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Abstract

The connection between the methods developed in formal argumen-
tation theory and real human reasoning are not yet well-researched.
Arguments about logical paradoxes are an interesting test-case for re-
searching such connections, as they include con�icting information and
as they can be formally modeled without modeling much world knowl-
edge. We introduce two formalisms that model such arguments. We
�rst introduce ASPIC-END, a structured argumentation system en-
compassing explanations and natural deduction style proofs by con-
tradiction. We then introduce EEAFs, an extension of explanatory
argumentation frameworks, providing a more manual approach to for-
malizing arguments, which allows for more expressive power. We use
these two formalism to model and analyze various short texts contain-
ing arguments about the liar paradox.
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Chapter 1

Introduction

1.1 Modeling reasoning about con�icting information in Ar-
ti�cial Intelligence

Reasoning about con�icting information is one of the current challenges in the �eld of
Arti�cial Intelligence. Classical logic is a very good formalism to reason about making
inferences from given information. It is however monotonic, meaning that any new
information will not a�ect the validity of conclusions previously made from rules of
classical logic. In this aspect, it fails to capture human reasoning which can be non-
monotonic and defeasible, as previously made conclusions or inferences might turn out
to be disproved or invalidated under the light of new evidence. This is due to the fact that
humans have to reason with incomplete and con�icting information and use defeasible
rules to make inferences.

As an answer to this, researchers in Arti�cial Intelligence have been developing not
only non-monotonic logics, such as Reiter's default logic [12], but also defeasible argumen-
tation systems. In 1995, Phan Minh Dung introduced a new approach to argumentation
called Abstract Argumentation [5]. By abstracting away most of the elements, not only
did it reduce the complexity of the system, which was one of the main issues with ar-
gumentation systems at the time, but it also provided a simpli�ed system which could
accommodate the di�erent existing approaches.

In the study on the connections between argumentation-theoretical formalisms and
human reasoning, we are faced with the obstacle that we humans usually make use of
world-knowledge in a non-transparent way, making it harder to formalize our reasoning.
For this reason, in an attempt to avoid this problem, we propose to study reasoning about
con�icting information in the context of mathematics and logic. In particular, argumen-
tation about logical paradoxes is an interesting topic to test argumentation systems, as
these paradoxes feature mostly abstract knowledge while still involving con�icting defea-
sible arguments, unlike standard mathematics which revolve around absolute certainties
and consistency. In this thesis, we propose to focus on the liar paradox.

1.2 The liar paradox

The �rst sentence in this paragraph is a lie. When wondering whether such a sentence
is true or false, one discovers that in both cases something goes wrong. Supposing it is
true, the �rst sentence of this paragraph must then be a lie. But if that is the case, then
the sentence is merely stating the truth, which is contradictory. Is it false then? This
would mean that the �rst sentence in this paragraph is no lie, and thus states the truth.

1



2 CHAPTER 1. INTRODUCTION

However, this truth is then that the �rst sentence in this paragraph is a lie, even though
we have just assumed otherwise. So we cannot assign a truth value in a classical way to
such a sentence without ending up with a contradiction.

This is called the liar paradox, and this kind of sentence is called a liar sentence.
There are di�erent ways one can formulate a liar sentence, but there is always some kind
of circular referencing involved. For example, the following two sentences are together
also liar sentences:

The next sentence is true.
The previous sentence is false.

The problem is the same here, trying to assign them a truth value results in a con-
tradiction.

The discussion of this paradox has started around 600 BC with the Epimenides para-
dox, which was �rst discussed in a formal setting by T. Fowler in 1887 [7]. The paradox
is as follows: a Cretan seer would have stated �all Cretans are liars�. But being Cretan
himself, this would mean he was a liar too and this his statement would be a lie. The
discussion around this kind of sentence has given rise to stronger versions such as the
�rst sentence in this chapter. Many solutions have been proposed for this kind of para-
dox, some of which deny the applicability of general principles of logic to this kind of
problematically self-referencing sentences. For example, one solution is to deny that this
kind of sentence is subject to the law of non-contradiction which says that every formula
cannot be true and false at the same time. One then also has to deny that the explosion
property, also called ex falso ad quolibet, applies in this kind of situation. This property
allows one to derive anything from a contradiction, and hence saying that a liar sentence
is both true and false would allow one to derive that the moon is made of cheese for
example. This solution suggests that we should accept the inconsistent nature of some
sentences but prevent it from deriving unrelated statements.

1.3 Thesis outline and objectives

In this thesis, we will attempt to model some of the solutions to the paradox using
explanatory abstract argumentation. These di�erent solutions all aim at explaining the
paradox while also pointing out �aws in the other solutions as to strengthen theirs, hence
it seems �tting to use an argumentation model. The ability to explain the paradox being
central to the debate, it also seems natural for our model to include some kind of measure
of explanatory properties.

This thesis will also contribute to the theoretical work of the interdisciplinary project
Cognitive Aspects of Formal Argumentation, which will start in November 2016 and
will be led by Prof. Leon Van Der Torre and Prof. Christine Schiltz. In this project,
the relation between actual human reasoning and Formal Argumentation Theory will
be investigated with the goal of making Formal Argumentation Theory cognitively more
plausible, which will then strengthen our understanding of human reasoning. To do so,
the project will conduct empirical studies which study hypotheses based on the models
built in the course of this thesis.

We will �rst begin by describing the general notions of formal argumentation in
chapter 2. We will then proceed with de�ning in chapter 3 a system for structured
argumentation that extends the widely studied system ASPIC+ with the notion of ex-
planation and with natural-deduction-style arguments. We will then use this method to
propose a model for some of the solutions to the liar paradox in chapter 4. After this,



1.3. THESIS OUTLINE AND OBJECTIVES 3

we will examine a more abstract modeling method based on meta-argumentation and
attempt to model some solutions from a di�erent perspective in chapter 5. We will then
summarize our results and list a few related open problems and possible future work in
chapter 6.
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Chapter 2

Basics of Formal Argumentation

2.1 Abstract argumentation

Abstract argumentation systems were introduced by P. M. Dung in 1995 [5]. They consist
of a set of arguments and an attack relation between them. The abstraction is present
in both of these elements. On the one hand, the internal structure of the arguments is
ignored and hence they are all treated in a similar way. On the other hand, the attack
relation between them is also abstracted away, and one does not distinguish between the
di�erent kinds of attacks on arguments or even the motivation for the attack.

