. Both of these approaches have
drawbacks. For multi-sorted argumentation, we need to specify explicitly which semantics
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must be applied to which part of the framework. For the direct combination method, the
approach seems too coarse-grained and the number of ways to combine semantics seems
relatively limited.

The refinement of the aforementioned process of creating extensions brings up another
interesting research question. If the process of extracting a set of acceptable arguments
from a framework is done in smaller steps, is it possible to change semantics mid-way?
This would allow one to combine semantics in a novel way. One would therefore be able to
start accepting arguments with a broad-minded point of view, but then restrict one’s mind-
set after having committed to accepting some number of arguments. In particular, from
the complete extensions, one can further refine them into the unique grounded extension
and the maximal-minded preferred extensions. The remaining extensions which are neither
grounded nor preferred lie somewhere in the middle of the spectrum. Would it be possible
to retrieve those extensions by alternating between preferred and grounded commitment
mindsets? Though the derivation of the complete semantics from the grounded and pre-
ferred semantics does not serve any practical purpose, it serves to show that our dynamic
semantic framework has sufficient expressive power to combine abstract semantics.

Several families of semantics exist, mainly admissibility-based semantics and naive-
based semantics. They are known to satisfy quite different sets of principles, which raises
another interesting question: Would a meaningful combination of two semantics from dif-
ferent families be possible, and what kind of results would it yield? Note that recently
naive-based semantics like stage semantics [17] and CF2 semantics [18] have received
some attention, for example in the work of Gaggl and Dvořák [19], who define a new se-
mantics (stage2) that combines features of stage and CF2 semantics, and in the works of
Cramer and Guillaume [20, 21], who performed empirical studies that showed that these
naive-based semantics are better predictors of human argument acceptance than complete-
based semantics like the grounded and preferred semantics. These cognitive studies have
additionally sparked ideas for new semantics, such as the SCF2 semantics [22].

For argumentation frameworks without odd cycles, the stage semantics fully agrees
with the preferred semantics. One difference between the preferred semantics and the
stage semantics is that the stage semantics generally provides a way to select accepted
arguments even when odd cycles are around, whereas the preferred semantics tends to
mark as undecided all arguments that are in an odd cycle or attacked by an odd cycle. One
difference between the preferred semantics and the complete semantics is that the complete
semantics allows one to locally not make choices for some unattacked even cycles while
making choices for other unattacked even cycles, whereas in the preferred semantics one
has to make choices for all unattacked even cycles. This motivates the following research
question: Is there a sensible semantics that allows one to locally make choices for some
unattacked odd or even cycles while not making choices for other unattacked odd or even
cycles? In Chapter 4, we construct such as semantics by combining the grounded and the
stage semantics.

In Dung’s abstract argumentation frameworks, the acceptability of arguments is eval-
uated based on the attack relation between arguments. However, various researchers have
felt the need to extend abstract argumentation frameworks in order to model features of
argumentation that cannot be directly modeled in abstract argumentation frameworks, e.g.
by enriching them with recursive (higher-order) attacks [23], joint attacks [24], a support
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relation between arguments [25, 26], or explanatory features [27].
In Chapter 5, we incorporate multiple enrichments into a single framework, and allow

these relations to occur not only between arguments, but also to originate and target sets
of elements of any nature. For example, this framework allows for the representation of an
argument attacking a set of two other arguments, so that one of them can be accepted, but
not both together. One can then also have a set of two arguments necessarily support this
attack, so that the attack is only active as long as both source arguments are accepted.

The semantics of this framework are defined through a labelling approach, and then
also through a flattening approach, where the enriched framework is first translated to a
simpler framework with less enrichments and existing semantics. This simpler framework
is then evaluated and the extensions are translated into extensions for the original enriched
framework.

Structured argumentation investigates the question of how arguments are generated
in the first place. In Chapter 6, we study a structured argumentation framework, called
ASPIC-END, which extends the widely used ASPIC+ framework [6]. In this extended
framework, arguments can be constructed by introducing facts from the knowledge base,
or applying reasoning rules to the conclusions of existing arguments, as in the ASPIC+
framework. Additionally, in ASPIC-END arguments can be constructed with hypotheti-
cal reasoning structures such as reasoning by contradiction. Here, one may introduce an
assumption which can be absent from the knowledge base, but upon reaching a logical con-
tradiction from this assumption, may then conclude that its negation holds. ASPIC-END
also allows for the generation of explananda and an explanatory relation.

The research questions we address in this thesis therefore are the following:

• What can be gained by refining the process of selecting an extension from a set of
extensions?

• How can this refined structure allow us to combine different semantics?

• How can we evaluate acceptability in a framework combining many enrichments?

• How can arguments be constructed for an enriched framework with more than just
an attack relation?

The layout of this thesis is as follows: we first provide an overview of existing notions
from the literature that this thesis builds upon in Chapter 2. In Chapter 3 we define and
investigate the commitment graphs and their properties. In Chapter 4 we study how this
structure allows us for the combining of different argumentation semantics, and show that
this combination method allows one to retrieve complete from preferred and grounded.
In Chapter 5 we investigate enrichments of Dung’s abstract framework and the flattening
methodology which allows one to represent some enrichments in terms of basic elements,
and show how these enrichments allow us to model in a much more faithful fashion sci-
entific debates from the philosophical literature. In Chapter 6 we investigate how some of
these enrichments translate to a structured argumentation setting, and provide a case study
of the structured framework for debates from the philosophical and history of mathematics
literature. We discuss future work in each chapter, but also in Chapter 7 when preliminary
results are already available. Finally, we conclude in Chapter 8.
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Chapter 2

Preliminaries

In this chapter, we provide definitions for existing notions from the literature we make use
of in this thesis. We also provide Tables 2.1 and 2.2 listing the main formal notions dis-
cussed in this thesis, along with the corresponding notation and a reference to the definition
introducing the notion.
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Name Naming convention Components Reference
Argumentation Framework (AF) F 〈A,→〉 Def. 2.1.1

Semantics σ σ(F ) = E Def. 2.1.3
Extension E E ⊆ A Def. 2.1.3
Labeling Lab Lab : A → {in, out, undec} Def. 2.1.5

Strongly Connected Component (SCC) S S ∈ SCCSF Def. 2.1.8
Explanatory AF (EAF) F 〈A,X ,→, 99K,∼〉 Def. 2.1.10

AF with Recursive Attacks (AFRA) F 〈A,→〉 Def. 2.1.15
Bipolar AF (BAF) F 〈A,→,⇒d〉 Def. 2.1.19

AF with Necessities (AFN) F 〈A,→,⇒n〉 Def. 2.1.21
Higher level AF F 〈S, S0,→〉 Def. 2.1.23

Argumentation System AS (L,R, n) Def. 2.2.1
Knowledge Base K K ⊆ L Def. 2.2.2

Argumentation Theory AT (AS,K) Def. 2.2.3
ASPIC+ Argument A Many Def. 2.2.4

Abstract Commitment Graph G (V,E, L) Def. 3.2.2
Partial Extension Γ Γ ⊆ {+,−} ×A Def. 3.3.1

Concrete Commitment Graph (CCG) G (V,E, L) Def. 3.3.5
Intersection-based Commitment Graph (ICG) icgσ(F ) (V,E, L) Def. 3.3.6

Most Exhaustive Update meu(F, σ) (V,E, L) Def. 3.3.7
Most Fine-Grained Commitment Graph mfgσ(F ) (V,E, L) Def. 3.3.11
SCC-Directional Commitment Graph sdcgσ(F ) (V,E, L) Def. 3.4.3
Distance-Based Commitment Graph DBCG (V,E, L) Def. 3.5.3

ACG-Equivalence 'ag F 'ag F ′ Def. 3.6.1
ACG-Summary G (V,E, L) Def. 3.6.4

CCG-Equivalence 'cg F 'cg F ′ Def. 3.6.6
CCG-Summary G (V,E, L) Def. 3.6.6

Table 2.1: The main formal notions discussed in this thesis.



Name Naming convention Components Reference
Labeled Argumentation Framework (LAF) F (〈A,→〉,EpLab) Def. 4.3.1

Epistemic Labeling EpLab EpLab : A → P(L) \ {∅} Def. 4.3.1
Update Relation upd upd ⊆ F× F Def. 4.3.5

Most Fine-grained Update mfgσ mfgσ ⊆ F× F Def. 4.3.10
Step Grounded Update step grnd step grnd ⊆ F× F Def. 4.4.2
Step Preferred Update step pref step pref ⊆ F× F Def. 4.4.4

Update Merge ] upd1 ] upd2 Def. 4.5.1
EAF Labeling Lab (LabA,Lab99K) Def. 5.2.1
AC-labeling Lab (LabA,Lab99K) Def. 5.2.4
EC-labeling Lab (LabA,Lab99K) Def. 5.2.8

Extended EAF (EEAF) F 〈A,X ,→, 99K,∼,⇒d,⇒n〉 Def. 5.4.1
EEAF Labeling Lab (LabNonEx,LabPES) Def. 5.4.5

ASPIC-END Argumentation Theory Σ (L,R, n,<) Def. 6.3.1
ASPIC-END Argument A Many Def. 6.3.2

Table 2.2: The main formal notions discussed in this thesis, continued.



2.1 Abstract Argumentation
Abstract argumentation is a form of symbolic reasoning, based on the way people argue
back and forth when debating an issue. Arguments are represented together with a rela-
tion of conflict between them. This relation is directed, and called attack, so that when
presented with a counter-argument b to an argument a, we say that b attacks a. Contrary
to most logical formalisms, the goal here is not to determine what is true, but to evaluate
which arguments are acceptable. For example, two people might be arguing about why the
football team they support is the best. Most often, neither of them are wrong, and while the
two points of view are in conflict, they can both be justified in a reasonable fashion, and we
will therefore say that they are acceptable. In abstract argumentation, the focus is on the
arguments and the relation between them. Any other information is abstracted away from
the system, allowing for the evaluation of acceptability to be done irrespective of factors
such as the source of arguments, their names or even their internal content.

2.1.1 Dung’s Argumentation Frameworks
We define the required notions from abstract argumentation as introduced by Dung [4] and
as explained in its current state-of-the-art form by Baroni et al. [9].

We start by defining the fundamental notion of argumentation frameworks and the aux-
iliary notions of→-paths and odd→-cycles.

Definition 2.1.1 (Argumentation framework (AF)). An argumentation framework (AF)
F = 〈A,→〉 is a finite directed graph in which the set A of vertices is considered to
represent arguments and the set→⊆ A×A of edges is considered to represent the attack
relation between arguments, i.e. the relation between a counterargument and the argument
that it counters.

Definition 2.1.2 (→-path and odd→-cycle). An→-path is a sequence 〈a0, . . . , an〉 of argu-
ments where
(ai, ai+1) ∈→ for 0 ≤ i < n and where aj 6= ak for 0 ≤ j < k ≤ n with either
j 6= 0 or k 6= n. An odd→-cycle is an→-path 〈a0, . . . , an〉 where a0 = an and n is odd.

Given an argumentation framework, we want to choose sets of arguments for which it
is rational and coherent to accept them together. A set of arguments that may be accepted
together is called an extension. Multiple argumentation semantics have been defined in
the literature, i.e. multiple different ways of defining extensions given an argumentation
framework. Before we consider specific argumentation semantics, we first give a formal
definition of the notion of argumentation semantics:

Definition 2.1.3 (Argumentation semantics). An argumentation semantics is a function σ
that maps any AF F = 〈A,→〉 to a set σ(F ) of subsets of A. The elements of σ(F ) are
called σ extensions of F .

Note 1. We usually define an argumentation semantics σ by specifying criteria which
a subset of A has to satisfy in order to be a σ extension of F .

In this thesis we consider various semantics:
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Definition 2.1.4 (Main argumentation semantics). Let F = 〈A,→〉 be an AF, and let
S ⊆ A. The set S is called conflict-free iff there are no arguments b, c ∈ S such that b
attacks c (i.e. such that (b, c) ∈→). Argument a ∈ A is defended by S iff for every b ∈ A
such that b attacks a there exists c ∈ S such that c attacks b. We say that S is admissible iff
S is conflict-free and every argument in S is defended by S.

• S is a complete extension of F iff S is admissible and S contains all the arguments it
defends.

• S is a stable extension of F iff S is admissible and S attacks all the arguments of
A \ S.

• S is the grounded extension of F iff S is a minimal with respect to set inclusion
complete extension of F .

• S is a preferred extension of F iff S is a maximal with respect to set inclusion com-
plete extension of F .

• S is a semi-stable extension of F iff it is a complete extension and S∪S+ is maximal
with respect to set inclusion among complete extensions, i.e. there exists no complete
extension S1 such that S ∪ S+ ⊂ S1 ∪ S+

1 .

• S is a stage extension of F iff S is a conflict-free set and S ∪ S+ is maximal with
respect to set inclusion, i.e. S is conflict-free, and there exists no conflict-free set S1

such that S ∪ S+ ⊂ S1 ∪ S+
1 .

• S is a naive extension of F iff S is a maximal conflict-free set.

These argumentation semantics can also be characterized through the labeling-based
approach [13]. A labeling of an AF F = 〈A,→〉 is a function which assign to each
argument one of three labels: in, out or undec. The in label represents the case where an
argument is accepted, the out label represents the case where an argument is rejected, and
the undec represents the case where an argument cannot be accepted, yet there is no reason
to fully reject it either.

We provide definitions for the 3-labeling semantics of argumentation frameworks as
defined in [13]. Note that in Chapter 4 we make use of the multi-labeling approach, where
a set of labels is assigned to each argument. Such a set represents the possible labels for a
given argument. The standard approach corresponds to the case where arguments are given
singleton sets as labels.

We define L = {in, out, undec} to be the set of possible labels.

Definition 2.1.5 (3-labeling). Let F = 〈A,→〉 be an AF. We say that any function L from
A to L is a 3-labeling of F .

The 3-labeling approach makes use of the notions of legal labels.

Definition 2.1.6 (Legal Labeling). Let F = 〈A,→〉 be an AF, a ∈ A an argument and L a
3-labeling of F . We say that a is:
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• legally in with respect to L iff L(a) = in and for all b ∈ A such that (b, a) ∈→,
L(b) = out;

• legally out with respect to L iff L(a) = out and for some b ∈ A such that (b, a) ∈→,
L(b) = in;

• legally undecided with respect to L iff L(a) = undec and for all b ∈ A such that
(b, a) ∈→, L(b) 6= in and for at least one such b, L(b) = undec.

If all arguments inA are legally labeled with respect to L, then we say that L is a complete
labeling of F . A complete labeling with a minimal set of in-labeled arguments is called
a grounded labeling. A complete labeling with a maximal set of in-labeled arguments is
called a preferred labeling. A complete labeling without undec-labeled arguments is called
a stable labeling. A complete labeling with a minimal set of undec-labeled arguments is
called a semi-stable labeling.

For each extension there is a corresponding labeling that can be defined as follows:

Definition 2.1.7 (Labelings). Let E be an extension of the AF F = 〈A,→〉 according to
one of the argumentation semantics defined above. Then the 3-labeling Lab corresponding
to E is defined as follows:

Lab(a) =


in if a ∈ E
out if there is an argument b ∈ E such that b attacks a
undec otherwise.

We now provide preliminary notions of Strongly Connected Components (SCCs) from
the literature [18]. These partition the graph into cells, such that there is an→-path between
any two arguments within a cell.

Definition 2.1.8 (Strongly Connected Component). Let F = 〈A,→〉 be an AF. We say
that S ⊆ A is a strongly connected component (SCC) iff S is a maximal set with respect to
⊆ such that for all distinct a, b ∈ S, there is a path from a to b in→. We denote the set of
all SCCs in F by SCCSF .

Definition 2.1.9 (sccparents and sccanc). Given an argumentation framework F = 〈A,→〉
and an SCC S ∈ SCCSF , we define

sccparentsF (S) := {P ∈ SCCSF | P 6= S and ∃a ∈ P, ∃b ∈ S, (a, b) ∈→}

and recursively define

sccancF (S) := sccparentsF (S) ∪
⋃

P∈sccparentsF (S)

sccancF (P )
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2.1.2 Explanatory Argumentation Frameworks
In scientific debates, the discussions are usually centered around some phenomenons or
evidence. The different parties propose theories to explain them and argue about which
one of these theories provides the best explanation for the phenomenons in question. In
this kind of setting, arguments arise with two different kinds of goals: some arguments will
try to establish whether some statements are true, while others will aim at determining why
some of the phenomenons of interest occur.

With this idea in mind, D. Šešelja and C. Straßer have extended abstract argumenta-
tion framework with explanatory features [27]. In these frameworks, there are not only
arguments but also explananda. These are scientific phenomenons of which, unlike argu-
ments, the acceptability is not being questioned. These can be seen as observations about
the world which could not be trivially predicted from our knowledge base, or where our
current knowledge base would predict the opposite.

Definition 2.1.10 (Explanatory Argumentation Framework (EAF)). An explanatory argu-
mentation framework (EAF) is a tuple 〈A,X ,→, 99K,∼〉, where A is a set of arguments,
X is a set of explananda,→ ⊆ A×A is an attack relation, 99K ⊆ A× (A∪X ) is an expla-
nation relation from arguments to either explananda or other arguments, and ∼ ⊆ A × A
is a symmetric incompatibility relation.

Note that the incompatibility relation’s purpose is to differentiate between the opposing
theories, as scientists usually do not accept multiple explanations of a given phenomenon
at the same time.

Definition 2.1.11. Let 〈A,X ,→, 99K,∼〉 be an EAF. A set of arguments S ⊆ A is said to
be conflict-free if and only if there are no arguments a, b ∈ S such that (a, b) ∈ →∪∼.

Note that the definition of admissible sets still stands but with the revised definition of
conflict-freeness.

Definition 2.1.12 (Explanation offered). An explanation X[e] for e ∈ X offered by a set
of arguments S is a subset S ′ of S such that there exists a unique argument a ∈ S ′ such
that a 99K e and for all a′ ∈ S ′ \ a, there exists a path in 99K from a′ to a.

Example 2.1.1. Consider the EAF in Figure 2.1.1. Note that the incompatibility relation
has been represented by a straight line with no arrow between a and b.

Here we have two explananda, e1 and e2. a explains both e1 and e2 while b explains
only e2. Consider the conflict-free set {a, d, f}. It contains two explanations for e1, namely
X1[e1] = {a} and X2[e1] = {a, d}. Similarly, it offers two explanations for e2. The
conflict-free set {b, f} however offers an explanation only for e2.

For our goal of selecting the best theory from our model, we need a way to compare how
much and how well a given set of arguments is able to explain. The notions of explanatory
power and explanatory depth are thus borrowed from P. Thagard’s theory of explanatory
coherence [28], and adapted to the abstract argumentation setting. A theory can be broader
by explaining more of the phenomenons of interest, and thus being more powerful. On
the other hand, it can be deeper by being itself explained by other hypotheses, or in our
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Figure 2.1: Example EAF1

case, other arguments. For example, in a legal setting, the hypothesis that a certain indi-
vidual is guilty of a given crime is strengthened when it manages to explain the presence
of additional evidence, but it can also be deepened when a motive which explains why the
individual commited that crime is given.

Definition 2.1.13 (Explanatory power). A set of arguments S1 is explanatorily more pow-
erful than a set of arguments S2 (S1 >p S2) if and only if the set of explananda for which
S1 offers an explanation is a strict super-set of the set of explananda for which S2 offers an
explanation.

A set of arguments S1 is explanatorily deeper than a set of arguments S2 (S1 >d S2)
if and only if for every explanation X2 offered by S2, there is an explanation X1 offered
by S1 such that X2 ⊆ X1, and for at least one explanation X1 offered by S1, there is no
explanation X2 offered by S2 such that X1 ⊆ X2.

In our previous example, we have that {a, d} >p {b} since {a, d} offers an explanation
for {e1, e2} while {b} only offers an explanation for {e2}. Additionally, we have that
{a, d} >d {a} and {a, d, f} >d {a, f}.

Šešelja and Straßer [27] then propose two procedures for the selection of the best sets
of arguments with respect to these notions. These have been revised as extensions by
Cramer et al. [29], in order to be more in line with abstract argumentation extensions,
while preserving their concepts.

Definition 2.1.14 (Satisfactory, Insightful, AC- and EC-extension). Let 〈A,X ,→, 99K,∼〉
be an EAF and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S ′ ⊆ A such that
S ′ >p S and S ′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S ′ ⊆ A such that
S ′ >d S and S ′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of ∆ iff S is satis-
factory and there is no S ′ ⊃ S such that S ′ is satisfactory.

4. We say that S is an explanatory core extension (EC-extension) of ∆ iff S is insightful
and there is no S ′ ⊂ S such that S ′ is insightful.
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In our example, the only AC-extension is {a, d, f}, while the only EC-extension is
{a, d}.

2.1.3 Argumentation Frameworks with Recursive Attacks
While EAFs add explanatory features to abstract argumentation frameworks, Baroni et
al. [23] have developed an extension which enhances the expressive power of the attack
relation. In their frameworks, they allow for attacks to target other attacks. This way, an
argument may refute an attack relation between two other arguments without contesting
the acceptability of any of them.

Definition 2.1.15 (Argumentation Framework with Recursive Attacks (AFRA)). An Argu-
mentation Framework with Recursive Attacks (AFRA) is a pair 〈A,→〉 where A is a set of
arguments and→ ⊆ A× (A∪→) is an attack relation from arguments to either arguments
or attacks.

For a given attack α = (a, x) ∈ →, we say that the source of α is src(α) = a and its
target is trg(α) = x.

Now that attacks can be targeted, we need to extend our notions of acceptance to also
include them.

Definition 2.1.16 (AFRA Defeat). Let F = 〈A,→〉 be an AFRA, ϕ ∈ →, ψ ∈ (A ∪→)
and S ⊆ (A ∪→). We say that ϕ defeats ψ iff either ψ = trg(ϕ) or src(ψ) = trg(ϕ).

Additionally, we say that S is conflict-free iff there do not exist ϕ, ψ ∈ S such that ϕ
defeats ψ.

The notions of defense and admissibility then follows with a similar idea as in standard
abstract argumentation frameworks.

Definition 2.1.17 (AFRA admissible). Let F = 〈A,→〉 be an AFRA, ϕ ∈ (A ∪→) and
S ⊆ (A ∪→). We say that S defends ϕ iff for every ψ ∈ → such that ψ defeats ϕ, there
exists a δ ∈ S such that δ defeats ψ. We say that S is admissible iff S is conflict-free and
defends its elements.

The complete semantics then follows with a similar definition as in classical abstract
argumentation but using the adapted notions just defined.

Definition 2.1.18 (AFRA complete). Let F = 〈A,→〉 be an AFRA and S ⊆ (A∪→). We
say that S is a complete extension of F iff S is admissible and contains every ϕ ∈ (A∪→)
it defends.

2.1.4 Support in Abstract Argumentation
While classical abstract argumentation revolves around attacks, there has been research on
extending it with a positive relation of support between arguments. Many possible interpre-
tations for this relation of support have been studied, in particular deductive support [26],
necessary support [30] and evidential support [31]. We will first examine the formalism
introduced by Cayrol and Lagasquie-Schiex called bipolar argumentation framework [25],
as summarized by G. Boella et al. in [26], which focuses on support of the deductive kind.
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Figure 2.2: Example bipolar argumentation framework

Figure 2.3: Flattened BAF from Figure 2.2

Definition 2.1.19 (Bipolar Argumentation Framework (BAF)). A bipolar argumentation
framework (BAF) is a triple 〈A,→,⇒d〉 where A is a set of arguments,→⊆ A×A is an
attack relation and⇒d⊆ A×A is a deductive support relation.

Boella et al. [26] treat support in a deductive sense. This leads to the introduction of
mediated attacks as an intermediate step for the evaluation of the framework. The intuition
behind these attacks is that if from a we can deduce b, then if we do not have b, we also
cannot have a. These attacks then allow for a BAF to be evaluated using standard abstract
argumentation tools, for example by using the complete semantics to identify the sets of
acceptable arguments.

Formally, they define the semantics of bipolar argumentation frameworks with respect
to their flattening. The flattened framework will consist of meta-arguments and an attack
relation only, with the deductive support relation from the BAFs being represented as a
combination of auxiliary meta-arguments and attack relations.

Definition 2.1.20 (BAF Meta-arguments). Given a bipolar argumentation framework 〈A,→
,⇒d〉, the set of corresponding meta-argumentsMA is {acc(a) | a ∈ A}∪{Za,b | a, b ∈ A
s.t. a⇒d b} and→2⊆MA×MA is a binary relation on MA such that:

• For all a, b ∈ A such that a⇒d b, we have acc(b)→2 Za,b and Za,b →2 acc(a)

Example 2.1.2. The example represented in Figure 2.2 is flattened in Figure 2.3:

Let us now examine the case of necessary support, as described in [30].
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Figure 2.4: Higher level argumentation framework

Definition 2.1.21 (Argumentation Framework with Necessities (AFN)). An argumentation
framework with necessities (AFN) is a triple 〈A,→,⇒n〉 where A is a set of arguments,
→⊆ A×A is an attack relation and⇒n⊆ A×A is a necessity relation.

Auxiliary attacks are also defined here in terms of the support relation. In this case,
they are called extended attacks. The behavior of this relation is similar to the one of the
sub-argument relation in structured argumentation frameworks such as ASPIC+ [6]: if a1
supports a2, then attacking a1 will result in an extended attack on a2.

The semantics are then defined in a similar way as for deductive support, by making
these extended attacks explicit and then applying standard abstract argumentation tools.

The behavior of this support relation can be replicated inside a standard AF via flatten-
ing, as described in [26]. It is quite similar to the behavior of deductive support, just in the
opposite direction.

Definition 2.1.22 (AFN Meta-Arguments). Given an AFN 〈A,→,⇒n〉, the set of corre-
sponding meta-arguments MA is {acc(a) | a ∈ A} ∪ {Za,b | a, b ∈ A s.t. a ⇒n b} and
→2⊆MA×MA is a binary relation on MA such that:

• For all a, b ∈ A such that a⇒n b, we have acc(a)→2 Za,b and Za,b →2 acc(b)

2.1.5 Joint attacks
Another extension of AFs allows for joint attacks, where multiple arguments join forces to
attack another argument.

D. Gabbay [24] calls this kind of relation a joint attack. He defines it as follows:

Definition 2.1.23 (Higher Level Argumentation Framework). A higher level argumenta-
tion framework is a triple 〈A,A0,→〉, where A 6= ∅ is a set of arguments, A0 is the family
of all finite non-empty subsets of A and→⊆ A0 ×A is an attack relation.

For simplicity of notation we will sometimes write x for the singleton set {x}when this
does not cause any ambiguities.

Similarly as before, the semantics of higher level frameworks will be defined in terms
of their flattening. We define the flattening as follows:

Definition 2.1.24 (Higher Level AF Meta Arguments). Given a higher level argumentation
framework 〈A,A0,→〉, the set of corresponding meta-arguments MA is {acc(a), rej(a) |
a ∈ A} ∪ {e(X) | X ∈ A0} and→2⊆MA×MA is a binary relation on MA such that:

16



Figure 2.5: Flattened version of the framework from Figure 2.4

• For all a ∈ A, we have acc(a)→2 rej(a)

• For all X ∈ A0, and every b ∈ A such that X → b, we have that e(X) →2 acc(b)
and rej(a)→2 e(X) for every a ∈ X .

In the flattening, the success of a joint attack depends solely on the acceptance of the
meta-argument e(X), which itself depends on the acceptance of every argument in the
coalition.

The flattening of the framework from Figure 2.4 is depicted in Figure 2.5.

2.2 The ASPIC+ Framework for Structured Argumenta-
tion

When designing an argumentation framework, two of the important design decisions which
have to be made are the following: how can arguments be built and how can they be at-
tacked? S. Modgil and H. Prakken proposed a system called the ASPIC+ framework [6]
which attempts to ease the designing of argumentation models by answering those ques-
tions among others. There are two main ideas on which the ASPIC+ framework is based.
The first idea is that conflicts are usually resolved with explicit preferences. The second
idea is that arguments are built using either strict or defeasible inference rules. While
strict rules guarantee the inference of a certain conclusion from given premises, defeasible
rules only present a presumption in favor of their conclusion. The goal of the ASPIC+
framework is to provide a systematic way of constructing arguments and attacks from a
knowledge base and a set of inference rules. These rules and knowledge base are more
intuitive to mine from a text and easier to motivate.

In order to use the ASPIC+ system, one needs to provide some information. The first
element is a logical language closed under negation. Then one has to provide two sets
of (possibly empty) strict and defeasible inference rules. Additionally, one must provide
a partial naming function which maps some of the defeasible rules to a formula from the
chosen logical language. The collection of this information is called an argumentation
system.

Definition 2.2.1 (Argumentation System). An argumentation system is a triple AS =
(L,R, n) where:

17



• L is a logical language closed under negation (¬).

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form
φ1, ..., φn → φ and φ1, ..., φn ⇒ φ respectively, where φi and φ are well-formed
formulas in L andRs ∩Rd = ∅.

• n is a partial function such that n : Rd −→ L.

We define a function − such that −φ = ψ if φ = ¬ψ, otherwise −φ = ¬φ.
The intuition is that the rules in R are on the meta-level compared to the language

L and allow one to conclude the head of a rule if given the antecedents. The strict rules
are rules of inference which are considered to hold in all cases. Hence, if one accepts its
antecedents, then one must also accept its conclusion. Defeasible rules on the other hand
are ones which are known to be generally true but which might fail in some cases and hence
their inferences and conclusions are possible subjects of attacks.

For the rules to be of some use, one needs to define a set of premises which will serve
as a knowledge base from which one can start building arguments by applying the rules.

Definition 2.2.2 (Knowledge Base). A emphknowledge base in an AS = (L,R, n) is
a set of K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary
premises).

The axioms are formulas of which the truth value is indisputable, while the ordinary
premises are formulas which can be used to make further inferences but might turn out to
be defeated in the end. By joining these with an appropriate argumentation system, one
gets an argumentation theory.

Definition 2.2.3 (Argumentation Theory). An emphargumentation theory is a tuple AT =
(AS,K) where AS is an argumentation system and K is a knowledge in AS.

An argumentation theory now contains all the elements needed for building the argu-
ments. ASPIC+ provides a few ways to construct these from the theory. An argument in
ASPIC+ has a few properties which are given by the following functions:

• Prem returns the set of all ordinary premises of the argument.

• Conc returns the conclusion of the argument.

• Sub returns all its sub-arguments.

• DefRules returns the set of defeasible rules used in the argument.

• TopRule returns the last inference rule used, if applicable.

We now have three different ways to build an argument. Either it introduces one of the
ordinary premises from the knowledge, or it makes an inference from a strict or defeasible
rule.

18



Definition 2.2.4 (ASPIC+ Argument). An emphargument a on the basis of an argumen-
tation theory with a knowledge base K and an argumentation system (L,R, n) has one of
the following forms:

1. ϕ, where ϕ ∈ K with:
Prem(a) = {ϕ},
Conc(a) = ϕ,
Sub(a) = {ϕ},,
DefRules(a) = ∅,,
TopRule(a) is undefined.

2. a1, ..., an → ϕ, where a1, ..., an are arguments such that Conc(a1), ...,Conc(an)→
ϕ ∈ Rs with:
Prem(a) = Prem(a1) ∪ ... ∪ Prem(an),
Conc(a) = ϕ,
Sub(a) = Sub(a1) ∪ ... ∪ Sub(an) ∪ {a},
DefRules(a) = DefRules(a1) ∪ ... ∪ DefRules(an),
TopRule(a) = Conc(a1), ...,Conc(an)→ ϕ.

3. a1, ..., an ⇒ ϕ, where a1, ..., an are arguments such that Conc(a1), ...,Conc(an)⇒
ϕ ∈ Rd with:
Prem(a) = Prem(a1) ∪ ... ∪ Prem(an),
Conc(a) = ϕ,
Sub(a) = Sub(a1) ∪ ... ∪ Sub(an) ∪ {a},
DefRules(a) = DefRules(a1) ∪ ... ∪ DefRules(an) ∪ {Conc(a1), ...,Conc(an)⇒
ϕ},
TopRule(a) = Conc(a1), ...,Conc(an)⇒ ϕ.

Example 2.2.1. Consider a knowledge base in an argumentation system with language L
consisting of p, q, r, s, t, d1, d2 and their negations, withRd = {d1, d2} andRs = {s1, s2},
where the rules are defined as:

• d1: r ⇒ ¬q

• d2: t⇒ ¬p

• s1: p→ q

• s2: s→ ¬d2
Also, the knowledge base is formed by Kn = {r, s} and Kp = {p, t}. Notice that we

have defined rules by writing them in the form n(r) : r.
Two of the arguments we can construct are a1 = p and a2 = a1 → q, where Prem(a2)

= {p}, Conc(a2) = q, Sub(a2) = {a1, a2}, DefRules(a2) = ∅, TopRule(a2) = s1.

Now that we have defined a way to construct the arguments from the knowledge base
and inference rules, we can define how to build the other component of an abstract ar-
gumentation framework, namely the attacks. There are 3 ways for an argument to attack
another one. It must attack it either on one of its premises, on the inference rule used or on
the conclusion.
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Definition 2.2.5 (ASPIC+ Attack). An argument a emphattacks an argument b if and only
if a undermines, undercuts or emphrebuts b, where:

• a emphundermines b on ϕ if and only if Conc(a) = −ϕ for an ordinary premise
ϕ ∈ Prem(b).

• a emphundercuts b (on b′) if and only if Conc(a) = −n(r) for some b′ ∈ Sub(b)
such that TopRule(b′) = r.

• a emphrebuts b (on b′) if and only if Conc(a) = −ϕ for some b′ ∈ Sub(b) of the
form b′′1, ..., b

′′
n ⇒ ϕ.

Example 2.2.2. In our previous example, we can also construct the arguments b1 = r,
b2 = b1 ⇒ ¬q, c1 = t, c2 = c1 ⇒ ¬p, e1 = s and e2 = e1 → ¬d2. We then have that c2
undermines a1 and a2 on p, a2 rebuts b2 and e2 undercuts c2.

Notice that rebuttal is usually symmetric, however this kind of duality might be resolved
by having a preference over the arguments. This way, an argument may only attack another
one if it is at least as preferred as the attacked one. Given a preference relation, we can
then define what it means for an attack be successful, and in general we will say that an
argument a emphdefeats an argument b if the attack is successful.

Definition 2.2.6 (Successful Undermining, Rebuttal and Defeat). Given a preference rela-
tion � over the arguments, we say that:

• a emphsuccessfully undermines b if and only if a undermines b on ϕ and ϕ � a.

• a emphsuccessfully rebuts b if and only if a rebuts b on b′ and b′ � a.

• a emphdefeats b if and only if it undercuts, successfully undermines or successfully
rebuts b.

Notice that all undercuttings are considered as successful irrespective of preference as
no such criteria is required for that kind of attack.

We can then define the procedure to generate an abstract argumentation framework
from an argumentation theory and a preference relation.

Definition 2.2.7 (Corresponding AF). An abstract argumentation framework (AF) corre-
sponding to an argumentation theory AT = (AS,K) and a preference relation over argu-
ments � is a pair (A,→), such that:

• A is the smallest set of all finite arguments constructed from K in AS satisfying
Definition 2.2.4;

• (x, y) ∈→ if and only if x defeats y with respect to �.

The preference relation is easier to motivate and understand if it is first defined on the
set of defeasible rules and premises. We can then lift the preference relation from rules to
arguments in one of several ways. One is the weakest-link principle, another is the last-link
principle. In the weakest-link principle we compare two arguments a and b by comparing
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the least preferred rules in DefRules(a) and DefRules(b). If the least preferred rule in
DefRules(a) is at least as preferred as the weakest rule in DefRules(b), then we say that a
is at least as preferred to b. Formally, we get:

Definition 2.2.8 (Weakest-link preference). Let a and b be two arguments. We have that
a �w b if and only if:

1. If DefRules(a) = DefRules(b) = ∅, then there exists pa ∈ Prem(a), such that for
all pb ∈ Prem(b), we have pa ≤ pb, else;

2. If Prem(a) = Prem(b) = ∅, then there exists ra ∈ DefRules(a), such that for all
rb ∈ DefRules(b), we have ra ≤ rb, else;

3. There exists ra ∈ DefRules(a) and pa ∈ Prem(a), such that for all rb ∈ DefRules(b)
and pb ∈ Prem(b), we have ra ≤ rb and pa ≤ pb

We define a notion of strict preference ≺w by replacing ≤ with < in the above defini-
tion.

The other way to lift a preference relation over rules to one over arguments is by using
the last link principle. According to this principle, we compare the last defeasible rules
used in the argument, which corresponds to the value given by applying the function Last-
DefRules to the argument. We define this function as follows:

Definition 2.2.9 (Last defeasible rules). Let a be an argument. We define the function
LastDefRules as follows:

• If DefRules(a) = ∅, then LastDefRules(a) = ∅, else;

• If a = a1, ..., an ⇒ ϕ, then LastDefRules(a) = {Conc(a1), ...,Conc(an)}, else;

• If a = a1, ..., an → ϕ, then LastDefRules(a) = {LastDefRules(a1), ...,LastDefRules(an)}

We then define the lifting of the preference from rules to arguments according to last
link principle as:

Definition 2.2.10 (Last link preference). Let a and b be two arguments. We have that a �l b
if and only if:

• If LastDefRules(a) = LastDefRules(b) = ∅, then there exists pa ∈ Prem(a) such
that for all pb ∈ Prem(b), we have pa ≤ pb, else;

• There exists ra ∈ LastDefRules(a) such that for all rb ∈ LastDefRules(b), w have
ra ≤ rb.

Again, we define the strict preference relation ≺l by replacing ≤ with < in the above
definition.
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Chapter 3

Commitments in argumentation

3.1 Introduction
Given that many argumentation semantics have been proposed in the literature [9] and that
most argumentation semantics allow for multiple extensions [10], applications of abstract
argumentation theory are faced with two choice problems: First, how to choose among
the various argumentation semantics? Second, given an argumentation semantics, how to
choose an extension?

An important methodology to support rational choices concerning the first problem is
the principle-based approach [11, 12, 10]. In this chapter, we propose a novel methodology
to support choice-making concerning the second problem, i.e. concerning the selection of
one among many extensions of a given AF in a given semantics.

Sometimes the need to choose an extension is circumvened by merging all extensions
into a single justification status for each argument [32, 9]. For example, an argument
is said to be strongly accepted iff it is in all extensions. However, this approach gives
up the desirable properties of extensions that have been built into the chosen semantics.
For example, the set of strongly accepted arguments in preferred semantics may not be
admissible. This problem can be avoided by choosing one extension rather than merging
all extensions into a single justification status. But this makes the question of how to choose
among multiple extensions a very pressing question.

In this chapter, we do not favor one particular method for choosing an extension, but
instead propose a methodology for studying and analysing this problem. We introduce the
notion of a commitment graph, to represent the commitment towards a single extension
from a set of them for a given AF in a given semantics. The edges of a commitment graph
represent crucial commitment points that bring one closer to the final choice of a single
extension. We distinguish between abstract commitment graphs, where the only content
present in the nodes is extension-labels on the leaves, and instantiations of these with con-
crete commitment graphs that give a particular meaning to every node of the graph. Just like
the distinction that Dung [4] introduced between abstract argumentation frameworks and
structured instantiations thereof, this distinction helps to distill the features of commitment
graphs that come from the graph structure alone and study these separately.

In this chapter we do not propose to extend Dung’s notion of argumentation frame-
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works. Dung has been criticized for its abstract nature and therefore Dung’s formalism has
been generalized in many ways, for example with structured frameworks [6], ADFs [33],
etc. Such extensions are outside the scope of this chapter, but some interesting possibilities
suggested by our work are discussed in the future work section of this chapter. Instead,
in this chapter we give a new perspective on existing abstract argumentation semantics in
terms of commitment graphs.

Furthermore, note that our choice to base commitment graphs on the traditional extension-
based approach to abstract argumentation semantics rather than on the labeling-based ap-
proach [13, 9] is merely due to the fact that this simplifies the exposition of our ideas. All
the ideas developed in this chapter could also be developed with respect to the labelling-
approach, and actually this would give rise to more fine-grained commitment graphs, which
allow for more flexibility in the choice-making process. We leave the exploration of this
adaptation of our ideas to future work.

Consider the framework depicted in Fig. 3.1 (a). With preferred semantics, we have
three possible extensions: {a, c}, {a, d} and {b, d}. In the commitment graph depicted in
Fig. 3.1 (b), we see that one can either first commit to accepting a and rejecting b, or to
accepting d and rejecting c, and then from there reach any of the extensions in the leaves of
the graph. The argumentation framework depicted in Fig. 3.1 has the same three preferred
extensions, and therefore the same commitment graph in Fig. 3.1 (b) represents the possible
gradual commitments. This means that for the sake of summarization, the framework in
(c) corresponds to the same commitment graph while containing one less attack, and it
is therefore more compact. Notice that this framework cannot be further reduced without
changing the commitment structure.

Now consider a scenario where we wish to enforce a kind of directionality in the com-
mitment process, so that in Fig. 3.1, since elements of the pair {a, b} have a path to elements
of the pair {c, d} but not vice-versa, we cannot commit on the status of c or d unless we
have already committed towards some status on a and b. In that case, we obtain the com-
mitment graph in Fig. 3.1 (d), where one cannot first commit on rejecting c and accepting
d while keeping the option to accept or reject a. So committing towards the acceptance of
d leads to accepting b as well, since the other extension where b is rejected is reachable in
smaller steps by first accepting a and only then accepting d. Applying this requirement to
the first framework does not change anything however, since every element has a path to
every other one. In terms of summarization however, this means that the two frameworks
from (a) and (c) do not have the same commitment structure anymore, and therefore the
framework from (a) cannot be summarized by the one from (c). It turns out that under these
conditions, the framework from (a) cannot be summarized further.

The layout of this chapter is as follows. In Section 3.2 we introduce abstract com-
mitment graphs as well as the notion of commitment mappings that map each AF to an
abstract commitment graph. Inspired by the principle-based approach to argumentation
theory, we additionally define in this section two principles of commitment mappings that
seem desirable, the principle of commitment-graph directionality and the one of direc-
tional choice-making. In Section 3.3 we define a first concrete instantiation of commitment
graphs, namely most fine-grained commitment graphs, whose corresponding commitment
mapping satisfies one of the two principles from Section 2 and does not satisfy the other.
In Section 3.4 we introduce an alternative instantiation of commitment graphs called SCC-
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Figure 3.1: (a) Example argumentation framework F . (b) Commitment graph of F with
respect to preferred semantics. (c) F ′, sub-framework of F . (d) Directional commitment
graph of F ′ with respect to preferred semantics.

directional commitment graphs that is based on the well-known SCC-recursive scheme and
that satisfies both principles from Section 3.2. In Section 3.5 we present a different kind of
commitment graphs based on the distance between extensions. In Section 3.6, we provide
equivalence and summary notions for abstract argumentation frameworks based on com-
mitment graphs. In Section 3.7 we discuss related work, and in Section 3.8 we conclude
and discuss topics for further research.

3.2 Abstract commitment graphs
In this section, we introduce abstract commitment graphs, where the only content present in
the nodes is extension-labels on the leaves. We do however have a few requirements on the
graph: It should be a directed acyclic graph, with a single root from which all other nodes
are reachable, to represent our starting point in the choice-making process. Also, we require
that each node connect to a distinct set of reachable endpoints, since we are interested in
the processes where some extensions are discarded at every step as we traverse the graph.

We borrow the well-studied concept of rooted graph [34], also sometimes called flow-
graph [35].

Definition 3.2.1 (Directed Rooted Graph). A directed rooted graph is a directed graph
(V,E) with an element r ∈ V (called the root) such that there is a path from r to every
other element of V . A labeled directed rooted graph is a triple (V,E, L) where (V,E)
is a directed rooted graph and L is a (partial) labeling of V . Given c ∈ V , we define
reachable-leaves(c) := {c′ ∈ V | c′ is a leaf of (V,E) and c′ is E-reachable from c}.

We then extend this notion to the new notions of abstract extension graph and abstract
commitment graph.
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Definition 3.2.2 (Abstract Extension Graph, Abstract Commitment Graph). Given an argu-
mentation framework F = 〈A,→〉, we say that a labeled directed rooted graph (V,E, L) is
an abstract extension graph of F iff (V,E) is acyclic and L assigns distinct subsets ofA to
the leaves of (V,E). Additionally, if for all distinct c, c′ ∈ V we have reachable-leaves(c) 6=
reachable-leaves(c′), then we say that (V,E, L) is an abstract commitment graph. In this
case, we call the elements of V commitment points.