De�nition 2.1.1. Argumentation Frameworks:
An argumentation framework (AF) is a pair 〈A,→〉 where A is a set of arguments, and
→⊆ A×A is a relation between them.

�a→ b� is read as �a attacks b� and → is called the attack relation.

Example 2.1.1. AF1 = ({a, b, c}, {(a, b), (b, c)}) is an argumentation framework with 3
arguments, a, b and c, where a attacks b and b attacks c.

Graphically, we represent an argumentation framework as a graph where the argu-
ments are the nodes and the attacks are the edges.

Figure 2.1: Graphical representation of AF1

Argumentation frameworks revolve around the acceptability of an argument. For
a given framework (A,→), we would like to say that a set of arguments S ⊆ A is
acceptable or admissible. Let us look at our example with AF1. The argument a should
be acceptable since there is no attack on it. But what about b and c? Notice that by
accepting a, we have an acceptable reason to reject b since a attacks b. Therefore, b
would not be acceptable. This would also mean that there is no acceptable reason to
reject c and so c would be acceptable too, on the condition that a is. This phenomenon
is called defense. We say that a defends c because it attacks b which is c's only attacker.

De�nition 2.1.2. Defense:
Let AF = (A,→) be an argumentation framework. We say that an argument a ∈ A

5



6 CHAPTER 2. BASICS OF FORMAL ARGUMENTATION

defends an argument b ∈ A if and only if for all c ∈ A such that (c, b) ∈→, we have
(a, c) ∈→.

Similarly, we say that a set of arguments S ⊆ A defends an argument b ∈ A (or set
of arguments S′ ⊆ A) if and only if for all c ∈ A such that (c, b) ∈→ (for some b ∈ S′),
there exists a ∈ S such that (a, c) ∈→.

We can now try to express our notion of acceptability in terms of defense, however
that alone is not su�cient. We would also like to only consider sets of arguments which
are consistent, meaning that if there is an attack between two arguments, it would make
little sense to accept them both. Considering our running example, we would not want to
accept all of {a, b, c}. Since a attacks b, the acceptability of a questions the acceptability
of b of so it wouldn't make sense to accept both as we would then contradict ourselves.
This is where the notion of being con�ict-free comes in.

De�nition 2.1.3. Con�ict-free:
Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is said to be

con�ict-free if and only if there are no arguments a, b ∈ S such that (a, b) ∈→.

We can now de�ne what it means for a set of arguments to be admissible. It simply
needs to be plausible and consistent, which formally means it must defend itself and be
con�ict-free.

De�nition 2.1.4. Admissible:
Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is said to be

admissible if and only if S is con�ict-free and S defends S.

However this notion might be a bit incomplete. For any given argumentation frame-
work, the empty set of arguments is always trivially admissible, yet in most cases we
would rather have a non-empty set of arguments in the end. In our example of AF1,
even though the set {a} is admissible, it seems a bit lacking as it defends the argument c
yet does not include it. We would rather want to consider only the set {a, c} as it seems
to be more meaningful. There are however di�erent ways of selecting the arguments to be
accepted as not all frameworks are as straight-forward as AF1. These are the semantics
of abstract argumentation which select sets of arguments that we call extensions. We
start with the complete extensions.

De�nition 2.1.5. Complete extensions:
Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is called a

complete extension of (A,→) if and only if it is admissible and for each argument a ∈ A,
if S defends a, then a ∈ S.

In our running example, the empty set is not a complete extension, since it defends
the argument a (an argument which is not attacked is trivially defended by all sets of
arguments) but does not contain it. Similarly, the set {a}, even though admissible, is not
complete, because it defends c but does not contain it. So the only complete extension
of AF1 is {a, c}.

Example 2.1.2. Consider the following argumentation framework:

Figure 2.2: Graphical representation of AF2
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Notice that AF2 is similar to AF1, however there is one additional attack from b to
a. We now have again that {a, c} is a complete extension, however this time it is not
the only one. Notice that b defends itself from a this time by attacking it back. Hence,
{b} is also a complete extension. Also, notice that every argument is subject to some
attack this time, and hence ∅ does not defend any arguments. Thus, ∅ is also a complete
extension of AF2.

From a skeptical point of view, one might not want to accept any argument when
faced with two arguments attacking each other. For example, if person A says that
person B is a liar and vice-versa, accepting the argument of any of them could be �ne
as they both also constitute a counter-argument to each other. However, one might be
inclined not to accept any of their arguments. This skeptical point of view is represented
by the grounded extension.

De�nition 2.1.6. Grounded extension:

Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is called the
grounded extension of (A,→) if and only if it is the minimal (with respect to ⊆) complete
extension.

It can be shown that the grounded extension is always unique. In AF2, the grounded
extension is ∅ and in AF1, it is {a, c}.

On a more credulous point of view, one might argue that as long as a set of arguments
defends itself, it is valid. One might then want to extract the sets with as many valid
arguments as possible, as it might seem unjusti�ed not to consider these arguments. This
point of view is re�ected in the preferred extension.

De�nition 2.1.7. Preferred extensions:

Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is called a
preferred extension of (A,→) if and only if it is a maximal (with respect to ⊆) complete
extension.

In AF2, the preferred extensions are {a, c} and {b}.

In ideal cases, a preferred extension manages to attack all arguments it does not
contain and hence we can split the set of arguments into the ones we accept and the ones
we reject. Sometimes however, preferred extensions do not includes some arguments
which they do not attack either. For example, suppose there is an argument which
attacks itself (for example a paradoxical argument) while not being subject to any other
attack. Then, for any preferred extension, it cannot be included in it because it will
prevent it from being con�ict-free. Yet, no argument from the extension attacks it either
since the only argument attacking it is itself. Hence, even though no preferred extension
includes it, we cannot say that any extension fully rejects it either. Consider the following
example framework:
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Figure 2.3: Example framework with a self-attacking argument.

The preferred extension is {A,C}, yet neither A nor C attack D.
The stable semantics capture this idea of ideal cases of preferred extensions and is

de�ned as follows:

De�nition 2.1.8. Stable extensions:
Let (A,→) be an argumentation framework. A set of arguments S ⊆ A is called a

stable extension of (A,→) if and only if S is a complete extension and for every argument
a ∈ A \ S, there exists an argument b ∈ S such that b→ a.

Note that all stable extensions are also preferred extensions, but not vice-versa. Also,
the existence of a stable extension is not guaranteed, meaning that some frameworks do
not have any stable extensions such as the one depicted in Figure 2.3.

Example 2.1.3. Let us now consider a slightly more complex example:

Figure 2.4: Graphical representation of AF3

Here we have two cycles of even size: a and b attack each other, and c and d attack
each other. Also, a attacks c. The complete extensions are ∅, {a, d}, {b}, {b, c}, {b, d}
and {d}. The grounded extension is ∅ while the preferred and stable extensions are
{a, d}, {b, c} and {b, d}.
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2.2 Explanatory Argumentation Frameworks

In scienti�c debates, the discussions are usually centered around some phenomenons
or evidence and the di�erent parties propose theories to explain them. With this idea
in mind, D. �e²elja and C. Straÿer have extended abstract argumentation framework
with explanatory features [13]. In these frameworks, there are not only arguments but
also explananda. These are scienti�c phenomenons of which, unlike arguments, the
acceptability is not being questioned. These explananda are being explained by the
arguments via an explanation relation which is represented by 99K. a 99K e is read
as �a explains e�. The explanation relation may also occur between arguments. This
corresponds to the fact that real world arguments may explain each other by either
explaining one of the other argument's premises or the inference relation that argument
is making between its premises and conclusion. The last element is an incompatibility
relation between arguments. This relation is used to di�erentiate between the opposing
theories.

De�nition 2.2.1. Explanatory argumentation frameworks:

An explanatory argumentation framework (EAF) is a tuple 〈A,X ,→, 99K,∼〉, where
A is a set of arguments, X is a set of explananda, →⊆ A × A is an attack relation,
99K⊆ A × (A ∪ X ) is an explanation relation from arguments to either explananda or
other arguments, and ∼⊆ A×A is a symmetric incompatibility relation.

The incompatibility relation might seem similar to a bi-directional attack at �rst, and
acts as such in the selection of con�ict-free sets, however there are di�erences. The main
one is in that the incompatibility relation does not appear in the de�nition of defense,
which is unchanged from standard abstract argumentation frameworks. Hence, being
incompatible with an argument does not count as defending the arguments it attacks.
The intuition behind the concept is that opposing theories usually do not logically exclude
each other, however scientists deem it implausible that both hold at the same time. The
notion of con�ict-freeness must be accordingly revised:

De�nition 2.2.2. Con�ict-free:

Let 〈A,X ,→, 99K,∼〉 be an EAF. A set of arguments S ⊆ A is said to be con�ict-free
if and only if there are no arguments a, b ∈ S such that (a, b) ∈→ ∪ ∼.

Note that the de�nition of admissible sets still stands but with the revised de�nition
of con�ict-freeness.

We now need a notion of what it means for a set of arguments to o�er an explanation
for a given explanandum.

De�nition 2.2.3. Explanations:

An explanation X[e] for e ∈ X o�ered by a set of arguments S is a subset S′ of S
such that there exists a unique argument a ∈ S such that a 99K e and for all a′ ∈ S \ a,
there exists a path in 99K from a′ to a.

Example 2.2.1. Consider the following EAF:
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Figure 2.5: Example EAF1

Note that the incompatibility relation has been represented by a straight line with
no arrow between a and b.

Here we have two explananda, e1 and e2. a explains both e1 and e2 while b explains
only e2. Consider the con�ict-free set {a, d, f}. It contains two explanations for e1,
namely X1[e1] = {a} and X2[e2] = {a, d}. Similarly, it o�ers two explanations for e2.
The con�ict-free set {b, f} however o�ers an explanation only for e2.

Also, notice that since a and b are incompatible, any set containing both of them
cannot be con�ict-free. This also allows us to easily di�erentiate between the two theories
when selecting the admissible sets of arguments.

For our goal of selecting the best theory from our model, we need a way to compare
how much a given set of arguments is able to explain. We thus need to de�ne a notion
of explanatory power.

De�nition 2.2.4. Explanatory power:

A set of arguments S1 is explanatory at least as powerful as a set of arguments S2
(S1 ≥p S2) if and only if the set of explananda for which S1 o�ers an explanation is a
super-set of or equal to the set of explananda for which S2 o�ers an explanation.

In our previous example, we have that {a, d} ≥p {b} since {a, d} o�ers an explanation
for {e1, e2} while {b} only o�ers an explanation for {e2}. Notice however that we use the
subset relation to de�ne our notion of explanatory power, as to consider it in a qualitative
way. One may also wish to consider it in a quantitative way and compare the sizes of the
sets of explananda for which the two sets o�er an explanation. However this relies on
the assumption that all explananda are of equal importance which is usually false. This
is why we stick with the qualitative notion of explanatory power.

In our example, we had that {a, d} o�ered two explanations for e1, namely {a}
and {a, d}. We need a notion of explanatory depth to be able to compare these two
explanations.

De�nition 2.2.5. Explanatory depth:

An explanation X1[e] is explanatory deeper than another explanation X2[e] (X1[e] ≥d
X2[e]) if and only if X2[e] ⊆ X1[e].
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So in our running example, we have that {a, d} ≥d {a}. This also means that the
explanations o�ered by {a, d, f} are explanatory deeper than the explanations o�ered by
{a, f}.

�e²elja and Straÿer [13] then propose two procedures for the selection of the best sets
of arguments with respect to these notions. The �rst one selects the argumentative core
of the most explanatory powerful theories while the second one selects their explanatory
core.

De�nition 2.2.6. Procedure 1:
The idea of this procedure is to select the argumentative core of the most explanatory

powerful theories together with arguments which attack rivaling theories. It consists of
the following steps:

1. Select all the con�ict-free sets.

2. From those, select the most explanatory powerful ones.

3. From those, select the most defended ones.

4. From those, select the maximal ones with respect to ⊆.

Notice that the criterion of defense has been relaxed and this procedure as well as the
next one do not require the sets to be fully defended. This is to re�ect the fact that most
real-world theories are imperfect and still su�er from some �aws yet we cannot simply
disregard them.