Example 3.2.1. Consider the argumentation framework depicted in Fig. 3.2.(a). A possible
abstract commitment graph with respect to preferred semantics is the one depicted in Fig.
3.2.(b).

a
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Figure 3.2: (a) Example argumentation framework F1 = 〈A1,→1〉. (b) A possible abstract
commitment graph G of F1 with respect to preferred semantics. (c) An unattacked sub-
framework F ′1 = 〈A′1,→′1〉 of F1, where A′1 = {a, b, c, d}. (d) The restriction G ↓A′1 .

We now wish to examine some properties of functions which return abstract commit-
ment graphs for any AF, which we call commitment mappings.

Definition 3.2.3 (Commitment Mapping). Let F be the class of all argumentation frame-
works and C the class of all abstract commitment graphs. A commitment mapping is a
function g : F 7→ C that for every argumentation framework F , returns an abstract com-
mitment graph of F .

Commitment mappings can be seen as a refinement of classical abstract argumentation
semantics. Instead of returning a set of extensions for a given graph, an abstract commit-
ment graph is returned instead, providing more granularity between the framework and the
different extensions. We thus introduce a notion of correspondence between commitment
mappings and semantics by saying that a commitment mapping can give rise to a semantics
by providing commitment graphs where the leaves are exactly the extensions that semantics
would return.

Definition 3.2.4 (Giving Rise to a Semantics σg). Given a commitment mapping g, we say
that g gives rise to the semantics σg, defined such that for all argumentation frameworks
F ∈ F, σg(F ) = {L(n) | n is a leaf in (V,E, L), where g(F ) = (V,E, L)}.
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One important principle studied in the principle-based approach to argumentation the-
ory is the Principle of Directionality, which was introduced by Baroni and Giacomin [11],
and which has been extensively studied for abstract argumentation semantics [10]. We now
propose a way to translate this principle to a similar principle for commitment mappings.

We start with the notion of unattacked sub-framework, which is a sub-framework such
that no argument outside of it attacks an argument inside of it. In terms of directionality,
these are sub-frameworks that one should be able to evaluate locally, i.e. without having
to take into account the rest of the framework. This formal notion is also sometimes called
initial in the literature [36].

Definition 3.2.5 (Unattacked Sub-framework). We say that F ′ = 〈A′,→′〉 is an unattacked
sub-framework of F = 〈A,→〉 iff A′ ⊆ A,→′= →∩ A′ × A′ and there is no argument
a ∈ A \ A′ attacking some argument b ∈ A′.

We define a notion of equivalence between commitment points based on whether their
reachable endpoints are equal with respect to the sub-framework of interest. This allows us
then to define a notion of a contraction of a commitment graph, so that it only represents
choices made on a sub-framework of the original one while ensuring it still satisfies the
requirements for an abstract commitment graph.

Definition 3.2.6 (Commitment-equivalence). Given an abstract commitment graph (V,E, L)
of an argumentation framework F = 〈A,→〉, a subset of argumentsA′ ⊆ A and two com-
mitment points c1, c2 ∈ V , we say that c1 and c2 are commitment-equivalent with respect
toA′ (denoted as c1 'A′ c2) iff {L(c)∩A′ | c ∈ reachable-leaves(c1)} = {L(c)∩A′ | c ∈
reachable-leaves(c2)}.

Definition 3.2.7 (Restriction). Given an abstract commitment graph G = (V,E, L) of an
argumentation framework F = 〈A,→〉 and a subset of arguments A′ ⊆ A, we define the
restriction of G to A′ as G ↓A′= (V ′, E ′, L′), where:

1. V ′ is the set of equivalent classes of 'A′ in G;

2. (c, c′) ∈ E ′ iff c 6= c′ and ∃c1 ∈ c, c2 ∈ c′ such that (c1, c2) ∈ E;

3. for every leaf c, L′(c) = L(c1) ∩ A′ where c1 ∈ c is a leaf in G.

Lemma 3.2.1. Given an abstract commitment graph G of an argumentation framework
〈A,→〉 and a set A′ ⊆ A, the restriction G ↓A′ is also an abstract commitment graph.

Example 3.2.2. Fig. 3.2.(c) depicts an unattacked sub-framework F ′1 = 〈A′,→′〉 of the
framework F1 depicted in Fig. 3.2.(a). The restriction of the commitment graph in 3.2.(b)
to A′ is depicted in Fig. 3.2.(d).

We can now define our principle of directionality for commitment mappings:

Definition 3.2.8 (Commitment-graph directionality). We say that a commitment mapping
g satisfies commitment-graph directionality iff for any argumentation frameworks F =
〈A,→〉 and F ′ = 〈A′,→′〉 such that F ′ is an unattacked sub-framework of F , g(F ′) =
g(F ) ↓F ′ .
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Another principle can be derived from the notions defined above, also on the topic of
directionality, but this time also incorporating the ideas of choice-making. The idea here is
that the commitments should follow the directionality of the graph, so that if an argument
a can reach another argument b but not vice-versa, then commitments on the status of a
should come no later than commitments on the status of b. For this we first define what it
means for one to be committed on the status of an argument at a given commitment point.

Definition 3.2.9 (Committed arguments (Ac)). Given a commitment graph (V,E, L) of
an argumentation framework F = 〈A,→〉 and a commitment point c ∈ V , we define
the set Ac of arguments whose status is committed in c to be {a ∈ A | either ∀c′ ∈
reachable-leaves(c). a ∈ L(c′), or ∀c′ ∈ reachable-leaves(c). a /∈ L(c′)}.

Similar to the notion of unattacked sub-framework, we then define a notion of unattacked
arguments within the ones on whose status we are committed.

Definition 3.2.10 (unattacked(c)). Given a commitment graph (V,E, L) of an AF F =
〈A,→〉 and a commitment point c ∈ V , we define the set unattacked(c) to be {a ∈ Ac |
@b ∈ A \ Ac such that there is an→-path from b to a but not vice-versa }.

Definition 3.2.11 (Directional choice-making). We say that a commitment mapping g sat-
isfies directional choice-making iff for any argumentation framework F = 〈A,→〉, if
g(F ) = (V,E, L), then for all c ∈ V :

{c′′ | c′′ ∈ V is a leaf, ∃c′ ∈ reachable-leaves(c) such that (L(c′) ∩ unattacked(c)) ⊆
L(c′′)}

= reachable-leaves(c)

Example 3.2.3. Consider the AF F2 depicted in Fig. 3.3 (a), with an abstract commitment
graph for it in (b). Looking at the commitment point c′, we have reachable-leaves(c′) corre-
sponding to the extensions {a, d} and {b, d}, and thereforeAc′ = {c, d, e} since a is in one
extension but not the other, and similarly for b. However, since for each of c, d and e, b has
an→-path to them but not vice-versa, we have unattacked(c′) = ∅. So when looking at the
set {c′′ | c′′ ∈ C is a leaf,∃c′ ∈ reachable-leaves(c) such that (L(c′) ∩ unattacked(c)) ⊆
L(c′′)}, we get the set of all leaves of the commitment graph, including the one labelled ac,
which is not reachable from c′. The intuition is that here one is not allowed to make com-
mitments on c nor d while a and b are still uncommitted to. On the other hand, now looking
at the commitment point c, we have reachable-leaves(c′) corresponding to the extensions
{a, c} and {a, d}, so we have Ac = {a, b, e}. For e, we still have that c has an→-path to
e but not vice-versa, so unattacked(c) = {a, b}. But now, when looking at the set {c′′ |
c′′ ∈ C is a leaf,∃c′ ∈ reachable-leaves(c) such that (L(c′) ∩ unattacked(c)) ⊆ L(c′′)},
we obtain still only the leaves which are reachable from c, since neither {a, c} ∩ {a, b} nor
{a, d} ∩ {a, b} produce a subset of {b, d}. Notice that even though one is committed to the
rejection of e at the commitment point c, this is not a problem. This commitment does not
result from an active choice, but rather is a logical consequence of the set of extensions,
since none of them contain e. Hence, we do not want to forbid all commitments which do
not respect the directionality of the→ relation, but only the ones resulting from a choice.
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Figure 3.3: (a) Example argumentation framework F2. (b) An abstract commitment graph
for F2.
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Figure 3.4: (a) Example argumentation framework F3. (b) Intersection-based commitment
graph of F3 with respect to complete semantics, icgcomplete(F3).

3.3 Most fine-grained commitment graphs
In this section, we see an example of a commitment mapping producing concrete commit-
ment graphs, where we now have labels on the intermediary points too.

We first introduce the notion of a partial extension, which allows to represent interme-
diate steps in the commitment process about which arguments to include in the extension
and which arguments to exclude. Given an argument a, we denote the information that a
has been chosen to be in the extension by +a, and the information that a has been chosen
to not be in the extension by −a. This motivates the following definition:

Definition 3.3.1 (Partial Extension). Given an argumentation framework 〈A,→〉, we define
a partial extension for A to be a subset Γ of {+,−}×A such that for no argument a ∈ A,
+a ∈ Γ and −a ∈ Γ. We denote the elements of a partial extension by +a and −a rather
than by (+, a) and (−, a). The set of all partial extensions for A is denoted by PA.

When neither +a nor −a is in a given partial extension, this means that one has not
yet committed on the status of argument a (not to be confused with the undecided label
from the labeling-based approach). When the status of all arguments has been determined,
a total extension is reached:

Definition 3.3.2 (Total Extension). A partial extension Γ ofA is called a total extension iff
for every a ∈ A, either +a ∈ Γ or −a ∈ Γ.

Example 3.3.1. Consider the framework depicted in Fig. 3.4 (a), focusing on its complete
extensions ∅, {a} and {b}.
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There is a direct correspondence between the classical notion of an extension as a subset
of the sets of arguments, and the notion of a total extension defined here: Having +a in the
total extension corresponds to a being in the corresponding extension, and having−a in the
total extension corresponds to a not being in the corresponding extension. This motivates
the following definition:

Definition 3.3.3 (ε Function). Given a set of arguments A and a partial extension Γ for A,
we define ε(Γ) := {a ∈ A | +a ∈ Γ}.

ε is a bijection between the total extension for A and subsets of A. So when A is
specified, we can also refer to its inverse ε−1, defined by ε−1(e) := {+a | a ∈ e} ∪ {−a |
a ∈ A \ e}.

The following notion allows us to refer to the set of arguments whose status has already
been determined:

Definition 3.3.4 (Coverage). LetA be a set of arguments and Γ ∈ PA be a partial extension.
We define the coverage of Γ to be Γ̄ := {a ∈ A | +a ∈ Γ ∨ −a ∈ Γ}.

We now fix an argumentation framework and a semantics, allowing us to focus on the
commitment structure of how the initial partial extension, from which all total extensions
are reachable, leads to each one of these total extensions.

Definition 3.3.5 (Concrete Commitment Graph). Given an argumentation framework F =
〈A,→〉 and an abstract commitment graph (V,E, L) of F , we say that (V,E, L) is a con-
crete commitment graph (CCG) of F iff the following conditions hold:

1. V ⊆ PA

2. for all leaves c ∈ V , L(c) = ε(c);

3. if (c, c′) ∈ E, then c ⊂ c′.

We define a straightforward concrete commitment graph where the nodes are the in-
tersections of different subsets of extensions and the relation is just the subset relation
restricted to its closest neighbor.

Definition 3.3.6 (Intersection-based commitment graph). Given an argumentation frame-
work F = 〈A,→〉 and a semantics σ, we define the intersection-based commitment graph
of F with respect to σ to be icgσ(F ) = (V,E, L) such that V = {v | ∃X ⊆ σ(F ), v =⋂
{ε(x)−1 | x ∈ X}}, E = {(v, v′) | v ⊂ v′ ∧ @v′′ ∈ V s.t. v ⊂ v′′ ⊂ v′} and L is the

restriction of ε to V .

Example 3.3.2. Fig. 3.5 illustrates the notion of an intersection-based commitment graph.
The preferred semantics returns three extensions, with a structure such that one can commit
towards any two extensions before fully committing to a single one. Notice that if we did
not differentiate partial extensions such as −a from ∅, we would get a commitment graph
with one less layer of granularity.

29



a

b c

(a)

∅

−c −b −a

+a− b
−c

−a+ b
−c

−a− b
+c

(b)

Figure 3.5: (a) Example argumentation framework F4. (b) Intersection-based commitment
graph of F4 with respect to preferred semantics, icgpreferred(F4).

We now provide an equivalent, but more refined construction for the intersection-based
commitment graph, which allows us to introduce additional requirements in the intermedi-
ate steps of the construction, as we describe in Section 3.4.

We first define the graph resulting from the subset relation on the partial extensions,
creating an abstract extension graph. This allows us to later define a commitment mapping
which constructs a concrete commitment graph with as much granularity as possible.

Definition 3.3.7 (Most Exhaustive Update (meu)). Given an argumentation framework F =
〈A,→〉 and a semantics σ, we define the most exhaustive update of F with respect to σ to
be meu(F, σ) := (V,E, L), where V := {v ∈ PA | ∃e ∈ σ(F ) such that v ⊆ ε−1(e)},
E := {(v, v′) ∈ E | v ⊂ v′} and L is the restriction of ε to V .

The most exhaustive update is an abstract extension graph.

Proposition 3.3.1. For any given argumentation framework F and semantics σ, meu(F, σ)
is an abstract extension grah.

We now distinguish between two kinds of edges in the most exhaustive update: the
edges that relate two partial extensions that both lead to the same final total extensions, and
the ones where the set of reachable total extensions becomes smaller. This corresponds to
the idea that in some steps, no new information is gained, no commitments are made, and
thus only reasoning is performed, while in other cases, the range of possible extensions is
reduced and thus commitments are made.

Definition 3.3.8 (Reasoning Step). Let A be a set of arguments and (V,E, L) be an ab-
stract extension graph such that V ⊆ PA. We say that (v, v′) ∈ E is a reasoning step iff
reachable-leaves(v) = reachable-leaves(v′). Otherwise, we say that (v, v′) is a commit-
ment step. We denote the set of all reasoning steps in (V,E, L) by R((V,E, L)).

We define the most fine-grained commitment graphs by focusing on the commitment
steps in the most exhaustive update. For this, we need to condense the most exhaustive
update such that reasoning is made automatically. This is akin to approaches in epistemic
logic in which knowledge is assumed to be logically closed, i.e. in which reasoning is as-
sumed to be instantaneously completed. We also identify the commitment points in the
commitment graphs, which are the nodes where no more reasoning can be made and mak-
ing a commitment cannot be avoided.
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Definition 3.3.9 (Commitment Contraction). Let A be a set of arguments, let (V,E, L)
be an abstract extension graph such that V ⊆ PA and let v ∈ V . We say that v′ ∈ V
is a reasoning completion of v in (V,E, L) iff v′ is a ⊆-maximal partial extension such
that either there is an R((V,E, L))-path from v to v′, or v = v′. If v ∈ V is its own
reasoning completion, we say that v is a commitment point in (V,E, L). We denote the
set of all commitment points in (V,E, L) by C((V,E, L)). We call the graph (V ′, E ′, L′),
where V ′ := C((V,E, L)), E ′ := E ∩ (V ′ × V ′) and L′ is the restriction of ε to V ′, the
commitment contraction of (V,E, L) and denote it by cc((V,E, L)).

Proposition 3.3.2. Given an argumentation framework F = 〈A,→〉, a semantics σ and
(V,E, L) = meu(F, σ), for any v ∈ V , the reasoning completion of v in (V,E, L) is
unique.

Proof. We proceed by contradiction. Suppose there are distinct v1, v2 ∈ S such that
both are reasoning completions of v in (V,E, L). So both are ⊆-maximal in V such that
reachable-leaves(v) = reachable-leaves(v1) = reachable-leaves(v2). Consider the partial
extension v3 = v1∪v2. Clearly v1 ⊂ v3. Since reachable-leaves(v1) = reachable-leaves(v2),
and E is the subset relation, for every l ∈ reachable-leaves(v1), v3 ⊆ l. Thus v3 ∈ V and
reachable-leaves(v3) = reachable-leaves(v1). So v1 is not ⊆-maximal in V such that
reachable-leaves(v) = reachable-leaves(v1), and therefore we have a contradiction.

We want to define a maximally fine-grained commitment graph, so our intention is that
no commitments are skipped, however small they may be. Thus we filter out the edges
which relate two nodes already connected with more fine-grained paths.

Definition 3.3.10 (Fine-grained Filtering). Let G = (V,E, L) be an abstract extension
graph. We define the fine-grained filtering of G as fgf(G) := (V,E ′, L), where E ′ =
{(v, v′) ∈ E | there is no E-path from v to v′ of length > 1}.

Now we are ready to define the most fine-grained commitment graph of an AF with
respect to a semantics:

Definition 3.3.11 (Most Fine-Grained Commitment Graph (mfg)). Given an argumentation
framework F = 〈A,→〉 and a semantics σ, we define the most fine-grained commitment
graph of F with respect to σ to be mfgσ(F ) := fgf((V,E, L)), where V := C(meu(F, σ)),
E := {(v, v′) ∈ V × V | v ⊆ v′} and L is the restriction of ε to V .

Example 3.3.3. In Fig. 3.6, observe that the root is−e instead of ∅, since−e is an element
of all total extensions. Also, one can see that the commitment mapping mfgpreferred does not
satisfy the principle of directional choice-making, since it is also possible to initially make
a commitment on the status of the arguments c, d, e, even though there is a→-path from b
to all of these arguments, but not vice-versa.

We now establish the equivalence result between the simple and the more refined con-
structions.
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Figure 3.6: (a) Most fine-grained commitment graph of F2 (see Fig. 3.3) with respect to
preferred semantics, mfgpreferred(F2). (b) SCC-directional commitment graph of F2 with
respect to preferred semantics, sdcgpreferred(F2).

Lemma 3.3.3. For any argumentation frameworkF = 〈A,→〉 and semantics σ, icgσ(F ) =
mfgσ(F ).

Proof. Let icgσ(F ) = (V,E, L). We first prove that V is the set of nodes in (Vf , Ef ) =
mfgσ(F ), i.e. V are the commitment points in meu(F, σ). Let meu(F, σ) = (Ve, Ee). Con-
sider a particular v ∈ V . Then, there exists X ⊆ σ(F ) such that v =

⋂
{ε−1(x) | x ∈ X}.

Now, consider any strict superset v′ of v. By construction of (Ve, Ee), reachable-leaves(v) =
{ε−1(x) | x ∈ X}, and Ee is the strict subset relation on Ve. Therefore, it must be that
reachable-leaves(v′) ⊂ reachable-leaves(v), and hence v is its own reasoning completion.
So V ⊆ Vf . We now show the other direction. Consider a particular v ∈ Vf , i.e. v is
a commitment point in (Ve, Ee). If v is a leaf in (Ve, Ee), then we are done since it is
the intersection of a singleton of extensions. If v is not a leaf, then it must be that there
is no v′ ⊃ v such that reachable-leaves(v′) = reachable-leaves(v). Since Ee is the ⊂
relation, it must be that v =

⋂
reachable-leaves(v), and so there exists X ⊆ σ(F ) s.t.

v = {ε−1(x) | x ∈ X}. So V = Vf .
We now show that E = Ef . Ee is the subset relation on V , and Ef is the fine-grained

filtering of Ee, so that (v, v′) ∈ Ef iff there is no Ee path of length ¿ 1 from v to v′, i.e.
there is no v′′ such that (v, v′′), (v′′, v′) ∈ Ee, or in other words v ⊂ v′′ and v′′ ⊂ v′. Hence
Ef = E.

We now state some properties of most fine-grained commitment graphs:

Theorem 3.3.4. For any AF F and semantics σ, mfgσ(F ) is a concrete commitment graph.

Proof. Let (V,E, L) = mfgσ(F ). First of all, (V,E, L) is acyclic and L assigns distinct
subsets of A to its leaves, per Lemma 3.3.3. Additionally, per Lemma 3.3.3, one can see
that the set of reachable leaves of each commitment point in V are distinct. Therefore,
mfgσ(F ) is an abstract commitment graph.

From Lemma 3.3.3 and the construction of icgσ(F ), one can easily see that mfgσ(F )
is also a concrete commitment graph.

Corollary 3.3.5. For any semantics σ, mfgσ is a commitment mapping.

Theorem 3.3.6. For any semantics σ that satisfies the principle of directionality defined in
[11], mfgσ satisfies the principle of commitment-graph directionality.
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Proof. This follows from the fact that σ satisfies the principle of directionality.

Theorem 3.3.7. For any semantics σ ∈ {complete, preferred, semi-stable, naive, stage,CF2,
stage2}, mfgσ does not satisfy the principle of directional choice-making.

Proof. Fig. 3.6 (a) shows a counter-example for the preferred semantics. The same argu-
mentation framework is a counter-example for the complete, semi-stable, naive, stage, CF2
and stage2 semantics.

3.4 SCC-directional commitment graphs
In the previous section, we have seen that the most fine-grained commitment graphs do not
satisfy the principle of directional choice-making. An important notion in connection with
the directionality of the attack relation is the SCC-recursive schema [18], which has been
used in algorithms [37, 38, 39] and in the definition of new semantics (such as the CF2 [40]
and stage 2 semantics [41]).

In this section, we focus on how the SCC-recursive schema can be used as an additional
layer to restrict the relation in the commitment graphs. We define the SCC-directional com-
mitment graphs, and then prove some properties about the relation between the canonical
semantics and the recursive semantics.

Recall the definition of a strongly connected component from Def. 2.1.8.
We impose a restriction on commitment graphs that only allows partial extensions to

specify the status of an argument if it also specifies the status of all its SCC-ancestors (given
by the sccancF function).

Definition 3.4.1 (SCC-directionality). Let F be an argumentation framework and Γ a par-
tial extension of F . We say that Γ satisfies SCC-directionality in F iff for all S ∈ SCCsF ,
if S ∩ Γ̄ 6= ∅, then for all S ′ ∈ sccanF (S), S ′ ⊆ Γ̄.

Definition 3.4.2 (SCC-directional update). Given an argumentation frameworkF = 〈A,→
〉 and a semantics σ such that meu(F, σ) = (V,E), we define the SCC-directional update
of F with respect to σ to be sdu(F, σ) := (V ′, E ′), where V ′ := {Γ ∈ PA | Γ ∈ V and Γ
satisfies SCC-directionality in F} and E ′ := E ∩ (V ′ × V ′).

Definition 3.4.3 (SCC-directional commitment graph). Given an argumentation framework
F and a semantics σ, we define the SCC-directional commitment graph of F with respect
to σ to be sdcgσ(F ) := fgf(cc(sdu(F, σ))).

Example 3.4.1. Consider the argumentation framework F2 from Fig. 3.6. We have its
SCC-directional commitment graph with respect to preferred semantics in Fig. 3.6 (c).
Notice that the right-hand path containing −a +d now directly leads to a total extension,
and the total extension containing +a +d is now only reachable by first choosing +a −b.
Also notice how in this graph the root is ∅ instead of −e, since even though −e already
follows as a reasoning step, due to e being part of a later SCC, its status is left unspecified
until the one of the other arguments is determined.
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Figure 3.7: (a) Example argumentation framework F5. (b) SCC-directional commitment
graph of F5 with respect to complete semantics, sdcgcomplete(F5).

Example 3.4.2. Consider the argumentation framework F5 with its corresponding SCC-
directional commitment graph in Fig. 3.7. Notice how the commitment towards −a +b in
the initial SCC {a, b} directly leads to a total extension, since −c +d −e +f immediately
follow as reasoning steps, while some other paths might have more granularity since they
lead to a greater number of total extensions.

We now state some properties of SCC-directional commitment graphs:

Theorem 3.4.1. For any AF F and semantics σ, sdcgσ(F ) is a concrete commitment graph.

Proof. This follows in a similar way as Theorem 3.3.4.

Corollary 3.4.2. For any semantics σ, sdcgσ is a commitment mapping.

Theorem 3.4.3. For any semantics σ that satisfies the principle of directionality defined in
[11], sdcgσ satisfies the principle of commitment-graph directionality.

Theorem 3.4.4. For any semantics σ, sdcgσ satisfies the principle of directional choice-
making.

3.5 Distance-based semantics
In this section, we present another instantiation of the abstract commitment graphs based
on the notion of distance between extensions.
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Figure 3.8: Example AF F6.

∅ {a} {a, c, e, g} {a, d, f} {b, d, f} {d, f}
∅ 0 1 4 3 3 2
{a} 1 0 3 2 4 3

{a, c, e, g} 4 3 0 5 7 6
{a, d, f} 3 2 5 0 2 1
{b, d, f} 3 4 7 2 0 1
{d, f} 2 3 6 1 1 0

Table 3.1: Hamming distance table between the complete extensions of F6, depicted in Fig.
3.8.

Definition 3.5.1 (Hamming Distance). Given two sets E and E ′, the hamming distance
between E and E ′ is hd(E,E ′) = |(E ∪ E ′) \ (E ∩ E ′)|.

Given a set S, a partition P of S is a set of subsets of S, such that ∀s ∈ S,∃p ∈ P s.t.
s ∈ p and ∀p, p′ ∈ P, p ∩ p′ = ∅. We call the elements of a partition the cells.

We borrow the maximin approach [42] from decision theory and partition the set of
extensions into at least two cells of close extensions such that the two closest elements
from different cells are as distant as possible.

Definition 3.5.2 (Maximin Distance Partition). Given a set of extensions S with at least
two elements, we define the maximin distance partition of S (mdp(S)) to be the parti-
tion P of S such that P has as many cells as possible, at least two of them, and where
minE∈p,E′∈p′,p 6=p′ hd(E,E ′) is maximal, i.e. the distance between two closest elements
from different cells is as large as possible.

Example 3.5.1. Consider the framework depicted in Fig. 3.8. The extensions are listed in
Table 3.1, with their relative hamming distance to each other. Now consider the partition
{C1, C2, C3}whereC1 = {∅, {a}},C2 = {a, c, e, g} andC3 = {{a, d, f}, {b, d, f}, {d, f}}.
One pair of two closest elements from different cells in this case is ∅ and {d, f}, with a
hamming distance of 2. Another such pair is {a} and {a, d, f} with a distance of 2 as well.

We define a new kind of commitment graph where one commits to a subset of these
cells in an iterative process. The intuition is that one makes big, impactful choices first,
and then works out the details later.

Definition 3.5.3. Given an argumentation framework F = 〈A,→〉, a semantics σ and an
abstract commitment graph (V,E, L) of F , we say that (V,E, L) is a distance-based com-
mitment graph (DBCG) ofF iff we have (c, c′) ∈ E iffL(c′) ∈ mdp(

⋃
reachable-leaves(c)).

In our previous example, we obtain the commitment graph depicted in Fig. 3.9.
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Figure 3.9: Distance-based commitment graph for the framework F6, represented in Fig.
3.8.

3.6 Commitment graph summaries
When humans have to consider a large amount of information, it can be very helpful for
them to focus on a summary of that information that contains the bits of information that
are most relevant for the choices that they need to make. In this regard, it makes sense
to study how AFs can be summarized in such a way that the structure of the associated
commitment graph does not change.

An additional motivation for such summarization comes from structured argumenta-
tion: The AF produced from a theory of structured argumentation is often of infinite size,
but when the defeasible information encoded in the theory is finite, it is usually the case
that one can already commit to a specific extension of this infinite AF by committing to the
status of finitely many arguments. In other words, the infinite AF resulting from the argu-
mentation theory can be summarized to a finite AF in such a way that the structure of the
associated commitment graph does not change. Let us illustrate this point on an example
based on the structured argumentation framework ASPIC+ by Modgil and Prakken [43].

Example 3.6.1. Consider the language L that is the closure of {a, b} under the negation
operator ¬, i.e. L is the set {a, b,¬a,¬b,¬¬a,¬¬b, . . . } of propositional formulas. Con-
sider the argumentation theory that has a and ¬b as ordinary premises, a ⇒ b as the only
defeasible rule and the set {ϕ→ ¬¬ϕ | φ ∈ L} of strict rules.

Then the AFAF1 associated to this argumentation theory has infinitely many arguments
as follows:

A0 : a B0 : A0 ⇒ b C0 : ¬b
A1 : A0 → ¬¬a B1 : B0 → ¬¬b C1 : C0 → ¬¬¬b
A2 : A1 → ¬¬¬¬a B2 : B1 → ¬¬¬¬b C2 : C1 → ¬¬¬¬¬b

...
...

...

The attack relation of AF1 is {(B0, Ci) | i ∈ N} ∪ {(B1, Ci) | i ∈ N} ∪ {(C0, Bi) | i ∈
N}. In the complete semantics, this AF has three extensions:

• E1 = {Ai | i ∈ N}

• E2 = {Ai | i ∈ N} ∪ {Bi | i ∈ N}

• E2 = {Ai | i ∈ N} ∪ {Ci | i ∈ N}
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The choice between these three extensions depend entirely on the choice about which
of B0 and C0 are accepted in the extension: The Ai’s always get accepted. If B0 is ac-
cepted, then all Ci’s must be rejected and all other Bi’s must be accepted together with
B0. Similarly, if C0 is accepted, then all Bi’s must be rejected and all other Ci’s must be
accepted together with C0. And if both B0 and C0 get rejected, B1 must be rejected too,
for otherwise B0 would be defended, so it would be in the complete extension; but then no
other argument among the Bi’s and the Ci’s can be defended, so they must all be rejected.

Furthermore, note thatB0 andC0 attack each other, so the restriction ofAF1 to {B0, C0}
is AF2 = 〈{B0, C0}, {(B0, C0), (C0, B0)}〉, whose complete extensions are ∅, {B0} and
{C0}, which according to the explanations given in the previous paragraph give rise to the
three extensions of AF1.

So from the point of view of the choices between the complete extensions, the finite AF
AF2 can be considered to be a summarization of AF1, because AF2 is a subframework of
AF1 with the property that the choice between the extension of AF2 correspond to choices
between the extensions of AF1.

For the purpose of defining such summarizations of AFs, we define two notions of
equivalence between AFs, based on abstract and concrete commitment graphs respectively.
We use these notions of equivalence to define two notions of summarization for AFs.

Definition 3.6.1 (acg-equivalence). Let F = 〈A,→〉 and F ′ = 〈A′,→′〉 be two AFs, g be
a commitment mapping, (C,R, L) = g(F ) and (C ′, R′, L′) = g(F ′). We say that F and
F ′ are acg-equivalent w.r.t. g (written F 'ag F ′) iff there is an isomorphism f from (C,R)
to (C ′, R′) such that for all leaves l in (C,R, L), L(l) ∩ A′ = L′(f(l)) ∩ A.

It has often been noted in the abstract argumentation literature that an odd attack path
from an argument a to an argument b can be treated as an indirect attack from a to b. When
summarizing argumentation frameworks, we allow such indirect attacks to be replaced by
direct attacks. To formalize this, we need the following auxiliary notions:

Definition 3.6.2 (Path Length). Let F = 〈A,→〉 be an AF and let a, b ∈ A. An→-path
from a to b is a sequence a0, . . . , an of arguments in A where a0 = a, an = b, ai attacks
ai+1 for every 0 ≤ i < n, and where aj 6= ak for 0 ≤ j < k ≤ n with either j 6= 0 or
k 6= n. The number n is called the length of this path.

Definition 3.6.3 (Indirect Attacks). Let F = 〈A,→〉 be an AF and let A′ ⊆ A. We define
the set ind(→,A′) of indirect attacks w.r.t. A′ to be {(a, b) | there is an→-path from a to b
of odd length such that the only arguments in this path included in A′ are a and b}.

The following definition defines the notion of an acg-summary, which formalizes sum-
marization based on abstract commitment graphs.

Definition 3.6.4 (acg-reduction and acg-summary). Let F = 〈A,→〉 and F ′ = 〈A′,→′〉
be two AFs and g a commitment mapping. We say that F ′ is an acg-reduction of F w.r.t.
g iff A′ ⊆ A,→′⊆ ind(→,A′) and F ′ 'ag F . We say that F ′ is acg-irreducible w.r.t. g iff
F ′ is the only acg-reduction of F ′ w.r.t. g. We say that F ′ is an acg-summary of F wr.t. g
iff F ′ is an acg-irreducible acg-reduction of F .
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Figure 3.10: (a) Example argumentation framework F7. (b) Most fine-grained commitment
graph of F7 with respect to complete semantics, mfgcomplete(F7). (c) F ′7, sub-framework
of F7. (d) Most fine-grained commitment graph of F ′7 with respect to complete semantics,
mfgcomplete(F

′
7).

Example 3.6.2. Consider F7 depicted in Fig. 3.10(a). F ′7 depicted in Fig. 3.10(c) is a
acg-summary of F7 w.r.t. mfgcomplete.

Definition 3.6.5 (Coverage Restriction). Let P be a partial extension and A a set of ar-
guments. We define the coverage restriction of P to A as P ↓A= {+a | +a ∈ P, a ∈
A} ∪ {−a | −a ∈ P, a ∈ A}.

Definition 3.6.6 (ccg-equivalence and ccg-summary). Let F = 〈A,→〉 and F ′ = 〈A′,→′〉
be two AFs, g be a concrete commitment mapping, (C,R, L) = g(F ) and (C ′, R′, L′) =
g(F ′). We say that F and F ′ are ccg-equivalent w.r.t. g (written F 'cg F ′) iff there is an
isomorphism f from (C,R) to (C ′, R′) such that for all d ∈ C, d ↓A′= f(d) ↓A. We say
that F ′ is ccg-irreducible w.r.t. g iff F ′ is the only ccg-reduction of F ′ w.r.t. g. We say that
F ′ is a ccg-summary of F wr.t. g iff F ′ is a ccg-irreducible ccg-reduction of F .

Example 3.6.3. Consider the two AFs from Fig. 3.11. While F8 'asdcgcomplete
F ′8, as the

structure of their SCC-directional commitment graphs are the same, it is not the case that
F8 'csdcgcomplete

F ′8, because the content of the middle nodes does not match. While in (d)
one first commits to either −c or −d, in (b) c and d are not covered until only the last step,
due to the SCC structure of F8. However, we do have that F8 'cmfgcomplete

F ′8, since when
the SCC structure is not taken into account then −c and −d already appear together with
−b and−a respectively, resulting in a match between the commitment graphs of F8 and F ′8
even at the concrete level.
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Figure 3.11: (a) Example argumentation framework F8. (b) SCC-directional commitment
graph of F8 with respect to complete semantics, sdcgcomplete(F8). (c) F ′8, sub-framework
of F8. (d) SCC-directional commitment graph of F ′8 with respect to complete semantics,
sdcgcomplete(F

′
8).
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Figure 3.12: (a) Example argumentation framework F8. (b) Most fine-grained commitment
graph of F8 with respect to complete semantics, mfgcomplete(F8). Notice that since there is
only one preferred extension for F8, mfgpreferred(F8) consists of a single node. Therefore,
both the acg and ccg summaries for F8 with respect to preferred semantics are the empty
framework, while the acg and ccg summaries for F8 with respect to complete semantics are
F8 itself.

Proposition 3.6.1 (Conjecture). Given two AFs F and F ′, if F ′ is a ccg-reduction of F
w.r.t. mfgcomplete then F ′ is a ccg-reduction of F w.r.t. mfgpreferred.

Corollary 3.6.2. Given an AF F , for every ccg-summary F ′ = 〈A′,→′〉 w.r.t. mfgpreferred,
there exists a ccg-summary F ′′ = 〈A′′,→′′〉 w.r.t. mfgcomplete such that A′ ⊆ A′′ and
→′⊆ ind(→′′,A′).

We present an equivalence result for the case of the most fine-grained commitment
mapping.

Proposition 3.6.3. Given a semantics σ, two frameworks F and F ′, F ′ is acg-equivalent
to F with respect to mfgσ iff F ′ is ccg-equivalent to F with respect to mfgσ.

Proof. Sketch: Since mfgσ can be recovered from the extensions alone (see Lemma 3.3.3),
i.e. the content of the leaves, the two frameworks have the same extensions (acg-equivalence)
iff they have the same concrete commitment graph (ccg-equivalence).
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Figure 3.13: (a) Most fine-grained commitment graph of F9 with respect to complete se-
mantics, mfgcomplete(F9). (b) Most fine-grained commitment graph of F9 with respect to
complete semantics, mfgcomplete(F9).

Corollary 3.6.4. Given a semantics σ, two frameworks F and F ′, F ′ is an acg-summary
of F with respect to mfgσ iff F ′ is a ccg-summary of F with respect to mfgσ.

We finish this section by looking back at Example 3.6.1, which we used to motivate the
development of a notion of AF summary based on commitment graphs, in order to see how
the introduced concepts apply to that example.

Example 3.6.4. (Continuation of Example 3.6.1.)
As can be seen in Figure 3.13, there is an isomorphism between mfgcomplete(AF1) and

mfgcomplete(AF2) that preserves the structure of all the node labels. Thus AF1 and AF2

are acg-equivalent and ccg-equivalent w.r.t. mfgcomplete. Clearly AF2 cannot be reduced
further while keeping this equivalence intact, so AF2 is an acg-summarization and a ccg-
summarization of AF1 w.r.t. mfgcomplete.

Similarly, one can easily see thatAF1 is an acg-summarization and a ccg-summarization
of AF1 w.r.t. sdcgcomplete, w.r.t. mfgpreferred, and w.r.t. sdcgpreferred.

3.7 Related research
There is substantial work of applying formal argumentation theory to support decision-
making [44, 45, 46]. In these papers, argumentation is used to support making decisions
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about other things than argumentation. That is quite different from our approach, in which
we study how to theoretically study the problem of which extension to choose among mul-
tiple extensions of an AF. It remains an open problem whether our commitment graphs can
be extended such that they can be applied to support decision-making as well.

Moreover, there is work on decision procedures. For example, Dvorak et al. [47] study
the complexity of evaluations of AFs by exploiting decision procedures for problems of
lower complexity whenever possible. Whether and how our general update semantics
methodology can be applicable to the systematic study of algorithms for computing ex-
tensions, also has to be left to future research.

3.8 Conclusion and further research
In this chapter, we have proposed a methodologically novel approach to choosing exten-
sions of argumentation frameworks by studying abstract and concrete commitment graphs
that correspond to step-wise commitments about the choice of extension. Inspired by the
principle-based approach to abstract argumentation, we have studied two principles that
mappings from AFs to commitment graphs should satisfy.

We believe that there are many potential applications of our commitment graph method-
ology. We briefly sketch some of them.

Apart from the two types of concrete commitment graphs defined in this chapter, there
are many other types of concrete commitment graphs that could be studied. For example,
any algorithm for computing all extensions of a given AF with respect to a fixed seman-
tics gives rise to a concrete commitment graph with respect to that semantics, namely by
reducing the search tree of the algorithm to its commitment points, similarly as we have
reduced the most exhaustive update to the fine-grained commitment graph. Studying the
properties of these commitment trees could give novel insights into the study of algorithms
for computing extensions.

Further principles of commitment graphs can be defined and studied. This will help to
differentiate better between different semantics as well as the different commitment graphs
that they give rise to.

Furthermore, one can study properties of the different commitment-paths (paths through
the commitment graph) that a given commitment graph gives rise to. Here as well a
principle-based approach can make sense: These principles could help to choose an ex-
tension in a systematic way, and could thus be very relevant to application of abstract
argumentation in which a unique extension has to be chosen from the set of all extensions.

Though this is not our intention in this chapter, commitment graphs can also be used
to generalize Dung’s semantic framework, in the following sense. Instead of associating a
set of extensions with a framework, we can associate a set of commitment graphs with a
framework. These commitment graphs can be our most fine-grained commitment graphs,
our SCC-recursive commitment graphs, or some other kind of commitment graphs. This
idea is developed in more details in the next chapter.

In this chapter we have only studied the commitment graph methodology with respect to
Dung’s AFs, but the methodology could also be applied to extensions of Dung’s formalisms
such as bipolar AFs [48], ADFs [33], higher-order AFs [49] etc.
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A further interesting line of future research is to study whether and how our method-
ology could be applied outside abstract argumentation, e.g. to structured argumentation,
logic programming, answer set programming, Reiter’s default logic, causal theories, social
choice theory etc.
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Chapter 4

Refining argumentation semantics

4.1 Introduction
Following the methodology in non-monotonic logic, logic programming and belief revi-
sion, formal argumentation theory defines a diversity of semantics. This diversity has the
advantage that a user can select the semantics best fitting her application, but it leads also
to various practical challenges. First of all, how to choose among the considerable number
of semantics existing in the argumentation literature for a particular application? The be-
haviour of semantics on examples can already be insightful, and Baroni and Giacomin [50]
address the need for more systematic comparison of semantics based on a set of principles.
However, what to do when no currently considered semantics is perfect? May there be a
better semantics that has not been discovered yet? How to guide the search for new and
hopefully better argumentation semantics? In this chapter, we propose a new approach: the
combination of abstract argumentation semantics. We focus on the following three research
questions:

1. How to combine two abstract semantics to yield a third semantics?

2. In particular, how to obtain the complete semantics by combining the preferred and
grounded semantics?

3. Can we meaningfully combine features of naive-based and complete-based seman-
tics?

Concerning our first research question, there are various ways in which abstract argu-
mentation semantics can be combined. For example, in multi-sorted argumentation [14,
15, 16], one part of the framework can be evaluated according to for example grounded
semantics, whereas another part of the framework is evaluated according to the preferred
semantics. Another approach manipulates directly the sets of extensions. For example,
the grounded and preferred can be combined by simply returning both the grounded and
preferred extensions. Both of these approaches have drawbacks. For multi-sorted argu-
mentation, we need to specify explicitly which semantics must be applied to which part of
the framework. For the direct combination method, the approach seems too coarse-grained
and the number of ways to combine semantics seems relatively limited.
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We therefore introduce a dynamic approach in this chapter which is based on the label-
ing approach to argumentation semantics, in which the three labels in, out and undec are
used. In our dynamic approach, we define step-wise versions of standard semantics based
on epistemic labelings, which associate with each argument a nonempty set of labels from
{in, out, undec}. Intuitively, the set represents uncertainty about the label. We start with
labeling each argument of the framework with the set {in, out, undec}. This represents that
we do not know the labeling yet. Then in each step we refine the labels by removing some
of the labels. Finally we end up with a single label for each argument, and thus with a
standard labeling. To represent the possibility of multiple extensions, the steps are not de-
terministic. The steps are represented by an abstract update relation, which mathematically
is simply a binary relation among epistemic labelings. There are many distinct update re-
lations representing the same standard semantics, and it is this additional expressive power
that we will use in our first approach to combining abstract argumentation semantics.

Concerning our second research question, it is well known that the grounded semantics
outputs the smallest complete extension, and that the preferred semantics outputs maximal
complete extensions [4]. This suggests that there is potential to recover all complete ex-
tensions using a mixture of the grounded and preferred semantics. There may be complete
extensions that are neither minimal nor maximal, and that it is therefore non-trivial to re-
cover all the complete extensions using the grounded and the preferred semantics, without
loosing any complete extensions. Though the derivation of the complete semantics from
the grounded and preferred semantics does not serve any practical purpose, it serves to
show that our dynamic semantic framework has sufficient expressive power to combine
abstract semantics. We therefore pursue this second question to showcase our combination
operation.

We do not claim it to be possible to retrieve the full set of complete extensions from
preferred and grounded extensions alone, as they do not provide sufficient information,
even when represented as labelings. Indeed, some argumentation frameworks have the
same preferred and the same grounded labelings, yet differ in their complete labelings. Let
us examine a concrete example of two argumentation frameworks with the same preferred
and grounded labelings, but different complete labelings.

Example 4.1.1. Consider the two AFsF1 andF2 depicted in Fig. 4.1. Both have {(a, undec),
(b, undec), (c, undec), (d, undec)} as their grounded labeling, and {(a, in), (b, out), (c, in), (d, out)}
and {(a, out), (b, in), (c, out), (d, undec)} as their preferred labelings. While these are also
all the complete labelings for F1, F2 also has {(a, in), (b, out), (c, undec), (d, undec)} as a
complete labeling which is neither preferred nor grounded. Hence, given nothing other than
the preferred and grounded labelings of a framework, it is not feasible to always accurately
retrieve the set of complete labelings.

Hence, the approaches we propose still take the structure of the framework into account
when combining the different semantics.

Concerning the third research question, note that recently naive-based semantics like
stage semantics [17] and CF2 semantics [18] have received some attention, for example in
the work of Gaggl and Dvořák [19], who define a new semantics (stage2) that combines
features of stage and CF2 semantics, and in the work of Cramer and Guillaume [20], who
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Figure 4.1: Two AFs with the same preferred and grounded labelings but different complete
labelings.

performed an empirical study that showed that these naive-based semantics are better pre-
dictors of human argument acceptance than complete-based semantics like the grounded
and preferred semantics.

For argumentation frameworks without odd cycles, the stage semantics fully agrees
with the preferred semantics. One difference between the preferred semantics and the
stage semantics is that the stage semantics generally provides a way to select accepted
arguments even when odd cycles are around, whereas the preferred semantics tends to
mark as undecided all arguments that are in an odd cycle or attacked by an odd cycle. One
difference between the preferred semantics and the complete semantics is that the complete
semantics allows one to locally not make choices for some unattacked even cycles while
making choices for other unattacked even cycles, whereas in the preferred semantics one
has to make choices for all unattacked even cycles. This motivates the following research
question: Is there a sensible semantics that allows one to locally make choices for some
unattacked odd or even cycles while not making choices for other unattacked odd or even
cycles?

The layout of this chapter is as follows. After providing some preliminaries about
argumentation semantics in Section 4.2, we introduces our dynamic approach based on
epistemic labelings and update relations in Section 4.3. Section 4.4 addresses the second
research question by showing how grounded and preferred semantics can be combined to
obtain the complete semantics using an algorithmic approach to updates. As this approach
is dependent on the choice of algorithm on which the update relation is based, we proceed
in Section 4.5 to defining the merge of two argumentation semantics, a modification of our
first approach that is applicable to any pair of semantics independently of any algorithmic
considerations. In Subsection 4.5.1, we motivate the definition of the merge operator by
considering how to use it to get the complete semantics from the grounded and preferred se-
mantics without adding any algorithmic information. In Subsection 4.5.2, we show how the
merge operator can be used to give rise to novel argumentation semantics, and, in particular,
how it can be used to meaningfully combine features of naive-based and complete-based
semantics. We conclude with an overview of further work in Section 4.6.

4.2 Preliminaries

An argumentation framework (AF) is a directed graph 〈A,→〉, whereA is called the set of
arguments, and→ is called the attack relation. In this chapter, we do not consider enriched
AFs such as bipolar AFs, EEAFs and weighted AFs [51].
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Standard argumentation semantics come in two variants. Extension-based semantics
associates with each AF a set of extensions (sets of the arguments). Labelling-based se-
mantics attribute to each argument the label in, outor undec. The two approaches are inter-
definable, in the sense that an argument is labeled in when it is in the extension, it is labeled
out when it is not in the extension and there is an argument in the extension attacking it, and
it is undec otherwise. Our dynamic approach uses an epistemic labelling, which associates
with each argument a nonempty set of labels. Intuitively, the set represents uncertainty
about the label.

We assume familiarity with 3-labeling semantics of argumentation frameworks as de-
fined in [13]. Note that we will make use of the multi-labeling approach, where a set of
labels is assigned to each argument. This set represents the possible labels for a given argu-
ment. The standard approach corresponds to the case where arguments are given singleton
sets as labels.

We provide a reminder of labeling semantics below, but for more details we refer to the
preliminaries, in particular Definition 2.1.5.

We define L = {in, out, undec} to be the set of possible labels.

Definition 4.2.1 (3-labeling). Let F = 〈A,→〉 be an AF. We say that any function L from
A to L is a 3-labeling of F .

The 3-labeling approach makes use of the notions of legal labels.

Definition 4.2.2 (Legal Labeling). Let F = 〈A,→〉 be an AF, a ∈ A an argument and L a
3-labeling of F . We say that a is:

• legally in with respect to L iff L(a) = in and for all b ∈ A such that (b, a) ∈→,
L(b) = out;

• legally out with respect to L iff L(a) = out and for some b ∈ A such that (b, a) ∈→,
L(b) = in;

• legally undecided with respect to L iff L(a) = undec and for all b ∈ A such that
(b, a) ∈→, L(b) 6= in and for at least one such b, L(b) = undec.

If all arguments inA are legally labeled with respect to L, then we say that L is a complete
labeling of F . A complete labeling with a minimal set of in-labeled arguments is called
a grounded labeling. A complete labeling with a maximal set of in-labeled arguments is
called a preferred labeling. A complete labeling without undec-labeled arguments is called
a stable labeling. A complete labeling with a minimal set of undec-labeled arguments is
called a semi-stable labeling.

An argumentation semantics is a function that maps an argumentation framework to
a set of labelings. The above defined notions give rise to the complete, preferred and
grounded argumentation semantics. We call an argumentation semantics σ complete-based
if all σ-labelings are complete labelings.

We will also refer to the stage semantics defined in its extension-based form by Verheij
[17]. We adapt it to the labeling-based form by assigning the label out to all arguments that
are not in the stage extension in Verheij’s definition, even those which are not attacked by
in arguments. This labeling-based form of the stage semantics can be defined as follows:
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Definition 4.2.3 (Stage Labeling). Let F = 〈A,→〉 be an AF and L a 3-labeling of F .
Define Lin to be the set {a ∈ A | L(a) = in}. Define L+

in to be the set {a ∈ A | ∃b ∈
Lin.(b, a) ∈→}. We say that L is a stage labeling of F if Lin is conflict-free, Lin ∪ L+

in is
maximal with respect to set inclusion and L(a) = out for all a ∈ A \ Lin.

We also make use of the notions of transitive closure of a relation and restriction of a
relation to a subset of its domain.

Definition 4.2.4 (Transitive Closure). Let rel be a relation. We define the transitive closure
of rel to be the smallest set rel∗ such that rel ⊆ rel∗ and if (a, b), (b, c) ∈ rel∗, then
(a, c) ∈ rel∗.
Definition 4.2.5 (Restriction). Let A,B be sets, A′ ⊆ A and R ⊆ A × B. We define the
restriction of R to A′ to be:

R ↓A′=

{
{(a, b) ∈ R | a, b ∈ A′} if A = B

{(a, b) ∈ R | a ∈ A′} otherwise

The definition of restriction handles separately two cases: if the domain and range of
the relation are the same, it then applies the restriction to both of them, for example in the
case of the attack relation of an AF. In the case where the domain and range are different
sets, it only performs the restriction on the domain set, for example in the case of a labeling
function.

In the introduction, we have pointed out that retrieving the set of complete labelings
from the preferred and grounded labelings alone is not feasible. We now provide a concrete
example of two argumentation frameworks with the same preferred and grounded labelings,
but different complete labelings.

4.3 Update relations
Standard labeling semantics provide a direct relation between an argumentation framework
and a set of labeling functions, which attach to each argument exactly one label. We will
now define update relations, which formalize the idea that the final labelings can be deter-
mined in a step-wise fashion. For this purpose, we introduce epistemic labelings, which
associate with each argument a nonempty set of labels from {in, out, undec}. The intuitive
idea is that at a certain step in the update process, the set of labels associated with an argu-
ment tells us which labels we consider possible for this argument at this step. The steps in
an update relation can be interpreted as moves in a dialogue, or as steps in an algorithm, or
as learning a framework, or otherwise. Our dynamic semantic framework does not depend
on such particular interpretations.

Notice that it makes little sense to separate the labeling function from the underlying
framework, as the labeling is meaningless without it. We will hence consider pairs of
argumentation framework and labeling functions.

Definition 4.3.1 (Labeled Argumentation Framework (LAF)). We define a labeled argu-
mentation framework (LAF) to be a pair (〈A,→〉,EpLab) where 〈A,→〉 is a finite argu-
mentation framework and EpLab a function from A to P(L) \ {∅}, called an epistemic
labeling. Additionally, let F be the class of all labeled argumentation frameworks.
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Observe that a labeling function cannot assign the empty set of labels to an argument,
as the set of labels represents the possible final labels for that argument, and thus the empty
set would mean that no label can be attached to it, which prevents us from having a final
labeling for the framework.

Note that the notion of an epistemic labeling extends the notion of a partial exten-
sion from the previous chapter in the following way: when an argument is not covered
by a partial extension, it is labelled {in, out, undec}, +a corresponds to the case where
EpLab(a) = {in} and −a corresponds to EpLab(a) = {out, undec}. By having more
expressivity in the labelings, we obtain more granularity in the extension graphs which
provides us with more options for the combination of semantics.

We now introduce the notions of initial and final labeled frameworks, which correspond
to the starting point and endpoint of a labeling process. In an initial LAF, every label is
possible for each argument, while in a final LAF, every argument is assigned a singleton
set of labels, representing the fact that a unique label has been selected.

Definition 4.3.2 (Initial and Final LAF). Let F = (〈A,→〉,EpLab) be a LAF. If for all
a ∈ A, EpLab(a) ∈ {{in}, {out}, {undec}}, we say that F is final. If for all a ∈ A,
EpLab(a) = L, we say that F is initial.

Note that there is a one-to-one correspondence between the epistemic labelings EpLab
of the final LAFs (〈A,→〉,EpLab) and the 3-labelings of 〈A,→〉. This one-to-one corre-
spondence can be formally defined by constructing singletons out of a given 3-labeling as
follows:

Definition 4.3.3 (T (Lab)). Let 〈A,→〉 be an AF and Lab a 3-labeling of 〈A,→〉, define
the epistemic labeling T (Lab) by T (Lab)(a) := {Lab(a)} for all a ∈ A.

In this section with the basic definitions of our approach, we will be careful to make the
formal distinction between a 3-labeling Lab, the corresponding epistemic labeling T (Lab)
and the corresponding final LAF (〈A,→〉, T (Lab)). In order to improve readability, we
will not always make this distinction in later section, but instead identify the 3-labeling
Lab with the corresponding epistemic labeling T (Lab) and the corresponding final LAF
(〈A,→〉, T (Lab)). For example, we might speak of an LAF being a complete labeling of a
given argumentation framework, even though formally a complete labeling is a 3-labeling.

We now define a precision ordering on the LAFs based on the subset relation between
the argument multi-labels, such that the final LAFs are the most precise and the initial
LAFs are the least precise. Note however that only LAFs with the same underlying AF are
comparable.

Definition 4.3.4 (Precision Ordering on LAFs). Let F = (〈A,→〉,EpLab) and F ′ =
(〈A′,→′〉,EpLab′) be two labeled argumentation frameworks. We say that F is at least
as precise as F ′ (F ≥p F ′), iff 〈A,→〉 = 〈A′,→′〉, and for all a ∈ A, ∅ ⊂ EpLab(a) ⊆
EpLab′(a). We say that F is more precise than F ′ (F >p F

′) iff F ≥p F ′ and F 6=p F
′.

We will now define the central notion of this chapter, namely update relations, i.e. rela-
tions between LAFs which, starting from an initial LAF, monotonically increase precision,
until a fixpoint is reached, at which point the LAF should be final and correspond to a
desired output.
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Definition 4.3.5 (Update Relation). We say that upd ⊆ F× F is an update relation iff:

• for all F ′ ∈ F such that upd(F, F ′), F ′ ≥p F ;

• if upd(F, F ), then F is final.

Notice that by the definition of ≥p, if F is final then upd(F, F ′) implies F = F ′.
We now define correspondence between update relations and direct semantics that for-

malizes the idea that an update relation can be viewed as a step-wise procedure that gives
rise to a certain direct semantics. For this we first need an auxiliary definition.

Definition 4.3.6 (Reachable Fixpoint). Let Rel be a relation on F and F an LAF. We say
that F is reachable in Rel iff there exists an initial LAF Fi such that (Fi, F ) ∈ Rel∗. We
say that F is a reachable fixpoint in Rel iff F is reachable in Rel and (F, F ) ∈ Rel.

Definition 4.3.7 (Giving Rise to a Semantics). Let upd be an update relation and σ a seman-
tics. We say that upd gives rise to σ iff for each 3-labeling Lab of 〈A,→〉, (〈A,R〉, T (Lab))
is a reachable fixpoint in upd iff Lab is a σ labeling of 〈A,→〉.

The following theorem, which easily follows from Definition 4.3.5, provides a simple
way of combining two given update relations to yield a third update relation:

Lemma 4.3.1. If upd1 and upd2 are update relations, then upd1∪upd2 is an update relation.

In Section 4.4 we will present an example where combining two update relations with
a union operation gives us not only the union of the final labelings reachable by either of
them, but also additional labelings. This means that the semantics that upd1 ∪ upd2 gives
rise to is not necessarily induced by the semantics that upd1 and upd2 separately give rise
to.

We are now interested in the comparison of updates in terms of precision increase per
step, i.e. in the granularity of update relations. The idea is that an update relation is more
granular than another if it takes more steps to reach its final LAFs. First of all, notice that
such a comparison only makes sense for updates which output the same final LAF, i.e.
updates which give rise to the same semantics.

Definition 4.3.8 (Restriction to Relevant Paths (upd)). Let upd be an update relation. We
define the restriction of upd to relevant paths (upd) to be the set of pairs in upd that are in
some upd-path from an initial to a final LAF.

Definition 4.3.9 (Fine-Grained Ordering). Let upd1 and upd2 be two update relations. We
say that upd1 is at least as fined-grained as upd2 (upd1 ≥g upd2) iff upd1

∗ ⊇ upd2.

We then abstractly define the most fine-grained update relation for a given labeling
semantics.

Definition 4.3.10 (mfgσ). Let σ be a labeling semantics. We define mfgσ to be the smallest
update relation such that for all update relations upd that give rise to σ, we have mfgσ ≥g
upd.

Lemma 4.3.2. For every standard semantics, there exists a unique mfgσ.
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Proof. Define mfgσ as follows: (F, F ′) ∈ mfgσ iff either F = F ′ is a σ labeling, or the
following three properties are satisfied:

• F ′ >p F ;

• @F ′′ such that F ′ >p F
′′ >p F ;

• there exists a final Ff which is a σ labeling such that Ff ≥p F ′.

By definition, mfgσ includes all possible links in any relevant path from an initial to a final
LAF which encompasses a σ labeling. Hence, for any update relation upd which gives rise
to σ, mfgσ

∗ ⊇ upd. Also, mfgσ includes by definition only pairs which are on a relevant
path, as the first alternative adds the endpoints of these paths and the third item of the
second alternative ensures that the pairs are on a relevant path. The first and second items
of the second alternative ensure also that a minimal amount of pairs are added, making
mfgσ as small as possible. Also, note that mfgσ is well-defined since we only consider
finite AFs, and thus ≥p is finite.

In subsequent sections, we need the following notion of a sub-framework:

Definition 4.3.11 (Sub-framework). Let F = (〈A,→〉,EpLab) be a LAF and S ⊆ A. We
define the sub-framework of F generated by S to be Sub(F, S) = (〈S,→↓S〉,EpLab ↓S).

4.4 Case analysis: An algorithmic approach for combin-
ing preferred and grounded

In this section, we consider update relations which give rise to the preferred and grounded
semantics, and which are motivated by algorithms for computing these semantics that have
been described by Dauphin and Schulz [52].

The algorithmic update relation for the grounded semantics first identifies the argu-
ments which are only being attacked by arguments which are already labeled {out}, labels
them as {in} and any argument they attack as {out}, and then repeats this process until no
arguments can be further labeled, at which point it will label all remaining arguments as
{undec}.

Definition 4.4.1 (Unattacked). For any labeled argumentation framework F = (〈A,→
〉,EpLab), we define the set of unattacked arguments to be unattacked(F ) = {a ∈ A |
EpLab(a) % {in} ∧ ∀b ∈ A.((b, a) ∈→→ EpLab(b) = {out})}.

In an initial AF, the set of unattacked arguments will correspond to the arguments which
do not have any attackers in the framework, while for final AFs, this set will be empty since
it only considers arguments which are not finally labeled.

Definition 4.4.2 (step grnd). We define step grnd ⊆ F× F to be the relation such that
((〈A,→〉,EpLab), (〈A,→〉,EpLab′)) ∈ step grnd iff one of the following conditions holds:

50



• unattacked((〈A,→〉,EpLab)) 6= ∅, and (〈A,→〉,EpLab′) is the least precise LAF
that is more precise than (〈A,→〉,EpLab) such that for all a ∈ unattacked((〈A,→
〉,EpLab)), EpLab′(a) = {in} and for all c ∈ A such that (a, c) ∈→ and out ∈
EpLab(c), EpLab′(c) = {out}.

• unattacked((〈A,→〉,EpLab)) = ∅, there is an a ∈ A such that EpLab(a) % {undec},
and (〈A,→〉,EpLab′) is the least precise LAF that is more precise than (〈A,→
〉,EpLab) such that for all a ∈ A such that EpLab(a) % {undec}, EpLab′(a) =
{undec}.

• (〈A,→〉,EpLab) = (〈A,→〉,EpLab′) is a final LAF.

Note that before labeling arguments out, we ensure that it is a possibility, e.g. by having
the condition out ∈ EpLab(c) in the first item of Definition 4.4.2. While this requirement
will straightforwardly be fulfilled in any reachable LAF, it is required to ensure that the
increase in precision is satisfied even for those LAFs that are not reachable from an initial
LAF.

The following lemma now easily follows from the above definition:

Lemma 4.4.1. step grnd is an update relation.

The following theorem states that step grnd does indeed have the intended property that
it gives rise to the grounded labeling:

Theorem 4.4.2. step grnd gives rise to the grounded semantics.

Proof sketch. One can easily see that whenever step grnd changes the label of an argu-
ment a to {in}, {out} or {undec}, argument a is legally labeled {in}, {out} or {undec}
respectively. Thus the final labeling reachable in step grnd is a complete labeling. To
show that the final labeling reachable in step grnd is the complete labeling that max-
imizes undec, suppose that there is some complete labeling EpLab of 〈A,→〉 and let
A′ = {a ∈ A | EpLab(a) = {undec}}. It is now enough to show that step grnd never
labels any a ∈ A′ {in} or {out}. Consider for a proof by contradiction the first step where
step grnd does label some a ∈ A′ {in}, respectively {out}. Since a is legally labeled
{undec} in EpLab, some a′ ∈ A′ must attack a, so by Definitions 4.4.1 and 4.4.2, a′ must
already be labeled {out} in a previous step, respectively there must exist an a′ which has
been labeled {in} in a previous step, which is a contradiction.

Let us now examine step pref, a similar update relation which computes the preferred
labelings. For this, we first define the notion of minimal non-trivial admissible sets of
arguments, which resembles the notion of initial-like sets [36], but takes also the partial
labels into account.

Definition 4.4.3 (min adm(F )). Let F = (〈A,→〉,EpLab) be a labeled argumentation
framework. We define min adm(F ) ⊆ P(A) to be the set of all minimal subsets S of A
that satisfy the following conditions:

• S 6= ∅;
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• for all a ∈ S, EpLab(a) % {in};

• for all a, b ∈ S, (a, b) /∈→;

• for all a ∈ S and b ∈ A such that EpLab(b) 6= {out} and (b, a) ∈→, there exists
a′ ∈ S such that (a′, b) ∈→.

So the function min adm(F ) returns all minimal non-empty admissible sets of argu-
ments whose label could still be changed to {in}. The update relation step pref proceeds
with a process similar to the one in the step grnd update, iteratively labeling {in} all argu-
ments with all attackers {out}, and then labeling all arguments attacked by those as {out}.
The difference lies in the case where unattacked(F ) is empty, where the preferred update
relation looks for minimal non-trivial admissible sets, label them {in} and arguments they
attack {out}.

Definition 4.4.4 (step pref). We define step pref ⊆ F × F to be the relation such that
((〈A,→〉,EpLab), (〈A,→〉,EpLab′)) ∈ step pref iff one of the following conditions holds:

• unattacked((〈A,→〉,EpLab)) 6= ∅, and (〈A,→〉,EpLab′) is the least precise LAF
that is more precise than (〈A,→〉,EpLab) such that for all a ∈ unattacked((〈A,→
〉,EpLab)), EpLab′(a) = {in} and for all c ∈ A such that (a, c) ∈→ and out ∈
EpLab(c), EpLab′(c) = {out}.

• unattacked((〈A,→〉,EpLab)) = ∅, and for some S ∈ min adm(F ), (〈A,→〉,EpLab′)
is the least precise LAF that is more precise than (〈A,→〉,EpLab) such that for all
a ∈ S, EpLab′(a) = {in} and for all c ∈ A such that (a, c) ∈→ and out ∈ EpLab(c),
EpLab′(c) = {out}.

• unattacked((〈A,→〉,EpLab)) = min adm(F ) = ∅, and there is an a ∈ A such that
EpLab(a) % {undec}, and (〈A,→〉,EpLab′) is the least precise LAF that is more
precise than (〈A,→〉,EpLab) such that for all a ∈ A such that EpLab(a) % {undec},
EpLab′(a) = {undec}.

• (〈A,→〉,EpLab) = (〈A,→〉,EpLab′) is a final LAF.

The following lemma now easily follows from the above definition:

Lemma 4.4.3. step pref is an update relation.

The following theorem, which can be proved in a similar way as Theorem 4.4.2, states
that step pref has the intended property that it gives rise to the preferred labeling:

Theorem 4.4.4. step pref gives rise to the preferred semantics.

We now find the interesting result that combining these two update relations with a
union operation gives us not only the union of the final labelings reachable by either of
them, but also the complete labelings which are neither grounded nor preferred:

Theorem 4.4.5. step grnd ∪ step pref gives rise to the complete semantics.
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Figure 4.2: Example path from the initial LAF F to the corresponding final LAF in
step grnd.

Proof sketch. One can easily see that any final labeling reachable in step grnd∪ step pref
is a complete labeling, as the two update relations preserve the legality of argument labels.
So we only prove that each complete labeling Lab is reachable in step grnd ∪ step pref .

Let F = (〈A,→〉,EpLab) be an initial LAF and EpLabc the complete labeling we
want to reach. First, apply either step grnd or step pref until we reach F ′ where the set of
unattacked arguments is empty. At this point, the set S of in arguments is the grounded
extension, and thus these arguments must also be in in EpLabc, since the grounded exten-
sion is the intersection of all complete extensions (this follows from it being the unique
smallest complete extension). Let S ′ be the set of arguments which are in in EpLabc but
not {in} in F ′. S ∪ S ′ forms an admissible set, since it is a complete extension. Hence,
there is a minimal, non-empty subset of S ′, S ′1, such that S ∪ S ′1 is admissible. There is
an edge in the relation step pref which labels the arguments in S ′1 as in and any argument
they attack as out, according to Def. 4.4.4 second item. The rest of the arguments in S ′ are
labeled in via Def. 4.4.4, either with the first item, or again with the second item as above.
Once we have reached the LAF where all in arguments from EpLabc are {in} and any
argument they attack {out}, we can make a step with step grnd following Def. 4.4.2, sec-
ond item, to label all remaining arguments as {undec}. We have then reached the fixpoint
Ff = (〈A,→〉, T (EpLabc)), as desired.

Example 4.4.1. Let us examine the initial LAFF = (〈A,→〉,EpLab) whereA = {a, b, c, d},
→= {(a, b), (b, a), (b, c), (c, d), (d, c)}. Since unattacked(F ) = ∅, step grnd will send F
to the fixpoint where all arguments are labeled {undec}. This is depicted in Fig. 4.2.

Let us now consider the same LAF F under the step pref update relation this time.
Again, unattacked(F ) = ∅, but min adm(F ) = {{a}, {b}, {d}}. The relation hence
branches out in three paths. Let us focus the path with {a}. So the relation step pref sends
F to the LAFFpref1 where a is {in} and b is {out}, as depicted in Fig. 4.3. unattacked(Fpref1) =
∅, but min adm(Fpref1) = {{c}, {d}}, which gives us once again two possible directions
in which to branch out. We will examine the one which selects {c}. This then gives us the
final fixpoint Fpref2 = (〈A,→〉,EpLabpref2), where EpLabpref2(a) = EpLabpref2(c) = {in}
and EpLabpref1(b) = EpLabpref1(d) = {out}.

We now consider the union of both relations. We can first send F to Fpref1 using the
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Figure 4.3: Example path from the initial LAF F to one of the corresponding final LAFs
in step pref.
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Figure 4.4: Example path from the initial LAF F to one of the corresponding final LAFs
in step grnd ∪ step pref which neither update can reach by itself.

same step from step pref as above. However this time we can apply step grnd to Fpref1, and
since unattacked(Fpref1) = ∅, the remaining arguments c and d are assigned the {undec}
label, sending Fpref1 to the fixpoint Fcomp, where a is {in}, b is {out} and c, d are {undec}.
Notice that Fcomp corresponds to a complete labeling of F which is neither preferred nor
grounded. This situation is depicted in Fig. 4.4.

4.5 Merging semantics through the most fined-grained up-
date relation

In the previous section, we have shown that we can obtain the complete semantics by taking
the union of two algorithmically motivated update relations giving rise to the grounded and
the preferred semantics respectively. The success of this approach was dependent on the
details of the algorithmic update relations that we defined, so it cannot be generalized to
combine arbitrary semantics. In this section, we want to generalize our methodology to
make it applicable to the combination of arbitrary semantics. For this purpose, we will
examine a way to combine any two standard semantics via their most fine-grained update
and a combination operation we call merging.
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Figure 4.5: Example path from the initial LAF F to an intermediate LAF F ′ in mfggrnd.

4.5.1 Merging preferred and grounded
If we were to attempt to combine mfgpref and mfggrnd by simply taking their union, as we
have done in the algorithmic approach, it follows from their definition that we would simply
obtain as reachable fixpoints the labelings which are either preferred or grounded. The main
issue is that mfgpref and mfggrnd are not applicable to LAFs which do not agree with some
final LAF of that semantics.

For an example of this issue, we consider again the same LAF F as in Example 4.4.1.
Suppose we want to reach the same complete labeling that we reached in Figure 4.4, i.e. the
one in which a is {in}, b is {out}, and c and d are {undec}. We could start by doing those
six steps of mfggrnd that are compatible with the complete labeling that we want to reach,
as depicted in Figure 4.5, yielding the intermediate LAF F ′. Now we would like to apply
mfgpref to F ′ in order to delete the undec-labels from a and b. However, mfgpref cannot be
applied at all to F ′, as F ′ is not compatible with any preferred labeling of F .

So instead of just taking the union of mfgpref and mfggrnd, we will define a more compli-
cated operation called the merge of two update relations, which we denote by upd1 ] upd2.
The idea is that once neither mfgpref nor mfggrnd allow us to get closer to a desired complete
labeling, we will focus on a particular sub-framework and draw analogies with another
framework which also contains that sub-framework. This operation resembles the way in-
put is imposed in multi-sorted argumentation semantics [53]. The details of this approach
are somewhat complicated, so let us first sketch the approach by seeing how it can be
applied to the example that we just looked at.

The idea is that we focus on the set S = {a, b} of arguments, as we want to remove
labels from a and b. In order to work with mfgpref on the sub-framework Sub(F ′, S) induced
by S, we consider an alternative framework F2 that also has Sub(F ′, S) as a sub-framework,
but to which mfgpref can be applied. A suitable choice of F2 is depicted on the left in Figure
4.6. Now we apply mfgpref twice to F2 as depicted in Figure 4.6, removing the labels from
a and b that we wanted to remove. If certain conditions are satisfied, we may import the
changes we have made to F2 back to F , as depicted in Figure 4.7.

Now what are the conditions that need to be satisfied in order to allow for this import
of changes from one framework to another? In order to describe these conditions, we need
to split the original framework into three parts, based on sets of arguments:

• S, the arguments we will focus on;
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Figure 4.6: Example path on a parallel F2 framework with S = {a, b} and I = {c}, where
mfgpref is applicable.
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• I , called the interface, which is a set of arguments which already have a maximally
precise label (i.e. a singleton) and which separate the set S from the rest of the frame-
work;

• A \ (S ∪ I), the rest of the framework, on which the two frameworks may differ.

The basic idea is that in order to import some change that an update relation mfgσ can make
on F2 to the LAF F , we have to choose F2 in such a way that in both F and F2, the interface
I separates S from the rest of the framework. Furthermore, we have to choose F2 in such
a way that mfgσ can actually be applied to F2, which is only possible if the maximally
precise labels of the arguments in I are possible labels for these arguments in F2 under the
semantics σ.

We are now ready to present the formal definition of the merge upd1 ] upd2:

Definition 4.5.1 (Merge). Let upd1 and upd2 be two update relations. We define the merge
of upd1 and upd2 (upd1 ] upd2) as the smallest relation such that:

1. upd1 ] upd2 ⊇ upd1 ∪ upd2;

2. For F = (〈A,→〉,EpLab) and F ′ = (〈A,→〉,EpLab′), (F, F ′) ∈ upd1 ] upd2

if there exist disjoint sets S, I ⊆ A and two LAFs F2 = (〈A2,→2〉,EpLab2) and
F ′2 = (〈A2,→2〉,EpLab′2) such that the following conditions are satisfied:

a. (F2, F
′
2) ∈ upd1 ∪ upd2;

b. Sub(F2, S ∪ I) = Sub(F, S ∪ I);

c. ∀s ∈ S, ∀a ∈ A \ (I ∪ S), (s, a), (a, s) /∈→,→2;

d. ∀a ∈ I , EpLab(a) = EpLab2(a) is a singleton;

e. EpLab′2 ↓S 6= EpLab2 ↓S;

f. EpLab′2 ↓A2\S= EpLab2 ↓A2\S;

g. Sub(F,A \ S) is reachable by upd1 ] upd2;

h. EpLab′ ↓S= EpLab′2 ↓S .

3. if F is final and reachable by upd1 ] upd2, then (F, F ) ∈ upd1 ] upd2.

Given the complexity of this definition, let us explain it a bit more: Item 1 expresses the
fact that we can still perform any step which is available in either one of the base updates.
However, as we have seen previously, this is not enough in order to obtain meaningful
combinations of most fine-grained updates, which is why we have item 2. Given a labeled
argumentation framework F , additional changes are potentially possible if we can identify
two disjoint sets of arguments S and I , where S is the set of arguments we are interested in
and where the update will be occurring and I is a fully-labeled interface between S and the
rest of the framework, meaning that no argument in S attacks nor is attacked by an argument
inA\(S∪I). Once such sets have been identified, we observe other labeled argumentation
frameworks F2 which also contain S ∪ I with the same structure and epistemic labels but
can differ in structure and labels in the rest of the framework. If an update with upd1∪upd2
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Figure 4.8: Example AF F to illustrate the need for item g) in Def. 4.5.1

is possible in such a framework, we then allow this change to be imported into F to produce
F ′. In more details, sub-item a specifies that there must be a upd1∪upd2 step which relates
F2 to F ′2. Sub-item b ensures that the parallel framework F2 agrees with F on the structure
and epistemic labels of S ∪ I . Sub-item c guarantees that there are no connections between
S and A \ (S ∪ I) in neither F nor F2. Sub-item d ensures that I is fully labeled, which is
required in order to ensure the well-behavior of the merge operation. The idea is that once
this interface has been fully labeled by one of the two updates, if we can modifyA\(S∪I)
in order to make sense of these labels for the second update, then we can also perform steps
from this second update inside S, and then by perhaps modifying A \ (S ∪ I) again we
can switch back to using the first update again and so on. Sub-item e ensures that change
happens inside S, while sub-item f ensures that no change is made outside of S, so that
change happens in S and exclusively there. Sub-item g provides an additional restriction on
the partitioning to ensure that for an argument i in the interface I which has a justification
a ∈ S for its label which hasn’t been assigned yet, we do not introduce a new justification
inA\ (S ∪ I) for i’s label and hence allow for a different label to be assigned to a, leaving
i with no justification for its label in F ′. This is clarified in Example 4.5.1. Sub-item h
simply specifies that the change made in the parallel LAF be imported into the original one
to produce F ′, and combined with the sub-item e entails that a change within S is necessary
between F2 and F ′2. Finally, with item 3 we ensure that reachable final frameworks are also
fixpoints, which is needed since the second item of the definition does not produce any
fixpoints, as it requires some change to happen in the LAF with the first sub-item.

Example 4.5.1. Consider the AF F depicted in Fig. 4.8. Since {(a, in), (b, out), (c, out),
(d, in), (e, out)} is a preferred labeling, it is possible to assign the out label to c via mfgpref,
as well as the in label to a and the out label to b. From there, it would be possible to set
I = {c} and S = {d, e}, allowing one to import changes from the parallel framework F ′

depicted in Fig. 4.9. Here, a few steps in mfggrnd would assign the undec label to d and e.
This would however produce a labeling where c is out, but has no reason to be labelled so,
since d is undec. This kind of scenario is prevented by item g) of Def. 4.5.1 as no sub-LAF
consisting of {a, b, c} where c is out is reachable with mfgpref or mfggrnd. Thus, item g)
forces what we informally refer to as a justification for the interface’s label to be either part
of it, or contained in S.

In definition 4.5.1, we have defined the merge between two arbitrary update relations.
In this chapter, we always apply this merge operation to two maximally fine-grained update
relations and focus on the semantics that the resulting update relation gives rise to. In this
way, the notion of a merge between two update relations gives rise to the following notion
of a merge between two argumentation semantics:
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Figure 4.9: Argumentation framework F ′ parallel to F from Fig. 4.8. Here c is out due to
f , allowing mfggrnd to assign the undec label to both d and e.

Definition 4.5.2 (]). Given two argumentation semantics σ1 and σ2, we define σ1 ] σ2 to
be the semantics that mfgσ1 ] mfgσ2 gives rise to.

We originally motivated the definition of the merge operation with the goal to combine
the grounded and preferred semantics to yield the complete semantics. The following the-
orem establishes that this is indeed the case for the merge operation as we have defined
it.

Theorem 4.5.1. preferred ] grounded = complete.

Proof. By Definition 4.5.2, we need to show that mfgpref]mfggrnd gives rise to the complete
semantics. So we need to prove that every complete labeling is a reachable fixpoint in
mfgpref ] mfggrnd and that every labeling that is a reachable fixpoint in mfgpref ] mfggrnd is a
complete labeling. We start by proving that every complete labeling is a reachable fixpoint
in mfgpref ] mfggrnd:

Let 〈A,→〉 be an argumentation framework, and let Lab be the complete labeling of
〈A,→〉 we want to reach. We want to show that Ff = (〈A,→〉,EpLabf ) is a reachable
fixpoint, where EpLabf = T (Lab). Let C = {a ∈ A | Lab(a) = in}, I = {b ∈ A |
Lab(a) = out} and S = A \ (C ∪ I). Consider the LAF Fi = (〈A,→〉,EpLabi), where
for all a ∈ C, EpLabi(a) := {in}, for all b ∈ I , EpLabi(b) := {out}, and for all c ∈ S,
EpLabi(c) := {in, out, undec}. Since Lab is a complete labeling, C is admissible, so there
exists a preferred labeling where all arguments in C are in. Thus Fi is reachable with
mfgpref.

We now want to apply item 2 of Definition 4.5.1 to Fi multiple times in order to remove
all the in and out labels from the arguments in S. For this purpose, we choose a “new”
argument z, i.e. an argument z /∈ A, and consider the LAF F2 = (〈A2,→2〉,EpLab2)
where A2 = (A \ C) ∪ {z}, →2=→↓A2 ∪ {(z, a) | a ∈ I} and EpLab2 = EpLab ↓A2

∪ {(z, {in})}. Consider the final LAF F2f = (〈A2,→2〉,EpLab2f ), where for all a ∈
A2 \ S, EpLab2f (a) = EpLab2(a) and for all a ∈ S, EpLab2f (a) = {undec}.

We want to show that F2f is grounded. For this purpose, we first establish that F2f is
complete, i.e. that all labels in F2f are legal labels: z is unattacked and is therefore legally
labeled in in F2f . All arguments in I are attacked by z, so they are legally labeled out
in F2f . Furthermore, since C does not defend any arguments it does not contain, every
argument in S is attacked by at least one other argument in S. Additionally, the only in
argument, z, does not attack any arguments in S. Thus the arguments in S are legally
labeled undec in F2f . Therefore, F2f is a complete LAF, and since the only in argument, z,
has to be labeled in, it is also grounded.

Therefore F2f is reachable in mfggrnd from F2. So by multiple applications of mfgpref ]
mfggrnd, using item 2 of Def 4.5.1, one can reach Ff from Fi. Since Ff is final, Ff is a
fixpoint, and thus Ff is a reachable fixpoint.
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So far, we have shown that every complete labeling is a reachable fixpoint in mfgpref ]
mfggrnd. Now we still need to show that every labeling that is a reachable fixpoint in mfgpref]
mfggrnd is a complete labeling:

Let F = (〈A,→〉,EpLab) be a reachable LAF in mfgpref ]mfggrnd. We show by induc-
tion on |A| that there exists a final complete LAF which is at least as precise as F .

Induction hypothesis 1: Assume that for every LAF F ′ = (〈A′,→′〉,EpLab′) such
that |A′| < |A| and F ′ is reachable in mfgpref ] mfggrnd, there exists a final complete LAF
which is at least as precise as F ′.

We now use a second induction on the steps required to reach F .
Base case: F is initial. Since there always exists a complete labeling for any framework,

there exists a final complete LAF more precise than F .
Inductive step: F is not initial, but is reached in mfgpref ] mfggrnd through an LAF

F ∗ 6= F for which the required property holds. In other words, we have the following
induction hypothesis for F ∗:

Induction hypothesis 2: Assume that for F ∗ = (〈A,→〉,EpLab∗) such that F ∗ 6= F
and (F ∗, F ) ∈ mfgpref ] mfggrnd, there exists a final complete LAF F ∗f = (〈A,R〉,EpLab∗f )
such that F ∗ ≤p F ∗f .

We distinguish three cases:

1. (F ∗, F ) ∈ mfgpref. Then, by the definition of mfgpref, there exists a final LAF which
represents a preferred labeling of 〈A,→〉 and is at least as precise as F . Since pre-
ferred labelings are also complete, we are done.

2. (F ∗, F ) ∈ mfggrnd. Similarly to the case above, it follows from the definition of
mfggrnd that there exists a complete final LAF which is at least as precise as F .

3. (F ∗, F ) /∈ mfgpref ∪ mfggrnd. Since F ∗ 6= F , the item 2 of Definition 4.5.1 must be
satisfied. In other words, there exist disjoint sets S, I ⊆ A and two LAFs F2 and
F ′2 that satisfy the conditions a to h from item 2 of Definition 4.5.1. By condition
a, (F2, F

′
2) ∈ mfgpref ∪ mfggrnd, so by the same reasoning as in cases 1 and 2 above,

we can conclude that there exists a final LAF Ff2 = (〈A2,→2〉,EpLabf2) which is
complete and at least as precise as F ′2. Also, by condition g, Fs = Sub(F ∗,A \ S)
is reachable by mfgpref ] mfggrnd, and by condition e, S 6= ∅, i.e. |A \ S| < |A|. So
by induction hypothesis 1, there exists a final complete LAF Fsf = (〈A \ S,→↓A\S
〉,EpLabsf ) such that Fsf ≥p Fs.
We now construct the final LAF Ff = (〈A,→〉,EpLabf ) as follows: For all a ∈
A \ S, EpLabf (a) := EpLabsf (a), and for all a ∈ S, EpLabf (a) = EpLabf2(a).
From the construction of Ff and conditions f and h of Definition 4.5.1, it follows
that Ff is more precise than F . To complete the proof, we now still need to show that
Ff is a complete labeling, i.e. that all arguments in A are legally labeled in Ff .

According to the definition of legal labeling (Definition 4.2.2), a labeling being legal
depends only on the label of the arguments it is directly attacking or attacked by.
According to condition c of Definition 4.5.1, the only arguments which are attacking
or attacked by arguments in S are in S ∪ I . The arguments in S are legally labeled in
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F2f , and thus they are also legally labeled in Ff , since Sub(F2f , S∪I) = Sub(Ff , S∪
I). Similarly, since the arguments in A \ (S ∪ I) are legally labeled in Fsf , they are
also legally labeled in Ff . Now take an arbitrary a ∈ I . We distinguish three cases:

(a) EpLabf (a) = {out}: Then, since Fsf is complete, there exists an argument
b ∈ A\S such that (b, a) ∈→ and EpLabf (b) = {in}. So a is legally out in Ff .

(b) EpLabf (a) = {in}: Then, since Fsf is complete, for all b ∈ A \ S such that
(b, a) ∈→, EpLabf (b) = {out}. Also, since F2f is complete, for all b ∈ S such
that (b, a) ∈→, EpLabf (b) = {out}. Hence, a is legally in in Ff .

(c) EpLabf (a) = {undec}: Then, since since Fsf is complete, for all b ∈ A\S such
that (b, a) ∈→, EpLabf (b) 6= {in}, and for at least one such b, EpLabf (b) =
{undec}. Also, since F2f is complete, for all b ∈ S such that (b, a) ∈→,
EpLabf (b) 6= {in}. Hence, a is legally undec in Ff .

So all arguments in Ff are legally labeled and thus Ff is complete. Hence, there
exists a final complete LAF which is at least as precise as F .

Therefore, for all reachable LAFs, there exists a complete LAF which is at least as
precise. Since mfgpref ] mfggrnd is an update relation, every reachable fixpoint is final, and
thus every reachable fixpoint is complete.

4.5.2 Defining new semantics via merging
The merge operation defined in Definition 4.5.2 can be used to combine two arbitrary ar-
gumentation semantics to yield another argumentation semantics. So far, we have shown
that merging grounded and preferred semantics yields the complete semantics. In this sec-
tion, we show how applying this merge operation to other pairs of semantics gives rise to
completely new argumentation semantics.

First, notice that the second part of the proof of Theorem 4.5.1 only makes use of the
fact that the labelings reached at the different stages are complete, but not of any other
properties particular to preferred or grounded. Hence, the merge of any two complete-
based semantics is a complete-based semantics itself, i.e. all the labelings it returns are also
complete.

Theorem 4.5.2. Let σ1 and σ2 be two complete-based argumentation semantics. Then
σ1 ] σ2 is also a complete-based semantics.

For example, by merging stable and grounded, we obtain labelings which are complete.
However, in this case, we do not recover all complete labelings as we did when merging
grounded and preferred. Let us examine this short example to see why.

Example 4.5.2. Consider the following argumentation framework F :
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Using mfgstab]mfggrnd, one can reach the labelings {(a, out), (b, in), (c, out)} and {(a, undec),
(b, undec), (c, undec)}. However, suppose we wish to reach the complete labeling EpLab =
{(a, in), (b, out), (c, undec)}. Since there is no stable labeling, we cannot make any steps
via mfgstab from the initial LAF. Also, attempting to find a similar framework from which
one could import changes, will not work at this point where the LAF is initial, because the
interface I would have to be empty, which only works for disconnected AFs.

Hence, one can only make steps in mfggrnd in order to reduce c’s epistemic labeling to
{undec}, a’s to {in, undec} and b’s to {out, undec}. This, however, is as close as one
can get to EpLab using mfgstab ] mfggrnd. Any F2 satisfying the conditions of item 2 of
Definition 4.5.1 must have I = {c}. In this case, the set S on which we want to make
changes would have to be {a, b}. But then I ∪ S includes all arguments, so that F2 would
have to be identical to F , so that we cannot use item 2 of Definition 4.5.1 to make any
change that we cannot already make with item 1 of Definition 4.5.1.

Therefore, EpLab is unreachable with mfgstab ] mfggrnd.

An interesting note to make is that all labelings reachable by mfgstab ]mfggrnd are com-
plete, according to Theorem 4.5.2, and hence this combination provides a novel complete-
based semantics which returns more labelings than both the stable semantics and the grounded
semantics.

Similarly, the merge of the semi-stable and grounded semantics returns a novel complete-
based semantics. One can check this by replacing stable by semi-stable in the situation
described in Example 4.5.2: The desired complete labeling is still unreachable.

As motivated in the introduction, we are also interested in the following research ques-
tion related to combining features of naive-based and complete-based semantics: Is there
a sensible semantics that allows one to locally make choices for some unattacked odd or
even cycles while not making choices for other unattacked odd or even cycles. Given
our methodology for merging semantics, an obvious candidate for such a semantics is
stage ] grounded, i.e. the semantics resulting from merging the stage semantics with the
grounded semantics. By considering its application to an example, we show that this se-
mantics does indeed have this feature.

Example 4.5.3. Consider the following argumentation framework F ′:
The stage labelings of F ′ are

EpLab1 = {(a, in), (b, out), (c, out), (d, in), (e, out)},
EpLab2 = {(a, in), (b, out), (c, out), (d, out), (e, in)},
EpLab3 = {(a, out), (b, in), (c, out), (d, in), (e, out)},
EpLab4 = {(a, out), (b, in), (c, out), (d, out), (e, in)},
EpLab5 = {(a, out), (b, out), (c, in), (d, out), (e, in)}.
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Its grounded labeling is EpLab6 = {(a, undec), (b, undec), (c, undec), (d, undec), (e, undec)}.
Additionally to these six labelings, it has three further stage ] grounded-labelings:

EpLab7 = {(a, in), (b, out), (c, out), (d, undec), (e, undec)},
EpLab8 = {(a, out), (b, in), (c, out), (d, undec), (e, undec)},
EpLab9 = {(a, undec), (b, undec), (c, undec), (d, out), (e, in)}.