Also, while the criterion of explanatory power takes higher priority than the criterion
of defense here, they also state it is possible to reverse their order if one wishes to give
higher priority to the criterion of defense. If steps 2 and 3 are reversed so that step 3 is
done before step 2, then steps 1 and 3 collapse into �Select all the admissible sets�. Note
that later in the thesis we will use this modi�ed version of the procedure.

In the example, the procedure would select the sets {a}, {a, d}, {a, d, f} and {a, d, c}
after the �rst two steps. Note that the sets containing b will not be retained since b
explains less than a and both are incompatible. The set {a, d, c} su�ers an attack from f
on c from which it does not manage to defend itself, and hence step 3 will eliminate it as
the other sets are fully defended. The last step will then select the maximal remaining
set which is {a, d, f}.

Notice that in this procedure, the explanatory relation between arguments is ignored,
i.e. only explanations from arguments to explananda are considered. Also, in a case where
the set of explananda X is empty, this procedure is equivalent to the preferred semantics.

The other procedure focuses on the explanations provided and aims at selecting the
promising theories to be further developed.

De�nition 2.2.7. Procedure 2:
The idea of this procedure is to select the explanatory core of the most explanatory

powerful theories. It consists of the following steps:

1. Select all the con�ict-free sets.

2. From those, select the most explanatory powerful ones.

3. From those, select the most defended ones.

4. From those, select the explanatory deepest ones.
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5. From those, select the minimal ones with respect to ⊆.

Notice the �rst three steps are the same as in the �rst procedure and the di�erence
lies in steps 4 and 5. Just as in Procedure 1, steps 2 and 3 can be reversed and the
resulting modi�ed version will be used later in the thesis.

In our example, after step 3 the remaining sets are {a}, {a, d} and {a, d, f}. Steps
4 now eliminates {a} as the explanation it o�ers is not as deep as the others which also
contain d. The last step then selects the minimal remaining set which is {a, d}.

2.3 Argumentation Frameworks with Recursive Attacks

Abstract argumentation frameworks can be extended in multiple ways, allowing them to
express real life arguments with more details. This is achieved for example in explana-
tory argumentation frameworks by adding explananda, an explanatory relation and an
incompatibility relation. Let us explore more ways in which abstract argumentation
frameworks can be extended.

To understand the motivation for the extension of abstract argumentation frameworks
we will examine, consider the following example from Baroni et al. [1]: Bob wants to go
on a vacation for Christmas and usually takes the best last minute deal. There are two
o�ers currently available: one week to Cuba or one week to Gstaad. This would give us
two arguments: the �rst one, A, is based on the premise that a one week deal to Cuba
is available and concludes that Bob should go to Cuba, and the other one, B, is based
on the premise that a one week deal to Gstaad is available and concludes that he should
go to Gstaad. Now since Bob can obviously not go to both locations at the same time,
these two arguments are attacking each other.

Now suppose Bob has a preference for skiing and knows that Gstaad is a ski resort.
We could represent this as an argument C based on the premise that Bob likes skiing,
and the conclusion would be that Bob prefers going to a ski resort if possible. Notice that
this argument does not attack A directly since, by itself, it does not reject the fact that
there is a last minute deal for Cuba nor the fact that he should go there. It does however
give a reason not to choose Cuba over Gstaad and hence attacks the attack relation from
A to B, attempting to render it ine�ective much like it would with an argument.

Suppose Bob then learns that there have been no snowfalls in Gstaad for the past
month, meaning it might not be possible for him to ski there. This would gives us another
argument D based on the premise that there hasn't been any snowfall in the past month
and concluding that Bob might not be able to ski there. Now again, D does not directly
attack the argument C as it does not reject the fact that Bob has a preference for skiing
nor that he would thus prefer going to a ski resort. It does however attack the attack
originating from C, since it annuls the impact that Bob's preference for ski resorts has
on the choice between Cuba and Gstaad.

Finally, suppose that Bob now learns that it is still possible to ski in Gstaad thanks
to an abundant amount of arti�cial snow which makes up for the lack of snowfall. We
would model this as an argument E based on the premise that there is an abundant
amount of arti�cial snow which concludes that even though there is a lack of snowfall,
it is still possible to ski in Gstaad. Here there is a direct attack from E to D since it
attacks the fact that Bob might not be able to ski there due to lack of snowfall. We could
model this informal analysis as follows:
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Figure 2.6: Extended argumentation framework representing our example

This motivates allowing attacks to target not only arguments but also other attack
relations. This concept of representing a preference from an argument a over another
argument b as an argument attacking the attack from b to a has been observed by Modgil
in [9]. In that paper, he introduces a type of frameworks in which there is a second attack
relation, representing the fact that arguments may attack elements of the �rst attack
relation. We will however focus on Argumentation Frameworks with Recursive Attacks
(AFRA), a formalism proposed by Baroni et al.[1] which allows for attacks to be nested on
an unbounded number of levels. An AFRA, similarly to a classic abstract argumentation
framework, is made of a set of argument and a set of attacks. The di�erence is that the
attacks are pairs where the �rst member is an argument and the second member is either
an argument (base case) or an attack (recursive case).

De�nition 2.3.1. AFRA

An Argumentation Framework with Recursive Attacks (AFRA) is a pair 〈A,→〉 where:

• A is a set of arguments

• →⊆ A × (A∪ →) is an attack relation from arguments to either arguments or
attacks

For a given attack α = (A,X) ∈→, we say that the source of α is src(α) = A and its
target is trg(α) = X.

Because of this notion of attacking an attack relation, we have to extend our notion
of acceptability of arguments to also include attack relations. Indeed, in the same way
that arguments could be reinstated by being defended from their attackers, attacks may
or may not be accepted in a �nal extension. We will brie�y examine the case of the
complete semantics, starting by the notion of defeat.

De�nition 2.3.2. Defeat in AFRAs

Let F = 〈A,→〉 be an AFRA and ϕ ∈→, ψ ∈ (A ∪ →). We say that ϕ defeats ψ if
and only if either ψ = trg(ϕ) or src(ψ) = trg(ϕ).

A con�ict free set of arguments and attacks is then simply a set where no two elements
defeat each other.