EpLab7 can be reached using mfgstage ] mfggrnd by first applying mfgstage several times to
reduce the epistemic labels on a, b and c to {in}, {out} and {out} respectively and then
applying item 2 of Definition 4.5.1 with the interface I := {c}, the set S := {d, e} and the
following parallel framework F 7

2 :
We can then apply mfggrnd multiple times to this parallel framework to reduce the epis-

temic labels of d and e to {undec} and import these changes to the labeling on the main
framework F ′ using item 2 of Definition 4.5.1. EpLab8 can be reached using mfgstage ]
mfggrnd in a similar way using the same parallel framework.

EpLab9 can be reached using mfgstage]mfggrnd by first applying mfgstage several times to
reduce the epistemic labels on d and e to {out} and {in} respectively and then applying item
2 of Definition 4.5.1 with the interface I := {d}, the set S := {a, b, c} and the following
parallel framework F 9

2 :
We can then apply mfggrnd multiple times to this parallel framework to reduce the epis-

temic labels of a, b and c to {undec} and import these changes to the labeling on the main
frameowrk F ′ using item 2 of Definition 4.5.1.

The stage semantics forces us to make a choice on the odd cycle {a, b, c}, and unless
we choose to accept the argument c that attacks the even cycle, we are also forced to make
a choice on the even cycle {d, e}. In the grounded semantics, there are no choices and all
arguments become undecided. In stage]grounded, we can combine these features of stage
and grounded: We can for example choose a from the odd cycle, but stay undecided about
the arguments in the even cycle – this possible choice is formalized by EpLab7.

So stage ] grounded allows one to locally make choices for some unattacked odd or
even cycles while not making choices for other unattacked odd or even cycles. It thus
provides a positive answer to our third research question from the introduction.

4.6 Conclusion and future work
In this chapter we introduce a dynamic approach to combine two argumentation semantics
to yield a third one. In particular, we provide a formal environment for the analysis of step-
wise relations between labeled framework with an increase in the label precision, whose
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reachable fixpoints correspond to some standard direct semantics. We define and discuss
two approaches to combining two given update relations to yield a third update relation,
an approach based on algorithmically motivated update relations and an approach based on
merging maximally fine-grained update relations. For both approaches, we examine how
to obtain update relations for the complete labeling by combining update relations for the
preferred and grounded labelings. Furthermore, we have defined novel semantics using the
merge approach, including a semantics that meaningfully combines features of naive-based
and complete-based semantics.

This chapter gives rise to various topics for further research. Concerning the combi-
nation of argumentation semantics, many questions remain. Further new semantics can be
defined using our approach, and properties of the newly defined semantics can be studied
systematically using the principle-based approach [50, 10].

Though we introduced our update relations to combine argumentation semantics, we
believe that this dynamic semantics framework can be used for other applications as well.
Most importantly, one of the main challenges in formal argumentation is the gap between
graph based semantics and dialogue theory. Our more dynamic semantics framework may
be used to decrease or even close the gap. In particular, in dialogue each statement may
increase the knowledge and thus the set of arguments of participants. This is also related
to the formalization of learning in the context of formal argumentation. Moreover, an
important approach in argumentation semantics is the SCC recursive scheme. This scheme
can be represented naturally using update relations. Various algorithms have been proposed
for argumentation semantics, and these algorithmic approaches may be expressed naturally
using update relations. Work has also been done on dynamic modifications to be made on a
framework in order to enforce a certain set of arguments to become an extension, or prevent
it from being so [54, 55]. Parallels could be made between their work and the combination
operation presented in this chapter. Finally, the principle based analysis of argumentation
semantics can be extended to the more fine grained update relations.
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Chapter 5

An enriched argumentation framework
with higher-level relations

5.1 Introduction
Dung’s argumentation frameworks (AFs) [4] are a powerful and flexible formal tool for
formally modelling argumentative discourse. However, various researchers have felt the
need to extend AFs in order to model features of argumentation that cannot be directly
modeled in AFs, e.g. by enriching them with recursive (higher-order) attacks [23], joint
attacks [24], a support relation between arguments [25, 26], or explanatory features [27].

One technique that has already previously proven useful to study and combine such ex-
tensions is the meta-argumentation methodology involving the notion of a flattening [56]. A
flattening is a function that maps some extended variant of argumentation frameworks into
standard AFs. If there exists a definition of the various argumentation semantics for that
extended variant of AFs that is independent from the definition of the flattening function,
one wants the flattening to satisfy the property that it preserves these semantics, in the sense
that applying the flattening function, then calculating the extensions according to some ar-
gumentation semantics, and finally unflattening the extensions should yield the same result
as directly calculating the extensions according to the corresponding argumentation seman-
tics for the extended variant of argumentation frameworks. However, flattenings can also
be used to define argumentation semantics for extended variants of AFs for which there is
no definition of the semantics independent of flattenings. This approach has proven par-
ticularly useful for combining multiple extensions of AFs [56], because in this case, it is
often much clearer what the “right” definition of a flattening is than what the “right” direct
definition of the various argumentation semantics is.

Previous work on flattening argumentation frameworks with recursive attacks (AFRAs)
was limited to second-order attacks [56, 57], even though the original definition of recursive
attacks was for arbitrarily deeply nested higher-order attacks [23]. This means that for the
purpose of defining the flattening, attacking an attack between two arguments was allowed,
but attacking such a second-order attack was already not allowed. In Section 5.3, we show
how to define a flattening of arbitrary AFRAs, and prove that it conforms with the direct
definition of the semantics of AFRAs.
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The labelling approach for abstract argumentation has become quite popular [13], where
a funciton assign one of three labels to each argument from the argumentation framework.
Acceptable arguments are labelled in, any arguments they attack are labelled out, and re-
maining arguments are labelled undec. This methodology allows for a more local evalua-
tion. Such an approach is missing for the explanatory argumentation frameworks [27], and
therefore in this chapter we provide a labelling semantics for EAFs and prove it corresponds
to the extension-based approach.

We then propose an enriched formalism which incorporates attacks, explanations, nec-
essary and deductive supports, and incompatibility originating from and targeting sets of
any kind of elements. We extend the labelling semantics for EAFs towards EEAFs.

The rest of the chapter is devoted to applying the meta-argumentation methodology of
flattening and unflattening in order to provide a second approach to evaluating the enriched
framework EEAF. We then show that there is a correspondence between the flattening
semantics and the labelling semantics for EEAFs.

The explanatory relation from EAFs cannot be easily flattened. Therefore, for defining
the semantics of EEAFs, we apply the meta-argumentation methodology by allowing the
output of the flattening function to be an EAF rather than an AF. In other words, we flatten
away recursive attacks, joint attacks and the support relation, but we do not flatten away
explanations, instead making use of the semantics of EAFs instead of the semantics of
standard AFs.

Finally, we illustrate the applicability of EEAFs by using them to model a piece of argu-
mentation from the introduction to Hartry Field’s book Saving Truth from Paradox [58], an
important, relatively recent, monograph about semantic paradoxes, a major research topic
within the field of philosophical logic.

The rest of the chapter is structured as follows: In Section 5.2, we introduce a label-
ing semantics for EAFs and show its correspondence to the extension-based semantics. In
Section 5.3, we extend the meta-argumentation methodology to arbitrarily deeply nested
AFRAs. In Section 5.4, we further extend this methodology to formally define the seman-
tics of EEAFs. Section 5.6 presents examples that illustrate the applicability of EEAFs.
After discussing related work in Section 5.5, we conclude the chapter in Section 5.7.

5.2 Explanatory Argumentation Framework Labelings
In this section, we present a labeling semantics for argumentative cores in EAFs and show
its correspondence to the extension-based semantics. This labeling semantics of EAFs will
be expanded to a labeling semantics of Extended Explanatory Argumentation Frameworks
(EEAFs) in Section 5.4.

A labeling of an EAF is a pair consisting of two functions: One which labels arguments
and another which labels the elements of the explanation relation 99K. Each argument will
be assigned one of the three standard labels in, out or undec, while each pair (x, y) ∈99K
is only assigned one of two labels: exp when x explains y, and nexp when x does not
explain y.

Definition 5.2.1 (EAF Labeling). Let F = 〈A,X ,→, 99K,∼〉 be an EAF. A labeling of F
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is a pair Lab = (LabA,Lab99K), where LabA is a function from A to {in, out, undec}, and
Lab99K is a function from 99K to {exp,nexp}.

We define a notion of legal label, in the same way that the complete labeling is define
via the legal of individual argument labels. In the case of EAFs however, we also have the
addition of the incomparability relation, which prevents two incompatible arguments from
being in, but is not enough on its own to justify either of them being out. We additionally
have the labels on the pairs (x, y) ∈99K, which take the value exp whenever x is labeled in.

Definition 5.2.2 (Legal EAF Label). Let F = 〈A,X ,→, 99K,∼〉 be an EAF, b ∈ A, x ∈ X
and Lab = (LabA,Lab99K) a labeling of F . We say that:

• b is legally in w.r.t. Lab iff for every argument c attacking b, LabA(c) = out and for
every argument d incompatible with b, LabA(d) 6= in;

• b is legally out w.r.t. Lab iff there exists an argument c attacking b such that LabA(c) =
in;

• b is legally undec w.r.t. Lab iff it is not legally in nor legally out;

• (x, y) is legally exp w.r.t. Lab iff LabA(x) = in;

• (x, y) is legally nexp w.r.t. Lab iff it is not legally exp.

We lift this notion of individual legal labels to the notions of admissible and complete
labelings for the entire framework.

Definition 5.2.3 (Admissible EAF Label). Let F = 〈A,X ,→, 99K,∼〉 be an EAF and
Lab = (LabA,Lab99K) a labeling of F . We say that Lab is a admissible labeling of F iff the
following conditions hold:

• If b ∈ A and LabA(b) = in, then b is legally in w.r.t. Lab.

• If b ∈ A and LabA(b) = out, then b is legally out w.r.t. Lab.

• If (x, y) ∈99K and Lab99K((x, y)) = exp, then (x, y) is legally exp w.r.t. Lab.

• If (x, y) ∈99K and Lab99K((x, y)) = nexp, then (x, y) is legally nexp w.r.t. Lab.

We say that Lab is a complete labeling of F iff Lab is an admissible labeling of F and
additionally satisfies the following property:

• If b ∈ A and LabA(b) = undec, then b is legally undec w.r.t. Lab.

An argumentative core labeling is now defined to be a complete labeling with a maxi-
mal set of in-labeled arguments and a maximal set of explained explananda:

Definition 5.2.4 (AC-labeling). LetF = 〈A,X ,→, 99K,∼〉 be an EAF and Lab = (LabA,Lab99K)
a labeling of F . We say that Lab = (LabA,Lab99K) is an argumentative core labeling
(AC-labeling) of F iff Lab is a complete labeling of F and there is no complete labeling
Lab′ = (Lab′A,Lab′99K) of F such that {b ∈ A | Lab′A(b) = in} ) {b ∈ A | LabA(b) = in}
or {e ∈ X | for some b ∈ A,Lab′99K((b, e)) = exp} ) {e ∈ X | for some b ∈
A,Lab99K((b, e)) = exp}.
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For defining the explanatory core labeling, we first need the notion of having explana-
tory relevance, which captures the idea of an exp-labeled pair in the explanation relation
that contributes to the explanation of an explanandum through a path of exp-labeled pairs
in the explanation relation:

Definition 5.2.5 (Explanatory Relevance). Let F = 〈A,X ,→, 99K,∼〉 be an EAF, let
Lab = (LabA,Lab99K) a labeling of F , and let (x, y) ∈99K. We say that (x, y) has explana-
tory relevance w.r.t. Lab iff Lab99K((x, y)) = exp and there is a path (y0, . . . , yn) such that
y0 = y, yn ∈ X and for every 0 ≤ i < n, (yi, yi+1) ∈99K and Lab99K((yi, yi+1)) = exp.

Definition 5.2.6 (Satisfactory Labeling). Let F = 〈A,X ,→, 99K,∼〉 be an EAF and
Lab = (LabA,Lab99K) a labeling of F . We say that Lab = (LabA,Lab99K) is a satisfactory
labeling of F iff Lab is an admissible labeling of F and there is no admissible labeling
Lab′ = (Lab′A,Lab′99K) of F such that {e ∈ X | for some b ∈ A,Lab′99K((b, e)) = exp} )
{e ∈ X | for some b ∈ A,Lab99K((b, e)) = exp}.

Definition 5.2.7 (Insightful Labeling). Let F = 〈A,X ,→, 99K,∼〉 be an EAF and Lab =
(LabA,Lab99K) a labeling of F . We say that Lab = (LabA,Lab99K) is an insightful labeling
of F iff Lab is an satisfactory labeling of F and there is no satisfactory labeling Lab′ =
(Lab′A,Lab′99K) of F such that {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab′} )
{(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab}.

Definition 5.2.8 (EC-Labeling). LetF = 〈A,X ,→, 99K,∼〉 be an EAF and Lab = (LabA,Lab99K)
a labeling of F . We say that Lab = (LabA,Lab99K) is an explanatory core labeling (EC-
labeling) of F iff Lab is an insightful labeling of F and there is no insightful labeling
Lab′ = (Lab′A,Lab′99K) of F such that {b ∈ A | Lab′A(b) = in} ( {b ∈ A | LabA(b) = in}.

For the rest of this section, we establish that AC-labelings as defined above correspond
to AC-extensions as defined in Section 2.1.2, and that EC-labelings as defined above corre-
spond to EC-extensions as defined in Section 2.1.2. For this purpose we first need to define
the standard translation between labelings and sets of arguments that allows us to formally
express this correspondence:

Definition 5.2.9 (Lab2Ext, Lab2Expl, Ext2Lab). Let F = 〈A,X ,→, 99K,∼〉 be
an EAF, let Lab = (LabA,Lab99K) be a labeling of F , and let S ⊆ A be a set of ar-
guments. We define the function Lab2Ext from labelings to sets of argument as fol-
lows: Lab2Ext(Lab) = {b ∈ A | LabA(b) = in}. Furthermore, we define the function
Ext2Lab from sets of arguments to labelings as follows: For every b ∈ A, define

Ext2Lab(S)A(b) =


in if b ∈ S
out if there is an argument c ∈ S such that c→ b

undec otherwise

For every (x, y) ∈99K, define

Ext2Lab(S)99K((x, y)) =

{
exp if x ∈ S
nexp otherwise
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We need the following lemmas for our correspondence results:

Lemma 5.2.1. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. Let Lab be a admissible labeling of
F . Then Lab2Ext(Lab) is an admissible subset of A.

Proof. Suppose for a contradiction that Lab2Ext(Lab) is not conflict-free. Then there
are b, c ∈ Lab2Ext(Lab) such that b → c or b ∼ c. By Definition 5.2.9, LabA(b) =
LabA(c) = in. But then c is not legally in, which contradicts the fact that Lab is an admis-
sible labeling. So Lab2Ext(Lab) is conflict-free.

For proving that Lab2Ext(Lab) defends itself, suppose a ∈ Lab2Ext(Lab) and b→
a. By Definition 5.2.9, LabA(a) = in, so a is legally in w.r.t. Lab. Thus LabA(b) = out,
which in turn implies that b is legally out w.r.t. Lab. But this means that there is an argument
c such that c→ b and LabA(c) = in, i.e. c ∈ Lab2Ext(Lab), as required.

Lemma 5.2.2. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. Let E be an admissible subset of
A. Then Ext2Lab(E) is an admissible labeling.

Proof. We separately check the two required properties of an admissible labeling:

• Suppose Ext2Lab(E)(a) = in, i.e. a ∈ E. Suppose b ∼ a. By conflict-freeness
of E, b /∈ E, so Ext2Lab(E)(b) 6= in, as required. Furthermore, suppose c →
a. By admissibility of E, E defends a, i.e. some argument d ∈ E attacks c. So
Ext2Lab(E)(c) = out, as required. Thus a is legally in w.r.t. Ext2Lab(E).

• Suppose Ext2Lab(E)(a) = out. This means that there is some b ∈ E that attacks
a. Then Ext2Lab(E)(b) = in, so a is legally out w.r.t. Ext2Lab(E).

Lemma 5.2.3. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. Let E be a maximal admissible
subset of A. Then Ext2Lab(E) is a complete labeling.

Proof. By Lemma 5.2.2, we know that Ext2Lab(E) is an admissible labeling. So in order
to prove that Ext2Lab(E) is a complete labeling, we only need to prove that any argument
labeled undec by Ext2Lab(E) is legally undec w.r.t. Ext2Lab(E).

Suppose Ext2Lab(E)(a) = undec. Then no argument inE attacks a, i.e. no argument
b with Ext2Lab(E)(b) = in attacks a, i.e. a is not not legally out w.r.t. Ext2Lab(E).
Suppose for a contradiction that a is legally in w.r.t. Ext2Lab(E). Then one can easily
see that E ∪ {a} is admissibile, contradicting the maximiality of E. So a is not not legally
in w.r.t. Ext2Lab(E). Hence a is legally undec w.r.t. Ext2Lab(E).

Lemma 5.2.4. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If Lab is a satisfactory labeling of
F , then Lab2Ext(Lab) is a satisfactory subset of A. Furthermore, if S is a satisfactory
subset of A, then Ext2Lab(S) is a satisfactory labeling of F .

Proof. This directly follows from Lemmas 5.2.1 and 5.2.2 as well as Definitions 2.1.14 and
5.2.6.
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Lemma 5.2.5. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If Lab is an insightful labeling of F ,
then Lab2Ext(Lab) is an insightful subset of A. Furthermore, if S is an insightful subset
of A, then Ext2Lab(S) is an insightful labeling of F .

Proof. Suppose Lab is an insightful labeling of F . Then Lab is a satisfactory labeling, so
by Lemma 5.2.4, Lab2Ext(Lab) is a satisfactory subset of A.

Now suppose for a contradiction that there is a satisfactory set S ′ ⊆ A such that S ′ >d

Lab2Ext(Lab).
First, we show that {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab} ⊆

{(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Ext2Lab(S ′)}. Suppose (x, y) ∈99K
and (x, y) has explanatory relevance w.r.t. Lab. This means that there is a path (y0, . . . , yn)
such that y0 = y, yn ∈ X and for every 0 ≤ i < n, (yi, yi+1) ∈99K and Lab99K((yi, yi+1)) = exp.
Choose such a path of minimal length. Then X := {x, y, y1, . . . , yn−1} is an explanation
for yn offered by Lab2Ext(Lab). Since S ′ >d Lab2Ext(Lab), there is an explanation
X ′ ⊇ X offered by S ′. Then for every 0 ≤ i < n, yi ∈ S ′. So for every 0 ≤ i < n,
Ext2Lab(S ′)99K((yi, yi+1)) = exp. So {(x, y) ∈99K| (x, y) has explanatory relevance
w.r.t. Lab} ⊆ {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Ext2Lab(S ′)}, as
required.

Now we show that {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab} (
{(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Ext2Lab(S ′)} by showing that there
is an (x, y) ∈99K that has explanatory relevance w.r.t. Ext2Lab(S ′) but not w.r.t. Lab. To
show this, note that the fact that S ′ >d Lab2Ext(Lab) implies that there is an explana-
tion X offered by S ′ such that X is not an explanation offered by Lab2Ext(Lab). This
means that for some a′ ∈ X such that there is no 99K-path from a′ to an explanandum that
contains only arguments from Lab2Ext(Lab). This in turn means that there is there is
no path (y0, . . . , yn) such that y0 = a′, yn ∈ X and for every 0 ≤ i < n, (yi, yi+1) ∈99K
and Lab99K((yi, yi+1)) = exp. In other words, this means that a′ does not have explanatory
relevance w.r.t. Lab. Similarly, the fact that a′ ∈ X and that X is an explanation offered by
S ′ means that a′ does not have explanatory relevance w.r.t. Ext2Lab(S ′).

This concludes the proof that {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t.
Lab} ( {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Ext2Lab(S ′)}. This how-
ever means that Lab is not an insightful labeling of F , contrary to our assumption. Thus
there is no satisfactory set S ′ ⊆ A such that S ′ >d Lab2Ext(Lab), i.e. Lab2Ext(Lab) is
an insightful subset of A.

For the second claim of the lemma, suppose that S is an insightful subset of A. Then
S is a satisfactory subset of A, so by Lemma 5.2.4, Ext2Lab(S) is a satisfactory labeling
of F .

Now suppose for a contradiction that there is a satisfactory labeling Lab′ of F such that
{(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab′} ) {(x, y) ∈99K| (x, y) has
explanatory relevance w.r.t. Ext2Lab(S)}.

We show that Lab2Ext(Lab′) >d S. For showing this, assume X is an explanation
offered by S. Then there is a unique a ∈ X that explains an exlpanandum e, and for every
a′ ∈ X \ {a}, there is a 99K-path from a′ to a consisting of arguments in S. Fix some a′ ∈
X . If a′ = a, then clearly (a, e) has explanatory relevance w.r.t. Ext2Lab(S), so by the
above assumption, it also has explanatory relevance w.r.t. Lab′, i.e. a ∈ Lab2Ext(Lab′).
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If a′ 6= a, then there is a 99K-path (y0, . . . , yn) from y0 = a′ to yn = a consisting of
arguments in S. In this case, for every 0 ≤ i < n, (yi, yi+1) has explanatory relevance w.r.t.
Ext2Lab(S), so by the above assumption, it also has explanatory relevance w.r.t. Lab′, i.e.
yi ∈ Lab2Ext(Lab′). These two facts taken together mean that X ⊆ Lab2Ext(Lab′),
i.e. X is an explanation offered by S.

We still need to show that there is an explanation X ′ offered by Lab2Ext(Lab′) such
that there is no explanation X ⊇ X ′ offered by S. To show this, observe that our assump-
tion that {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Lab′} ) {(x, y) ∈99K| (x, y)
has explanatory relevance w.r.t. Ext2Lab(S)} implies that there is some (x, y) ∈99K
such that (x, y) has explanatory relevance w.r.t. Lab′, but not w.r.t. Ext2Lab(S). This
means that there is a path (y0, . . . , yn) such that y0 = y, yn ∈ X and for every 0 ≤ i < n,
(yi, yi+1) ∈99K and Lab′99K((yi, yi+1)) = exp. Choose such a path of minimal length. Then
X ′ := {x, y, y1, . . . , yn−1} is an explanation for yn offered by Lab2Ext(Lab′). But since
(x, y) does not have explanatory relevance w.r.t. Ext2Lab(S), there is no 99K-path from
x to an explanandum containing only arguments in S, which means that some element of
X ′ is not in S, so there is no explanation X ⊇ X ′ offered by S.

This concludes the proof that Lab2Ext(Lab′) >d S. However, this fact contradicts
the assumption that S is an insightful subset of A. Thus our assumption that there is a
satisfactory labeling Lab′ of F such that {(x, y) ∈99K| (x, y) has explanatory relevance
w.r.t. Lab′} ) {(x, y) ∈99K| (x, y) has explanatory relevance w.r.t. Ext2Lab(S)} must
be false. Hence Ext2Lab(S) is an insightful labeling of F , as required.

Now we are ready to state and prove the correspondence results. We start with the
correspondence between AC-labelings and AC-extensions:

Proposition 5.2.6. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If Lab is an AC-labeling of F ,
then Lab2Ext(Lab) is an AC-extension of F . Furthermore, if E is an AC-extension of F ,
then Ext2Lab(E) is an AC-labeling of F .

Proof. Suppose Lab is an AC-labeling of F . In this case Lab is a complete labeling, and
therefore also an admissible labeling of F . So by Lemma 5.2.1, Lab2Ext(Lab) is an
admissible subset of A.

For showing that Lab2Ext(Lab) is satisfactory, we assume for a contradiction that
there is a set S ⊆ A such that S >p Lab2Ext(Lab) and S is admissible. Choose a
maximal set S ′ ⊇ S that is still admissible. By Lemma 5.2.3, Ext2Lab(S ′) is a complete
labeling of F . Since S >p Lab2Ext(Lab) and S ′ ⊇ S, we have S ′ >p Lab2Ext(Lab).
But then {e ∈ X | for some b ∈ A,Ext2Lab(S ′)99K((b, e)) = exp} ) {e ∈ X |
for some b ∈ A,Lab99K((b, e)) = exp}, contradicting the assumption that Lab is an AC-
labeling of F . Thus Lab2Ext(Lab) is satisfactory.

Assume for a contradiction that there is some S ) Lab2Ext(Lab) such that S is
satisfactory. Then S is admissible. Choose a maximal set S ′ ⊇ S that is still admissible.
By Lemma 5.2.3, Ext2Lab(S ′) is a complete labeling. Since S ′ ⊇ S ) Lab2Ext(Lab),
this contradict the assumption that Lab is an AC-labeling of F . Thus Lab2Ext(Lab) is an
AC-extension of F .

For the second statement of this proposition, suppose that E is an AC-extension of F .
Since E is admissible, Ext2Lab(E) is a complete labeling by Lemma 5.2.3. Suppose for
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a contradiction that there is a complete labeling Lab′ such that {b ∈ A | Lab′A(b) = in} )
{b ∈ A | Ext2Lab(E)A(b) = in} or {e ∈ X | for some b ∈ A,Lab′99K((b, e)) = exp} )
{e ∈ X | for some b ∈ A,Ext2Lab(E)99K((b, e)) = exp}. Since Lab′ is an admissible
labeling, Lab2Ext(Lab′) is an admissible subset of A by Lemma 5.2.1. We now consider
the two cases separately:

1. {b ∈ A | Lab′A(b) = in} ) {b ∈ A | Ext2Lab(E)A(b) = in}. This means that
Lab2Ext(Lab′) ) E. Since E is satisfactory, this implies that Lab2Ext(Lab′) is
satisfactory too. But this in turn means that E is not maximal among the satisfactory
sets, contradicting the assumption that E is an AC-extension of F .

2. {e ∈ X | for some b ∈ A,Lab′99K((b, e)) = exp} ) {e ∈ X | for some b ∈
A,Ext2Lab(E)99K((b, e)) = exp}. This means that Lab2Ext(Lab′) >p E, con-
tradicting the fact that E is satisfactory.

Thus there is no such complete labeling Lab′, so Ext2Lab(E) is indeed an AC-
labeling of F .

Now we consider the correspondence between EC-labelings and EC-extensions:

Proposition 5.2.7. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If Lab is an EC-labeling of F ,
then Lab2Ext(Lab) is an EC-extension of F . Furthermore, if E is an EC-extension of F ,
then Ext2Lab(E) is an EC-labeling of F .

Proof. This directly follows from Lemma 5.2.5 as well as Definitions 2.1.14 and 5.2.7.

Concerning the relation between EC-labelings and AC-labelings, observe that both
require admissibility and maximize explanatory power. The difference lies in that AC-
labelings maximize in arguments, while EC-labelings first maximize explanatory depth,
but then minimize in arguments. So it turns out that every EC-labeling can be turned into
an AC-labeling by changing the label of some undec arguments to in or out.

Proposition 5.2.8. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If E is an EC-extension of F ,
then there exists an AC-extension E ′ such that E ⊆ E ′.

Proof. Let E be an EC-extension of F . By Definition 2.1.14, E is satisfactory. Now we
distinguish two cases:

1. E is an AC-extension. Then, we are done, since E ⊆ E.

2. E is not an AC-extension. Then, suppose for a contradiction that there is no AC-
extension E ′ such that E ⊆ E ′. Then, by Definition 2.1.14, E is an AC-extension.
This is a contradiction, therefore there exists an AC-extension E ′ such that E ⊆ E ′.

So in both cases we have that there exists an AC-extension E ′ such that E ⊆ E ′.

Corollary 5.2.9. Let F = 〈A,X ,→, 99K,∼〉 be an EAF. If Lab is an EC-labeling of F ,
then there exists an AC-labeling Lab′ such that for all a ∈ A, if Lab(a) ∈ {in, out}, then
Lab′(a) = Lab(a).

Proof. The in part of the corollary follows from Propositions 5.2.6, 5.2.7 and 5.2.8, while
the out part follows from both AC-labelings and EC-labeling being admissible.
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5.3 Flattening AFRAs
In order to motivate the semantics of the framework we will present in section 5.4 based on
a flattening function, we will start by suggesting a flattening for AFRAs of any order. We
will prove that this flattening leads to the same extensions as the AFRA semantics defined
by Baroni et al. [23].

Boella et al. [56] define a flattening function for second-order AFRAs, which allows
one to obtain for a given AFRA an equivalent abstract argumentation framework. We will
now propose a flattening function for AFRAs of any order.

We will first define a functionmwhich will associate each argument and each attack re-
lation to the corresponding meta-argument. For an argument a, it will be the meta-argument
acc(a), while for an attack, it will be the Y auxiliary argument, since its acceptability is
synonym of success for the attack.

Definition 5.3.1 (AFRA Meta-Arguments). Let F = 〈A,→〉 be an AFRA. The set of
corresponding meta-arguments is MA = {acc(a) | a ∈ A} ∪ {Xa,ψ, Ya,ψ | a ∈ A, ψ ∈
(A ∪ →)}. We define a partial function m: (A ∪ →) 7→MA, such that:

• if ϕ ∈ A, then m(ϕ) = acc(ϕ).

• if ϕ ∈→ such that for some ψ ∈ A and some δ ∈ (A ∪ →), ϕ = (ψ, δ), then
m(ϕ) = Yψ,δ.

We define the flattening function f to be f(F ) = 〈MA,→2〉, where→2⊆MA×MA
is a binary relations on MA such that

acc(a)→2 Xa,ψ, Xa,ψ →2 Ya,ψ and Ya,ψ →2 m(ψ) for all a ∈ A, ψ ∈ (A ∪ →)

One can then apply the classical abstract argumentation semantics such as complete,
stable, preferred and grounded. We then need to define a function which can transform a
meta-extension from the flattened AFRA to an extension for the original AFRA. A similar
unflattening function has been introduced in [56], and has been slightly modified here to
also unflatten attacks.

Definition 5.3.2 (AFRA Unflattening Function). Given a set of meta-arguments B ⊆MA,
we define the unflattening function g as:

g(B) = {a | acc(a) ∈ B} ∪ {(a, ψ) | Ya,ψ ∈ B}

We also define a function f̄ which provides a correspondence between a set of argu-
ments and attacks from an AFRA and a set of meta-arguments from its flattened version.

Definition 5.3.3 (AFRA Correspondence Function). LetF = 〈A,→〉 be an AFRA, f(F ) =
〈MA,→2〉 its flattening and S ⊆ (A ∪ →). We define the correspondence function
f̄ : P(A ∪ →) 7→ P(MA) as follows:

f̄(S) = {acc(a) | a ∈ S ∩ A} ∪ {Ya,ψ | (a, ψ) ∈ S ∩ →} ∪
{Xb,ψ | (a, b) ∈ S ∩ →, ψ ∈ →}
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Notice that g(f̄(S)) = S. We add the extra Xi,j meta-arguments in order to represent
the indirect attacks which the arguments in S might carry out, i.e. the attacks which are
indirectly attacked by arguments in S due to them attacking the source of these attacks.

In [23], Baroni et al. define the semantics of AFRAs without having recourse to flat-
tening. We will show that the process of flattening, applying complete semantics on the
flattened frameworks and then unflattening it is equivalent to the directly applying the se-
mantics they define for the complete semantics. We will show this gradually by first stating
and proving three lemmas:

Lemma 5.3.1. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →). S is
conflict-free in F if and only if f̄(S) is conflict-free in f(F ).

Proof. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Assume that S is conflict-free in F . Then, there is no ϕ, ψ ∈ S such that
trg(ϕ) = ψ or trg(ϕ) = src(ψ). Suppose for a contradiction that f̄(S) is not
conflict-free in f(F ). This means that there exists two arguments p, q ∈ f̄(S) such
that p →2 q. By the construction of→2 defined by the flattening function, there are
only four possible cases, which all lead to the contradiction that S is not conflict-free.
Therefore f̄(S) is conflict-free.

2. ⇐: Suppose f̄(S) is conflict-free. Suppose for a contradiction that S is not conflict-
free. Then, there exists (a, ϕ), (b, ψ) ∈ S such that ϕ = (b, ψ) or ϕ = b.

In both cases we can reach the contradiction that f̄(S) is not conflict-free, therefore
S is conflict-free.

Lemma 5.3.2. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →) and
S ⊆ (A ∪ →). We have that:

ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S, iff
m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also defended by

f̄(S).

Proof. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →) and S ⊆
(A ∪ →).

1. ⇒: Suppose that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈
S. Consider m(ϕ) in f(F ). Suppose for some p ∈ MA, p →2 m(ϕ). By the
construction of →2 defined by the flattening function, either p = Ya,ϕ for some
a ∈ A, or p = Xsrc(ϕ),trg(ϕ).

In both cases, m(ϕ) is defended by f̄(S). Hence, if ϕ is defended by S in F , then
m(ϕ) is defended by f̄(S) in f(F ). We now have to show that if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S).
Suppose ϕ ∈ → and p ∈ MA such that p →2 acc(src(ϕ)). Then, p must be of
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the form Ya,src(ϕ) for some a ∈ A, and hence there exists (a, src(ϕ)) ∈ →. Since
(a, src(ϕ)) defeats ϕ, there exists some δ ∈ S such that δ defeats (a, src(ϕ)). We
distinguish two cases:

Either δ = (b, a) or δ = (b, (a, src(ϕ))) for some b ∈ A. In both cases, acc(src(ϕ))
is also defended by f̄(S).
Therefore, if ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S, then
m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also defended
by f̄(S).

2. ⇐: Suppose m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S). Consider ϕ in F . Suppose that for some ψ ∈ →, ψ defeats ϕ.
This means that either ψ = (a, ϕ) or ψ = (a, src(ϕ)) for some a ∈ A. In both cases,
we can conclude that there exists a δ ∈ S such that δ defeats ψ by contradiction.
Therefore, ϕ is defended by S.

We now have to show that if ϕ = (a, ψ) ∈ →, we have a ∈ S, still under the as-
sumption that m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S).
Suppose that ϕ = (a, ψ) ∈ →. Then, by the construction of →2 defined by the
flattening function, we have Xa,ψ →2 Ya,ψ. Since m(ϕ) = Ya,ψ is defended by f̄(S),
there exists p ∈ f̄(S) such that p →2 Xa,ψ. By the construction of →2, the only
possibility is p = acc(a). Hence, acc(a) ∈ f̄(S). Therefore, we have a ∈ S.

Thus, we can conclude that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have
a ∈ S, if and only if m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S).

Lemma 5.3.3. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →). We
have that:

S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S
if and only if

f̄(S) is admissible in f(F ).

Proof. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒ :Suppose f̄(S) is admissible in f(F ). Then, f̄(S) is conflict-free. Hence, accord-
ing to Lemma 5.3.1, S is also conflict-free.
Let ϕ ∈ S. We need to show that ϕ is defended by S. We do this by applying Lemma
5.3.2, i.e. by establishing that m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S). We have m(ϕ) ∈ f̄(S) and m(ϕ) is defended
by f̄(S) since f̄(S) is admissible. By the definition of f̄ , for every (a, ψ) ∈ (S ∩ →),
we have Ya,ψ ∈ f̄(S). Therefore, acc(a) ∈ f̄(S), since it is the only argument which
can defend Ya,ψ from Xa,ψ’s attack and f̄(S) is admissible. This means that acc(a)
is defended by f̄(S). Thus, according to Lemma 5.3.2, every ϕ ∈ S is defended by
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S, which means that S is admissible, and for every (a, ψ) ∈ (S ∩ →), we have that
a ∈ S.

2. ⇐ :Suppose S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that
a ∈ S. Then, S is conflict-free and so, according to Lemma 5.3.1, f̄(S) is also
conflict-free.
Let p ∈ f̄(S). p is either of the form m(ϕ) for some ϕ ∈ S, or of the form Xa,b for
some a, b ∈MA and (ψ, a) ∈ S.

In both cases, p is defended by f̄(S). Hence, f̄(S) is admissible in f(F ).

Therefore, S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S, if
and only if f̄(S) is admissible in f(F ).

Theorem 5.3.4. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →). S
is a complete extension of F if and only if f̄(S) is a complete extension of f(F ).

Proof. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Suppose S is a complete extension of F . For every (a, ψ) ∈ (S ∩ →), by the
definition of defeat, a is defended by S, and thus a ∈ S. Therefore, by Lemma 5.3.3,
f̄(S) is admissible.

Take some arbitrary p ∈ MA and suppose that p is defended by f̄(S). Then, either
p = m(ϕ) for some ϕ ∈ (A ∪ →), or p = Xa,b for some a, b ∈ A.

(a) Suppose that p = m(ϕ) for some ϕ ∈ (A ∪ →). Now assume that ϕ ∈→.
Then,m(ϕ) = Ysrc(ϕ),trg(ϕ). By construction of→2, we have thatXsrc(ϕ),trg(ϕ) →2

Ysrc(ϕ),trg(ϕ). The only argument which can defend Ysrc(ϕ),trg(ϕ) fromXsrc(ϕ),trg(ϕ)

is acc(src(ϕ)). Since f̄(S) defends Ysrc(ϕ),trg(ϕ), we have that acc(src(ϕ)) ∈
f̄(S). As f̄(S) is admissible, acc(src(ϕ)) is defended by f̄(S). Hence, if
ϕ ∈ →, then acc(src(ϕ)) is defended by f̄(S).
Therefore, by Lemma 5.3.2, ϕ is defended by S. Since S is a complete exten-
sion, this means that ϕ ∈ S. Therefore, p = m(ϕ) ∈ f̄(S).

(b) Now suppose that p = Xa,b for some a, b ∈ A. According to our assumptions,
f̄(S) defends Xa,b. By construction of →2, the only argument which attacks
Xa,b is acc(a). Hence, there exists Yc,a ∈ f̄(S) for some c ∈ A. So, by
definition of f̄ , we have that p = Xa,b ∈ f̄(S).

In either case, we have that p ∈ f̄(S). Hence, f̄(S) contains all arguments it defends.
Since it is also admissible, f̄(S) is a complete extension of f(F ).

2. ⇐ :Suppose that f̄(S) is a complete extension of f(F ). Then, f̄(S) is admissible
and contains all arguments it defends. According to Lemma 5.3.3, we have that S is
admissible and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S. Suppose that for
some ϕ ∈ (A ∪ →), ϕ is defended by S. Hence, by Lemma 5.3.2, m(ϕ) is defended
by f̄(S). Since f̄(S) is a complete extension of f(F ), m(ϕ) ∈ f̄(S). Hence, by
construction of f̄(S), we have that ϕ ∈ S. Therefore, for any ϕ ∈ (A ∪ →) such
that ϕ is defended by S, we have ϕ ∈ S. Since S is also admissible, S is a complete
extension of F .
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Hence, S is a complete extension of F if and only if f̄(S) is a complete extension of f(F ).

5.4 Aggregating multiple extensions of abstract argumen-
tation frameworks: EEAFs

In this section, we will introduce Extended Explanatory Argumentation Frameworks (EEAFs),
an extension of EAFs from Section 2.1.2 with meta-argumentation features such as higher
order attacks, support, joint attacks and allowing these relations to originate and target
arbitrary sets of elements.

We first provide a definition of EEAFs, before diving into the flattening semantics of
each relation individually in the coming sub-sections. in the definition of EEAFs, we make
use of four designated constants, att, expl, dsup and nsup, that serve as labels for the attack
relation, the explanation relation, the deductive support relation and the necessary support
relation respectively. These serve as markers to differentiate two relations between the same
elements. For example, we could have an argument explaining another and simultaneously
providing necessary support for it, while a third argument attacks the explanation but not
the necessary support between them. Such a scenario would not be representable without
the markers, as both the explanation and the necessary support would end up being the
same mathematical object.

Definition 5.4.1 (Extended Explanatory Argumentation Framework (EEAF)). An extended
explanatory argumentation framework (EEAF) is a tuple 〈A,X ,→, 99K,∼,⇒d,⇒n〉, where
A is a set of arguments, X is a set of explananda,→⊆ P(A∪→∪99K∪∼∪⇒d∪⇒n)×
(P(A ∪→ ∪ 99K ∪ ∼ ∪⇒d ∪⇒n) \ ∅) × {att} is a higher-order set attack relation, 99K
⊆ P(A∪→∪99K∪∼∪⇒d∪⇒n)× (P(A∪X ∪→∪99K∪∼∪⇒d∪⇒n)\∅)×{expl}
is a higher-order set explanatory relation, ∼ ⊆ P(A∪ X ∪→∪ 99K ∪ ∼ ∪⇒d ∪⇒n) \ ∅
is an incompatibility relation, ⇒d ⊆ (P(A ∪ → ∪ 99K ∪ ∼ ∪ ⇒d ∪ ⇒n) \ ∅) × P(A ∪
→ ∪ 99K ∪ ∼ ∪⇒d ∪⇒n) × {dsup} is a higher-order set deductive support relation and
⇒n ⊆ P(A∪→∪99K∪∼∪⇒d∪⇒n)× (P(A∪→∪99K∪∼∪⇒d∪⇒n)\∅)×{nsup}
is a higher-order set necessary support relation.

EEAFs allow for the representation of relations of different types within the same
framework, providing more expressivity to the representation. In addition, EEAFs also
allow for these relations to originate and target sets of other elements. For example, one
could have an argument attacking a set of two other arguments, while another two argu-
ments jointly support this attack in a deductive manner. The aim is to have a framework
which is as general as possible, and therefore the framework features a minimal amount of
restrictions on the interactions between the different elements.

We first presented the framework itself, but the semantics will be described only later
as we first focus on the behavior of each relation. These individual behaviors are later
aggregated for the definition of the EEAF semantics.

In some cases, we exclude the empty set from either the potential sources or targets
of a relation. In the case of the attack relation, if we did allow for the empty set as a
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target, this would mean that in case of success of this attack, the empty set could not be
included in any extension since it is not defended. But then this would mean that there
could not be any extensions, which is a consequence that cannot be expressed at the level
of an abstract argumentation graph itself, only at the level of the semantics. The flattening
approach is thus unable to capture this interaction, but we argue that this phenomenon is
also unintuitive, as the empty set should always be admissible, and so we do not wish for
our framework to allow it. Similarly, in the case of incompatibility, having the empty set
be incompatible would mean that the empty set is not conflict-free, and therefore no set of
arguments would be conflict-free, leading once again to the absence of any extension. In the
cases of the supports, we exclude the empty set from the target for deductive support and
from the source for necessary support, since the support can be intermediarily represented
as higher-order set attacks (inverted in the case of deductive support), and thus should
follow the same restrictions. Regarding the explanation relation, the case is a bit different
since it is a purely positive relation. Following our interpretation of the other relations,
explaining the empty set would mean that there is an explanation for the environment, that
any set of arguments would be explanatory deeper by including this explanation. This is
again an interaction which cannot be captured inside the framework itself but only at the
level of the semantics, and therefore we also exclude this possibility in our framework.

5.4.1 Labelling semantics of EEAFs
Definition 5.4.2 (Source and Target). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF.
Let ϕ = (S1, S2, l) ∈ → ∪ 99K ∪ ⇒d ∪ ⇒n. Then we call S1 the source of ϕ, denoted
src(ϕ), and we call S2 the target of ϕ, denoted trg(ϕ).

Definition 5.4.3 (Elements and Potential Explanation Steps). Let F = 〈A,X ,→, 99K,∼
,⇒d,⇒n〉 be an EEAF. Any x ∈ A∪X ∪→∪ 99K∪∼∪⇒d∪⇒n is called an element of
F . The set of elements of F is denoted as Elms(F ). The setA∪→∪ 99K∪∼∪⇒d ∪⇒n

is denoted NonEx(F ). The set of potential explanation steps of F , denoted PES(F ), is
defined to be PES(F ) := {(ϕ, x) ∈99K ×Elms(F ) | x ∈ trg(ϕ)}.

Definition 5.4.4 (Preconditions). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF. Let
x ∈ NonEx(F ). The set of preconditions of x, denoted pre(x), is defined as follows:

pre(x) :=

{
∅ if x /∈ → ∪ 99K
src(x) if x ∈ → ∪ 99K

Definition 5.4.5 (EEAF Labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF.
A labeling of F is a pair Lab = (LabNonEx,LabPES), where LabNonEx is a function from
NonEx(F ) to {in, out, undec} and LabPES is a function from PES(F ) to {exp,nexp}.
Given a labeling Lab = (LabNonEx,LabPES) of F , an element x of F and a potential expla-
nation step (ϕ, y) ∈ PES(F ), LabNonEx(x) is called the acceptance label of x w.r.t. Lab,
and LabPES((ϕ, y)) is called the explanatory label of (ϕ, y) w.r.t. Lab.

Intuitively, for a potential explanation step (ϕ, y) to have the explanatory label exp
means that the source of ϕ actually explains y rather that one of the other elements of the
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target of ϕ, whereas for (ϕ, y) to have the explanatory label nexp means that the source of
ϕ does not actually explain y, because it explain another element of the target of ϕ.

We proceed by defining a notion of legally in and legally out for each relation separately,
so here we introduce the notion of being legally labelled with respect to a particular relation
element. We then combine these into a global notion of legal label, resolving label conflicts
with respect to different relation elements by having out take priority over in. We finally
define the notion of legally undec as neither legally in nor legally out.