De�nition 2.3.3. Con�ict-free in AFRAs

Let F = 〈A,→〉 be an AFRA and S ⊆ (A ∪ →). We say that S is con�ict-free if
there do not exist ϕ,ψ ∈ S such that ϕ defeats ψ.
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We then say that an element of the AFRA is acceptable with respect to a set of such
elements if and only if this set manages to defend that element.

De�nition 2.3.4. Acceptability in AFRAs

Let F = 〈A,→〉 be an AFRA, ϕ ∈ (A ∪ →) and S ⊆ (A ∪ →). We say that ϕ is
acceptable with respect to S if and only if for every ψ ∈ → such that ψ defeats ϕ, there
exists a δ ∈ S such that δ defeats ψ.

The notion of admissibility of a set then follows as the property for every element of
that set to be acceptable with respect to it as well as the whole set being con�ict-free.

De�nition 2.3.5. Admissibility in AFRAs

Let F = 〈A,→〉 be an AFRA and S ⊆ (A ∪ →). We say that S is admissible if and
only if it is con�ict-free and for every ϕ ∈ S, ϕ is acceptable with respect to S.

The complete semantics then follows with a similar de�nition as in classical abstract
argumentation but using the adapted notions just de�ned.

De�nition 2.3.6. Complete semantics in AFRAs

Let F = 〈A,→〉 be an AFRA and S ⊆ (A ∪ →). We say that S is a complete

extension of F if and only if S is admissible and for every ϕ ∈ (A ∪ →) such that ϕ is
acceptable with respect to S, ϕ ∈ S.

We can also de�ne another way to obtain semantics for this kind of framework by
�attening it, i.e. reducing it to an equivalent classic abstract argumentation framework
with no higher order attacks. This �attening procedure has been introduced in [2] and
�attens second order attack frameworks, a subset of AFRAs where an argument may
only attack an attack relation α if trg(α) ∈ A.

De�nition 2.3.7. Second order AFRA:
A second order AFRA is an AFRA 〈A,→〉 where:

for all α ∈→, if trg(α) = ψ for some ψ ∈→, then trg(ψ) ∈ A.

In the rest of this section we will focus on second order AFRAs, but later on, in
Section 5.1, we will introduce a �attening for AFRAs of any order, but with a small
restriction which excludes AFRAs containing problematic cycles.

In the �attening, all arguments and higher order attacks are represented by meta-

arguments which represent their semantic meaning. An argument A is �attened into the
argument accept(A), while attacks are �attened into a chain of arguments. For example,
the AFRA in Figure 2.7 would be �attened into the meta-argumentation framework in
Figure 2.8.

Figure 2.7: AFRA1: Simple example of a higher order attack in an AFRA



2.3. ARGUMENTATION FRAMEWORKS WITH RECURSIVE ATTACKS 15

Figure 2.8: AFRA1 �attened into meta-arguments

As mentioned earlier, the arguments are �attened into meta-arguments which rep-
resent their acceptability. Each attack relation (A,B) is �attened into two arguments
XA,B and YA,B such that acc(A) attacks acc(B) through them. YA,B directly attacks
acc(B) and is itself attacked by XA,B. In turn, acc(A) defends YA,B by attacking XA,B.
An attack which targets this attack relation in the AFRA will be �attened into a chain
of meta-arguments which will target the meta-argument Ya,b of the �attened target. In
our example, C was attacking the attack form A to B in the AFRA. In the �attening,
YC,(A,B) now attacks YA,B. Notice that if acc(C) is deemed acceptable, then YC,(A,B) will
be deemed acceptable too since it is defended from its only attacker XC,(A,B). Hence,
YA,B is now being targeted by an attack it cannot defend itself from and thus will not
be deemed acceptable. This will reinstate acc(B) which is being defended from its only
attacker. Notice that in this case, acc(A) will also be deemed acceptable. This follows
our intuition from the AFRA as only the attack relation originating from A was being
attacked and hence A remains unattacked. Formally, we have:

De�nition 2.3.8. Flattening of second order AFRAs

Let F = 〈A,→〉 be a second order AFRA. The set of meta-arguments corresponding
to F is MA = {acc(a) | a ∈ A} ∪ {Xa,b, Ya,b | a, b ∈ A}.

We de�ne the �attening function f to be f(F ) = 〈MA,→2〉, where →2⊆MA×MA
is a binary relation on MA such that

• acc(a)→2 Xa,b, Xa,b →2 Ya,b, Ya,b →2 acc(b) for all a, b ∈ A such that a→ b

• acc(a)→2 Yb,c for all a, b, c ∈ A such that a→ (b, c)

For a given semantics, we can now get the extensions of an AFRA by �attening it,
retrieving the extensions according to the semantics for classical abstract argumentation
frameworks and then translating the meta-arguments from the extension back into ar-
guments from the AFRA. The arguments in an extension of the AFRA are the ones for
which there is a meta-argument for their acceptability in the corresponding extension of
the �attened AFRA. The �auxiliary arguments� of the form Xa,b do not need to appear
in the un�attened extension since they do not correspond to any element of the AFRA.

Let us consider our example of AFRA1 again. In the �attened framework, the only
complete extension is {Acc(A), Acc(B), Acc(C), YC,(A,B)}. YC,(A,B) Represents the attack
from C to (A,B). The other three meta-arguments represent the argument A,B and C,
so this gives us that the only complete extension of AFRA1 is {A,B,C, (C, (A,B))}.
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2.4 Support in Abstract Argumentation

While classical abstract argumentation revolves around attacks, there has been research
on extending it with a positive relation of support between arguments. We will �rst
examine the formalism introduced by Cayrol and Lagasquie-Schiex called bipolar argu-
mentation framework [4], as summarized by G. Boella et al. in [3].

De�nition 2.4.1. Bipolar Argumentation Framework (BAF):

A bipolar argumentation framework is a triple 〈A,→,⇒〉 where A is a set of argu-
ments, →⊆ A×A is an attack relation and ⇒⊆ A×A is a support relation.

Caylor and Lagasquie [4] attempt to give meaning to the support relation in their
framework by translating each bipolar argumentation framework into a meta-argumentation
framework. These meta-argumentation frameworks consist of meta-arguments and an at-
tack relation between them, similarly to a classical abstract argumentation framework.
The meta-arguments correspond to a set of arguments from the bipolar argumentation
framework. The idea is that a meta-argument makes sense if the arguments it corresponds
to form a chain of support. These meta-arguments are called elementary coalitions and
are de�ned as follows:

De�nition 2.4.2. Elementary coalition:

Let 〈A,→,⇒〉 be a bipolar argumentation framework. An elementary coalition is a
set EC = {a1, ..., an} ⊆ A such that:

1. there exists a permutation {i1, ..., in} of {1, ..., n} such that there is a sequence of
supports ai1 ⇒ ...⇒ ain ;

2. EC is con�ict-free as de�ned in De�nition 2.1.3;

3. EC is maximal with respect to ⊆ among the subsets of A satisfying (1) and (2).

They call EC(BAF ) the set of all elementary coalitions in BAF and ECAF =
〈EC(BAF ), c − attacks〉 the elementary coalition argumentation framework associated
with the bipolar argumentation framework BAF . The con�ict relation c − attacks is
de�ned as follows:

De�nition 2.4.3. c-attacks relation

Let BAF = 〈A,→,⇒〉 be a bipolar argumentation framework and EC1, EC2 ∈
EC(BAF ) be two elementary coalitions of BAF . We have that EC1 c-attacks EC2 if
and only if there exists arguments a1 ∈ EC1 and a2 ∈ EC2 such that a1 → a2.

The acceptability semantics for BAFs are then de�ned in terms of the elementary
coalitions in the framework.

De�nition 2.4.4. Acceptability semantics

Let BAF = 〈A,→,⇒〉 be a bipolar argumentation framework and S ⊆ A. We de�ne
that:

• S is a ecp-extension of BAF if and only if there exists a preferred extension
{EC1, ..., ECn} of ECAF as de�ned in De�nition 2.1.7 such that S = EC1 ∪ ... ∪
ECn.

• S is a ecs-extension ofBAF if and only if there exists a stable extension {EC1, ..., ECn}
of ECAF as de�ned in De�nition 2.1.8 such that S = EC1 ∪ ... ∪ ECn.



2.4. SUPPORT IN ABSTRACT ARGUMENTATION 17

• S is a ecg-extension of BAF if and only if there exists a grounded extension
{EC1, ..., ECn} of ECAF as de�ned in De�nition 2.1.6 such that S = EC1 ∪ ... ∪
ECn.

More such extensions can be de�ned to match the other semantics of classical abstract
argumentation frameworks. Note however that it is not possible to produce an equivalent
de�nition of admissible sets as de�ned in De�nition 2.1.4. Cayrol and Lagasquie [4] argue
that this drawback is not exactly problematic as they consider the collective attacks
emerging from the coalitions of arguments rather than the individual attacks between
single arguments. Boella et al. [3] argue that using meta-argumentation should preserve
all of Dung's properties and principles and propose to consider support in a deductive
sense by introducing mediated attacks. The intuition behind these attacks is that if from
a we can deduce b, then if we do not have b, we also cannot have a. Thus, any attack on
b will result in an attack on a.

De�nition 2.4.5. Mediated attacks:

Let BAF = 〈A,→,⇒〉 be a bipolar argumentation framework. For a, b ∈ A, there is
a mediated attack from a to b if and only if there is a sequence a1 ⇒ a2, ..., an−1 ⇒ an
such that n ≥ 2, a = a1 and b→ an.

They then de�ne the semantics of bipolar argumentation frameworks with respect to
their �attening in [3]. Similarly as for AFRAs, the �attened framework will consist of
meta-arguments and an attack relation, with the support relation present in the BAFs
being �attened as a combination of auxiliary meta-arguments and attack relations. The
idea behind the �attening of the support relation is that supposing a supports b, we have
that b is a deductive consequence of a. Hence, if b is not accepted then neither is a. The
�attening will introduce an auxiliary argument Za,b which is attacked by b only. Za,b in
turn attacks a. Hence, b defends a from Za,b. However, as the only attacker of Za,b, if b
not accepted then Za,b will be accepted and hence a will not be accepted.

De�nition 2.4.6. BAF �attening

Given a bipolar argumentation framework BAF = 〈A,→,⇒〉, the set of correspond-
ing meta-arguments MA is {acc(a) | a ∈ A} ∪ {Xa,b, Ya,b | a, b ∈ A} ∪ {Za,b | a, b ∈ A}
and →2⊆MA×MA is a binary relation on MA such that:

• For all a, b ∈ A such that a → b, we have acc(a) →2 Xa,b, Xa,b →2 Ya,b and
Ya,b →2 acc(b)

• For all a, b ∈ A such that a⇒ b, we have acc(b)→2 Za,b and Za,b →2 acc(a)

Notice that in their de�nition of the �attening, Boella et al. [3] have included a
�attening for second order attacks, as later in their paper, they study a framework which
combines support and second order attacks. Later in the thesis, we will also present a
framework with features including support and higher order attacks.

The example represented in Figure 2.9 is �attened in Figure 2.10:
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Figure 2.9: Argumentation framework including a support relation representing the wet
grass example. The dotted line with a white arrow represents the support relation.

Figure 2.10: Flattened BAF from Figure 2.9

In the �attening, the mediated attacks are made apparent. By applying the semantics
of classical abstract argumentation frameworks we can then retrieve the corresponding
extensions of the BAF.

2.5 Joint attacks

The idea of coalitions from BAFs [4] can also be represented in a di�erent way. In Cayrol
and Lagasquie's formalism, coalitions are sets of arguments which support each other
and attack arguments and coalitions which are targeted by at least one of the attacking
coalition's argument. Another way to view coalitions would be as sets of arguments
which join together in order to make an attack on some other argument possible.

Suppose for example that there has been a murder and the prime suspect is a man
named John. Until proven guilty, John is however considered innocent and thus we have
an argument A which states that John is innocent. Now the evidence shows a gun was
found on the crime scene with John's �ngerprints. This would be our second argument
B. Note that this alone is not enough of an argument to warrant an attack on A.

After further investigation, it happens that this gun was the murder weapon. This
would be our third argument, C. Again, C alone cannot attackA. However, by combining
their information, we can conclude that John's �ngerprints were found on the murder
weapon. This is clearly an attack on his innocence. Hence, by joining forces, the two
arguments B and C could form an attack on A. This means that we require both B and
C to be accepted in order to reject A, since alone they are not enough to warrant an
attack on A. The framework is represented below.
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Figure 2.11: Higher level network corresponding to our example

D. Gabbay [8] calls this kind of relation a joint attack. He de�nes it as follows:

De�nition 2.5.1. Higher level networks:
A higher level argumentation framework is a triple (S, S0,→), where S 6= ∅ is a set

of arguments, S0 is the family of all �nite non-empty subsets of S and →⊆ S0 × S is an
attack relation.