The attack relation

Definition 5.4.6 (Legal label w.r.t. one attack). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be
an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F . Let b ∈ NonEx(F ) be such that
there is an attack ϕ ∈→ with b ∈ trg(ϕ). We say that

• b is legally in w.r.t. Lab and attack ϕ iff some element of {ϕ}∪src(ϕ)∪(trg(ϕ)\{b})
has the acceptance label out w.r.t. Lab.

• b is legally out w.r.t. Lab and attackϕ iff every element of {ϕ}∪src(ϕ)∪(trg(ϕ)\{b})
has the acceptance label in w.r.t. Lab.

Definition 5.4.7 (Legal label w.r.t. attacks). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an
EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element of F . We
say that

• b is legally in w.r.t. Lab and attacks iff for every attack ϕ ∈→ with b ∈ trg(ϕ), b is
legally in w.r.t. Lab and ϕ.

• b is legally out w.r.t. Lab and attacks iff for some attack ϕ ∈→ with b ∈ trg(ϕ), b is
legally out w.r.t. Lab and ϕ.

The explanation relation

Definition 5.4.8 (Legal explanation label). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an
EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let (ϕ, b) ∈ PES(F ). We say
that

• (ϕ, b) is legally exp w.r.t. Lab iff every element of src(ϕ) ∪ {ϕ} has the acceptance
label in w.r.t. Lab and for every x ∈ trg(ϕ) \ {b}, (ϕ, x) has the explanatory label
nexp.

• (ϕ, b) is legally nexp w.r.t. Lab iff it is not legally exp w.r.t. Lab and ϕ.

The incompatibility relation

Definition 5.4.9 (Legal label w.r.t. one incompatibility). Let F = 〈A,X ,→, 99K,∼,⇒d

,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element
of F such that there is a set ϕ ∈∼ of incompatible elements with b ∈ ϕ. We say that b is
legally in w.r.t. Lab and ϕ iff some element of ϕ \ {b} does not have the acceptance label
in w.r.t. Lab.
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Definition 5.4.10 (Legal label w.r.t. incompatibilities). Let F = 〈A,X ,→, 99K,∼,⇒d

,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element
of F . We say that b is legally in w.r.t. Lab and incompatibilites iff for every set ϕ ∈∼ with
b ∈ ϕ, b is legally in w.r.t. Lab and ϕ.

The deductive support relation

Definition 5.4.11 (Legal label w.r.t. one deductive support). Let F = 〈A,X ,→, 99K,∼
,⇒d,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an
element of F such that there is a deductive support ϕ ∈⇒d with b ∈ src(ϕ). We say that

• b is legally in w.r.t. Lab and ϕ iff some element of {ϕ} ∪ (src(ϕ) \ {b}) has the
acceptance label out w.r.t. Lab, or some element of trg(ϕ) has the acceptance label
in w.r.t. Lab.

• b is legally out w.r.t. Lab and ϕ iff every element of {ϕ} ∪ (src(ϕ) \ {b}) has the
acceptance label in w.r.t. Lab, and every element of trg(ϕ) has the acceptance label
out w.r.t. Lab.

Definition 5.4.12 (Legal label w.r.t. deductive supports). Let F = 〈A,X ,→, 99K,∼,⇒d

,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element
of F . We say that

• b is legally in w.r.t. Lab and deductive supports iff for every deductive support ϕ ∈⇒d

with b ∈ src(ϕ), b is legally in w.r.t. Lab and ϕ.

• b is legally out w.r.t. Lab and deductive supports iff for some deductive support
ϕ ∈⇒d with b ∈ src(ϕ), b is legally out w.r.t. Lab and ϕ.

The necessary support relation

Definition 5.4.13 (Legal label w.r.t. one necessary support). Let F = 〈A,X ,→, 99K,∼
,⇒d,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an
element of F such that there is a necessary support ϕ ∈⇒n with b ∈ trg(ϕ). We say that

• b is legally in w.r.t. Lab and ϕ iff some element of {ϕ} ∪ (trg(ϕ) \ {b}) has the
acceptance label out w.r.t. Lab, or some element of src(ϕ) has the acceptance label
in w.r.t. Lab.

• b is legally out w.r.t. Lab and ϕ iff every element of {ϕ} ∪ (trg(ϕ) \ {b}) has the
acceptance label in w.r.t. Lab, and every element of src(ϕ) has the acceptance label
out w.r.t. Lab.

Definition 5.4.14 (Legal label w.r.t. necessary supports). Let F = 〈A,X ,→, 99K,∼,⇒d

,⇒n〉 be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element
of F . We say that

• b is legally in w.r.t. Lab and necessary supports iff for every necessary support
ϕ ∈⇒n with b ∈ src(ϕ), b is legally in w.r.t. Lab and ϕ.
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• b is legally out w.r.t. Lab and necessary supports iff for some necessary support
ϕ ∈⇒n with b ∈ src(ϕ), b is legally out w.r.t. Lab and ϕ.

Combining all relations

Definition 5.4.15 (Legal label). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF, let
Lab = (LabNonEx,LabPES) be a labeling of F , and let b be an element of F . We say that

• b is legally in w.r.t. Lab iff b is legally in w.r.t. Lab and attacks, incompatibilities, de-
ductive supports and necessary supports and every element of pre(b) has acceptance
label in w.r.t. Lab.

• b is legally out w.r.t. Lab iff b is legally out w.r.t. Lab and either attacks, deductive
supports or necessary supports, or some element of pre(b) has acceptance label out
w.r.t. Lab.

• b is legally undec w.r.t. Lab iff b is neither legally in nor legally out w.r.t. Lab.

Definition 5.4.16 (Admissible EEAF labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be
an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F . Lab is called an admissible
labeling of F iff the following conditions hold:

• For every x ∈ NonEx(F ), if the acceptance label of xw.r.t. Lab is in, then x is legally
in w.r.t. Lab.

• For every x ∈ NonEx(F ), if the acceptance label of x w.r.t. Lab is out, then x is
legally out w.r.t. Lab.

• For every (ϕ, x) ∈ PES(F ), if the explanatory label of (ϕ, x) is exp, then (ϕ, x) is
legally exp w.r.t. Lab.

• For every (ϕ, x) ∈ PES(F ), if the explanatory label of (ϕ, x) is nexp, then (ϕ, x) is
legally nexp w.r.t. Lab.

Definition 5.4.17 (Complete EEAF Labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an
EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F . Lab is called a complete labeling
of F iff Lab is an admissible labeling of F and the following additional condition holds:

• For every x ∈ NonEx(F ), if the acceptance label of x w.r.t. Lab is undec, then x is
legally undec w.r.t. Lab.

AC-labelings and EC-labelings of EEAFs are now defined in a similar way as for EAFS
in Section 5.2.

An argumentative core labeling is defined to be a complete labeling with a maximal set
of in-labeled arguments and a maximal set of explained explananda:

Definition 5.4.18 (EEAF AC-labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF
and Lab = (LabNonEx,LabPES) a labeling of F . We say that Lab is an argumentative core la-
beling (AC-labeling) of F iff Lab is a complete labeling of F and there is no complete label-
ing Lab′ = (Lab′NonEx,Lab′PES) of F such that {b ∈ NonEx(F ) | Lab′NonEx(b) = in} ) {b ∈
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NonEx(F ) | LabNonEx(b) = in} or {e ∈ X | for some b ∈ NonEx(F ),Lab′PES((b, e)) =
exp} ) {e ∈ X | for some b ∈ NonEx(F ),
LabPES((b, e)) = exp}.

For defining the explanatory core labeling, we first need the notion of having explana-
tory relevance, which captures the idea of an exp-labeled potential explanation step that
contributes to the explanation of an explanandum through a path of exp-labeled potential
explanation steps:

Definition 5.4.19 (EEAF Explanatory Relevance). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉
be an EEAF, let Lab = (LabNonEx,LabPES) be a labeling of F , and let (ϕ, y) ∈ PES(F ). We
say that (ϕ, y) has explanatory relevance w.r.t. Lab iff LabPES((ϕ, y)) = exp and there is a
path (y0, . . . , yn) such that y0 = y, yn ∈ X and for every 0 ≤ i < n, (yi, yi+1) ∈ PES and
LabPES((yi, yi+1)) = exp.

We then adapt the notion of a satisfactory labeling from EAFs to EEAFs. The formu-
lation is adapted to the labeling semantics for EEAFs, but the intuition is the same, namely
that satisfactory labelings are ones which are admissible and maximize explanatory power,
i.e. the set of explananda for which it provides an explanation.

Definition 5.4.20 (EEAF Satifactory Labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be
an EEAF and Lab = (LabNonEx,LabPES) a labeling ofF . We say that Lab = (LabNonEx,LabPES)
is a satisfactory labeling of F iff Lab is an admissible labeling of F and there is no
admissible labeling Lab′ = (Lab′NonEx,Lab′PES) of F such that {e ∈ X | for some b ∈
NonEx(F ),Lab′PES((b, e)) = exp} ) {e ∈ X | for some b ∈ NonEx(F ),LabPES((b, e)) =
exp}.

Insightful labelings for EEAFs are defined in a similar manner from satisfactory label-
ings. Instead of maximizing depth, here we maximize explanatory relevance. The only
difference is that we have labels on the targets of explanatory relation directly, instead of
looking at arguments linked by explanations.

Definition 5.4.21 (EEAF Insightful Labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an
EEAF and Lab = (LabNonEx,LabPES) a labeling of F . We say that Lab = (LabNonEx,LabPES)
is an insightful labeling of F iff Lab is a satisfactory labeling of F and there is no satis-
factory labeling Lab′ = (Lab′NonEx,Lab′PES) of F such that {(ϕ, y) ∈ PES(F ) | (ϕ, y) has
explanatory relevance w.r.t. Lab′} ) {(ϕ, y) ∈ PES(F ) | (ϕ, y) has explanatory relevance
w.r.t. Lab}.

Finally, EC-labelings for EEAFs can be derived in the same manner, namely as insight-
ful labelings which minimize the set of in non-explanatory elements.

Definition 5.4.22 (EEAF EC-Labeling). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF
and Lab = (LabNonEx,LabPES) a labeling of F . We say that Lab = (LabNonEx,LabPES) is
an explanatory core labeling (EC-labeling) of F iff Lab is an insightful labeling of F and
there is no insightful labeling Lab′ = (Lab′NonEx,Lab′PES) of F such that {b ∈ NonEx(F ) |
Lab′NonEx(b) = in} ( {b ∈ NonEx(F ) | LabNonEx(b) = in}.
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Figure 5.1: Example disjunctive attack. Figure 5.2: Semi-flattened disjunctive attack
from Fig. 5.1.

5.4.2 Flattening attacks
In this subsection, we shall describe how the flattening function handles the attack relation.
In [24], they present a flattening for attacks from and to non-empty sets of arguments. We
shall adapt their flattening to allow for the empty set as a source of an attack, as well as
briefly explain how it behaves when elements from the source or target set are not argu-
ments, or the attack is itself involved in another relation.

If two arguments jointly attack a single one, then the behavior will be similar to the one
found in [24], namely that the attack is successful if and only if both attacking arguments
are accepted. Let us now observe the behavior when an argument disjunctively attacks two
other arguments.

In the case where an argument x disjunctively attacks arguments a and b via an attack
named ϕ, as depicted in Fig. 5.1, Gabbay argues that the acceptance of x results in the
rejection of a or b. This is taken in a logical sense such that one could reject a, reject b, or
reject both, and thus resulting in 3 possible extensions: {x, a}, {x, b} and {x}. However,
in our mindset of maximizing the sets of acceptable arguments in the AC-extensions, we
dismiss the possibility for the disjunctive attack of x to be successful on both a and b
simultaneously, and thus only allow for 2 extensions in this scenario, {x, a} and {x, b}.
As a consequence of this design decision, the flattening also becomes slightly simpler than
the one fully described by Gabbay [24]. This interpretation of the attack from and to sets
of elements is also in line with the one given by Nielsen and Parsons in their work on set
attacks [59].

As an intermediate step in the flattening, one could interpret the disjunctive attack from
x to {a, b} as two joint attacks, one from {x, a} to b and another from {x, b} to a, as
depicted in Fig. 5.2. This follows the intuition that as long as x is in, making either a or b
in activates a joint attack on the other argument, forcing it out.

Observe the flattened framework in Fig. 5.3. The added node ϕ represents the attack
from the original framework, and thus any other relation involving ϕ in the original frame-
work will, in the flattened version, interact with ϕ. First notice that we have an auxiliary
argument representing the complement of x, −x, which will be out when x is in, in when
x is out and undec when x is undec. This allows for the attack ϕ to be shut down in case x
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Figure 5.3: Fully-flattened disjunctive attack from Fig. 5.1.

is out, by making ϕ out and thus its own complement −ϕ in, which will in turn make both
e(ϕ, a) and e(ϕ, b) out and therefore allow both a and b to be in. A similar outcome will
occur when ϕ is successfully attacked directly, while still allowing x to be in. In the case
where neither x nor ϕ are out, −ϕ will be out and therefore we will have an uninterrupted
6-cycle involving a and b. If a is in, then its complement −a will be out and so e(ϕ, a) will
be in, forcing b to be out. By symmetry, if b is in then a will be out.

Let us now have a look at the general case, when several elements join forces to disjunc-
tively attack another set of elements. Consider the scenario in Fig. 5.4. Its full flattening
is depicted in Fig. 5.5. We represented the elements in the source and target sets as ar-
guments for graphical simplicity, but each could be any kind of valid element from the
framework. Also, n ≥ 0 and m ≥ 1. For every element in the source, we have the flattened
element attacking a complement auxiliary argument, which then attacks the main argument
ϕ. This last argument is the one that represents the attack, so that the acceptance status of
ϕ in the original framework is the same as the acceptance status of this argument in the
flattened framework, and any other relation with ϕ in its source or target set in the original
framework will interact with this argument in the flattened version. This argument, and
every argument in the target set then also each have a complement which they attack. We
then also create coalition arguments in a manner similar to the one originating from the
source, following the intuition that a disjunctive attack can be represented as multiple joint
attacks. For every element ψ in the target set, all other elements join with ϕ to attack ψ.
The complement of every element also attacks every coalition that the element appears in,
so that if an element is out, its complement will be in and will shut down any coalitions it
participated in.

We now formally define the flattening function for the general case. Note that, for
simplicity, we will directly use the original elements themselves to represent them in the
flattened framework. Since we sometimes introduce quite a few auxiliary arguments in
the flattening process, this also has the advantage of making clear which of the added
arguments represents the original element.

Definition 5.4.23 (Flattening Attacks). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF
and ϕ ∈→. We define aux(ϕ) = {−ψ | ψ ∈ {ϕ}∪src(ϕ)∪trg(ϕ)}∪{e(ϕ, trg(ϕ)\{ψ}) |
ψ ∈ trg(ϕ)}. We then define a local flattening function fl as fl(F, ϕ) = 〈A′, ∅,→′, ∅, ∅〉,
such that:
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Figure 5.4: Set attacking a set via an attack ϕ.

Figure 5.5: Flattened attack from Fig. 5.4.
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Figure 5.6: Example disjunctive
explanation on two explananda. Figure 5.7: Flattening of the disjunctive explanation

depicted in Fig. 5.6.

• A′ = {ϕ} ∪ src(ϕ) ∪ trg(ϕ) ∪ aux(ϕ);

• →′= {(ψ,−ψ) | ψ ∈ {ϕ} ∪ src(ϕ) ∪ trg(ϕ)} ∪ {(−ψ, ϕ) | ψ ∈ src(ϕ)} ∪
{(−ϕ, e(ϕ, trg(ϕ) \ {ψ})) | ψ ∈ trg(ϕ)} ∪ {(−ψ, e(ϕ, trg(ϕ) \ {χ})) | ψ, χ ∈
trg(ϕ), ψ 6= χ} ∪ {(e(ϕ, trg(ϕ) \ {ψ}), ψ) | ψ ∈ trg(ϕ)}.

Note that when the source of an attack ϕ is the empty set, we shall simply not have any
auxiliary arguments attacking ϕ, so that the only way to defend from such an attack is to
attack ϕ directly.

5.4.3 Flattening explanations
In this subsection, we now focus on the explanation relation, which we generalize to allow
for sets of arbitrary elements as sources and targets of the relation. The interpretation is
similar to the one for the attack relation, so that if a set is the source of an explanation, it
is only accepted if all elements of the set are in, and if a set is the target of an explanation,
then the explanation is only successful on a single one of the elements from that set.

Consider a case where an argument disjunctively explains two explananda, as depicted
in Fig. 5.6. An example for such a situation could be in the case where a theory is based on
the disjunction of two incompatible assumptions, so that in general the consequences of this
theory are the same, except when considering its relation to the two explananda. When one
of the assumptions holds, then the theory explains one explananda, while when the other
assumption holds, the theory explains the other explananda. This scenario is flattened as
depicted in Fig. 5.7. X(ϕ, e1) and X(ϕ, e2) attack each other, ensuring that only one of the
explananda is provided an explanation for. The explanatory link from a to the explananda
is preserved by having it explain the right auxiliary arguments. This link is either broken
when the relation itself is out, or when the corresponding X(ϕ, ei) is out. The complement
arguments are also there to ensure that if the argument or the relation is out, the rest of the
interaction is shut down.

We now observe the general case, when a set of elements explains another set of ele-
ments, as depicted in Fig. 5.8. Its flattening is represented in Fig. 5.9. On the side of the

86



Figure 5.8: General case of expla-
nation by a set of elements and of a
set of elements.

Figure 5.9: Flattening of the general case of explana-
tion depicted in Fig. 5.8.

sources, we have that every element of the source explains the relation ϕ, giving the pos-
sibility to indirectly explain one of the targets. We additionally have that the complement
of every source element attacks ϕ, so that unless all source elements are in, at least one
complement will be in and will make ϕ out, preventing the relation from taking effect. On
the side of the targets, we have that for every element being explained by the relation, there
is an X(ϕ, bi) auxiliary argument that explains it. However, all of these X(ϕ, bi) attack
each other, so that only one of them will be in and therefore only one of the targets will
be successfully explained in the end. This is however not the case when ϕ is out, since we
then have that −ϕ is in and successfully attacks all X(ϕ, bi), preventing any of the targets
from being explained by ϕ.

We formally define the flattening depicted in Fig. 5.9:

Definition 5.4.24 (Flattening Explanations). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an
EEAF and ϕ ∈99K. We define a local flattening function fl as fl(F, ϕ) = 〈A′,X ′,→′, 99K′
, ∅〉, such that:

• A′ = {ψ,−ψ | ψ ∈ {ϕ} ∪ src(ϕ)} ∪ {ψ,X(ϕ, ψ) | ψ ∈ trg(ϕ) ∩ A};

• X ′ = {ψ,X(ϕ, ψ) | ψ ∈ trg(ϕ) ∩ X};

• →′= {(ψ,−ψ) | ψ ∈ {ϕ} ∪ src(ϕ)} ∪ {(−ψ, ϕ) | ψ ∈ src(ϕ)} ∪ {(−ϕ,X(ϕ, ψ)) |
ψ ∈ trg(ϕ)} ∪ {(X(ϕ, ψ), X(ϕ, χ)) | ψ, χ ∈ trg(ϕ), ψ 6= χ};

• 99K′= {(ψ, ϕ) | ψ ∈ src(ϕ)} ∪ {(ϕ,X(ϕ, ψ)) | ψ ∈ trg(ϕ)} ∪ {(X(ϕ, ψ), ψ) | ψ ∈
trg(ϕ)}.

5.4.4 Flattening incompatibility
In this subsection, we focus on the incompatibility relation, which we generalize to allow
for an arbitrary non-empty set of elements to be consindered an incompatible set of element.
The intuitive interpretation of an incompatibility of a set of elements is that not all elements
of the set can be accepted together. Just like in the case of the binary incompatibility
relation in EAFs, the incompatibility relation cannot be used to defend an argument.
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Figure 5.10: Depiction of the incompati-
bility of the set of elements {a1, . . . , an}.

Figure 5.11: Flattening of the general case of in-
compatibility depicted in Fig. 5.10.

We depict the incompatibility of a set {a1, . . . , an} of elements as shown in Figure 5.10:
Let us first illustrate how the incompatibility relation is flattened when the incompatible

set of argument contains two arguments, say a and b. Intuitively, as long as the element
representing the incompatibility of this set is not the target of a relation of the EEAF, this
case should behave the same way as the binary incompatibility between a and b behaves
in an EAF. However, we cannot just flatten this set incompatibility on {a, b} to the binary
incompatibility between a and b, beacuase this would not allow us to correctly treat the
case when the element representing the set incompatibility is the target of a relation of the
EEAF. Instead, we flatten it as shown in Figure 5.13:

At first sight it might be surprising that we flatten a symmetric relation between two
elements in this asymmetric way. But of course the important point is not whether the
flattening is asymmetric from a purely syntactic point of view, but whether its semantic
behavior is symmetric and coincides with the intended semantic behavior. This is indeed
the case for this flattening.

Example 5.4.1. Consider the case with three incompatible arguments depicted in Fig. 5.14
and flattened in Fig. 5.15. Supposing there is no external attack on any of the elements, for
a to be in, we need J{a,b,c} to be out. So, we need either I{a,b,c},b or I{a,b,c},c to be in. This
means that we cannot have both b and c be in, but as soon as exactly one of them is in, a
becomes in as well. Similarly, for b to be in, we need I{a,b,c},b to not be in. So we need
either K{a,b,c} to be in, which requires a to be out and also makes c in, or I{a,b,c},c to be in,
which forces c to not be in and makes a in. So in all cases, with no outside influence, the
only extensions contains exactly two of the three arguments a, b and c. Interested readers
can also verify that even with other relations interacting with the incompatible arguments,
it does not matter which argument is chosen as the lone argument (a in this example).

Figures 5.15 and 5.11 show how a 3-element set and a general n-element set get flat-
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Figure 5.12: Example incompatibility
between two arguments.

Figure 5.13: Flattening of the incompatibility be-
tween two arguments depicted in Figure 5.12.

tened:
We now formally define the flattening function for the general case. Note that we

require the Axiom of Choice, in order to be able to select one element from the incompatible
ones as the odd one out, due to the asymmetrical construction of the flattening. So given
a possibly infinite set of elements Θ, we assume a function choose which returns exactly
one element from Θ. It does not matter which element is chosen, however one is required
for the construction.

Formally speaking, an incompatibility is a set of elements from the framework. How-
ever, to avoid potential confusion and improve readability, for an incompatibility ϕ, we
write ϕ when referring to the incompatibility itself and src(ϕ) when referring to the set of
incompatible elements, even though they are formally the same objects.

Definition 5.4.25 (Flattening Incompatibility). Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be
an EEAF, ϕ ∈∼ and let ψ = choose(ϕ). We define aux(ϕ) = {−ϕ, Jsrc(ϕ), Ksrc(ϕ)} ∪
{Isrc(ϕ),ψ | ψ ∈ src(ϕ) \ {choose(src(ϕ))}}. We then define a local flattening function fl
as fl(F, ϕ) = 〈A′, ∅,→′, ∅,∼′〉, such that:

• A′ = {ϕ} ∪ src(ϕ) ∪ aux(ϕ);

• →′= {(ϕ,−ϕ), (−ϕ, Jsrc(ϕ)), (Ksrc(ϕ), Jsrc(ϕ)), (Jsrc(ϕ), choose(src(ϕ))),
(choose(src(ϕ)), Ksrc(ϕ))} ∪ {(−ϕ, Isrc(ϕ),ψ) | ψ ∈ src(ϕ) \ {choose(src(ϕ))} ∪
{(Ksrc(ϕ), Isrc(ϕ),ψ) | ψ ∈ src(ϕ) \ {choose(src(ϕ))} ∪ {(Isrc(ϕ),ψ, Jsrc(ϕ)) | ψ ∈
src(ϕ) \ {choose(src(ϕ))};

• ∼′= {(ψ, Isrc(ϕ),ψ), (Isrc(ϕ),ψ, ψ) | ψ ∈ src(ϕ) \ {choose(src(ϕ))} ∪
{(Isrc(ϕ),ψ, Isrc(ϕ),ψ′), (Isrc(ϕ),ψ′ , Isrc(ϕ),ψ) | ψ, ψ′ ∈ src(ϕ) \ {choose(src(ϕ)), ψ 6=
ψ′}.
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Figure 5.14: Example incompatibility
between three arguments. Figure 5.15: Flattening of the incompatibility be-

tween three arguments depicted in Fig. 5.14.

5.4.5 Flattening necessary and deductive support
In this subsection, we now focus on the support relations, both the necessary and the deduc-
tive ones. In both cases, which we generalize them to allow for sets of arbitrary elements
as sources and targets of the relation.

For necessary support, the interpretation is as follows: when a source set necessarily
supports a target set, if no element of the source is accepted and the support relation is not
rejected, then no element in the target set can be accepted either.

Consider a case where a set of two arguments necessary supports two other arguments,
as depicted in Fig. 5.16. For a concrete example illustrating the behavior, picture a chef
improvising a new dish. He may opt for a sweet dish, such as a cake, or a savory dish, such
as a green salad. If he wishes his dish to be contain notes of both however, he needs a good
reason to do so, as these tastes usually do not go well together. In that case, many reasons
are valid, and any of them alone would be enough to justify his choice to include both, but
without any acceptable reason it seems questionable to include both.

Example 5.4.2. A formal example is depicted in Fig. 5.16. Here, we have a set of two
arguments, {a, b}, necessary supporting another set of two arguments, {c, d}. We introduce
a semi-flattening here, which still includes a disjunctive attack, in order to help the reader
with the intuition behind the full flattening. So the semi-flattening goes as follows: the two
arguments from the source set, a and b, both attack an auxiliary argument xϕ, so that as long
as one of either a or b is accepted, this auxiliary argument xϕ is rejected. This argument
is additionally attacked by the complement of the relation argument, −ϕ, which is itself
attacked by ϕ. This leads to the result that if ϕ is out then its complement −ϕ will be in,
making xϕ out and therefore canceling any impact the status of the source argument would
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Figure 5.16: Example of a set of
two arguments necessary support-
ing another set of two arguments. Figure 5.17: Semi-flattening of the set support de-

picted in Fig. 5.16.

otherwise have on the status of the target arguments. In case both of the source arguments
are out and the relation argument ϕ is in, the auxiliary argument xϕ will be in and therefore
the set {c, d} is disjunctively attacked, meaning that at least one of c or d must be out. This
corresponds to the intuition given previously: since neither of the necessary conditions are
acceptable and the relation itself is not contested, it cannot be that the target set is wholly
accepted.

The semi-flattening depicted in Fig. 5.17 still contains a disjunctive attack, and is there-
fore not fully flattened into an EAF. When flattening that disjunctive attack as defined ear-
lier, one obtains a full flattening which we now formally define as follows:

Definition 5.4.26. Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF and ϕ ∈⇒n. We
define a local flattening function fl as fl(F, ϕ) = 〈A′, ∅,→′, ∅, ∅〉, such that:

• A′ = {ϕ,−ϕ}∪ src(ϕ)∪{xϕ,−xϕ}∪ {ψ,−ψ | ψ ∈ trg(ϕ)}∪ {e(xϕ, trg(ϕ) \ψ) |
ψ ∈ trg(ϕ)};

• →′= {(−ϕ, xϕ)} ∪ {(ψ, xϕ) | ψ ∈ src(ϕ)} ∪ {(ψ,−ψ) | ψ ∈ trg(ϕ) ∪ {ϕ, xϕ}} ∪
{(−ψ, e(xϕ, trg(ϕ)\χ)) | ψ ∈ trg(ϕ)∪{−xϕ}, χ ∈ trg(ϕ), ψ 6= χ}∪{(e(xϕ, trg(ϕ)\
ψ), ψ) | ψ ∈ trg(ϕ)}.

We now focus on the case of deductive support. The interpretation is simply the con-
verse of necessary support: if no elements in the target set is accepted but the support
relation is, then no element in the source set can be accepted.

Consider a case where a set of two arguments deductively supports two other argu-
ments, as depicted in Fig. 5.18. For a concrete example illustrating the behavior, picture
the following scenario: a university professor has 2 PhD students, each of whom has a
paper accepted at the famous conference X. We now consider two arguments: first, a: “the
remaining travel budget is Y”, and second, b: “sending a PhD student to conference X costs
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Figure 5.18: Example of a set
of two arguments deductively sup-
porting another set of two argu-
ments.

Figure 5.19: Semi-flattening of the set support de-
picted in Fig. 5.18.

exactly Y”. Additionally, we have two more arguments: c: ‘student 1 cannot go to confer-
ence X”, and d: “student 2 cannot go to conference X”. Now, one can see that together, the
arguments a and b jointly imply that either c or d holds, since the professor cannot send
both students to the conference. So as long as one accepts both the arguments a and b, one
must be prepared to accepted at least one of c or d. This means that if one does not accept
neither c nor d, one cannot simultaneously accept a and b.

Example 5.4.3. A formal example is depicted in Fig. 5.18, with its flattening in Fig. 5.19.
The flattening is essentially the same as for necessary support, but starting from the target
and going towards the source.

Similarly as for the case of necessary support, the semi-flattening depicted in Fig. 5.19
still contains a disjunctive attack, and is therefore not fully flattened into an EAF. When
flattening that disjunctive attack as defined earlier, one obtains a full flattening which we
now formally define as follows:

Definition 5.4.27. Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF and ϕ ∈⇒d. We
define a local flattening function fl as fl(F, ϕ) = 〈A′, ∅,→′, ∅, ∅〉, such that:

• A′ = {ϕ,−ϕ}∪ trg(ϕ)∪{xϕ,−xϕ}∪{ψ,−ψ | ψ ∈ src(ϕ)}∪{e(xϕ, src(ϕ) \ψ) |
ψ ∈ src(ϕ)};

• →′= {(−ϕ, xϕ)} ∪ {(ψ, xϕ) | ψ ∈ trg(ϕ)} ∪ {(ψ,−ψ) | ψ ∈ src(ϕ) ∪ {ϕ, xϕ}} ∪
{(−ψ, e(xϕ, src(ϕ)\χ)) | ψ ∈ src(ϕ)∪{−xϕ}, χ ∈ src(ϕ), ψ 6= χ}∪{(e(xϕ, src(ϕ)\
ψ), ψ) | ψ ∈ src(ϕ)}.
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5.4.6 Combining the flattenings
Now that we have defined the local flattening of each relation, we define how these flatten-
ings are combined to fully flatten any EEAF into an EAF.

Given an EAF F = 〈A,X ,→, 99K,∼〉, we define arg(F ) = A, explananda(F ) = X ,
att(F ) =→, explanation(F ) =99K and incomp(F ) =∼.

Definition 5.4.28. Given a set of EAFs S, we define the union of these EAFs as
⋃
S =

〈A,X ,→, 99K,∼〉 where:

• A =
⋃
{arg(F ) | F ∈ S}

• X =
⋃
{explananda(F ) | F ∈ S}

• → =
⋃
{att(F ) | F ∈ S}

• 99K =
⋃
{explanation(F ) | F ∈ S}

• ∼ =
⋃
{incomp(F ) | F ∈ S}

For the global flattening, we simply locally flatten every single relation in the EEAF,
and then take the union of the resulting EAFs.

Definition 5.4.29. Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF. We define the global
flattening function fg as fg(F ) =

⋃
{fl(F, ϕ) | ϕ ∈ (NonEx(F ) \ A)}.

We show that the local flattening preserves the acceptability status of the non-auxiliary
elements.

For the sake of conciseness, we say that an element e of an EAF or EEAF F is legally
labeled w.r.t. a labeling Lab of F if Lab(e) = in and e is legally in w.r.t. Lab, Lab(e) = out
and e is legally out w.r.t. Lab, or Lab(e) = undec and e is legally undec w.r.t. Lab.

Lemma 5.4.1. Let F = 〈A,X ,→, 99K,∼,⇒d,⇒n〉 be an EEAF, a ∈ NonEx(F ), ϕ ∈→
and Lab a labeling of F . If a is legally labelled with respect to Lab and attack ϕ, then there
exists a labeling Lab′ of the flattened EAF F ′ where for all ψ ∈ NonEx(F ), Lab(ψ) =
Lab′(ψ), and every element in aux(ϕ) is legally labeled w.r.t. Lab′.

5.5 Related research
The work of Oren and Norman [31] introduces a notion of evidential support. Here, the
arguments’ attacks are effective only if the attacking arguments are backed by evidence,
either directly or indirectly via a chain of support from other arguments. Here, the evidence
takes the form of support from the environment itself, in other words facts originating from
the context. A similar behavior could be achieved in our framework with support from the
empty set. Although the intuition is similar, it remains to be seen how closely related the
formal aspects are.

Gottifredi et al. [60] present a framework with recursive attacks and necessary support.
An earlier version [61] proposed to derive the semantics from a translation, similar to the
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flattening approach described in this chapter. The more recent work instead introduces
direct semantics which do not require the translation. An avenue of research for future
work would be to investigate whether one could derive direct semantics for EEAFs in a
similar fashion, obtaining an extension-based semantics equivalent to both the labelling
and flattening approaches for EEAFs.

In a recent study, Flouris and Bikakis [62] investigate the framework with sets of at-
tacking arguments (SETAF). This framework adds joint attacks to the base abstract argu-
mentation frameworks, allowing non-empty sets of arguments to attack single arguments.
This could be seen as a restriction of EEAFs where the explanations, explananda, supports
and incompatibilities are empty, and no joint attack is made on any non-singleton set of
arguments. In their work, they present adaptation of existing semantics for abstract argu-
mentation frameworks to SETAFs, together with a labelling semantics for each of those se-
mantics. Due to the important role explanations play for EEAF semantics, such adaptations
seem less obvious. It could however be fruitful to investigate how one could adapt well-
known abstract argumentation semantics to EEAFs where the explanations, explananda and
incompatibilities are empty.

5.6 Applying EEAFs to self-reference paradoxes
Let us now move on to some examples, which focus on solutions for logical paradoxes of
self-reference. The arguments are extracted from three different excerpts of Saving Truth
from Paradox [58].

In the first example, two groups of solutions to the liar paradox are compared. The first
group is the solutions which weaken classical logic, namely the paracomplete, paracon-
sistent and semi-classical solutions. The second group is comprised of the underspill and
overspill solutions.

We have the following arguments:

• Ep: This explanandum represents the paradox.

• A: The paracomplete, paraconsistent and semi-classical solutions which provide ex-
planations for the paradox by weakening classical logic.

• B: The underspill and overspill solutions which provide their own explanation of the
paradox by suggesting that for some predicates F, F is true of some objects that aren’t
F or vice-versa.

• C: We did not change logic to hide the defects in other flawed theories such as Ptole-
maic astronomy, so why should we change the logic simply to hide these paradoxes?

• D: There is no known way of saving these flawed theories such as Ptolemaic astron-
omy and even if there was, there is little benefit to doing so.

• F : We have worked out the details of the new logics and they allow us to conserve
the theory of truth.

• G: Changing the logic implies changing the meaning.
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Figure 5.20: EEAF representing the reasoning behind the first excerpt

• H: Change of meaning is bad.

• I: The change is mere.

• J : This is no ‘mere’ relabelling.

• K: Change of truth schema is a change of the meaning of ‘true’.

• L: The paradox forces a change of meaning.

The framework is represented in Figure 5.20 and its flattening in Figure 5.21. We have
omitted less-relevant auxiliary arguments for the sake of visibility.

We get that the AC-extensions are {A,C,D, F, L,G, J,K} and {B,C,D, F, L,G, J,K}.
We can distinguish here the two rivaling solutions which are both selected. This is due to
the fact that even though the author might have a preference for one or another, in the ex-
cerpt we have analyzed, he is merely defending the solutions represented in A from attacks
and making no argument which attacks the solutions represented in B.

The EC-extensions are {A,D, F, L}, {A,D, F, J} and {B, J}. Notice that there are
two different EC-extensions which contain A, as there are two arguments which individu-
ally defend A from the coalition attack of {G,H}.

The second example focuses on the Russell property. There is a principle which the
author refers to as (INST), where F is some intelligible predicate:

(INST) ”The property of being F is instantiated by all and only those things that are F.”

Now the Russell property is the property of not instantiating itself. By plugging the Russell
property in INST, we get:

”The Russell property is instantiated by all and only those things that don’t instantiate
themselves.”

Which can also be rephrased as:

”The Russell property instantiates itself if and only if it does not instantiate itself.”
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Figure 5.21: Flattened EEAF representing the reasoning behind the first excerpt

This is the Russell paradox, which is similar in many ways to the liar paradox as it has the
form B ↔ ¬B. Let us now examine the following arguments:

• Ep: this is an explanandum which represents Russell’s paradox.

• A: The Non-existence solution, which suggests that there is no such property as the
Russell property.

• B: One could argue that it would violate the raison d’être of properties to suppose
that for an intelligible predicate such as ‘doesn’t instantiate itself’, there is no corre-
sponding property of not instantiating itself.

• C: As an answer to this, one could deny that the Russell property is intelligible.

• D: It seems odd to say that the property of not instantiating itself is not intelligible
as all parts of it are intelligible.

• F : By defining intelligible as ”expresses a property”, one can deny that the Russell
property is intelligible.

These arguments give us the framework in Fig. 5.22.
The non-existence solution A explains the paradox Ep and is attacked by the argument

B that it violates the raison dêtre of properties to suppose that such a property does not
exist. B is in turn attacked by the argumentC that the property is not intelligible, which also
deepens A’s explanation. The argument D then states that all parts of ‘does not instantiates
itself’ are intelligible and thus attacks C. We then have the argument F that ‘intelligible
should be read as ‘expresses a property”. This attacks D and also adds to the explanatory
depth of C as it explains the term ‘intelligible’ used in C. However, notice that F also
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Figure 5.22: EEAF representing the reasoning behind the second excerpt

Figure 5.23: Flattened EEAF representing the reasoning behind the second excerpt

attacks the explanatory relation from C to A as the definition of ‘intelligible’ and ‘express
a property’ given by the solution are now defined in terms of each other and can thus never
be fully settled. This means that the solution has not explained the failure of the property
(COMP). As a consequence, F also defends B from the attack based on C’s explanation of
A.

The framework is flattened as depicted in Fig. 5.23 (we have again omitted less-relevant
auxiliary arguments for the sake of visibility).

We get that the only AC-extension is {B,C, F}. On the other hand, the only EC-
extensions is the empty-set. This is due to the fact that the only argument explaining the
explanandumEp isA, yetA is attacked byB which is defended by the unattacked argument
F . Hence, A can never be defended and thus we can extract no relevant explanation from
this framework.

Let us now examine the last set of arguments. Here, the author is focusing on the
paracomplete solutions to the liar paradox. The paracomplete solutions reject the principle
of excluded middle which states that for every formula ϕ, it always holds that ϕ ∨ ¬ϕ. We
have the following arguments:

• Ep: This explanandum represents once again the paradox.
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• A: The paracomplete solution explains the paradox by rejecting the law of excluded
middle.

• B: Why would one reject the law of excluded middle when it seems sound in math-
ematics, physics etc.

• C: The paracomplete solution only question its applicability to certain circular pred-
icates such as this paradox.

• D: An interesting paracomplete theory in which the Naive Property Theory is con-
sistent might not even be possible since intuitionist logic invalidates the central ar-
gument from equivalence to contradiction but still allows for contradictions from a
formula such as B ↔ ¬B.

• F : In deMorgan logics without LEM, B ↔ ¬B is not contradictory.

• G: B ↔ ¬B not being contradictory is not enough, we also need to maintain Naive
Property Theory and include intersubstitutivity of equivalents.

• H: Intersubstitutivity of equivalents follows from (INST) in classical logic.

• I: We are considering logics weaker than classical logic in which it may not follow
from (INST).

• J : In the reasonably strong deMorgan logic advocated later in the book, (INST)
holds.

We get the framework in Fig. 5.24, which gets flattened and simplified into the frame-
work from Fig. 5.25.

The only AC-extension is {A,C, F,G,H, I, J}while the EC-extension is {A,C, F, J}.
This means that the solution modeled here is consistent with the proposed arguments
F,G,H and I , even if they do not directly contribute to the explanation of the solution.
In the end, the solution A is defended by C from B and by F from D, which is then de-
fended by J from G. Hence, the four arguments A,C, F, J are essential and sufficient to
defend the solution in this model. Note that no arguments are explaining each other, hence
no measure of explanatory depth is performed in this model.

5.7 Conclusion and further research
We have examined several extensions of abstract argumentation frameworks that add ex-
planatory features, recursive attacks, support and joint attacks. In the cases of recursive
attacks, support and joint attacks, we have presented a flattening function, which allows us
to instantiate these extended framework as standard AFs. We have shown that in the case
of AFRAs, the complete semantics defined in terms of the flattening is equivalent to the
complete semantics which has been defined directly on AFRAs. We have then aggregated
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Figure 5.24: EEAF representing the reasoning behind the third excerpt

Figure 5.25: Flattened EEAF representing the reasoning behind the third excerpt
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these extensions into one framework, EEAFs, and defined the semantics in terms of its flat-
tening to EAFs. Finally, we have explored an application of EEAFs to argumentation from
a research-level philosophy book.

Concerning future work in the line of research of this chapter, we plan to extend the
result about the flattening of AFRAs to other argumentation semantics than the complete
semantics. Furthermore, it might be interesting to investigate flattening the explanatory
relation and explananda. Due to their intricate nature, it is not obvious how to flatten them
and obtain semantics equivalent to the ones defined on EAFs. Another point of interest
would be to apply EEAFs to other areas of scientific debates and examine whether the
current features provide enough expressive power.
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Chapter 6

Structured argumentation with
hypothetical reasoning

6.1 Introduction
Scientific research in the formal sciences (mathematics, logic, theoretical computer science,
axiomatic metaphysics, formal linguistics, game theory etc) comes in multiple degrees of
formality: fully formal work, which is often performed with the help of computer systems
for interactive theorem proving, as it quickly becomes too tedious for humans to explicate
all their reasoning in a formal system; fully rigorous proofs that practitioners precisely
know how to formalize; practically rigorous work that practitioner know to be formalizable
in principle; and informal work like rough proof sketches and considerations about the
advantages and disadvantages of various formal systems. Historically, there has been a
move from more informal approaches to more formal ones, e.g. in the mathematics of the
first half of the 20th century, when the foundational crisis led to an increased attention
to axiomatization and to rigorous proofs. This move has generally been accompanied by
debates among formal scientists, e.g. about the acceptability of foundational principles and
proposed axiomatizations. Despite being informed by formal considerations, these debates
have generally been articulated in an informal or semi-formal way.

In this chapter, we propose to use the methodology of structured argumentation theory
[63] to produce formal models of such informal and semi-formal debates in the formal sci-
ences. Structured argumentation theory allows for a fine-grained model of argumentation
and argumentative reasoning based on a formal language and evaluated according to the
principles developed in Dung-style abstract argumentation theory [4, 64].

One of the dominant formal frameworks for structured argumentation is the ASPIC+
framework [6]. In ASPIC+, arguments are built from axioms and premises as well as from
strict and defeasible rules, in a similar manner as proofs are built from axioms and rules in
a Hilbert-style proof system. The distinction between strict and defeasible rules amounts
to the difference between deductively valid modes of inference (e.g. conjunction introduc-
tion), and defeasible principles that generally hold but allow for exception (e.g. that dogs
generally have four legs). Three kinds of attacks between arguments, undermines, under-
cuts and rebuttals, are defined between arguments, and finally an argumentation semantics
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from abstract argumentation theory [64] is applied to determine which sets of arguments
can be rationally accepted.

Arguments in the formal sciences often involve hypothetical reasoning, which involves
reasoning based on an assumption or hypothesis that is locally assumed to be true for the
sake of the argument, but to which there is no commitment on the global level. Such
hypothetical reasoning is captured well by natural deduction proof systems, whereas the
Hilbert-style definition of arguments in ASPIC+ cannot account for such hypothetical rea-
soning.

ASPIC+ does not allow strict rules to be attacked, which means that debates about
which rules of inference are correct, cannot be modeled in ASPIC+. But sometimes for-
mal scientists debate about which rules of inference are deductively valid. ASPIC-END
replaces the strict rules of ASPIC+ by intuitively strict rules, which formalize the prima
facie laws of logic which we pre-theoretically consider to be valid without exceptions, but
which can nevertheless be given up after more careful examination. Unlike the strict rules
of ASPIC+, an intuitively strict rule can be attacked by another argument, but unlike for
a defeasible rule, the conclusion of an intuitive strict rule cannot be rejected if both the
antecedent of the rule and the rule itself is accepted.