For simplicity of notation we will identify the singleton set {x} with x.
Similarly as before, the semantics of higher level networks will be de�ned in terms of

their �attening. We de�ne the �attening as follows:

De�nition 2.5.2. Higher level networks �attening:
Given a higher level network (S, S0,→), the set of corresponding meta-arguments

MA is {acc(a), rej(a) | a ∈ A} ∪ {e(X) | X ∈ S0} and →2⊆ MA ×MA is a binary
relation on MA such that:

• For all a ∈ A, we have acc(a)→2 rej(a)

• For all X ∈ S0, and every b ∈ A such that X → b, we have that e(X) →2 acc(b)
and rej(a)→2 e(X) for every a ∈ X.

The idea behind the �attening is that each argument a will have a meta-argument for
its acceptance acc(a) as well as a complementary meta-argument for its rejection rej(a).
By construction, acc(a) is the only argument attacking rej(a). Therefore, if acc(a) is
part of a complete extension, then rej(a) will not be part of it, and if an argument from
that complete extension attacks acc(a), it will thus defend rej(a) which will then be part
of the complete extension.

Then, for each joint attack originating from a set of arguments X, there is a meta-
argument e(X) representing this coalition which attacks the meta-argument correspond-
ing to the argument that X was attacking. This meta-argument e(X) is then being
attacked by the complementary meta-arguments rej(a) for each argument a ∈ X. This
way, if even one argument from the coalition is successfully attacked, then its comple-
mentary meta-argument will be accepted and will thus successfully defeat e(X). Hence,
the joint attack will succeed if and only if every single argument from the coalition is
accepted.

The �attening of the framework from Figure 2.11 is as follows:
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Figure 2.12: Flattened version of the framework from Figure 2.11

2.6 Structured argumentation

When designing an argumentation framework, two of the important design decisions
which have to be made are the following: how can arguments be built and how can they
be attacked? S. Modgil and H. Prakken proposed a system called the ASPIC+ framework
[10] which attempts to ease the designing of argumentation models by answering those
questions among others. There are two main ideas on which the ASPIC+ framework is
based. The �rst idea is that con�icts are usually resolved with explicit preferences. The
second idea is that arguments are built using either strict or defeasible inference rules.
While strict rules guarantee the inference of a certain conclusion from given premises,
defeasible rules only present a presumption in favor of their conclusion. The goal of
the ASPIC+ framework is to provide a systematic way of constructing arguments and
attacks from a knowledge base and a set of inference rules. These rules and knowledge
base are more intuitive to mine from a text and easier to motivate.

In order to use the ASPIC+ system, one needs to provide some information. The �rst
element is a logical language closed under negation. Then one has to provide two sets of
(possibly empty) strict and defeasible inference rules. Additionally, one must provide a
partial naming function which maps some of the defeasible rules to a formula from the
chosen logical language. The collection of this information is called an argumentation
system.

De�nition 2.6.1. Argumentation systems:
An argumentation system is a triple AS = (L,R, n) where:

• L is a logical language closed under negation (¬).

• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form
φ1, ..., φn → φ and φ1, ..., φn ⇒ φ respectively, where φi and φ are well-formed
formulas in L and Rs ∩Rd = ∅.

• n is a partial function such that n : Rd −→ L.

We de�ne a function − such that −φ = ψ if φ = ¬ψ, otherwise −φ = ¬φ.
The intuition is that the rules in R are on the meta-level compared to the language

L and allow one to conclude the head of a rule if given the antecedents. The strict rules
are rules of inference which are considered to hold in all cases. Hence, if one accepts its
antecedents, then one must also accept its conclusion. Defeasible rules on the other hand
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are ones which are known to be generally true but which might fail in some cases and
hence their inferences and conclusions are possible subjects of attacks.

For the rules to be of some use, one needs to de�ne a set of premises which will serve
as a knowledge base from which one can start building arguments by applying the rules.

De�nition 2.6.2. Knowledge bases:
A knowledge base in an AS = (L,R, n) is a set of K ⊆ L consisting of two disjoint

subsets Kn (the axioms) and Kp (the ordinary premises).

The axioms are formulas of which the truth value is indisputable, while the ordinary
premises are formulas which can be used to make further inferences but might turn out
to be defeated in the end. By joining these with an appropriate argumentation system,
one gets an argumentation theory.

De�nition 2.6.3. Argumentation theories:
An argumentation theory is a tuple AT = (AS,K) where AS is an argumentation

system and K is a knowledge in AS.

An argumentation theory now contains all the elements needed for building the argu-
ments. ASPIC+ provides a few ways to construct these from the theory. An argument
in ASPIC+ has a few properties which are given by the following functions:

• Prem returns the set of all ordinary premises of the argument.

• Conc returns the conclusion of the argument.

• Sub returns all its sub-arguments.

• DefRules returns the set of defeasible rules used in the argument.

• TopRule returns the last inference rule used, if applicable.

We now have three di�erent ways to build an argument. Either it introduces one
of the ordinary premises from the knowledge, or it makes an inference from a strict or
defeasible rule.

De�nition 2.6.4. Arguments:
An argument A on the basis of an argumentation theory with a knowledge base K

and an argumentation system (L,R, n) has one of the following forms:

1. ϕ, where ϕ ∈ K with:
Prem(A) = {ϕ},
Conc(A) = ϕ,
Sub(A) = {ϕ}�
DefRules(A) = ∅�
TopRule(A) is unde�ned.

2. A1, ..., An → ϕ, whereA1, ..., An are arguments such that Conc(A1), ...,Conc(An)→
ϕ ∈ Rs with:
Prem(A) = Prem(A1) ∪ ... ∪ Prem(An),
Conc(A) = ϕ,
Sub(A) = Sub(A1) ∪ ... ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ ... ∪ DefRules(An),
TopRule(A) = Conc(A1), ...,Conc(An)→ ϕ.