Scientific discourse is characterized not only by the exchange of arguments in favor and
against various scientific hypotheses, but also by the attempt to provide scientific explana-
tions. In the context of abstract argumentation, [27] have therefore proposed to incorporate
the notion of explanation into argumentation theory, in order to model scientific debate
more faithfully. So far, this incorporation of explanation into argumentation theory has
not been extended to the case of structured argumentation. The two contributions of the
current chapter in this direction are a general framework for incorporating explanation into
structured argumentation and a particular proposal for how to define explanations in instan-
tiations of that framework in the domain of paradoxes arising in the formal sciences.

We propose an adaptation of the ASPIC+ framework called ASPIC-END that allows for
incorporating hypothetical reasoning and explanations (see Section 6.3). We illustrate the
applicability of the framework to debates in the formal sciences through two instantiations
of the framework: First, we present in detail a model of a very simple set of arguments
about proposed solutions to the Liar Paradox (see Section 6.4). The presentation of this
model only serves to illustrate the functioning of ASPIC-END on a simple example and
does not purport to be a model of philosophically noteworthy arguments on this topic. In
Section 6.5 we sketch and discuss a more extensive model that formalizes parts of the
debate that mathematicians had about the Axiom of Choice in the early 20th century [65].
Given that the model still leaves out many contributions to that debate and additionally
simplifies some of the contributions that it does take into account, we consider it to only
be a preliminary model that we plan to extend in the future. However, we hope that this
more extensive model gives some insight into the strengths and drawbacks of the modeling
capacities of ASPIC-END, as well as inspiration for further research into this direction.

In order to ensure that the ASPIC-END framework behaves as one would rationally
expect, as was previously done for ASPIC+ [66], we prove multiple rationality postulates
about ASPIC-END in Section 6.6.

We see two primary motivations for applying the methodology of structured argumen-
tation theory to debates in the formal sciences: First, it is a suitable testbed for structured
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argumentation theory: Applying structured argumentation theory to real-life debates is of-
ten very challenging, because of many layers of uncertainty and imprecision in the interpre-
tation of most types of debates, caused by ambiguities and vagueness of natural language,
by a lack of a formal understanding of the domain of discourse of the debate, as well as by
the limited rationality of the humans involved in the debate. In the case of debates in the
formal sciences, all of these problems are alleviated to some degree: Formal scientists tend
to avoid ambiguities and minimize vagueness in their scientific usage of natural language,
especially so in the more formal parts of their work, but also in the more informal parts.
We have a much better formal understanding of the domains of discourse of the formal
sciences than of practically any other domains of discourse. And the debates that scientists
have on scientific topics of their field generally show a higher degree of rationality than
debates that non-scientists have. For these reasons, it can be hoped that structured argu-
mentation theory can be more easily, and thus hopefully more fruitfully, applied to debates
in the formal sciences than to many other kinds of debates to which it has been applied so
far. This could also more clearly than existing application bring to light the drawbacks of
current approaches in structured argumentation theory, which could become an impetus for
further developments in the field.

The second motivation for applying structured argumentation theory to debates in the
formal sciences is that in the long run, once the methodology and the models it produces
become more mature, such models could contribute to a better understanding of what is
at stake in debates in the formal sciences, and hence to a better understanding about the
foundations of formal sciences. In this respect, we see the proposed methodology as com-
plimentary to and combinable with the work within the emerging field of computation
metaphysics, in which methods from automated and interactive theorem proving are used to
fully formalize axiomatic theories of metaphysics. The term computation metaphysics was
first coined by [67], who formalized parts of Abstract Object Theory [68] with PROVER9.
More recently, significant contributions to this field of research were made by [69], who
with the help of an automated higher-order theorem prover discovered a so far undetected
inconsistency in Gödel’s ontological argument, and by [70], who used higher-order the-
orem provers to expose some mistakes and novel insights in a long-standing controversy
between Háyek and Anderson concerning a variant of Gödel’s ontological argument. This
work shows that full formalization of work in a formal field of research can yield real bene-
fits to advance the research in such a field. But so far, this methodology has been limited to
the study of the object level of formal axiomatic theories, whereas the meta-level debates
that formal scientists have about such theories could not be captured within the formaliza-
tions. One way in which the methodology proposed in this chapter could complement the
existing methodology of automated theorem proving is that is could allow such meta-level
debates to also be captured within a formal model, so that the discovery of mistakes and
new insights with the help of automated theorem proving could be extended to this level.

6.2 Related work & motivation for ASPIC-END
The work of [4] introduced the theory of abstract argumentation, in which one models
arguments by abstracting away from their internal structure to focus on the relation of con-
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flict between them. This gives rise to the notion of an argumentation framework, which
formally is just a directed graph, whose informal interpretation is that the vertices stand
for arguments and the edges stand for the attack relation between arguments, i.e. the rela-
tion between a counterargument and the argument that it counters. Given an argumentation
framework, the goal is to select a set of arguments deemed acceptable on the sole basis of
the attack relation between the arguments. There are various approaches for making such
selections, based on different criteria such as conflict-freeness (i.e. never simultaneously
accepting two arguments where one attacks the other), defense (accepting an attacked argu-
ment only if you also accept counterarguments to all its attackers), and maximality (which
among other things ensures that an unattacked argument will always be accepted). A se-
lection of arguments that are deemed simultaneously acceptable according to some criteria
is called an extension. Sometimes, especially when there are cycles in the argumentation
framework, there might be multiple extensions that satisfy the given criteria. For this rea-
son, the formal definition of an abstract argumentation semantics is that it is a function
that maps any given argumentation framework to a set of sets of arguments (vertices) of
that argumentation framework.

In structured argumentation, one models also the internal structure of arguments through
a formal language in which arguments and counterarguments can be constructed [63]. One
important family of frameworks for structured argumentation is the family of ASPIC-like
frameworks, which is based on the work of John Pollock (e.g. [71, 72]) and consists among
others of the original ASPIC framework [73], the ASPIC+ framework [6], and the ASPIC-
framework [74]. We briefly sketch ASPIC+, as it is the basis for our framework ASPIC-
END.

In ASPIC+, one starts with a knowledge base and a set of rules1 which allow one to
make inferences from given knowledge. There are two kinds of rules: Strict rules logically
entail their conclusion, whereas defeasible rules only create a presumption in favour of
their conclusion. Arguments are built either by introducing an element of the knowledge
base into the framework, or by making an inference based on a rule and the conclusions
of previous arguments. Attacks between arguments are constructed either by attacking a
fallible premise of an argument (undermining), by attacking the conclusion of a defeasible
inference made within an argument (rebuttal), or by questioning the applicability of such
a rule (undercutting). Preferences between arguments can be derived from preferences
between rules. An abstract argumentation framework can thus be built and acceptable
arguments can be selected using any abstract argumentation semantics.

[75] have introduced the notion of rationality postulates for structured argumentation
frameworks. These are conditions that structured argumentation frameworks would ratio-
nally be expected to satisfy, such as closure under strict rules of the output and consistency
of the conclusions given consistency of the strict rules. [75] showed that the original AS-
PIC system did not satisfy these postulates, but proposed minor changes that made it satisfy

1 In this chapter, we use the word rule in the way in which it is usually used in the structured argumentation
literature. There is one important difference between this usage of rule and the way the word is usually used
in the logical literature outside of structured argumentation theory: A rule, as the word is used in structured
argumentation theory, is what would normally be called an instance of a rule. For this reason, it makes sense
to speak of a rule scheme (as we will frequently do in Section 6.5), which is what would normally be just
called a rule.

104



them. These changes have been incorporated into ASPIC+ [66].
ASPIC-END features three main differences from ASPIC+. The first is that it allows

for arguments to introduce an assumption on which to reason hypothetically, just like in
natural deduction. In natural deduction, hypothetical derivations are employed in the infer-
ence schemes called ¬-Introduction (or proof by contradiction), ⊃-Introduction (we use ⊃
for the material implication), and ∨-Elimination (or reasoning by cases). Allowing for the
usage of defeasible rules within hypothetical reasoning leads to specific problems that have
been studied for the inference scheme of reasoning by cases in a recent paper by [76]. In the
current chapter we avoid these problems by not allowing defeasible rules within hypothet-
ical reasoning. However, a conclusion made on the basis of an inference scheme involving
hypothetical reasoning may still be incorporated into an argument that uses defeasible rules,
so that there is some integration of defeasible and hypothetical reasoning.2

The second difference is that ASPIC-END allows for arguments about the correct rules
of logical reasoning. In ASPIC+, such arguments cannot be modeled, as the rules of logical
reasoning represented by strict rules, and arguments involving only strict rules can never
be attacked. Argumentation about the correct rules of logical reasoning is quite common
in debates in the formal sciences. For example, our prima facie intuitions suggest that
it is a law of logic that a sentence that is not true must be false. However, the Kripke-
Feferman solution to the Liar paradox [78, 79] suggests that some sentences, such as the
Liar sentence, are neither true nor false, since giving them either one of the two truth
values leads to a contradiction. This solution is not putting forward an argument against
the falsehood of the sentence by rebutting it, nor is it undermining any of the argument’s
premises. It is undercutting the argument by attacking the inference made from the negation
of truth to falsehood.

To allow such arguments about the correct laws of logic to be modeled in ASPIC-END,
we replace strict rules by intuitively strict rules whose applicability can be questioned, as
in the case of defeasible rules in ASPIC+, but which behave like strict rules when their
applicability is accepted. This means that conclusions of intuitively strict rules cannot be
rebutted, just as for strict rules in ASPIC+. Intuitively strict rules represent prima facie
laws of logic, i.e. purportedly logical inference rules which make sense at first but are open
to debate.

The third difference is that ASPIC-END has a notion of explanations additionally to
the notion of arguments. This feature is based on the work of [27], who have extended
Dung-style abstract argumentation with explananda (phenomena that need to be explained)
and an explanatory relation, which allows arguments to either explain these explananda or
deepen another argument’s explanation. We provide reminders of definitions this chapter
builds upon, even though these can also be found in the preliminaries.

Definition 6.2.1 (Explanatory Argumentation Framework). An explanatory argumentation
framework (EAF) is a tuple 〈A,X ,→, 99K〉, where A is a set of arguments, X is a set of

2The early formalisms of [71] and [72] also allowed for arguments involving hypothetical reasoning.
Most of the work in structured argumentation theory that built on this early work of Pollock ignored this
type of arguments. In a recent paper, [77] have critically assessed the way hypothetical arguments function in
Pollock’s formalisms and have identified three problematic features of the formalism in [72]. By not allowing
defeasible rules within hypothetical reasoning, we avoid these problematic features.
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Figure 6.1: Example of explanatory power and depth: {B} >p {C} and {A,B} >p {B},
but {A} and {C} are incomparable with respect to explanatory power. {A,D} >d {A},
but {A} and {B} are incomparable with respect to explanatory depth.

explananda,→ is an attack relation between arguments and 99K is an explanatory relation
from arguments to either explananda or arguments.

If A 99K B, we say that A explains B.
Sets of admissible arguments are then selected:

Definition 6.2.2 (EAF Admissible). Let F = 〈A,X ,→, 99K〉 be an EAF, A ∈ A and
S ⊆ A. We say that S is conflict-free iff there are no arguments B,C ∈ S such that
B → C. We say that S defends A iff for every B ∈ A such that B → A, there exists
C ∈ S such that C → B. We say that S is admissible iff S is conflict-free and for all
B ∈ S, S defends B.

The most suitable admissible sets are then selected by also taking into account their
explanatory power and depth. These are measured by first identifying the explanations
present in each set of arguments.

Definition 6.2.3 (Explanation Offered). Let F = 〈A,X ,→, 99K〉 be an EAF, S ⊆ A and
E ∈ X . An explanation X[E] for E offered by S is a set S ′ ⊆ S such that there exists a
unique argument A ∈ S ′ such that A 99K E and for all A′ ∈ S ′ \ {A}, there exists a path
in 99K from A′ to A.

In order to be able to compare sets of arguments on how many explananda they can
explain and in how much detail, the two following measures are required:

Definition 6.2.4 (Explanatory Power). Let F = 〈A,X ,→, 99K〉 be an EAF and S, S ′ ⊆ A.
Let E be the set of explananda S offers an explanation for and E ′ the set of explananda S ′

offers an explanation for. We say that S is explanatory more powerful than S ′ (S >p S
′) if

and only if E ) E ′.

Definition 6.2.5 (Explanatory Depth). Let F = 〈A,X ,→, 99K〉 be an EAF and S, S ′ ⊆ A.
We say that S is explanatory deeper than S ′ (S >d S

′) if and only if for each explanation
X ′ offered by S ′, there is an explanation X offered by S such that X ′ ⊆ X and for at least
one such X and X ′ pair, X ′ ( X .

[27] define two procedures for selecting the most suitable sets of arguments. The first
procedure (for the argumentative core) consists in selecting the most explanatory powerful
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conflict-free sets, from which the maximal most defended sets are then retained. The sec-
ond procedure (for the explanatory core) selects the most explanatory powerful conflict-
free sets, from which the most defended sets are taken, and then from those selects the
minimal explanatory deepest sets. In our formalism, we will slightly alter and reformulate
these procedures.

6.3 ASPIC-END
In this section, we define ASPIC-END and motivate the details of its definition.

Definition 6.3.1 (Argumentation Theory). An argumentation theory is a tuple (L,R, n,<),
where:

• L is a logical language containing a set of free variables Lv and closed under the
binary connective disjunction (∨), the unary connectives negation (¬), the three
types of assumability (Assumable¬, Assumable∨, Assumable⊃), and the existen-
tial quantifiers (if ϕ ∈ L and x ∈ Lv, then ∀x.ϕ,∃x.ϕ ∈ L) such that ⊥ ∈ L.
• R = Ris∪Rd is a set of intuitively strict (Ris) and defeasible (Rd) rules of the form
ϕ1, . . . , ϕn  ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively, where n ≥ 0 and ϕi, ϕ ∈ L.
• n : R → L is a partial function.
• Rce := {(⊥ α) | α ∈ L} ⊆ Ris, and ∀r ∈ Rce, n(r) is undefined.
• < is an asymmetric and transitive relation over Rd which represents preference.

Note that we interpret ⊥ not just as any contradiction but as the conjunction of all for-
mulas in the language. We thus require that rules are present in the framework which allow
one to derive any formula from ⊥, which are effectively rules of conjunction elimination.

We now inductively define how to construct arguments. At the same time, we define
five functions on arguments that specify certain features of any given argument: Conc(A)
denotes the conclusion of argument A. As¬(A), As∨(A) and As⊃(A) denote the set of as-
sumptions under which argument A is operating: As¬(A) stands for the assumptions made
for a proof by contradiction, or negation introduction, As∨(A) stands for the assumptions
made for reasoning by cases, or disjunction elimination, and As⊃(A) stands for the as-
sumptions made for an implication introduction. As a short-hand, we will sometimes write
As(A) := As¬(A) ∪ As∨(A) ∪ As⊃(A). So whenever As(A) 6= ∅, A is a hypothetical
argument. Sub(A) denotes the set of sub-arguments of A. DefRules(A) denotes the set of
all defeasible rules used in A. TopRule(A) denotes the last inference rule which has been
used in the argument if such a rule exists, and is undefined otherwise.

Definition 6.3.2 (ASPIC-END Argument). An argument A on the basis of an argumenta-
tion theory Σ = (L,R, n,<) has one of the following forms:

1. A1, . . . , An  ψ, where A1, . . . , An are arguments such that there exists an intu-
itively strict rule Conc(A1), . . . ,Conc(An) ψ inRis.
Conc(A) := ψ,
As∨(A) := As∨(A1) ∪ · · · ∪ As∨(An),

As¬(A) := As¬(A1) ∪ · · · ∪ As¬(An),
As⊃(A) := As⊃(A1) ∪ · · · ∪ As⊃(An),

Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
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DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An),
TopRule(A) := Conc(A1), . . . ,Conc(An) ψ.

2. A1, . . . , An ⇒ ψ, where A1, . . . , An are arguments s.t. As(A1) ∪ . . . ∪ As(An) = ∅
and there exists a defeasible rule Conc(A1), . . . ,Conc(An)⇒ ψ inRd.
Conc(A) := ψ,
As∨(A) := ∅,

As¬(A) := ∅,
As⊃(A) := ∅,

Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An) ∪
{Conc(A1), . . . ,Conc(An)⇒ ψ},
TopRule(A) := Conc(A1), . . . ,Conc(An)⇒ ψ.

3. Assume¬(ϕ), where ϕ ∈ L.
Conc(A) := ϕ,
As∨(A) := ∅,

As¬(A) := {ϕ},
As⊃(A) := ∅,

Sub(A) := {Assume¬(ϕ)},
DefRules(A) := ∅, TopRule(A) is undefined.

4. Assume∨(ϕ), where ϕ ∈ L.
Conc(A) := ϕ,
As∨(A) := {ϕ},

As¬(A) := ∅,
As⊃(A) := ∅,

Sub(A) := {Assume∨(ϕ)},
DefRules(A) := ∅, TopRule(A) is undefined.

5. Assume⊃(ϕ), where ϕ ∈ L.
Conc(A) := ϕ,
As∨(A) := ∅,

As¬(A) := ∅,
As⊃(A) := {ϕ},

Sub(A) := {Assume⊃(ϕ)},
DefRules(A) := ∅, TopRule(A) is undefined.

6. ProofByContrad(¬ϕ,A′), where A′ is an argument such that ϕ ∈ As¬(A′) and
Conc(A′) = ⊥.
Conc(A) := ¬ϕ,
As∨(A) := As∨(A′),

As¬(A) := As¬(A′) \ {ϕ},
As⊃(A) := As⊃(A′),

Sub(A) := Sub(A′) ∪ {ProofByContrad(¬ϕ,A′)},
DefRules(A) := DefRules(A′), TopRule(A) is undefined.

7. ReasonByCases(ψ,A1, A2, A3), where:
A1 is an argument such that ϕ ∈ As∨(A1) and Conc(A1) = ψ,
A2 is an argument such that ϕ′ ∈ As∨(A2) and Conc(A2) = ψ,
A3 is an argument such that Conc(A3) = ϕ ∨ ϕ′.
Conc(A) := ψ,
As¬(A) := As¬(A1) ∪ As¬(A2) ∪ As¬(A3),
As∨(A) := (As∨(A1) \ {ϕ}) ∪ (As∨(A2) \ {ϕ′}) ∪ As∨(A3),
As⊃(A) := As⊃(A1) ∪ As⊃(A2) ∪ As⊃(A3),
Sub(A) := Sub(A1)∪Sub(A2)∪Sub(A3)∪{ReasonByCases(ψ,A1, A2, A3)},
DefRules(A) := DefRules(A1) ∪ DefRules(A2) ∪ DefRules(A3),
TopRule(A) is undefined.
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8. ⊃-intro(ϕ ⊃ ψ,A′), whereA′ is an argument such thatϕ ∈ As⊃(A′) and Conc(A′) =
ψ.
Conc(A) := ϕ ⊃ ψ,
As∨(A) := As∨(A′),

As¬(A) := As¬(A′),
As⊃(A) := As⊃(A′) \ {ϕ},

Sub(A) := Sub(A′) ∪ {⊃-intro(ϕ ⊃ ψ,A′)},
DefRules(A) := DefRules(A′), TopRule(A) is undefined.

9. ∀-intro(∀x.ϕ(x), A′), where A′ is an argument such that for some x ∈ Lv, there is
no ψ ∈ As(A′) such that x is free in ψ, and Conc(A′) = ϕ(x).
Conc(A) := ∀x.ϕ(x),
As∨(A) := As∨(A′),

As¬(A) := As¬(A′),
As⊃(A) := As⊃(A′),

Sub(A) := Sub(A′) ∪ {∀-intro(∀x.ϕ(x), A′)},
DefRules(A) := DefRules(A′), TopRule(A) is undefined.

Notice that we do not allow for the use of defeasible rules within hypothetical argu-
ments, as reflected in the condition of Def. 6.3.2 item 2 that the sub-arguments cannot have
any assumptions. We do however allow for the conclusions of defeasible arguments to be
imported inside of a hypothetical argument. This is motivated by the fact that allowing for
proofs by contradiction amounts to allowing for transpositions of any rule that can be used
within a proof by contradiction, and transpositions are usually assumed only for strict rules
in structured argumentation [75, 66].

Example 6.3.1. Consider an argumentation theory AT1 = (L,R, n,<), where L is the
smallest set containing {p, q, r, s, u} and satisfying Definition 6.3.1 item 1, Ris = {p  
q; q  ⊥; r}, Rd = {¬p, r ⇒ s;u ⇒ q} and < is the empty relation. We can then
construct an argument for s as follows:

• A1:= Assume¬(p), with As¬(A1) = {p},Conc(A1) = p

• A2:= A1  q, with As¬(A2) = {p},Conc(A2) = q

• A3:= A2  ⊥, with As¬(A3) = {p},Conc(A3) = ⊥

• A4:= ProofByContrad(¬p, A3), with As¬(A4) = ∅,Conc(A4) = ¬p

• A5:= r, with As¬(A5) = ∅,Conc(A5) = r

• A6:= A4, A5 ⇒ s, with As¬(A6) = ∅,Conc(A6) = s

We can see that A1 introduces the assumption p, and from there the arguments A2 and
A3 manage to derive a contradiction, which allows the construction of argument A4 with
conclusion ¬p under no assumption. We can then use this together with the premise r to
form an argument for s. Note however that we cannot form an argument for ¬u using a
proof by contradiction, because to derive an inconsistency from u we would have to use
d2. However, defeasible rules can only be applied under no assumption, hence we would
be unable to apply it in the proof by contradiction for ¬u.
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We now need to define the attack relation in our framework. Notice that in ASPIC-
END, we also allow for an argument A to attack an argument B which makes an assump-
tion ϕ if A concludes that ϕ is not assumable. For example, if one were to assume that
the number 5 is yellow, since numbers do not have colors, it should be possible to at-
tack the argument that introduces this assumption and any argument making an inference
from this assumption. We also separate the assumption-attack into the three different kinds
of assumptions, so that one can, for example, deny a formula’s assumability for reason-
ing by cases but still allow it to be assumed for implication-introduction. Additionally, if
one wishes, for example, to refute the well-foundedness of a construction such as proof
by contradiction while still accepting reasoning by cases, one simply needs to attack the
¬-assumability of all formulas.

Definition 6.3.3 (ASPIC-END Attacks). Let Σ = (L,R, n,<) be an argumentation theory
and A,B two arguments on the basis of Σ. We say that A attacks B iff A rebuts, undercuts
or assumption-attacks B, where:

• A rebuts argument B (on B′) iff Conc(A) = ¬ϕ or ¬Conc(A) = ϕ for some
B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ and As(A) = ∅.

• A undercuts argument B (on B′) iff Conc(A) = ¬n(r) or ¬Conc(A) = n(r) for
some B′ ∈ Sub(B) such that TopRule(B′) = r, there is no ϕ ∈ As(B′) such
that ¬ϕ = Conc(A′) or ϕ = ¬Conc(A′) for some A′ ∈ Sub(A), and there are
arguments B1, ..., Bn such that B1 = B′, Bn = B, Bi ∈ Sub(Bi+1) for 1 ≤ i < n
and As(A) ⊆ As(B1) ∪ · · · ∪ As(Bn).
• A assumption-attacks B (on B′) iff for some B′ ∈ Sub(B) such that As(A) = ∅ and

one of the following holds:

– B′ = Assume¬(ϕ) and Conc(A) = ¬Assumable¬(ϕ);

– B′ = Assume∨(ϕ) and Conc(A) = ¬Assumable∨(ϕ);

– B′ = Assume⊃(ϕ) and Conc(A) = ¬Assumable⊃(ϕ).

We require that any attacking argument A is making fewer assumptions than the B′ it
attacks, as to prevent arguments from attacking outside of their assumption scope. Note that
in the case of rebuttal, since the attacked argument cannot have assumptions, we require
that the attacking argument have none either.

In the case of undercutting, we also have the requirement that A does not use the con-
trary of any assumptions made by B′ in any of its inferences, since the attack would not
stand in the scope of B′. Additionally, we allow A to make use of any assumptions appear-
ing in the chain of arguments leading B′ to B, as these assumptions, even if they have been
retracted, still constitute valid grounds on which to form an attack.

Similarly as in ASPIC+, one can also define a notion of successful attack by lifting the
preference relation from rules to arguments as follows:

Definition 6.3.4 (Lifting of Preference). Let Σ = (L,R, n,<) be an argumentation theory
and A,B be two arguments on the basis of Σ. We define the lifting of < to arguments ≺ to
be such thatA ≺ B iff there exists ra ∈ DefRules(A), such that for all rb ∈ DefRules(B),
we have ra < rb.
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Notice that this lifting corresponds to elitist weakest-link as described by [6]. We be-
lieve that this ordering is best suited for modeling philosophical and scientific arguments.

We now define what it means for an attack to be successful:

Definition 6.3.5 (Defeats). Let Σ = (L,R, n,<) be an argumentation theory, A,B be two
arguments on the basis of Σ. We say that A successfully rebuts B iff A rebuts B on B′ for
some argument B′ and A ⊀ B′, and that A defeats B iff A assumption-attacks, undercuts
or successfully rebuts B.

The aim of our system is to generate an EAF as defined in Section 6.2. For this three
things need to be specified: A set X of explananda, a condition under which an argument
explains an explanandum, and a condition under which an argument explains another argu-
ment. The first two of these three details are domain-specific, and are thus to be specified
in an instantiation of the ASPIC-END framework. The third one, on the other hand, should
be the same in all domains. The reason for this can be found in the informal clarification
that [27] provided for what it means to say that an argument b explains an argument a:
“argument b can be used to explain one of the premises of argument a [. . . ] or the link
between the premises and the conclusion.”

In the context of structured argumentation, this informal clarification can be turned into
a formal definition:

Definition 6.3.6 (Explanations). Let A,B be arguments. We say that B explains A (on A′)
iff A′ ∈ Sub(A), As(B) ⊆ As(A′) and at least one of the following two cases holds:

• A′ /∈ Sub(B) and either A′ = ( Conc(B)) or A′ = (⇒ Conc(B)).

• Conc(B) = n(TopRule(A′)) and @B′ ∈ Sub(B) such that TopRule(B′) = TopRule(A′).

Intuitively, the idea behind this definition is that an argument B explains another argu-
ment A if B non-trivially concludes one of A’s premises or one of the inference rules used
by A.

We now have all the elements needed to build an EAF.

Definition 6.3.7 (Corresponding EAF). Let Σ = (L,R, n,<) be an argumentation theory.
Let X be a set of explananda, and let C be a criterion for determining whether an argument
constructed from Σ explains a given explanandum E ∈ X . The explanatory argumentation
framework (EAF) defined by (Σ,X , C) is a tuple 〈A,X ,→, 99K〉, where:

• A is the set of all arguments that can be constructed from Σ satisfying Definition
6.3.2;
• (A,B) ∈ → iff A defeats B, where A,B ∈ A;
• (A,E) ∈ 99K iff criterion C is satisfied with respect to A and E, where A ∈ A and
E ∈ X ;
• (A,B) ∈ 99K iff A explains B according to Definition 6.3.6, where A,B ∈ A.

Once such a framework has been generated, we want to be able to extract the most
interesting sets of arguments. Such a set should be able to explain as many explananda in
as much detail as possible, while being self-consistent and plausible.
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We define two kinds of extensions corresponding to the two selection procedures de-
fined by [27]. As suggested in the informal discussion in their paper, we chose to give
higher importance to the criterion of defense compared to the criterion of explanatory
power. This prevents some absurd theories which manage to explain all explananda but
cannot defend themselves against all attacks from beating plausible theories which fail to
explain some of the explananda but are sound and fully defended.

Definition 6.3.8 (AC- & EC-extensions). Let Σ = (L,R, n,<) be an argumentation the-
ory, F = 〈A,X ,→, 99K〉 the EAF defined by Σ and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S ′ ⊆ A such that
S ′ >p S and S ′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S ′ ⊆ A such that
S ′ >d S and S ′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of F iff S is satis-
factory and there is no S ′ ⊃ S such that S ′ is satisfactory.

4. We say that S is an explanatory core extension (EC-extension) of F iff S is insightful
and there is no S ′ ⊂ S such that S ′ is insightful.

The AC-extensions are sets of arguments which represent the theories explaining the
most explananda, together with all other compatible beliefs present in the framework. EC-
extensions represent the core of those theories and only include the arguments which defend
or provide details for them.

We define the conclusions of the arguments in a given extension as follows:

Definition 6.3.9 (Conclusions of an Extension). Let Σ = (L,R, n,<) be an argumentation
theory, F = 〈A,X ,→, 99K〉 be the EAF defined by Σ and S be an extension of F . Then,
we define the conclusions of S, denoted Concs(S), to be Concs(S) = {Conc(A)|A ∈ S
s.t. As(A) = ∅}.

6.4 Modelling explanations of semantic paradoxes in ASPIC-
END

In this section, we discuss how ASPIC-END can be applied to modeling argumentation
about explanations of semantic paradoxes, and illustrate this potential application with a
simple example. We start by briefly motivating this application of structured argumentation
theory.

Philosophy is an academic discipline in which good argumentative skills are a central
part of every student’s training. Philosophical texts are often much richer in explicit for-
mulation of arguments than texts from other academic disciplines. For these reasons, we
believe that modeling arguments from philosophical textbooks, monographs and papers can
be an interesting test case for structured argumentation theory.

Different areas of philosophy vary with respect to how much logical rigor is commonly
applied in the presentation of arguments. Even logically rigorous argumentation poses
many interesting problems, as the rich literature on abstract and structured argumentation
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attests. In order to not confound these interesting problems with issues arising from the lack
of logical rigor, it is a good idea to concentrate on the study of logically rigorous argumen-
tation. Philosophical logic is an area of logic where logically rigorous arguments abound.
One topic that has gained a lot of attention in philosophical logic is the study of semantic
paradoxes such as the Liar paradox and Curry’s paradox [80, 58]. We therefore use the
argumentation about the various explanations of the paradoxes that have been proposed in
the philosophical literature as a test case for structured argumentation theory.

In our application of ASPIC-END to argumentation about explanations of semantic
paradoxes, the explananda are the paradoxes (i.e. arguments that derive an absurdity un-
der no assumption without using defeasible rules), which other arguments can explain by
attacking the said derivation. So we instantiate the set X of explananda and criterion C
for an explanation of an explanandum by an argument as specified in the following two
definitions:

Definition 6.4.1 (Generation of Explananda). Let Σ = (L,R, n,<) be an argumentation
theory. For every argument A on the basis of Σ such that DefRules(A) = ∅,As(A) = ∅
and Conc(A) = ⊥, we stipulate an explanandum EA, and say that Source(EA) = A. We
define the set X of explananda based on Σ to be the set of all explananda EA that we have
thus stipulated.

Definition 6.4.2 (Satisfying the Explanation Criterion). Let Σ = (L,R, n,<) be an argu-
mentation theory, A an argument and E an explanandum based on Σ. We say that criterion
C is satisfied with respect to A and E iff A defeats Source(E).

The following example illustrates an application of ASPIC-END to a version of the Liar
paradox and two very simple explanations of it:3

Example: Define L to be the sentence “L is false”. If L is true, i.e. “L is false” is true,
then L is false, which is a contradiction. So L is not true, i.e. L is false. So “L is false”
is true, i.e. L is true. So we have the contradiction that L is both true and false from no
assumption.

A truth-value gap explanation: In this paradox, the only inference steps that are not
justified by the laws of classical logic are the steps that involve reasoning about the meaning
of “true” and “false”. Since classical logic is a well-studied system for formalizing rational
reasoning, we should accept it. Thus we need to give up some inference rules based on the
meaning of “true” and “false”. This can be achieved by giving up the assumption that every
sentence is either true or false for problematically self-referential sentences such as L. In

3Note that our aim here is not to present a detailed case study of how a debate about a semantic paradox can
be formalized in ASPIC-END, but only to illustrate the way ASPIC-END works and could be used for such
a case study in future work. For this reason, we restrict ourselves to a simple exposition of the Liar paradox
and two very simple explanations of it, a truth-value gap explanation and a paracomplete explanation. See
[58] for comprehensive presentations of truth-value gap and paracomplete explanations, besides many others.
Additionally note that, for the sake of simplicity, we only include in our model those instances of rules that
are actually used in the explanations that we formalize, so we leave out other instances of the general rules
(rule schemes) that lie behind these instances. A detailed case study would have to consider what happens
when all instances of these rules are included; for this purpose, other paradoxes like Curry’s paradox and
various revenge versions of the Liar paradox would need to be considered as well, as the instances of these
rules applied to the paradoxical sentences from these other paradoxes would be included in the model.
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the paradox, this assumption is used when concluding that L is false because L is not true,
so this inference should be rejected.

A paracomplete explanation: If we give up some of the natural inference rules that are
based on the meaning of “true” and “false”, our formalism no longer correctly captures the
meaning of “true” and “false”, so we should not give up these rules. In order to avoid the
paradox, we therefore need to limit some rules of classical logic. This can be achieved by
allowing a proof by contradiction based on assumption φ only in case the law of excluded
middle holds for φ, i.e. in case φ∨¬φ. The law of excluded middle should not be accepted
for problematically self-referential statements like L, and thus also not for the statement “L
is true”. So “L is true” cannot be assumed for a proof by contradiction, i.e. the derivation
of “L is not true” based on deriving a contradiction from the assumption the L is true is not
valid.

We now proceed to the ASPIC-END model of the reasoning and argumentation in-
volved in the paradox and the two explananda. We use T and F to mean true and false
respectively; the other abbreviations we use should be self-explanatory from the context.
The rules in our model are such that Ris is the smallest set satisfying Def 6.3.1 item 1 and
including the rules listed below. For each intuitively strict rule, we provide either a brief
explanation of where the rule comes from, or we refer to the name of the corresponding
rule in [58], of which the rule in question is an instance:

T (L) T (F (L)) (by definition, as L is defined to mean F (L))
T (F (L)) F (L); (T-Elim)
T (L), F (L) ⊥; (a sentence cannot be both true and false)
¬T (L) F (L); (a sentence that is not true is considered false)
F (L) T (F (L)); (T-Introd)
T (F (L)) T (L); (by definition, as L is defined to mean F (L))
 ∀r.(used in paradox(r) ∧ ¬T-F-rule(r) ⊃ r ∈ classical logic)

(all inference rules that are used in the derivation
of the paradox and that are not based on the
meaning of “true” and “false” are admissible in
classical logic)

The naming function is defined by n(¬T (L) F (L)) = r1. The setRd of defeasible rules
is defined as follows:

• ⇒ formalizes rational reasoning(classical logic);

• formalizes rational reasoning(classical logic)⇒accept(classical logic);

• ∀r.(used in paradox(r) ∧ ¬T-F-rule(r) ⊃ r ∈ classical logic),
accept(classical logic)⇒ ∃r.(T-F-rule(r) ∧ give up(r));

• ⇒ problematically self-referential(L);

• problematically self-referential(L),∃r.(T-F-rule(r) ∧ give up(r))⇒ ¬r1;
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Assume(T (L))

Figure 6.2: The relevant arguments, explanandum, attacks and explanations from the ex-
ample

• ⇒ correctly capture(TF-meaning);

• correctly capture(TF-meaning)⇒ ¬∃r.(T-F-rule(r) ∧ give up(r));

• ∀r.(used in paradox(r) ∧ ¬T-F-rule(r) ⊃ r ∈ classical logic),
¬∃r.(T-F-rule(r) ∧ give up(r))⇒ ¬accept(classical logic);

• problematically self-referential(L), accept(classical logic)⇒
¬accept(T (L) ∨ ¬T (L));

• ¬accept(T (L) ∨ ¬T (L))⇒¬Assumable¬(T (L))

Infinitely many arguments can be constructed from this argumentation theory. However,
the following set of arguments is the set of most relevant arguments, in the sense that other
arguments will not defeat these arguments and will not add relevant new conclusions.

A1,2 = ProofByContrad(¬T (L), (Assume¬(T (L)),

((Assume¬(T (L)) T (F (L))) F (L)) ⊥)) F (L)

A3,4,5 = ((A1 T (F (L))) T (L)), A1 ⊥
B1 = ( ∀r.(used in paradox(r) ∧ ¬T-F-rule(r) ⊃ r ∈ classical logic))

B2 = B1, (⇒ formalizes rational reasoning(classical logic))⇒ accept(classical logic)

B3 = B2 ⇒ ∃r.(T-F-rule(r) ∧ give up(r))

B4,5 = (⇒ problematically self-referential(L)), B3 ⇒ ¬r1
C1 = (⇒ correctly capture(TF-meaning))⇒ ¬∃r.(T-F-rule(r) ∧ give up(r))

C2 = B1, C1 ⇒ ¬accept(classical logic)

C3,4 = (⇒ problematically self-referential(L)), C2 ⇒ ¬accept(T (L) ∨ ¬T (L))

C5 = C3,4⇒¬Assumable¬(T (L))

We get the explanandum E with Source(E) = A3,4,5. B4,5 defeats A2 on A1 and
C5 defeats A2 on Assume(T (L)), thus they both explain E. The AC-extensions are
{B1, B2, B3, B4,5} and {B1, C1, C2, C3,4, C5}, and the EC-extensions are {B3, B4,5} and
{C2, C5}.

115



6.5 Modelling argumentation on Axiom of Choice
Additionally to the relatively simple model presented in the previous section, we have also
applied ASPIC-END to produce a more extensive model of a debate in the formal sciences,
namely a model of parts of the debate that mathematicians had about the Axiom of Choice
(AC) in the early 20th century [65]. Given that the author of this thesis contributed only
in a small part to the details of this model, we will here only present some fragments of
the model, briefly describe some features of the overall model, and discuss some of the the
insight into the strengths and drawbacks of the modeling capacities of ASPIC-END that we
have gained from producing this model. A complete description of the model can be found
in a technical online appendix [81].

In 1904, the German mathematician Ernst Zermelo published a proof of the Well-
Ordering Theorem, in which he explicitly referred to a set-theoretic principle that came
to be known as the Axiom of Choice [82]. The Axiom of Choice states that for each set M
whose elements are non-empty sets, there is a function f that maps each element m ∈ M
to an element f(m) ∈ m. In the first years after its publication, Zermelo’s proof received a
lot of critique, a significant part of which questioned the general validity of the Axiom of
Choice (see [65]). In the long run, however, the proof got accepted, as the Axiom of Choice
got accepted as a valid part of the de-facto standard foundational theory for mathematics,
Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC).

The two critiques of Zermelo’s Axiom of Choice that we consider in our model are
those of [83] and Lebesgue [84]. Furthermore, we consider the counterarguments to these
critiques put forward by [85] and by Hadamard [84]. When constructing the formal model,
we have made a number of design choices that enabled us to keep the model relatively
simple and concise:

• We have only considered the contributions of Zermelo, Peano, Lebesgue and Hadamard
to this debate, leaving out some of the other contributions to the debate that are dis-
cussed in [65]. The choice of which contributions to include was partially based
on the importance of those contributions from the point of view of the history and
philosophy of mathematics, and partially based on considerations about which contri-
butions best illustrate the interesting formal features of the ASPIC-END framework.

• In the case of some arguments, we have opted not to formalize the internal details
of the argument, but instead include the conclusion of the argument as a defeasible
premise in our model, as this significantly simplifies the model. This solution allows
the effect of the argument on the overall debate to be faithfully represented even
when the internal details of the argument are not made explicit by the model.

• An additional way in which we kept our model simple was by not formalizing in
any detail the uncontested mathematical reasoning that is related to the debate, e.g.
parts of the proof of the Well-Ordering Principle that do not make use of the Axiom
of choice or the proof of the Partition Principle that Zermelo refers to in one of his
arguments.

Due to these simplifications, we consider our model to only be a preliminary model that
we plan to extend in the future. However, the model already gives some insight into the
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strengths and drawbacks of the modeling capacities of ASPIC-END, as well as inspiration
for further research into this direction.

In our model, the purely mathematical and purely logical demonstrations and reasoning
are formalized using intuitively strict rules, while the philosophical and metamathematical
argumentation and reasoning is formalized using defeasible rules. Most of the attacks be-
tween arguments attack defeasible arguments, i.e. philosophical or metamathematical ar-
guments. But given that some of the mathematical and logical principles that were applied
in the mathematical and logical reasoning that we model, e.g. the Axiom of Choice and
the non-constructivist parts of classical logic, are attacked by some philosophical or meta-
mathematical arguments, there are also some arguments using only intuitively strict rules
that get attacked. By the design of ASPIC-END, all such attacks have to be undercuts.

The debate about the Axiom of Choice that we have formalized in our model concerns
the purported justification that Zermelo has given for the Axiom of Choice as well as attacks
on this purported justification, but it does not involve any mathematical explanations. For
this reason, our model of this debate does not make use of the explanatory machinery
included in ASPIC-END, but it does make use of other two novel features of ASPIC-END,
i.e. hypothetical reasoning and undercuts of intuitively strict rules.

In order to give a flavor of our formal model, we now present some fragments of it
and describe some feature of the overall model. We start by looking at the first argument
Zermelo presented for the Axiom of Choice in 1904:

“this logical principle cannot be reduced to a still simpler one, but is used
everywhere in mathematical deduction without hesitation. So for example the
general validity of the theorem that the number of subsets into which a set
is partitioned is less than or equal to the number of its elements, cannot be
demonstrated otherwise than by assigning to each subset one of its elements.”
[82, p. 516]

Here are the formal ASPIC-END arguments that we construct to represent this argu-
ment and its subarguments:

Z04
1 = (⇒ simple(AC))

Z04
2 = (⇒ ¬∃x. calls to doubt(x, usage(AC)))

Z04
3 = (⇒ ∃p. demonstrates(p, PP ))

Z04
4 = (⇒ ∀p. (demonstrates(p, PP ) ⊃ uses(p,AC)))

Z04
5 = Assume⊃(demonstrates(p, PP ))

Z04
6 = (Z04

4 , Z
04
5 ` ∃p, t. (demonstrates(p, t) ∧ uses(p,AC)))

Z04
7 = ⊃ -intro(demonstrates(p, PP ) ⊃ ∃p, t. (demonstrates(p, t) ∧ uses(p,AC)))

Z04
8 = ∀-intro(∀p. (demonstrates(p, PP ) ⊃ ∃p, t. (demonstrates(p, t) ∧ uses(p,AC))))

Z04
9 = (Z04

3 , Z
04
8  ∃p, t. (demonstrates(p, t) ∧ uses(p,AC)))

Z04
10 = (Z06

9 ⇒ widely used(AC))

Z04
11 = (Z06

1 , Z
06
6 , Z

06
10 ⇒ accept(AC))
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The rules that are needed to construct these arguments can actually be read off from
the arguments, and are explicitly stated in the technical online appendix [81, p. 4-6]. The
notation (A1, . . . , An ` ψ) used in argument Z04

6 stands for an argument that uses multiple
rules of intuitionistic logic to get from the conclusions of arguments A1, . . . , An to the
conclusion ψ. Of course, all these rules are included in our model. Note that argument Z04

7

makes use of ⊃-Introduction, Z04
8 makes use of ∀-Introduction.

In a letter to Borel that shortly afterwards got published in the Bulletin de la Société
mathématique de France [84], Lebesgue made a constructivist argument against the Axiom
of Choice:

“I believe that we can only build solidly by granting that it is impossible to
demonstrate the existence of an object without defining it.”

We formalize Lebesgue’s argument through a defeasible premise according to which
an existence proof requires definition and a strict rule that allows to reject the Axiom of
Choice based on this defeasible premise:

L05
1 = (⇒ existence proof requires definition)

L05
2 = (L05

1  ¬accept(AC))

The rules that we included in the model in order to formalize the arguments that have
been explicitly mentioned in the historical debate on the Axiom of Choice can also be used
to construct implicit arguments that were not explicitly mentioned in the historical debate.
It should not come as a surprise that at the current level of development of our methodology,
the model has not given rise to philosophically insightful implicit arguments. However,
there is an implicit argument that plays an important role with respect to the formal behavior
of our model: It is an argument that makes use of the proof by contradiction to construct an
attack on Lebesgue’s argument L05

1 based on Zermelo’s 1908 argument Z08
29 for the Axiom

of Choice:

I1 = (Assume¬(existence proof requires definition))

I2 = (I1  ¬accept(AC))

I3 = (Z08
29 , I2  ⊥)

I4 = (ProofbyContrad(I3,¬existence proof requires definition))

The idea is that assuming a premise (“existence proof requires definition”) of Lebesgue’s
argument against the Axiom of Choice, we can derive that the Axiom of Choice should
not be accepted, which in combination with Zermelo’s argument for the acceptance of
the Axiom of Choice leads to a contradiction. So we have a proof by contradiction for
¬existence proof requires definition, which thus attacks Lebesgue’s argument. The rele-
vance of this argument to the formal properties of our model is explained in Section 1.7 of
the technical online appendix [81].

While the model described here has not led to philosophically relevant implicit argu-
ments, we believe that the methodology we are proposing has the potential to bring to light
such arguments once more sophisticated formal models of debates in the formal sciences
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are constructed. We expect the use of automated theorem provers to be helpful in order
to discover philosophically relevant implicit arguments in more sophisticated models, just
like they already have been used by [69] and [70] to discover philosophically relevant mis-
takes and insights in axiomatic theories of metaphysics, as explained in the last paragraph
of the Introduction. This would allow for the discovery of mistakes and new insights at
the meta-level of debates about formal theories rather than just at the object level of the
theories themselves.

We consider it one of the strengths of our methodological approach that it allows to
identify such implicit arguments that no one has put forward, but that could be put forward
and that could have a relevant influence on the outcome of the debate.

Without imposing preferences on the set of rules, all attacks in our model other than the
just mentioned undercuts would become practically bidirectional. By this we mean that
even though there can be a unidirectional attack from some argument A to some argument
B, in such a case there will always be an attack back onto A from some argument B′ that
is closely related to B and accepted in the same circumstances as B. In order to make the
model more interesting and more realistic, we have therefore include in it a preference order
on the rules, which by Definition 6.3.4 gives rise to a preference order on the arguments.
One drawback of our methodology is that it gives no methodological guidance on how
to select a preference order on the rules, which is the main determining factor for which
extensions are finally accepted. In our model, we followed our common sense of the relative
strength of different arguments from the historical debate in order to specify the preference
order between the rules.

The set of rules of our model allow for infinitely many arguments to be constructed, so
that the EAF corresponding to the model will also be infinite. However, only a small finite
subset of this infinite EAF contains attacks that are relevant for the overall status of the
acceptability of the Axiom of Choice, which was the focus of attention of the debate that
we have formally modeled. In Figure 6.3, we depict the small subset of relevant arguments
and the defeats between them. In this depiction, the letter in the argument name (Z, P , L or
H) refers to either Zermelo, Peano, Lebesgue or Hadamard as the source of the argument,
and the subscript indicates the year in which the argument was presented (with the 19
dropped, as they were all presented between 1904 and 1908). For the precise content of the
argument and the details of their formalization in ASPIC-END, please refer to the technical
online appendix [81]. Here we concisely sketch the content of the arguments that have not
yet been specified above:

• P 06
2 : Peano points out that in an 1890 publication he had already considered and

rejected the assumption that infinitely many arbitrary choices can be made in an
argument.

• P 06
14 : Peano points out that while a single arbitrary choice and thus any finite number

of arbitrary choices can be formalized in his Formulario Mathematico, an infinite
number of arbitrary choices would require an infinitely long argument, which is not
allowed in his Formulario Mathematico. This argument has the implicit premise that
an argument can be accepted if and only if it can be formalized in the Formulario
Mathematico.
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Figure 6.3: The relevant arguments and attacks from the example

• Z08
29 : Zermelo points out that Peano himself arrived at the fundamental principles of

his Formulario Mathematico by analyzing the rules of inference that have historically
been recognized as valid and by referring both to the intuitive evidence for the rules
and to their necessity for science. He then argues that the Axiom of Choice can be
justified in the same way: Multiple set theorists have implicitly applied it, which
supports both the claim that it has historically been recognized as valid and that it
is intuitively evident. Furthermore, Zermelo lists seven theorems which he believed
not to be provable without the Axiom of Choice, and concludes that the Axiom of
Choice is necessary for science.

• Z08
33 : The implicit assumption in P 06

14 (see above) is incorrect, because by Z08
29 ar-

guments using the Axiom of Choice can be accepted even though they cannot be
formalized in Peano’s Formulario Mathematico.

• H05
2 : Hadamard argues against Lebesgue’s premise that an existence proof requires

definition by pointing out that historical progress in mathematics was achieved by
annexing notions which had previously been considered to be outside mathematics
because it was impossible to describe them.

Restricted to this set of relevant arguments, there are two argumentative core (AC)
extensions: S1 = {P 06

2 , Z08
33 , Z

08
29 , H

05
2 , I4}, and S2 = {P 06

2 , Z08
33 , L

05
1 , L

05
2 }. This means

that arguments P 06
2 and Z08

33 are accepted in every AC-extension of our model, while P 06
14 ,

Z04
2 andZ04

11 are rejected in every AC-extension, and the status of the argumentsZ08
29 , I4, L05

1

and L05
2 depends on the choice of AC-extension. This set of relevant arguments contains

two arguments with conclusion accept(AC), namely Z04
11 and Z08

29 . While the first one gets
rejected in both extensions, the second one gets accepted in one and rejected in the other
extension, so that overall, the status of the claim accept(AC) depends on the choice of the
AC-extension.

These properties of our formal model intuitively correspond to the situation that on the
one hand there are compelling arguments both in favor and against the Axiom of Choice,
and purely formal methods will not decide which of the two stands is “correct” (if there
even is a single “correct” answer here), while on the other hand certain arguments in favor
or against the Axiom of Choice are so weak that they do not hold up against the scrutiny
provided by certain counterarguments against them.
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Of course, the fact that the status of the Axiom of Choice in our formal model of the de-
bate is not determined but depends on the choice of the AC-extension is to a certain extent
an artifact of the choice of arguments that we formalized and of the preference order that
we imposed. We could have gotten a different result, for example if we had chosen to for-
malize only strong arguments in favor of the Axiom of Choice and weak arguments against
it, or if we had just made significantly different judgments about the preference order on the
rules involved in our model. So at the current level of development, such a model cannot be
seriously defended as a method for deciding which side in a debate is right. What it can do,
however, is to help us discover relevant implicit arguments like argument I4 in our model
(and hopefully with a more developed model also philosophically more relevant implicit
arguments), to help us get a more precise understanding of what assumptions are made and
what is at stake in a given debate, and to point towards weaknesses of the current method-
ology of structured argumentation theory, like the lack of a methodological guidance for
choosing a preference order on the rules.

6.6 Closure and rationality postulates
In this section, we present four rationality postulates that ASPIC-END satisfies and that
are analogous to the four postulates that [66] have established for ASPIC+, as well as two
new postulates motivated by the application of structured argumentation to debates in the
formal sciences.

The first postulate concerns the closure of the extensions under the sub-argument rela-
tion. The idea is that one cannot accept an argument while rejecting part of it.

Theorem 6.6.1. Let Σ = (L,R, n,<) be an argumentation theory, F = 〈A,X ,→,
99K〉 be the EAF defined by Σ and S be an AC-extension of F . Then, for all A ∈ S,
Sub(A) ⊆ S.

The proof of Theorem 6.6.1 rests on the following lemma, which can be proven in a
straightforward way as in the case of ASPIC+ (see Lemma 35 of [66]):

Lemma 6.6.2. Let Σ = (L,R, n,<) be an argumentation theory, F = 〈A,X ,→,
99K〉 be the EAF defined by Σ, S ⊆ A and A,B ∈ A. We have that:

1. If S defends A and S ⊆ S ′, then S ′ defends A.
2. If A defeats B′ and B′ ∈ Sub(B), then A defeats B.
3. If S defends A and A′ ∈ Sub(A), then S defends A′.

We now show another intuitive result which will be needed in the proof of the postu-
lates. This result is that given a satisfactory set of arguments, including additional argu-
ments which do not interfere with the admissibility of the set, does not prevent the set from
being satisfactory.

Lemma 6.6.3. Let Σ = (L,R, n,<) be an argumentation theory, F = 〈A,X ,→,
99K〉 be the EAF defined by Σ and S, S ′ ⊆ A with S satisfactory. If S ′ is admissible and
S ⊆ S ′, then S ′ is also satisfactory.
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Proof:
Assume S ′ ⊇ S is admissible. Now, suppose for a contradiction that S ′ is not satis-

factory. Then, since S ′ is admissible, there exists S ′′ ⊃ S ′ such that S ′′ >p S
′ and S ′′ is

admissible.
We will now show that S ′′ >p S. Since S ′′ ⊃ S ′ and S ′ ⊇ S, we have S ′′ ⊃ S. For

each explanandum e for which S offers an explanation X[e], X[e] ∈ S ′′, so S ′′ also offers
an explanation for e. Hence, S ′′ offers an explanation for at least as many explananda
as S. However, since S ′′ >p S

′, there exists an explanandum e′ for which S ′′ offers an
explanation but for which S ′ does not offer an explanation. S ⊆ S ′, hence S does not
offer an explanation for e′ either. Therefore, S ′′ offers an explanation for strictly more
explananda as S and thus S ′′ >p S.

So we have S ′′ ⊃ S, S ′′ >p S and S ′′ is admissible. However, since S is satisfactory,
this is a contradiction. Hence, S ′ is satisfactory. �

Proof of Theorem 6.6.1:
Let A ∈ S and A′ ∈ A. Assume A′ ∈ Sub(A). Suppose for a contradiction that

S ∪ {A′} is not conflict-free. Since S is an AC-extension of F , S is conflict-free. Hence,
either A′ defeats some argument B ∈ S, or some argument B ∈ S defeats A′.

• Suppose first that A′ defeats some argument B ∈ S. Then, since S is an AC-
extension of F , there exists some argument B′ ∈ S which defeats A′. Thus, by
Lemma 6.6.2.2, B′ also defeats A. But S is conflict-free. We have a contradiction.

• Suppose now that some argument B ∈ S defeats A′. Then, by Lemma 6.6.2.2, B
also defeats A. But S is conflict-free. We have a contradiction.

Since both cases lead to a contradiction, we can conclude that S ∪{A′} is conflict-free.
Now, S defendsA and so, by Lemma 6.6.2.3, S defendsA′. Since S is an AC-extension

of F , S also defends S. Thus, S defends S ∪ {A′}. Hence, by Lemma 6.6.2.1, S ∪ {A′}
defends S ∪ {A′}. Since S ∪ {A′} is also conflict-free, S ∪ {A′} is admissible.

Also, by Lemma 6.6.3, since S is satisfactory and S ∪ {A′} is admissible, S ∪ {A′} is
also satisfactory.

Now suppose for a contradiction that A′ /∈ S. Then, S ∪ {A′} is a proper superset
of S which is also satisfactory. Hence, S is not an AC-extension of F . So we have a
contradiction, and thus A′ ∈ S. �

Notice that this postulate does not hold for EC-extensions, as they are by definition min-
imal in their inclusion of arguments, and thus will often leave out low-level sub-arguments.

The second postulate concerns the closure of the conclusions under intuitively strict
rules. In the case of ASPIC+, the corresponding postulate concerned the closure of the
conclusions under all strict rules (see Theorem 13 in [66]). But since ASPIC-END allows
for the rejection of intuitively strict rules, it is undesirable to consider the closure under
all of them. Instead, we consider the closure under a set of intuitively strict rules which
are deemed acceptable. The following two definitions define the set of accepted intuitively
strict rules and the closure under a given set of intuitively strict rules:

122



Definition 6.6.1 (Set of Accepted Intuititvely Strict Rules). Let Σ = (L,R, n,<) be an
argumentation theory, F = 〈A,X ,→,
99K〉 be the EAF defined by Σ and S be an extension of F . The set of intuitively strict rules
accepted by S is Risa(S) = {r ∈ Ris|∀A ∈ A s.t. As(A) = ∅ and Conc(A) = ¬n(r) or
¬Conc(A) = n(r),∃B ∈ S s.t. B defeats A}.

Definition 6.6.2 (Closure of a Language under a Set of Rules). Let Σ = (L,R, n,<) be
an argumentation theory, P ⊆ L and R′ ⊆ Ris. We define the closure of P under the
set of rules R′, denoted ClR′(P ), as the smallest set such that P ⊆ ClR′(P ), and when
(ϕ1, ..., ϕn  ψ) ∈ R′ and ϕ1, ..., ϕn ∈ ClR′(P ), then ψ ∈ ClR′(P ).

Now the postulate on the closure under accepted intuitively strict rules can be formu-
lated as follows:

Theorem 6.6.4. Let Σ = (L,R, n,<) be an argumentation theory, F = 〈A,X ,→,
99K〉 be the EAF defined by Σ and S be an AC-extension of F . Then, Conc(S) =
ClRisa(S)(Concs(S)).

Proof:
Let S be an AC-extension of F . We want to show that Concs(S) =

ClRisa(S)(Concs(S)). First, notice that Concs(S) ⊆ ClRisa(S)(Concs(S)). Hence, we
only need to show that if (ϕ1, ..., ϕn  ψ) ∈ Risa(S) and ϕ1, ..., ϕn ∈ Concs(S), then
ψ ∈ Concs(S).

Suppose that (ϕ1, ..., ϕn  ψ) ∈ Risa(S) and ϕ1, ..., ϕn ∈ Concs(S). Then, by the
definition of Concs, there exists A1, ..., An ∈ S such that Conc(Ai) = ϕi and As(Ai) = ∅
for 1 ≤ i ≤ n. Hence, we can construct the argument A = A1, ..., An  ψ, and thus
A ∈ A with As(A) = ∅.

Assume B ∈ A defeats A. Then, B either undercuts, assumption-attacks or success-
fully rebuts A. Let us first consider the case of undercut. Then, As(B) = ∅ and either
Conc(B) = ¬n(ϕ1, ..., ϕn  ψ) or ¬Conc(B) = n(ϕ1, ..., ϕn  ψ). However, since
(ϕ1, ..., ϕn  ψ) ∈ Risa(S), there exists C ∈ S such that C defeats B. Also, since A
cannot be rebutted nor assumption-attacked, S defends A.

Now suppose there is an argumentD ∈ S such thatD defeatsA. Then, since S defends
A, there is an argument C ∈ S which defeats D. However, S is conflict-free, so we have a
contradiction. Hence, there is no argument in S which defeats A.

Let us now assume A defeats some argument D ∈ S. Since S is admissible, there is an
argument in S which defeats A. However, we have just concluded that no such argument
exists, hence we have a contradiction. Therefore, A does not defeat any of the arguments
in S.

Thus, S ∪ {A} is conflict-free. Also, since S defends A, S ∪ {A} is admissible. By
Lemma 6.6.3 and since S is satisfactory, S ∪ {A} is also satisfactory.

Assume A /∈ S. Then, since (S ∪ {A}) ⊃ S is satisfactory, S is not an AC-extension
of F . This is a contradiction of one of our initial assumptions. Hence, A ∈ S. Therefore,
ψ ∈ Concs(S) and thus Concs(S) = ClRisa(S)(Concs(S)). �

The last two postulates presented by [66] are direct and indirect consistency, which
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state that when the set of strict rules is consistent, the set of conclusions and the closure of
this set under strict rules are consistent.

While consistency postulates are not relevant for the application of ASPIC-END to ar-
gumentation about paradoxes, we also want ASPIC-END to be applicable to more standard
domains in which the consistency postulates are relevant. For this reason, we also establish
consistency postulates for ASPIC-END.

In order to show the consistency of the conclusions, we will have to show that no two
arguments with contradictory conclusions may co-exist in the same extension. While these
two arguments may have intuitively strict TopRules, and thus not attack each other, we
will show that one of their sub-arguments is attacked and undefended. For the purpose of
gradual inspection of the sub-arguments, we first define direct sub-arguments.

Definition 6.6.3 (Direct Sub-Argument). Let Σ = (L,R, n,<) be an argumentation theory,
F = 〈A,X ,→, 99K〉 the EAF defined by Σ and A,A′ ∈ A. We say that A′ is a direct sub-
argument of A iff A′ ∈ Sub(A) and there is no A′′ ∈ Sub(A) s.t. Sub(A′) ⊂ Sub(A′′).

Then, in order to identify those potential points of attack, we define maximal fallible
sub-arguments, which represent the top-most sub-arguments with defeasible top rules.

Definition 6.6.4 (Maximal Fallible Sub-Arguments). Let Σ = (L,R, n,<) be an argu-
mentation theory, F = 〈A,X ,→, 99K〉 the EAF defined by Σ and A ∈ A. We define the
multiset M(A) of the maximal fallible sub-arguments of A as:

M(A) :=



{A} if TopRule(A) ∈ Rd

∅ if DefRules(A) = ∅
k⊎
i=1

M(Ai) Otherwise, where {A1, ..., Ak} is

the set of direct sub-arguments of A.

For a set of arguments S, we write Subs(S) as a shorthand for
⋃
A∈S

Sub(A).

Definition 6.6.5 (Intuitively Strict Continuation). Let Σ = (L,R, n,<) be an argumenta-
tion theory, F = 〈A,X ,→, 99K〉 the EAF defined by Σ and S ⊆ A. We say that A ∈ A is
an intuitively strict continuation of S iff:

• Subs(S) ⊆ Sub(A);

• {r| for some X ∈ Sub(A) \ Subs(S), r = TopRule(X)} ⊆ Ris

We then show some intuitive results from our preference lifting. These results are
closely related to the properties of a reasonable argument ordering as defined in [66].

Lemma 6.6.5. Let Σ = (L,R, n,<) be an argumentation theory and ≺ the preference
relation over A lifted from <. We have that:

1. for all A,B ∈ A, if DefRules(A) = ∅, then A ⊀ B;

2. for all A,B ∈ A, if DefRules(A) = ∅ and DefRules(B) 6= ∅, then B ≺ A;
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3. for any finite multiset {C1, ..., Cn} of arguments, it is not the case that for all i ∈
{1, ..., n},C+\i ≺ Ci (whereC+\i is an intuitively strict continuation of {C1, ..., Cn}\
{Ci}).

Proof:

1. Suppose for a contradiction that A ≺ B. Then, by definition, there exists ra ∈
DefRules(A) such that for all rb ∈ DefRules(B), ra < rb. However, since DefRules(A) =
∅, no such ra exists. Hence, A ⊀ B. �

2. Take any rb ∈ DefRules(B). Since DefRules(A) = ∅, it holds that for all ra ∈
DefRules(A), rb < ra. Hence, B ≺ A. �

3. Suppose for a contradiction that for all i ∈ {1, ..., n}, there exists an intuitively strict
continuation C+\i such that C+\i ≺ Ci. Take an arbitrary Cj with 1 ≤ j ≤ n.
We have that there exists C+\j such that C+\j ≺ Cj . Hence, there exists r ∈
DefRules(C+\j) such that for all rj ∈ Cj , r < rj . Select a least preferred such
r (for all rl ∈ DefRules(C+\j), rl ≮ r). Take any argument Ck ∈ {C1, ..., Cn}
such that r ∈ DefRules(Ck). Since r < rj for all rj ∈ Cj and rl ≮ r for

all rl ∈ DefRules(C+\j) =
i=n⋃

i=1,i 6=j
DefRules(Ci), we have that rm ≮ r for all

rm ∈
i=n⋃
i=1

DefRules(Ci), and hence rm ≮ r for all rm ∈
i=n⋃

i=1,i 6=k
DefRules(Ci).

For all intuitively strict continuations C+\k of {C1, ..., Ck−1, Ck+1, ..., Cn}, we have

DefRules(C+\k) =
i=n⋃

i=1,i 6=k
DefRules(Ci). Hence, we have C+\k ⊀ Ck. This is a

contradiction, and hence it is not the case that for all i ∈ {1, ..., n}, C+\i ≺ Ci. �

We have three requirements for applying the consistency postulates. The first is that
there cannot be non-defeasible arguments which contradict each other. The second re-
quirement ensures that a formula and its negation are considered as contradictory and the
third guarantees that no assumptions for proof by contradiction are prevented. The last two
requirements are motivated by the consideration that in the applications of ASPIC-END
not related to paradoxes, one would likely accept classical or intuitionistic logic, for both
of which these requirements hold.

Definition 6.6.6 (Consistency-Inducing). Let Σ = (L,R, n,<) be an argumentation the-
ory. We say that Σ is consistency-inducing iff:

1. there are no A,B ∈ A such that DefRules(A) = DefRules(B) = ∅ = As(A) =
As(B) and Conc(A) = ¬Conc(B),

2. for each ϕ ∈ L there is a rule rϕ of the form ϕ,¬ϕ  ⊥ ∈ Ris such that n(rϕ) is
undefined,

3. there is no rule r ∈ R such that Assumable¬(ϕ) appears in r.

The following theorem establishes direct consistency for ASPIC-END:
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Theorem 6.6.6. Let Σ = (L,R, n,<) be a consistency-inducing argumentation theory,
F = 〈A,X ,→, 99K〉 be the EAF defined by Σ and S be an AC or EC-extension of F . Then,
there does not exist ϕ ∈ Concs(S) such that ¬ϕ ∈ Concs(S).

Proof. Suppose for a contradiction that there existsϕ ∈ Conc(S) such that¬ϕ ∈ Conc(S).
Then, there exist two arguments A,B ∈ S such that Conc(A) = ϕ, Conc(B) = ¬ϕ and
As(A) = ∅ = As(B).

Consider the multiset S = M(A) ]M(B). By Lemma 6.6.5.3, there exists C ∈ S
such that for all intuitively strict continuations S ′ of S \ {C}, we have S ′ ≮ C. Without
loss of generality, suppose C ∈ M(A). Let C ′ = Assume¬(Conc(C)) and construct
A′ from A by replacing C with C ′. We now have that Conc(A′) = ϕ and As(A′) =
{Conc(C)}. Since Σ is consistency-inducing, ϕ,¬ϕ ⊥ ∈ Ris. Thus, we can construct
A′′ = A′, B  ⊥ with As(A′′) = {Conc(C)}. Hence, we can also construct D =
ProofByContrad(¬Conc(C), A′′). Since Conc(D) = ¬Conc(C), D attacks C. Also, D
is an intuitively strict continuation of S \ C, thus we have D ≮ C and therefore D defeats
C.

By Theorem 6.6.1, since C ∈ Sub(A), C ∈ S.
Similarly, for all Ai ∈ M(A), Ai ∈ S by Theorem 6.6.1. A′ is an intuitively strict

continuation of M(A) \ C which uses the same rules as A. Hence, S defends A′, and thus
A′ ∈ S.

Suppose an argument F defeats D. Then, F cannot defeat D on A′′ by rebut since
TopRule(A′′) ∈ Ris. Also, F cannot defeatD onA′′ by undercutting, since Σ is consistency-
inducing and thus n(TopRule(A′′)) is undefined. F cannot defeat D nor A′′ on C ′ by ¬-
assumption-attack, again because Σ is consistency-inducing. Since D =
ProofByContrad(¬Conc(C), A′′), F cannot defeat D on D either.

So F defeats D on D′, where D′ 6= A′′, D′ 6= D and D 6= C ′. Hence, D′ ∈ Sub(A′) or
D′ ∈ Sub(B). By Theorem 6.6.1 and since A′, B ∈ S, we have D′ ∈ S. Hence, S defends
D from F and so D ∈ S.

But D defeats C, so S is not conflict-free, which is a contradiction. Therefore, no such
ϕ ∈ Concs(S) exists and thus Concs(S) is consistent.

Indirect consistency of AC-extensions follows from closure under accepted intuitively
strict rules together with direct consistency:

Theorem 6.6.7. Let Σ = (L,R, n,<) be a consistency-inducing argumentation theory,
F = 〈A,X ,→, 99K〉 be the EAF defined by Σ and S be an AC-extension of F . Then, there
does not exist ϕ ∈ ClRisa(S)(Concs(S)) such that ¬ϕ ∈ ClRisa(S)(Concs(S)).

We want ASPIC-END to be applicable to debates in the formal sciences, in which
the correctness of logical rules can be up for debate. For example, among the proposals
made by philosophers of how to handle the semantic paradoxes, there is paraconsistent
dialetheism [86], which accepts some inconsistencies as true and uses a paraconsistent
logic to avoid that everything can be derived. And in order to be able to show the internal
structure of the paradox, we need to have an inconsistency arise from intuitively strict rules
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under no assumptions. For these reasons, the consistency postulates do not make sense for
this kind of application of ASPIC-END.

However, there is a property similar to consistency that should still hold even when the
intuitively strict rules lead to paradoxes and when the output extensions contain one that
accepts paraconsistent dialetheism, namely that an extension should never be trivial, i.e.
conclude everything.

For the non-triviality of the extensions, we require every intuitively strict rule, except
for the ones of conjunction elimination from ⊥, to have a name so that it can be attacked.
We say that the argumentation theory is well-defined if it satisfies this requirement, and
assume well-definedness in the non-triviality postulate stated in Theorem 6.6.8.

Definition 6.6.7 (Well-Defined Argumentation Theory). Let Σ = (L,R, n,<) be an argu-
mentation theory. We say that Σ is well-defined if and only if for each rule r′ ∈ Ris \ Rce,
n(r′) ∈ L.

Theorem 6.6.8. Let Σ = (L,R, n,<) be a well-defined argumentation theory, F =
〈A,X ,→, 99K〉 be the EAF defined by Σ, and S be an AC or EC-extension of F . Then,
⊥ /∈ Concs(S).

Proof. Suppose for a contradiction that ⊥ ∈ Concs(S). Then there exists a minimal
(under sub-argument relation) argument A ∈ S such that Conc(A) = ⊥ and As(A) = ∅.

We have two cases:

1. TopRule(A) is undefined. Then, A must be of the form ReasonByCases(⊥, A1,
A2, A3). We have two sub-cases:

(a) DefRules(A) 6= ∅. Then, there must be a minimal (w.r.t. ≺) argument A′ such
that TopRule(A′) ∈ Rd. LetB = A ¬Conc(A′). Then, sinceA′ is minimal
w.r.t. ≺, B ⊀ A′ and so B successfully rebuts A′, so B defeats A.

(b) DefRules(A) = ∅. If A3 is of the form ReasonByCases(⊥, A′1, A′2, A′3), set
A3 := A′3 and repeat this process until you obtain an argument A3 which is not
a reasoning by cases. Now A3 is such that Conc(A3) = φ∨¬φ for some φ ∈ L
and DefRules(A3) = ∅ since DefRules(A) = ∅, so A3 must be of the form
P1, P2, ..., Pn  φ ∨ φ′. Since Σ is well-defined, TopRule(A3) is defined, and
so let B = A ¬n(TopRule(A3)). So B undercuts A3 and thus defeats A.

2. TopRule(A) is defined. Let r = TopRule(A). If r ∈ Ris, then n(r) ∈ L and so let
B = A  ¬n(r). Otherwise, let B = A  ¬⊥. By the definition of ≺ and the
construction of B, B ⊀ A. Then B undercuts or successfully rebuts A on A, so B
defeats A.

Since S is an AC- or EC-extension of F , it defends itself, so there existsC ∈ S such that
C defeats B. Suppose for a contradiction that C defeats B on B′ 6= B. Since Sub(B) =
Sub(A) ∪ {B}, B′ ∈ Sub(A). Then, by Lemma 6.6.2.2, C defeats A on B′. But S is
conflict-free, so we have a contradiction. Hence, C defeats B on B. Since B = A  
¬n(r), B cannot be rebutted nor assumption-attacked. Hence, C undercuts B on B. But
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since TopRule(B) ∈ Rce, n(TopRule(B)) is undefined, i.e. no argument undercuts B on
B, a contradiction.

Hence, ⊥ /∈ Concs(S).

Indirect non-triviality of AC-extensions then follows from closure under accepted intu-
itively strict rules and direct non-triviality:

Theorem 6.6.9. Let Σ = (L,R, n,<) be a well-defined argumentation theory, F =
〈A,X ,→, 99K〉 be the EAF defined by Σ and S be an AC-extension of F . Then, ⊥ /∈
ClRisa(S)(Concs(S)).

One problem that ASPIC-END shares with ASPIC+ and that we have left for future
work is that it does not satisfy the non-interference postulate, which says that in a theory
consisting of two syntactically separate parts, the outcome of each part must be independent
of the other part [87]. We would like to briefly discuss this postulate in order to show that it
does not pose any problems to the example applications of ASPIC-END that are presented
in the chapter and in this technical appendix.

A common example that illustrates why ASPIC+ does not satisfy this postulate is base
on an innocent bystander, i.e. a defeasible premise ⇒ r with the property that r is not
used in the rest of the theory, and on strict rules that allow explosive conclusions from a
contradiction (ex falso quodlibet) – e.g. strict rules that correspond to inferences in classi-
cal logic. If there is any conflict in the theory arising from defeasible reasoning, then the
rules of classical logic allow to conclude ¬r, thus producing an argument that attacks the
argument for r. This phenomenon is called contamination in the literature. If every exten-
sion decides the conflict on which this argument is based one way or the other, then this
argument attacking r will be rejected in every extension. If on the other hand the conflict-
ing arguments are themselves attacked by unresolved self-attacking arguments (or by some
other paradoxical arguments, i.e. arguments involved in an unresolved odd cycle), then the
argument attacking r and the argument for r will both have an undecided status, so that
the argument for r is affected by the theory that does not mention r. In formalizations of
this example in the literature, Liar-like sentences have been used in the place of the self-
attacking arguments needed for this construction (cf. Example 6.2 in [88]). For this reason,
one could be worried that our application of ASPIC-END to modeling the Liar paradox
suffers from this problem. We will now briefly explain why this does not cause problems
for our example application about the Liar paradox, and also why our ASPIC-END model
of the debate about the Axiom of Choice does not suffer from this problem.

First we would like to point out that there are crucial differences between ASPIC-END
formalizations of semantic paradoxes like the Liar sentence on the one hand and the con-
tamination examples considered in the literature on the other hand. A semantic paradox
formalized in ASPIC-END gives rise to an intuitively strict argument that has conclusion
⊥. We consider debates about how to resolve such arguments, i.e. about different possibil-
ities to undercut an intuitively strict rule in such an argument. Once such an argument is
successfully undercut, it no longer gives rise to contamination issues. On the other hand,
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the standard contamination examples consist of two defeasible arguments that have con-
trary conclusions and that are not attacked by any set of arguments that can be accepted
together.

Importantly, contamination does not affect our example ASPIC-END models in a sub-
stantial way. The ASPIC-END model of debate on the Liar paradox does not contain any
explosive rule of the form φ,¬φ  ⊥, so as it stands it certainly does not suffer from
contamination. But even if one were to add an innocent bystander⇒ r and the explosive
rule accept(classical logic),¬accept(classical logic)  ¬r, it would still be the case that
r is accepted in both AC-extensions, as one of them has a justification (namely argument
B2) for rejecting ¬accept(classical logic and the other one has a justification (namely ar-
gument C2) for rejecting accept(classical logic. The only way to add contamination to the
example would be by making both argumentB2 and argument C2 being attacked by an am-
biguous argument, e.g. an argument that is in an odd cycle that does not get attacked from
the outside. The ASPIC-END model of the debate about the Axiom of Choice does contain
explosive rules that cannot be undercut, so given an innocent bystander ⇒ r, we could
for example construct the argument (L05

1 , H
05
2  ⊥)  r, but again r would be accepted

in both AC-extensions as one of them rejects L05
1 and the other one rejects H05

2 . Again,
contamination is avoided due to the fact that is not possible to construct unresolvable odd
cycles that attack the two arguments L05

1 and H05
2 .

6.7 Conclusion and Future Work
We have proposed the application of the structured argumentation methodology to for-
mally model informal and semi-formal debates in the formal sciences. For this purpose,
we have proposed a modification of ASPIC+ called ASPIC-END, which incorporates a for-
mal model of explanations, and features natural-deduction style arguments. We have then
discussed two instantiations of ASPIC-END, one that models relatively simple arguments
about two solutions the Liar Paradox, and one that constitutes a more extensive model of
part of the debate that mathematicians had about the Axiom of Choice in the early 20th
century.

In a technical online appendix [81] we have proved four rationality postulates for
ASPIC-END that are analogous to the four postulates that [66] have established for AS-
PIC+, as well as two new postulates motivated by the application of structured argumenta-
tion to debates in the formal sciences. One problem that ASPIC-END shares with ASPIC+
and that we have left for future work is that it does not satisfy the non-interference postulate
[87].

As explained in the introduction, we believe the methodological approach proposed in
this chapter to be of significant potential for further research. The model of the debate
about the Axiom of Choice sketched in Section 6.5 could be extended to a model covering
a wider range of topics related to the foundational questions in mathematics as well as
active research questions in philosophical logic. Given that with increasing size of the
model it becomes more and more difficult to produce the model manually and to find all
relevant arguments and attacks, we propose that interactive theorem provers like Isabelle
[89] or HOL Light [90] be used for producing and studying such extensive formal models.
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Furthermore, combining the methodology of structured argumentation theory with insights
from natural language semantics could lead to formal models that are more faithful to the
logical form implicit in natural language, which could strengthen the link between the
formalization of a debate and the original natural language form of the debate.
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Chapter 7

Future work

In this chapter we present some preliminary results on topics related to the work described
in the earlier chapters. We first investigate in Sec. 7.1 the connections between commitment
graphs as described in Chapter 3, and multi-agent argumentation and dialogues.

The work on flattening from Chapter 5 also raises the question of which relations can be
flattened into a classical argumentation framework. We present some preliminary answers
to this question in Sec. 7.2.

7.1 Multi-agent dialogues
In this section, we present some preliminary work on the dialogical and dynamical aspects
in multi-agent argumentation. Based on the work of laid out in Chapter 3 which refines
extensions into commitment graphs and the work on multi-agent argumentation started by
Arisaka et al. [15], we observe the process of argument-sharing between the agents and
how the individual attitude of each agent affect the global outcome of the argumentation
process.

We first provide a few preliminary definitions from the work of Arisaka et al. [15] and
then present the multi-agent dialogue framework.

7.1.1 Conditional and multi-agent argumentation
A multi-agent argumentation framework is an argumentation framework together with a
set of agents and an assignment of the arguments to the agents. We call the agents also the
sources of the arguments.

Definition 7.1.1 (Multi-agent argumentation). A multi-agent argumentation framework is
a tuple 〈A,→, Ag, Src〉 where 〈A,→〉 is an argumentation framework, Ag is a set called
agents and Src : A → Ag is a function mapping each argument to the agent that put it
forward (also known as its source).

For the semantics, we first define individual acceptance by an agent. We consider the
part of the multi-agent framework that is relevant to the agent, which we call the agent
argumentation framework. It contains its own arguments together with the attacks among

131



them, the relevant arguments of other agents, an extension of these other arguments, and
an attack relation from the other arguments to its own arguments. The agent semantics
considers the agent argumentation framework, as well as the arguments accepted by other
agents. This conditional acceptance is called a local function by Baroni et al. [57] call a
local function.

We slightly rewrite the definition of local function to make it explicit that acceptance of
arguments by agents is conditional on the acceptance of arguments by other agents. More-
over, in contrast to Baroni et all, we do not consider the attacks among input arguments.
Since Baroni et al. define their local acceptance functions for all Dung semantics, not only
for stable semantics, their definitions are more general than ours. Similar notions are de-
fined also by Liao [91]. We refer to these papers for further explanations and examples of
local functions.

Definition 7.1.2 (Individual conditional acceptance). For multi-agent argumentation
framework 〈A,→, Ag, Src〉, the argumentation framework of agent A is a tuple
〈AA,→A, IA, RIA〉, where AA = {a ∈ A | Src(a) = A} are the arguments of agent A,
→A=→ ∩(AA × AA)) are its attacks, IA = {a ∈ A | a /∈ AA, (a, b) ∈→, b ∈ AA} are
the relevant arguments from other agents, and RIA =→ ∩(IA ×AA) is the corresponding
attack relation. The stable semantics of agent A and context EIA ⊆ IA, a set of arguments
called the input extension, is defined by

Stb(〈AA,→A, IA, RIA〉, EIA) = stb(〈AA ∪ EIA ,→A ∪(RIA ∩ (EIA ×AA))〉)AA

Where for a set of extensions S, SAA
= {s ∩ AA | s ∈ S}.

We then give the definition of collective acceptance, which may be seen as the argu-
ments accepted by an external observer.

Definition 7.1.3 (Collective acceptance). The collective stable semantics of multi-agent ar-
gumentation framework 〈A,→, Ag, Src〉 is the set of extensions E ⊆ A such that for all
agentsA ∈ Ag we haveEA ∈ Stb(〈AA,→A, IA, RIA〉, E∩IA). We write STB(〈A,→,Ag, Src〉)
for the set of all stable extensions of the argumentation framework 〈A,→,Ag, Src〉.

Multiagent argumentation is then extended with a social network among the agents,
reflecting epistemic trust: an agent trusts another agent if the former accepts the arguments
the latter agent accepts. If the social network is reflexive, symmetric and transitive, then
network consists of equivalence classes of agents, which may be called coalitions.

Individual and collective acceptance for trust argumentation frameworks is the same as
defined before, using trust argumentation frameworks for the individual agents.

Definition 7.1.4 (Trust Argumentation Framework). A Trust argumentation framework
〈A,→, Ag, Src, T 〉 extends a multiagent argumentation framework 〈A,→, Ag, Src〉 with
a binary relation T ⊆ Ag×Ag, such that each agent A trusts itself, i.e. T (A,A). We write
T (A) for {B | T (A,B)}.

Moreover, the trust argumentation framework of agent A is a tuple 〈AA,→A, IA, RIA〉,
where IA = {a ∈ A | Src(a) ∈ T (A), a /∈ AA, (a, b) ∈→, b ∈ AA} is restricted to
arguments introduced by agents trusted by agent A.

132



For individual acceptance we write StbT(〈AA,→A, IA, RIA〉, EIA) for the set of all sta-
ble extensions of the argumentation framework 〈AA,→A, IA, RIA〉 defined from the argu-
mentation framework 〈A,→, Ag, Src, T 〉 in this way, and each context EIA ⊆ IA, and for
collective acceptance we write STBT(〈A,→, Ag, Src, T 〉) for the set of all stable exten-
sions of the argumentation framework (〈A,→, Ag, Src, T 〉).

The following definition generalises Dung’s stable extensions in terms of sub-frameworks.
A stable sub-framework is a sub-framework having exactly one stable extension. A sub-
framework semantics called AFRA semantics was introduced by Baroni et al. [92] and one
called attack semantics by Villata et al. [93].

Definition 7.1.5 (Stable sub-frameworks). The framework 〈A′,→′〉 is a stable sub-framework
of 〈A,→〉 if and only if A′ ⊆ A,→′⊆→ ∩(A′ ×A′), and 〈A′,→′〉 has exactly one stable
extension which is also a stable extension of 〈A,→〉. We write STB(〈A,→〉) for the set of
all stable sub-frameworks of the argumentation framework 〈A,→〉.

Example 7.1.1 below illustrates a multi-agent argumentation with an accused, a witness,
a prosecutor and finally a judge who is evaluating collective acceptance. We show how
variations in individual conditional acceptance, i.e. variations in what to reveal for the
judgement of collective acceptance, can lead to different outcomes, some good and some
bad for the accused.

Example 7.1.1. There occurred a murder at Laboratory C, of which Acc is being accused.
There are a witness Wit and a prosecutor Prc. Acc has in mind two arguments:

a1 that he was at Laboratory A on the day of the murder. (This is a fact known to Acc)

a2 that he is innocent. (This is Acc’s claim)

Prc entertains:

a6 that only Acc could have killed the victim. (This is Prc’s claim)

Meanwhile, Wit believes in certain information. He has three arguments:

a3 Acc stayed at home on the day of the murder, having previously lost his ID card. (Wit
originally believes this to be a fact)

a4 Acc could enter any laboratory provided he is with his ID card. (This is a fact known to
Wit)

a5 Acc could not have been at Laboratory C at the time of the murder. (This is Wit’s claim)

The multi-agent argumentation in Figure 7.1 (A) represents this example, showing which
argument attacks which argument. We denote this multi-agent argumentation by
〈A,R, Ag, Src〉.

In this example, Prc has no reason to drop his/her argument a6; neither does Acc, see-
ing no benefit in conceding to a6, have any reason to drop a2. Hence, we only consider the
contexts: EIAcc = EIPrc = ∅. How Wit responds to the fact known to Acc (a1), however, can
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a1 a3 a1 a3 a1 a3

a4 a4 a4

a2 a6 a5 a2 a6 a5 a2 a6 a5
Acc Acc AccPrc Prc PrcWit Wit Wit

(A) (B) (C)

Figure 7.1: Accused (Acc), witness (Wit), and prosecutor (Prc).

prove crucial for Acc to be judged innocent or guilty by the judge who computes collective
acceptance.

Case A Suppose EIWit = ∅, which signifies that Wit is either not aware of a1 or just ig-
noring it. Then any individual acceptance function of Wit outputs a set of sub-frameworks
of 〈A,R〉Wit such that they have {a3, a5} as their only one stable extension. Thus, sup-
pose the acceptance function to output just 〈A,R〉Wit, as shown in Figure 7.1 (A). Then the
stable sub-framework of 〈A,R, Ag, Src〉 is 〈A,R, {a1, a4, a6}〉. Hence Acc is not judged
innocent by the judge.

On the other hand, if the acceptance function of Wit outputs just 〈{a3, a5}, ∅〉, as
shown in Figure 7.1 (B). Then the stable sub-framework is 〈A\{a4},R\({a4} ×A∪A×
{a4}), {a1, a2, a5}〉. Acc is judged innocent by the judge.

Case B Suppose EIWit = {a1}, which signifies that Wit takes a1 into account. Then
any individual acceptance function of Wit outputs a set of sub-frameworks of 〈A,R〉Wit

such that they have {a4} as their only one stable extension. Thus, suppose the acceptance
function to output just 〈{a4}, ∅〉, as shown in Figure 7.1 (C). Then the stable sub-framework
is 〈A\{a3, a5},R\({a3, a5} × A ∪ A× {a3, a5}), {a1, a4, a6}〉. Again, Acc is not judged
innocent by the judge.

7.1.2 Dialogue semantics
We apply the same commitment-graph structure to the argumentation dialogue between
the agents. The agents first commit to a single extension of their internal framework when
multiple ones exist, and then decide how to share it. They may opt to fully share their
arguments, exposing counter-arguments that they know about but locally reject, or they
may decide to share the arguments they accept without mentioning any of the counter-
arguments they are aware of.

In the original framework described in Chapter 3, we provide a framework for the
analysis of the commitments made in the process of selecting a single extension from a set
of them. The commitments are represented in directed graphs, where the nodes represent
commitments made by the agent towards a progressively smaller subset of extensions, until
only a single one remains.

When applying this approach to our multi-agent dialogue setting, we will slightly adapt
this framework. When it is their turn, the agents either chooses between which arguments
to accept, or once that is done, they choose which arguments to share. While they want
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to share every argument that they accept, this might not be the case for the arguments
they reject. For each argument they are aware of but do not accept, the agents have the
opportunity to either leave them out, or share them with their peers.

We present a definition of commitments about arguments. We allow the agents to
choose for each argument that they reject whether to communicate it or not. We there-
fore introduce pairs to represent these decisions.

Definition 7.1.6 (Commitments on arguments and coherence). Given an argument a and
c ∈ {say, hide}, we say that a triple (c, a) is a commitment on a. Given a set C of com-
mitments on arguments, we say that C is coherent if there is no argument a such that
(say, a) ∈ C and (hide, a) ∈ C.

For simplicity, we write s(a) instead of (say, a) and h(a) instead of (hide, a), and for
a set of commitments C, we write Cs for {a | s(a) ∈ C} and Ch for {a | h(a) ∈ C}.

We then define a sub-framework semantics which takes these commitments into ac-
count.

Definition 7.1.7 (Committed stable sub-framework semantics). Let 〈A,→〉 be an argu-
mentation framework and C a coherent set of commitments on arguments in A. We define
the C-committed stable sub-framework semantics to be:

STBCC(〈A,→〉) = {〈A \ Ch, (→ ∩(A \ Ch)2) \ A × E〉 | E ∈ stb(〈A,→〉)}

The C-committed stable semantics first removes all arguments which one has commit-
ted to hide. It then looks at the remaining framework, and proceeds to remove the attacks
on any arguments from the stable extension. This then forces a single stable extension in
the particular framework.

We can now adapt the decision graph structure from Dauphin et al. [94] to the triple-A
frameworks. So the individual agents still have to commit on which arguments to accept
when their internal argumentation allows for multiple extensions, but then they also have
to commit on which ones to communicate. Now that we have defined the notion of C-
committed stable semantics in order to let an agent choose for each argument he rejects
whether to share it or not, we examine the impact these commitments have on the final
extensions determined by the overall observer, or in our running examples, the judge.

Definition 7.1.8 (Multi-agent commitment graph). Let 〈A,→, Ag, Src, T 〉 be a trust argu-
mentation framework. We say that a labelled directed acyclic graph (C,V , l), where C is a
set of sets of commitments about A, V ⊆ C × C and l is a function assigning labels to both
C and V as described below, is a multi-agent commitment graph for 〈A,→, Ag, Src, T 〉 iff
all of the following hold:

1. ∅ ∈ C and every other node can be reached from it via V;

2. the non-leaf1 nodes are labelled with some ag ∈ Ag;

3. the edges are labelled with decisions of the form c(a), where a ∈ A and c ∈ {s, h},
and if l(c1, c2) = c(a) then Src(a) = l(c1);

1A leaf node is a node with no outgoing edge.
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{a1, a5}
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{a1, a4, a6}

h(a4)

s(a4)

h(a2)

s(a2)

h(a2)

s(a2)

Figure 7.2: Commitment graph for the argumentation framework of Example 7.1.1.

4. for all e = (c1, c2) ∈ V , c2 = c1 ∪ l(e);

5. for every leaf node c, l(c) = E, whereE is such that STB(〈A,→, Ag, Src〉, {STBCc}) =
{(A′,→′, E)}.

The first constraint is that the starting point is with no decision made yet, from which
all the considered cases can be reached. The second item, together with item three, force
the process to consider only the commitments for a single agent at a time. The third item
also represents the fact that a commitment on a certain argument can only be made by the
agent who is its source. Item four represents the carrying over of commitments, and the
last item labels the nodes with the resulting collective extension.

Example 7.1.2 (Three agents, continued from Example 7.1.1). Consider the scenario de-
scribed in Example 7.1.1, with the case where Acc trusts Prc and Prc trusts Wit, but Wit
does not trust Acc. Wit does not need to condition his local framework, and therefore
accepts a3 and a5, and rejects a4. Wit may now decide whether to share a4 or hide it, in
which case he would only communicate the framework 〈{a3, a5}, ∅〉. Now, Acc considers
the possibility that a6 is acceptable and thus that a2 is not. Acc can then decide whether to
share a2 or hide, since he considers it might not be acceptable.

7.2 Argument label functions

7.2.1 Introduction
Abstract argumentation frameworks (AFs) [4] are reasoning structures where one aims
at extracting sets of jointly acceptable arguments. One of the central methods to do so
is the labeling-based approach [13], in which one derives labelings which assign to each
argument one of three labels: in, out or undec. The arguments that are labeled in represent
the arguments that are jointly acceptable, while the arguments that are out represent the
ones that are defeated by those. The last label, undec (undecided), represents the cases
where one cannot, or decides with proper justification, not to assign either of these two
labels. One advantage of the labeling approach is that to verify that an argument is correctly
labeled, one only needs to check the labels of its direct ancestors. This allows for a more
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local evaluation, which is still equivalent to other global approaches such as the extension-
based approach.

Many enrichments of abstract argumentation frameworks have been studied, e.g. with
bipolar argumentation frameworks which add a second relation of support [48], or with
argumentation frameworks with recursive attacks (AFRA) [49] in which attacks may also
target other attacks. One methodology for evaluating such enriched frameworks while
staying coherent with the basic framework is the flattening approach [56], where the en-
richments added to the abstract argumentation frameworks are expressed in terms of extra
arguments and attacks, allowing one to evaluate them as abstract argumentation frame-
works. An essential concern in the flattening approach is whether the extra arguments and
attacks produce the same behavior as the one intended by the enrichment they flatten. This
raises a question: Which relations connecting two arguments can be expressed in terms of
arguments and attacks alone?

In this chapter we propose to address this research question by studying the repre-
sentability of label functions, i.e. of functions which map each of the three labels to one
of these labels. We prove that in preferred, complete and grounded semantics, eleven label
functions can be represented by an AF while sixteen label functions cannot be represented
by any AF. We show how this analysis of label functions can be applied to prove an im-
possibility result: Argumentation frameworks extended with a certain kind of weak attack
relation cannot be flattened to the standard Dung argumentation frameworks. Furthermore
we also briefly discuss representability of label functions with respect to the stable and
semi-stable semantics.

The structure of the section is as follows: in Subsection 7.2.2 we formally define the
notion of label function and what it means to represent them as abstract argumentation
frameworks. In Subsection 7.2.3 we show which of the twenty-seven label functions are
representable and which ones are unrepresentable in the context of the complete, grounded
and preferred semantics, and briefly mention the case of the stable semantics. In Subsec-
tion 7.2.5 we discuss the implications of these impossibility results for the flattening of a
particular relation: a weak attack relation that does not propagate the undecided label. We
then discuss related work in Subsection 7.2.6 and future work in Subsection 7.2.7, where
we also briefly discuss the case of the semi-stable semantics. We provide a short conclusion
in Subsection 7.2.8.

7.2.2 Label Functions
In this section we define the basic notions of a label function, an input-output argumentation
framework and the representability of a label function. We write Labs for the set of possible
labels {in, out, undec}.
Definition 7.2.1. A label function LF is a function from Labs to Labs.

Definition 7.2.2. Let LF1 and LF2 be two label functions. Then LF1 ◦ LF2 denotes the
composition of these two label functions that is defined as LF1 ◦LF2(L) = LF1(LF2(L)).

We use the triplet (LF (in), LF (out), LF (undec)) to refer to LF in a concise way. For
example, the triplet (out, undec, in) denotes the label function that maps in to out, out to
undec and undec to in.
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I/O AF

input = in

ib o

I/O AF

input = out
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I/O AF

input = undec

Figure 7.3: The three standard AFs for the I/O AF that cgp-represents the label function
(out, in, undec).

Definition 7.2.3. An input-output argumentation framework (I/O AF) is a tuple (A,→,i, o),
where (A,→) is an argumentation framework and i, o ∈ A.

Definition 7.2.4. Given an input-output argumentation framework G = (A,→, i, o), with
an argument b /∈ A and a label L ∈ Labs, the standard argumentation framework w.r.t. G
and L – denoted Fst(G,L) – is the argumentation framework (A′,→′), where A′ and→′
are defined through the following case distinction:

• If L = in, then A′ = A and→′=→.

• If L = out, then A′ = A ∪ {b} and→′=→ ∪{(b, i)}.

• If L = undec, then A′ = A ∪ {b} and→′=→ ∪{(b, b), (b, i)}.

Definition 7.2.5. Let σ be an argumentation semantics. An input-output argumentation
frameworkG represents a label function LF w.r.t. σ iff for every L ∈ Labs, σ(Fst(G,L)) 6=
∅ and for every labeling Lab ∈ σ(Fst(G,L)), Lab(i) = L and Lab(o) = LF (L).

Definition 7.2.6. Let σ be an argumentation semantics. A label function LF is called σ-
representable iff there is some input-output argumentation framework G that represents
LF w.r.t. σ.

In this work, we shall focus on three of the most well-known semantics, namely com-
plete, grounded and preferred. The principles that these semantics satisfy make them the
most appropriate to start with.

Definition 7.2.7. We define cgp to be the set of semantics {complete, grounded, preferred}.
If a label function can be σ-represented for every σ ∈ cgp, we say that the function is cgp-
representable. Similarly, if a label function cannot be σ-represented for any σ ∈ cgp, we
say that the function is cgp-unrepresentable.

Example 7.2.1. Consider the label function (out, in, undec) which maps in to out and vice-
versa, leaving undec as it is. This function can be cgp-represented as depicted in Fig. 7.3.
By having the input directly attack the output, when the input is in, it forces the output to
be out. Conversely, when the input is out, there is no attacker of the output left, so it must
be in. And finally when the input is undec, the undecided label propagates to the output.
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Figure 7.4: cgp-representation of three label functions.

Example 7.2.2. Fig. 7.4 depicts three I/O AFs that cgp-represent the label functions
(in, out, undec), (out, out, undec) and (in, undec, undec) respectively. Note that the I/O AF
that represents the identity function (in, out, undec) consists only of a single argument, so
that the input argument i and the output argument o are the same argument.

We now define how two input-output argumentation frameworks can be composed into
a single one. The intuitive idea is that the output of the first I/O AF is used as input for the
second I/O AF.

Definition 7.2.8. Let G1 = (A1,→1, i1, o1) and G2 = (A2,→2, i2, o2) be two input-output
argumentation frameworks with A1 ∩ A2 = ∅, and let c /∈ A1 ∪ A2. Then we define
G1 ⊕ G2 to be the input-output argumentation framework (A1 ∪ A2 ∪ {c},→1 ∪ →2

∪{(o1, c)} ∪ {(c, i2)}, i1, o2).

The following theorem establishes that composed AFs represent composed label func-
tions with respect to the complete, grounded and preferred semantics.

Theorem 7.2.1. LetLF1 andLF2 be representable label functions, and letG1 = (A1,→1,i1, o1)
and G2 = (A2,→2, i2, o2) be input-output argumentation frameworks that represent LF1

and LF2 respectively. Then G1 ⊕G2 cgp-represents LF2 ◦ LF1.

Proof. Let σ ∈ cgp. Let L ∈ Labs. Then every σ-labeling of Fst(G1, L) assigns the label
LF1(L) to o1, and every σ-labeling of Fst(G2, LF1(L)) assigns the label LF2 ◦ LF1(L) to
o2. We need to show that every σ-labeling of Fst(G1⊕G2, L) assigns the labelLF2◦LF1(L)
to o2. So let Lab be a σ-labeling of Fst(G1 ⊕G2, L). By the Directionality principle for σ,
Lab|Fst(G1,L) ∈ σ(Fst(G1, L)), so Lab(o1) = LF1(L).

We write F ∗ = (A∗,→∗) for Fst(G2, LF1(L)), and we write F ′ = (A′,→′) for Fst(G1⊕
G2, L). Recall that by Definition 7.2.4, A∗ = A2 ∪ {b} if LF1(L) = out and A∗ =
A2 otherwise. Let Labb be the unique σ-labeling of F ∗|A∗\A2 , i.e. Labb = {(b, in)} if
LF1(L) = out, and Labb = ∅ otherwise.

By the SCC-recursiveness principle for σ, there is a base functionBFσ such that for ev-
ery AF F = (A,→), σ(F ) = GF (BFσ, F,A). In particular, σ(F ′) = GF (BFσ, F

′,A′),
i.e. Lab ∈ GF (BFσ, F

′,A′). Clearly |SCCs(F ′)| > 1, so by the SCC-recursiveness prin-
ciple for σ, for all S ∈ SCCs(F ′), we have:

There is a Lab′ ∈ GF (BFσ, F
′|S\DF ′ (Lab), UF ′(S,Lab))

such that Lab|S = Lab′ ∪ Labout
F ′|S∩DF ′ (Lab)

.
(7.1)

When applying this equation in Case 3 below, we will need to make use of the fact that if
S ⊆ A2, then S \DF ′(Lab) = S \DF ∗(Labb∪(Lab|A2)) and UF ′(S,Lab) = UF ∗(S,Labb∪
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(Lab|A2)). In the following we show that UF ′(S,Lab) ⊆ UF ∗(S,Labb ∪ (Lab|A2)). The
facts that UF ∗(S,Labb ∪ (Lab|A2)) ⊆ UF ′(S,Lab), that S \DF ′(Lab) ⊆ S \DF ∗(Labb ∪
(Lab|A2)) and that S \ DF ∗(Labb ∪ (Lab|A2)) ⊆ S \ DF ′(Lab) can be established in a
similar way.

Suppose x ∈ UF ′(S,Lab), i.e. x ∈ S and there is no y such that (y, x) ∈→′, y 6∼
x and Lab(y) 6= out. Now suppose for a contradiction that x /∈ UF ∗(S,Labb ∪
(Lab|A2)), i.e. there is a z such that (z, x) ∈→∗, z 6∼ x and Labb∪(Lab|A2)(z) 6= out.
We distinguish two cases:

Case (i): z ∈ A2. Choose y := z. Note that since z 6∼ x, (z, x) 6= (i, i). So
(y, x) = (z, x) ∈→′, y 6∼ x and Lab(y) = Lab(z) = Labb∪ (Lab|A2)(z) 6= out.
This contradicts the assumption that there is no such y.

Case (ii): z = b. In this case LF1(L) = out. Choose y := c. Then (b, x) ∈→∗,
i.e. x = i. Therefore (y, x) = (c, i) ∈→′. Additionally y 6∼ x. Furthermore,
since Lab(o1) = LF1(L) = out and o1 is the only attacker of c, Lab(c) = in,
i.e. Lab(y) 6= out. This contradicts the assumption that there is no such y.

Thus UF ′(S,Lab) ⊆ UF ∗(S,Labb ∪ (Lab|A2)), as required.

Recall that every σ-labeling of F ∗ assigns the label LF2 ◦LF1(L) to o2. We now estab-
lish the required result that Lab(o2) = LF2 ◦ LF1(L) by showing that Labb ∪ (Lab|A2) ∈
σ(F ∗). By the SCC-recursivity of σ, it is enough to show that Labb∪(Lab|A2) ∈ GF (BFσ, F

∗,A∗).
Clearly |SCCs(F ∗)| > 1, so by the SCC-recursiveness principle for σ it is enough to show
that for all S ∈ SCCs(F ∗), there is a Lab′ ∈ GF (BFσ, F

∗|S\DF∗ (Labb∪(Lab|A2
)), UF ∗(S,Labb∪

(Lab|A2))) such that (Labb ∪ (Lab|A2))|S = Lab′ ∪ Labout
F ∗|S∩DF∗ (Lab)

. So let S ∈ SCCs(F ∗).
We distinguish two cases:

Case 1: S = {b} and LF1(L) = out. In this case, (Labb ∪ (Lab|A2))|S is {(b, in)},
i.e. the unique σ-labeling of the AF F ∗|S = ({b}, ∅). By the SCC-recursivity of
σ, GF (BFσ, F

∗|S, S) = σ(F ∗|S), so {(b, in)} ∈ GF (BFσ, F
∗|S, S). Note that S

is unattacked, i.e. F ′|S∩DF ′ (Lab) is the empty AF and Labout
F ′|S∩DF ′ (Lab)

is the empty la-

beling. So we can choose Lab′ = (Labb ∪ (Lab|A2))|S = {(b, in)}. Furthermore,
F ∗|S\DF∗ (Labb∪(Lab|A2

)) = F ∗|S and UF ∗(S,Labb ∪ (Lab|A2)) = S. Thus GF (BFσ,
F ∗|S\DF∗ (Labb∪(Lab|A2

)), UF ∗(S,Labb ∪ (Lab|A2))) = GF (BFσ, F
∗|S, S), which con-

tains Lab′ = {(b, in)}, as required.

Case 2: S = {b} and LF1(L) = undec. In this case, (Labb ∪ (Lab|A2))|S is {(b, undec)},
i.e. the unique σ-labeling of the AF F ∗|S = ({b}, {b, b)}). By the SCC-recursivity of
σ, GF (BFσ, F

∗|S, S) = σ(F ∗|S), so {(b, undec)} ∈ GF (BFσ, F
∗|S, S). Note that

S is unattacked, i.e. F ′|S∩DF ′ (Lab) is the empty AF and Labout
F ′|S∩DF ′ (Lab)

is the empty

labeling. So we can choose Lab′ = (Labb ∪ (Lab|A2))|S = {(b, undec)}. Fur-
thermore, F ∗|S\DF∗ (Labb∪(Lab|A2

)) = F ∗|S and UF ∗(S,Labb ∪ (Lab|A2)) = S. Thus
GF (BFσ, F

∗|S\DF∗ (Labb∪(Lab|A2
)), UF ∗(S,Labb ∪ (Lab|A2))) = GF (BFσ, F

∗|S, S),
which contains Lab′ = {(b, undec)}, as required.
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Figure 7.5: cgp-representation of the three constant label functions.

Case 3: S ⊆ A2. Then (Labb ∪ (Lab|A2))|S = Lab|S . Furthermore, S ∈ SCCs(F ′),
so by equation (7.1), there is a Lab′ ∈ GF (BFσ, F

′|S\DF ′ (Lab), UF ′(S,Lab)) such that
Lab|S = Lab′∪Labout

F ′|S∩DF ′ (Lab)
. Thus (Labb∪(Lab|A2))|S = Lab′∪Labout

F ′|S∩DF ′ (Lab)
, as

required. Furthermore, as shown above, S\DF ′(Lab) = S\DF ∗(Labb∪(Lab|A2)) and
UF ′(S,Lab) = UF ∗(S,Labb ∪ (Lab|A2)), so Lab′ ∈
GF (BFσ, F

∗|S\DF∗ (Labb∪(Lab|A2
)), UF ∗(S,Labb ∪ (Lab|A2))), as required.

The following corollary directly follows from Theorem 7.2.1

Corollary 7.2.2. IfLF1 andLF2 are cgp-representable, thenLF1◦LF2 is cgp-representable.

7.2.3 Representability of Label Functions
In this subsection, we will categorize the twenty seven label functions into eleven functions
that are cgp-representable and sixteen functions that are not cgp-representable.

As we will show below, a label function is cgp-representable iff it is either a constant
function or maps undec to undec. This motivates the following definition:

Definition 7.2.9. We define the set Rep as the following set of label functions:

Rep = {(in, in, in), (out, out, out)} ∪ {(l, l′, undec) | l, l′ ∈ Labs}

Theorem 7.2.3. Every function in Rep is cgp-representable.

Proof. We have already given the cgp-representations for four of those functions in the
Examples 7.2.1 and 7.2.2. We additionally have representations for the three constant func-
tions (in, in, in), (out, out, out) and (undec, undec, undec) in Figure 7.5. The missing four
functions can be represented by combinations of these seven as follows:

• (in, in, undec) = (out, in, undec) ◦ (out, out, undec);

• (undec, in, undec) = (in, undec, undec) ◦ (out, in, undec);

• (out, undec, undec) = (out, in, undec) ◦ (in, undec, undec);

• (undec, out, undec) = (out, in, undec) ◦ (undec, in, undec).
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Aside from the widely used semantics included in the set cgp, the stable semantics
is another well-known semantics which is also complete-based. Notice however that the
stable semantics does not allow for any undec arguments, and thus no framework could
stable-represent a label function as defined in Def. 7.2.5, since having undec as input
would automatically mean there is no extension in the corresponding standard AF, so no
output could be given. We can however define a similar notion over 2-valued labelings, i.e.
restricting the functions to only two possible inputs and outputs: in and out.

This restriction leaves us with only four different possible label functions, and an inter-
esting small result is that all of these are stable-representable. (out, in) is stable-represented
by the I/O AF in Figure 7.3 and (in, out) by the I/O AF on the left in Figure 7.4. (in, in)
and (out, out) are stable-represented by the I/O AFs in Figure 7.5, respectively on the left
and in the middle.

Proposition 7.2.4. The four 2-valued label functions (in, out), (out, in), (in, in) and (out, out)
are all stable-representable.

7.2.4 Unrepresentable Label Functions
In this subsection we establish that the sixteen labeling functions not included in Rep are
actually cgp-unrepresentable. We first consider the labeling functions (undec, undec, out)
and (out, undec, out) with respect to the preferred and grounded semantics.

Lemma 7.2.5. The labeling functions (undec, undec, out) and (out, undec, out) are cgp-
unrepresentable.

Proof. We show this using a proof by contradiction. Assume G = (A,→, i, o) is an
input-output argumentation framework that cgp-represents either (undec, undec, out) or
(out, undec, out). This means that in every complete, grounded and preferred labeling of
Fst(G, undec), the output argument o is labeled out. We first show how to derive a con-
tradiction in the case of preferred. Let Lab be a preferred labeling of Fst(G, undec), and
let E be the set of arguments labeled in by Lab. Since for every admissible set E, there
exists a preferred labeling in which the arguments of E are in [13], E is admissible w.r.t.
Fst(G, undec). This implies that E is admissible w.r.t. Fst(G, out):

• Conflict-freeness of E w.r.t. Fst(G, out) follows from the fact that the only attack in
Fst(G, out) that is not present in Fst(G, undec) is the attack from the special argument
b to the input argument i, but clearly b /∈ E.

• Self-defence of E w.r.t. Fst(G, out) follows from the fact that the only attack in
Fst(G, undec) that is not present in Fst(G, out) is the self-attack on the input argu-
ment i, but clearly i /∈ E.

Now since for every admissible set E, there exists a preferred labeling in which the argu-
ments of E are in [13], there exists a preferred labeling Lab′ of Fst(G, out) in which every
argument in E is labeled in. Since Lab(o) = out, some argument c labeled in by Lab
attacks o. But then c ∈ E, so Lab′(c) = in, so Lab′(o) = out. But this contradicts the
assumption that G represents (undec, undec, out) or (out, undec, out) w.r.t. the preferred
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semantics, because this would mean that every preferred labeling of Fst(G, out) labels o as
undec.

Now we consider the case of the grounded semantics. By a simple transfinite induc-
tion one can show that for every ordinal α, FαFst(G,undec)(Labundec)(i) = undec (since i at-
tacks itself in Fst(G, undec)). Since the grounded labeling is the ≤-least fixpoint of FF
and there exists an ordinal α such that the least fixpoint of FF is FαF (Labundec), there ex-
ists an ordinal α such that the grounded labeling of Fst(G, undec) is FαFst(G,undec)(Labundec).
We now show by transfinite induction that for every ordinal β, FβFst(G,undec)(Labundec) ≤
FβFst(G,out)(Labundec):

• β = 0: Trivial.

• β = 1: In this case FβFst(G,undec)(Labundec) labels as in all arguments in A that are
unattacked, and FβFst(G,out)(Labundec) also labels all these arguments as in, and ad-
ditionally labels the special argument b as in. So clearly FβFst(G,undec)(Labundec) ≤
FβFst(G,out)(Labundec).

• β = 2: In this case the in-labeled arguments are the same as in the case β = 1 for both
FβFst(G,undec)(Labundec) andFβFst(G,out)(Labundec). Additionally, every argument attacked
by an unattacked argument from A is labeled out by both FβFst(G,undec)(Labundec) and
FβFst(G,out)(Labundec), and FβFst(G,out)(Labundec) additionally labels the special argument
i as out. So clearly FβFst(G,undec)(Labundec) ≤ FβFst(G,out)(Labundec).

• β = γ + 1 for γ ≥ 2: By the inductive hypothesis, we may assume that
FγFst(G,undec)(Labundec) ≤ FγFst(G,out)(Labundec). By the definition of ≤, every argument
labeled in by FγFst(G,undec)(Labundec) is also labeled in by FγFst(G,out)(Labundec). The fact
that every argument inA has the same attackers in Fst(G, out) as in Fst(G, undec) to-
gether with the definition of F imply that every argument in A that is labeled out by
Fγ+1
Fst(G,undec)(Labundec) is also labeled out byFγ+1

Fst(G,out)(Labundec). SinceFγ+1
Fst(G,undec)(Labundec)(i) =

undec, this implies that every argument that is labeled out by Fγ+1
Fst(G,undec)(Labundec) is

also labeled out by Fγ+1
Fst(G,out)(Labundec). Similarly one can show that every argument

that is labeled in by Fγ+1
Fst(G,undec)(Labundec) is also labeled in by Fγ+1

Fst(G,out)(Labundec).
Thus FβFst(G,undec)(Labundec) ≤ FβFst(G,out)(Labundec).

• β is a limit ordinal: Suppose c is an argument such that FβFst(G,undec)(Labundec)(c) =

in. This means that there is some γ < β such that FγFst(G,undec)(Labundec)(i) = in.
By induction hypothesis, FγFst(G,out)(Labundec) = in, so FβFst(G,out)(Labundec) = in.
Thus every argument that is labeled in by FβFst(G,undec)(Labundec) is also labeled in by
FβFst(G,out)(Labundec). Similarly every argument that is labeled out byFβFst(G,undec)(Labundec)

is also labeled out byFβFst(G,out)(Labundec). ThusFβFst(G,undec)(Labundec) ≤ FβFst(G,out)(Labundec).

Since G represents either (undec, undec, out) or (out, undec, out) w.r.t. the grounded se-
mantics, the output argument o is labeled out by the grounded labeling of Fst(G, undec).
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So FαFst(G,undec)(Labundec)(o) = out. But since FαFst(G,undec)(Labundec) ≤ FαFst(G,out)(Labundec),
this means that FαFst(G,out)(Labundec)(o) = out. So the grounded labeling of Fst(G, out) la-
bels o as out, in contradiction to the assumption that G represents (undec, undec, out) or
(out, undec, out) w.r.t. the grounded semantics.

Finally we consider the case of the complete semantics. Every prefered labeling is a
complete labeling and every AF has at least one prefered labeling. These two facts together
imply that whenever an input-output argumentation framework G represents an labeling
function LF w.r.t. the complete semantics, G also represents LF w.r.t. the prefered se-
mantics. So since the labeling functions (undec, undec, out) and (out, undec, out) are not
prefered-representable, they are not complete-representable either.

Now we extend these results to cover all labeling functions not in Rep.

Theorem 7.2.6. The sixteen labeling functions not in Rep are cgp-unrepresentable.

Proof. In Lemma 7.2.5 we have already established that the labeling functions (undec, undec, out)
and (out, undec, out) are cgp-unrepresentable. For the other fourteen labeling functions
not in Rep we show this result by showing that if one of them was representable, then one
of (undec, undec, out) or (out, undec, out) would be representable too, which would be a
contradiction. For this purpose we show in the table below how each of these fourteen label-
ing functions not in Rep or mentioned in Lemma 7.2.5 can be composed with some of the
eleven cgp-representable labeling functions from Rep to define either (undec, undec, out)
or (out, undec, out).

The second column of the following table presents for each label function mentioned in
the first column a proof in concize notation that shows why the label function in question
is cgp-unrepresentable. We explain how these proofs in concize notation should be read
through the example of the first proof presented in the table: If (in, in, out) were cgp-
representable, then the fact that (undec, undec, out) = (undec, out, undec) ◦ (in, in, out)
and that (undec, out, undec) is cgp-representable would imply that (undec, undec, out) is
cgp-representable by Corollary 7.2.2, which would contradict Lemma 7.2.5. So we can
conclude that (in, in, out) is cgp-unrepresentable.

Labeling function Reason for this labeling function being cgp-unrepresentable
—==— (in, in, out) (undec, undec, out) = (undec, out, undec) ◦ (in, in, out)
(in, out, in) (out, undec, out) = (out, undec, undec) ◦ (in, out, in)
(in, out, out) (out, undec, out) = (undec, out, undec) ◦ (in, out, out) ◦ (out, in, undec)
(in, undec, in) (out, undec, out) = (out, in, undec) ◦ (in, undec, in)
(in, undec, out) (out, undec, out) = (out, out, undec) ◦ (in, undec, out)
(out, in, in) (out, undec, out) = (out, undec, undec) ◦ (out, in, in) ◦ (out, in, undec)
(out, in, out) (out, undec, out) = (undec, out, undec) ◦ (out, in, out)
(out, out, in) (undec, undec, out) = (out, undec, undec) ◦ (out, out, in)
(out, undec, in) (out, undec, out) = (out, out, undec) ◦ (out, undec, in)
(undec, in, in) (out, undec, out) = (out, in, undec) ◦ (undec, in, in) ◦ (out, in, undec)
(undec, in, out) (undec, undec, out) = (undec, out, undec) ◦ (undec, in, out)
(undec, out, in) (out, undec, out) = (out, out, undec) ◦ (undec, out, in) ◦ (out, in, undec)
(undec, out, out) (out, undec, out) = (undec, out, out) ◦ (out, in, undec)
(undec, undec, in) (undec, undec, out) = (out, in, undec) ◦ (undec, undec, in)
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7.2.5 Impossibility of Flattening Weak Attacks
Various extensions of argumentation frameworks have been studied in the literature. One
fruitful approach to studying such extensions is the flattening methodology, in which ex-
tensions of argumentation frameworks are mapped to standard argumentation frameworks
through a flattening function that is faithful with respect to the semantics of the extended
argumentation frameworks.

In this section we show how the theory of label functions can be used prove impossi-
bility results concerning flattenings of certain extensions of argumentation frameworks.

Multiple authors have considered extending argumentation frameworks with a support
relation in addition to an attack relation. Frameworks with both an attack and a support
relation are called bipolar argumentation frameworks (BAFs), and multiple approaches
to formalizing their semantics have been studied in the literature, for example deductive
support [95], necessary support [30] and evidential support [31]. We briefly sketch the
deductive support approach. The intuitive meaning of a deductive support from argument
a to argument b is that whenever a is accepted, b must be accepted too. The definition of
argumentation semantics for AFs has been adapted to a definition of semantics of BAFs
that formalize this intuitive interpretation of deductive support [95]. Later it was shown
that the flattening function that replaces every deductive support from a to b by a pair of
attacks, namely from b to an auxiliary argument Z(a,b,) and from Z(a,b,) to a, is faithful with
respect to these semantics, i.e. that flattening a BAF to an AF and then applying a standard
argumentation semantics to the resulting AF gives the same result as directly applying the
corresponding deductive support semantics to the BAF [26].

In this section we will study an extension of argumentation frameworks with a weak
attack relation. For the formal definition of an extended framework, it is irrelevant whether
the second relation that gets added to the standard attack relation is a relation of support or
a second attack relation. This motivates the following definitions:

Definition 7.2.10. A two-relation framework is a triple (A,→, T ) such that→⊆ A × A
and T ⊆ A×A.

Definition 7.2.11. A two-relation semantics is a function σ that maps any two-relation
framework B = (A,→, T ) to a set σ(B) of labelings of B. The elements of σ(B) are
called σ-labelings of B.

Definition 7.2.12. Let σ be an argumentation semantics and let σ′ be a two-relation seman-
tics. We say that σ′ extends σ iff for every two-relation framework B = (A,→, T ) with
T = ∅, σ′(B) = σ((A,→)).

The semantics that have been defined for BAFs with a deductive support relation (and
also the semantics for a necessary support relation) extend the corresponding semantics of
standard AFs. This fact directly follows from the fact that BAFs can be flattened to AFs in
a way that is faithful with respect to these BAF semantics.
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An important feature of the flattening of the deductive support relation that we infor-
mally sketched above is that every support between two arguments is flattened in an anal-
ogous way and the support relation does not have any additional (potentially non-local)
effect on the attack relation of the resulting AF. This feature can be formalized as follows:

Definition 7.2.13. Let B = (A,→, T ) be a two-relation framework, and let G = (A′,→′
, i, o) be an I/O AF. The G-flattening of B is the AF flatG(B) = (A∗,→∗), where A∗ :=
A ∪ {(a, b, c) | (a, b) ∈ T and c ∈ A′ \ {i, o}} and →∗:=→ ∪{((a, b, c), (a, b, c′) |
(a, b) ∈ T , (c, c′) ∈→′ and c, c′ /∈ {i, o}} ∪ {(a, (a, b, c)) | (a, b) ∈ T and (i, c) ∈→′
} ∪ {((a, b, c), a) | (a, b) ∈ T and (c, i) ∈→′} ∪ {(b, (a, b, c)) | (a, b) ∈ T and (o, c) ∈→′
} ∪ {((a, b, c), b) | (a, b) ∈ T and (c, o) ∈→′}.

Definition 7.2.14. Let σ be an argumentation semantics and let σ′ be a two-relation se-
mantics that extends σ. We say that σ′ admits a uniform local flattening w.r.t. σ iff there
exists an I/O AF G such that for every two-relation argumentation framework B, σ′(B) =
σ(flatG(B)).

We now consider a way of interpreting two-relation frameworks in which the second
relation is not a support relation, but rather a weak attack relation. The intention behind our
notion of a weak attack is that when an argument a is weakly attacked by an argument b,
one can accept a without being able to defend a against the weak attack from b, but that in
all other respects (such as conflict-freeness), weak attacks behave like the standard attacks
of abstract argumentation, which we from now on call strong attacks to distinguish them
clearly from weak attacks. In the labeling-based approach this means that the local effect
that weak attacks from arguments with certain labels have on other arguments is generally
analogous to the local effect of strong attacks, with the only exception that an argument
can be labeled in even though it is weakly attacked by an argument labeled undec. So
we need the following adaptation of Definition 4.2.2 (the abbreviation “s/w” stands for
“strong/weak”):

Definition 7.2.15. Let B = (A,→, T ) be a two-relation framework, and let Lab be a
labeling of B.

• An argument a ∈ A is called s/w-legally in w.r.t. Lab iff every argument that strongly
attacks a is labeled out by Lab and every argument that weakly attacks a is labeled
either out or undec.

• An argument a ∈ A is called s/w-legally out w.r.t. Lab iff some argument that
strongly or weakly attacks a is labeled in by Lab.

• An argument a ∈ A is called s/w-legally undec w.r.t. Lab iff no argument that
strongly or weakly attacks a is labeled in by Lab and some argument that strongly
attacks a is labeled undec by Lab.

Now we define the semantics for two-relation frameworks with strong and weak attacks
analogously as for standard AFs:
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Definition 7.2.16. Let B = (A,→, T ) be a two-relation framework, and let Lab be a
labeling of B.

• Lab is an s/w-complete labeling of B iff every argument that Lab labels in is s/w-
legally in w.r.t. Lab, every argument that Lab labels out is s/w-legally out w.r.t. Lab,
and every argument that Lab labels undec is s/w-legally undec w.r.t. Lab.

• Lab is an s/w-grounded labeling of B iff Lab is an s/w-complete labeling of B in
which the set of in-labeled arguments is minimal w.r.t. set inclusion.

• Lab is an s/w-preferred labeling of B iff Lab is an s/w-complete labeling of B in
which the set of in-labeled arguments is maximal w.r.t. set inclusion.

One can easily see that these three semantics extend the corresponding semantics of
standard AFs.

The following theorem establishes that the weak attack relation cannot be flattened to
the strong attack relation in a uniform local way:

Theorem 7.2.7. Let σ ∈ cgp. Then s/w-σ does not admit a uniform local flattening w.r.t.
σ.

Proof. Suppose for a contradiction that s/w-σ does admit a uniform local flattening w.r.t.
σ, i.e. there is an I/O AF G such that for every two-relation argumentation framework B,
s/w-σ(B) = σ(flatG(B)).

Consider the following three two-relation frameworks:

Bin := ({i, o}, ∅, {(i, o)})
Bout := ({i, o, b}, {(b, i)}, {(i, o)})

Bundec := ({i, o, b}, {(b, b), (b, i)}, {(i, o)})

From Definition 7.2.4, one can easily see that for L ∈ Labs, Fst(G,L) = flatG(BL) (up
to isomorphism; auxiliary arguments may have different names in the two frameworks).
Now from Definition 7.2.16, one can easily see that

σ(Fst(G, in)) = s/w-σ(Bin) = {{(i, in), (o, out)}},
σ(Fst(G, out)) = s/w-σ(Bout) = {{(i, out), (o, in), (b, in)}}, and

σ(Fst(G, undec)) = s/w-σ(Bundec) = {{(i, undec), (o, in), (b, undec)}}.

So G represents (out, in, in) w.r.t. σ, contradicting Theorem 7.2.6.

7.2.6 Related Work
In the work of Baroni et al. [53], a similar methodology is introduced, where argumenta-
tion frameworks are partitioned, allowing for partitions to be evaluated locally. This local
evaluation function needs to condition on the potential statuses of attackers from outside
the partition, but does not need to consider the whole rest of the framework. From their
results on decomposability of semantics, one could derive a result similar to our Theorem
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7.2.1 but restricted to finite argumentation frameworks. We however chose to consider
infinite argumentation frameworks as well in our work, as it grants more weight to the
unrepresentability result derived in Section 7.2.3.

The work of Rienstra et al. [14] considers the partitioning of argumentation frameworks
such that different semantics are applied to different partitions. In these cases, when eval-
uating the acceptance status of arguments within a partition, only the outside arguments
which are the source of an attack targeting an argument inside that partition need to be
considered, using a similar input/output methodology.

Enrichments of argumentation frameworks, such as the AFRA [49] and the BAF [48]
have been interpreted in some cases using a flattening approach [26, 56] which expresses
higher-level relations in terms of auxiliary arguments and attacks, which can replace the
original relation in a local fashion. Our results would prove useful when devising flattenings
for existing or future enrichments, or showing no such flattening is possible.

7.2.7 Future Work
In future work, one could generalize the concept of a label function by dropping the require-
ment that the output argument always has the same label; these generalized label functions
would therefore have a set of possible labels as their output value. Additionally one could
drop the distinction between input argument and output argument, thus allowing an exter-
nal effect on both arguments and looking at the set of label pairs that these two arguments
may take over the different extensions. This would yield to a generalized theory of binary
relations between arguments that have a local effect expressible in the 3-label approach.
While there are only 27 label functions, the number of such different relations between ar-
guments is 236, so the classification according to their representability is likely to be much
more complex. Such a classification would allow one to extend the impossibility result
from Section 7.2.3 to other enrichments of abstract argumentation frameworks, or provide
insights on how to flatten new enrichments.

Another line of future work would be to investigate the representability with respect to
other semantics such as semi-stable [96], stage [17], stage2 [97], CF2 [18], and the more
recent SCF2 [22] and weakly complete [98]. We briefly briefly present some preliminary
findings for representability with respect to the semi-stable semantics.

The semi-stable semantics [96] has been often criticized for not satisfying a number of
standard principles such as directionality [10]. There is however the interesting fact that
some functions which are cgp-unrepresentable turn out to be semi-stable-representable.

Example 7.2.3. Consider the I/O AF depicted in Figure 7.6. When the input argument
i1 is labeled in, the output argument o1 is forced to be out, since it is directly attacked
by i1. In the case of undec input, o1 cannot be in, and by the nature of the semi-stable
semantics which minimizes the undec labeling, the only option is to have a being in and
thus o1 is again out. Lastly we consider the case that the input is out: While in this case
the preferred semantics would give us two labelings with either o1 or a being in, the semi-
stable semantics will produce a single labeling with the o1 labeled in, because this way the
label undec can be avoided completely, even for the self-attacking argument d. So this I/O
AF represents the (out, in, out) function, which is cgp-unrepresentable.
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Figure 7.6: A semi-stable representation of the cgp-unrepresentable function (out, in, out).
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Composed I/O AF with out as input.

Figure 7.7: Failure of composition with semi-stable semantics. When the I/O AF from
Figure 7.6 is composed with the I/O AF on the left, we obtained the I/O AF depicted on the
right, which however does not produce a consistent label for o2 when the input is out.

While the semi-stable semantics might be able to represent more functions, the fact
that the semi-stable semantics does not satisfy the directionality principle (see [10]) brings
about other issues, notably a lack of compositionality, as illustrated by a counter-example
in Figure 7.7. On the left, we have an I/O AF which semi-stable-represents the function
(undec, out, undec). When composed with the I/O AF from Figure 7.6, we obtain the
framework on the right. In that composed framework, when the input is out, we now
obtain two extensions, namely one where o1 is in, and one where a is in. This second
extension is now possible, because when o1 is in, we have o2 labeled undec, while when a
is in, we have d labeled undec, so both of these options minimize the set of undec-labeled
arguments. Since these two labelings have different labels for o2, this composed I/O AF
does not represent any labeling function.

Since our methodology of characterising labeling functions via composition would not
work in the case of semi-stable, we leave such an analysis for future work.

7.2.8 Conclusion
In this section, we formally introduce argumentation label functions, and address the ques-
tion of which functions are representable with an argumentation framework, focusing on
the complete, grounded and preferred semantics, for which the labeling approach has been
widely studied. We provide a proof that two representations of label functions can be com-
posed to yield the composed label function, and use this finding to categorize the twenty
seven label functions into eleven label functions that are representable and sixteen that
are unrepresentable with respect to these three semantics. We also briefly investigate the
case of the stable semantics, which is quite straightforward since it only allows for two
different labels. We then discuss how the label function approach can be used to prove an
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impossibility result about the flattening approach for enrichments of abstract argumentation
frameworks. We briefly investigate the case of the semi-stable semantics, as it allows for
the representation of some functions which are not representable with respect to the other
semantics. However due to the non-directional nature of the semantics, the composability
result does not hold, hindering generalizations as done for the other semantics.
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Chapter 8

Conclusion

This thesis addresses the following research questions:

• What can be gained by refining the process of selecting an extension from a set of
extensions?

• How can this refined structure allow us to combine different semantics?

• How can we evaluate acceptability in a framework combining many enrichments?

• How can arguments be constructed for an enriched framework with more than just
an attack relation?

With respect to the first research question, we have proposed a methodologically novel
approach to choosing extensions of argumentation frameworks by studying abstract and
concrete commitment graphs that correspond to step-wise commitments about the choice
of extension. Inspired by the principle-based approach to abstract argumentation, we have
studied two principles that mappings from AFs to commitment graphs should satisfy. We
have presented preliminary results in combining this approach with multi-agent argumen-
tation and dialogue semantics.

For the second research question, we introduce a dynamic approach to combine two
argumentation semantics to yield a third one, based on the step-wise construction intro-
duced for the first research question. In particular, we provide a formal environment for
the analysis of step-wise relations between labeled framework with an increase in the label
precision, whose reachable fixpoints correspond to some standard direct semantics. We
define and discuss two approaches to combining two given update relations to yield a third
update relation, an approach based on algorithmically motivated update relations and an
approach based on merging maximally fine-grained update relations. For both approaches,
we examine how to obtain update relations for the complete labeling by combining update
relations for the preferred and grounded labelings. Furthermore, we have defined novel
semantics using the merge approach, including a semantics that meaningfully combines
features of naive-based and complete-based semantics.

Regarding the third research question, we have examined several extensions of abstract
argumentation frameworks that add higher-order explanatory features, recursive attacks,
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necessary and deductive support, and an incompatibility relation, all allowed to originate
and target sets of arbitrary elements. In the cases of higher-order attacks and support of both
kinds, we have presented a flattening function, which allows us to instantiate these extended
framework as standard AFs. We have shown that in the case of AFRAs, the complete
semantics defined in terms of the flattening is equivalent to the complete semantics which
has been defined directly on AFRAs. We have then aggregated these extensions into one
framework, EEAFs, defined a labeling semantics for it, and then alternatively defined the
semantics in terms of its flattening to EAFs, showing the two are equivalent. Finally, we
have explored an application of EEAFs to argumentation from a research-level philosophy
book.

Finally, for the fourth research question, we have presented ASPIC-END, a structured
argumentation framework which allows for the construction of explananda and explana-
tions between arguments. Additionally, the framework allows for the construction of argu-
ments using hypothetical reasoning, where one may introduce assumptions which are not
necessarily present in the knowledge base, and upon fulfilling proper conditions can results
to conclusions which may have consequences outside the scope of these assumptions.

This thesis explores different aspects of the meaning of acceptability in argumentation,
on the one hand by refining the process of selecting a single extension from a set of them
via a step-wise commitment process, later using this construction to combine different se-
mantics. On the other hand this thesis examines how enrichments of abstract argumentation
frameworks, introduced to provide more expressivity and new criteria for the acceptability
of arguments, can often still be expressed in terms of arguments and attacks alone with the
introduction of auxiliary elements, even when multiple such enrichments are combined in
a single framework.
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of the Anderson-Hájek Controversy,” Logica Universalis, vol. 11, no. 1, pp. 139–
151, 2017.

158



[71] J. L. Pollock, “Defeasible reasoning,” Cognitive science, vol. 11, no. 4, pp. 481–518,
1987.

[72] ——, Cognitive carpentry: A blueprint for how to build a person. Mit Press, 1995.

[73] H. Prakken, “An abstract framework for argumentation with structured arguments,”
Argument & Computation, vol. 1, no. 2, pp. 93–124, 2010.

[74] M. Caminada, S. Modgil, and N. Oren, “Preferences and Unrestricted Rebut,” in
Computational Models of Argument - Proceedings of COMMA 2014, 2014, pp. 209–
220.

[75] M. Caminada and L. Amgoud, “On the evaluation of argumentation formalisms,”
Artificial Intelligence, vol. 171, no. 5-6, pp. 286–310, 2007.

[76] M. Beirlaen, J. Heyninck, and C. Straßer, “Reasoning by Cases in Structured Argu-
mentation,” in Proceedings of SAC/KRR 2017, 2017, pp. 989–994.

[77] ——, “A critical assessment of Pollock’s work on logic-based argumentation with
suppositions,” in Proceedings of the 17th International Workshop on Non-Monotonic
Reasoning, Forthcoming., 2018.

[78] W. N. Reinhardt, “Some remarks on extending and interpreting theories with a partial
predicate for truth,” Journal of Philosophical Logic, vol. 15, no. 2, pp. 219–251,
1986.

[79] S. Feferman, “Reflecting on incompleteness,” The Journal of Symbolic Logic, vol. 56,
no. 01, pp. 1–49, 1991.

[80] J. Beall, M. Glanzberg, and D. Ripley, “Liar Paradox,” in The Stanford Encyclopedia
of Philosophy, E. N. Zalta, Ed., Winter 2016, Metaphysics Research Lab, Stanford
University, 2016.

[81] M. Cramer and J. Dauphin, Technical online appendix to ”A Structured Argumenta-
tion Framework for Modeling Debates in the Formal Sciences”, 2018.

[82] E. Zermelo, “Beweis, daß jede Menge wohlgeordnet werden kann,” Mathematische
Annalen, vol. 59, no. 4, pp. 514–516, 1904.

[83] G. Peano, “Additione,” Revista de mathematica, vol. 8, pp. 143–157, 1906.

[84] J. Hadamard, R Baire, H Lebesgue, and E Borel, “Cinq lettres sur la théorie des
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