22 CHAPTER 2. BASICS OF FORMAL ARGUMENTATION

3. A1, ..., An ⇒ ϕ, whereA1, ..., An are arguments such that Conc(A1), ...,Conc(An)⇒
ϕ ∈ Rd with:
Prem(A) = Prem(A1) ∪ ... ∪ Prem(An),
Conc(A) = ϕ,
Sub(A) = Sub(A1) ∪ ... ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ ... ∪ DefRules(An) ∪ {Conc(A1), ...,Conc(An)⇒ ϕ},
TopRule(A) = Conc(A1), ...,Conc(An)⇒ ϕ.

Example 2.6.1. Consider a knowledge base in an argumentation system with language L
consisting of p, q, r, s, t, d1, d2 and their negations, with Rd = {d1, d2} and Rs = {s1, s2},
where the rules are de�ned as:

• d1: r ⇒ ¬q

• d2: t⇒ ¬p

• s1: p→ q

• s2: s→ ¬d2

Also, the knowledge base is formed by Kn = {r, s} and Kp = {p, t}. Notice that we
have de�ned rules by writing them in the form n(r) : r.

Two of the arguments we can construct are A1 = p and A2 = A1 → q, where Prem(A2)
= {p}, Conc(A2) = q, Sub(A2) = {A1, A2}, DefRules(A2) = ∅, TopRule(A2) = s1.

Now that we have de�ned a way to construct the arguments from the knowledge
base and inference rules, we can de�ne how to build the other component of an abstract
argumentation framework, namely the attacks. There are 3 ways for an argument to
attack another one. It must attack it either on one of its premises, on the inference rule
used or on the conclusion.

De�nition 2.6.5. Attacks:
An argument A attacks an argument B if and only if A undermines, undercuts or

rebuts B, where:

• A undermines B on ϕ if and only if Conc(A) = −ϕ for an ordinary premise ϕ ∈
Prem(B).

• A undercuts B (on B′) if and only if Conc(A) = −n(r) for some B′ ∈ Sub(B) such
that TopRule(B′) = r.

• A rebuts B (on B′) if and only if Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′1 , ..., B

′′
n ⇒ ϕ.

Example 2.6.2. In our previous example, we can also construct the arguments B1 = r,
B2 = B1 ⇒ ¬q, C1 = t, C2 = C1 ⇒ ¬p, D1 = s and D2 = D1 → ¬d2. We then have
that C2 undermines A1 and A2 on p, A2 rebuts B2 and D2 undercuts C2.

Notice that rebuttal is usually symmetric, however this kind of duality might be
resolved by having a preference over the arguments. This way, an argument may only
attack another one if it is at least as preferred as the attacked one. Given a preference
relation, we can then de�ne what it means for an attack be successful, and in general we
will say that an argument A defeats an argument B if the attack is successful.

De�nition 2.6.6. Successful undermining, rebuttal and defeat: Given a prefer-
ence relation � over the arguments, we say that:
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• A successfully undermines B if and only if A undermines B on ϕ and ϕ � A.

• A successfully rebuts B if and only if A rebuts B on B′ and B′ � A.

• A defeats B if and only if it undercuts, successfully undermines or successfully
rebuts B.

Notice that all undercuttings are considered as successful irrespective of preference
as no such criteria is required for that kind of attack.

We can then de�ne the procedure to generate an abstract argumentation framework
from an argumentation theory and a preference relation.

De�nition 2.6.7. Abstract argumentation frameworks:
An abstract argumentation framework (AF) corresponding to an argumentation the-

ory AT = (AS,K) and a preference relation over arguments � is a pair (A, D), such
that:

• A is the smallest set of all �nite arguments constructed from K in AS satisfying
De�nition 2.6.4;

• (X,Y ) ∈ D if and only if X defeats Y with respect to �.

The preference relation is easier to motivate and understand if it is �rst de�ned on
the set of defeasible rules and premises. We can then lift the preference relation from
rules to arguments in one of several ways. One is the weakest-link principle, another is
the last-link principle. In the weakest-link principle we compare two arguments A and
B by comparing the least preferred rules in DefRules(A) and DefRules(B). If the least
preferred rule in DefRules(A) is at least as preferred as the weakest rule in DefRules(B),
then we say that A is at least as preferred to B. Formally, we get:

De�nition 2.6.8. Weakest-link preference:

Let A and B be two arguments. We have that A �w B if and only if:

1. If DefRules(A) = DefRules(B) = ∅, then there exists pa ∈ Prem(A), such that for
all pb ∈ Prem(B), we have pa ≤ pb, else;

2. If Prem(A) = Prem(B) = ∅, then there exists ra ∈ DefRules(A), such that for all
rb ∈ DefRules(B), we have ra ≤ rb, else;

3. There exists ra ∈ DefRules(A) and pa ∈ Prem(A), such that for all rb ∈ DefRules(B)
and pb ∈ Prem(B), we have ra ≤ rb and pa ≤ pb

We de�ne a notion of strict preference ≺w by replacing ≤ with < in the above
de�nition.

The other way to lift a preference relation over rules to one over arguments is by using
the last link principle. According to this principle, we compare the last defeasible rules
used in the argument, which corresponds to the value given by applying the function
LastDefRules to the argument. We de�ne this function as follows:

De�nition 2.6.9. Last defeasible rules:
Let A be an argument. We de�ne the function LastDefRules as follows:

• If DefRules(A) = ∅, then LastDefRules(A) = ∅, else;

• If A = A1, ..., An ⇒ ϕ, then LastDefRules(A) = {Conc(A1), ...,Conc(An)}, else;
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• IfA = A1, ..., An → ϕ, then LastDefRules(A) = {LastDefRules(A1), ..., LastDefRules(An)}

We then de�ne the lifting of the preference from rules to arguments according to last
link principle as:

De�nition 2.6.10. Last link preference:

Let A and B be two arguments. We have that A �l B if and only if:

• If LastDefRules(A) = LastDefRules(B) = ∅, then there exists pa ∈ Prem(A) such
that for all pb ∈ Prem(B), we have pa ≤ pb, else;

• There exists ra ∈ LastDefRules(A) such that for all rb ∈ LastDefRules(B), w have
ra ≤ rb.

Again, we de�ne the strict preference relation ≺l by replacing ≤ with < in the above
de�nition.



Chapter 3

ASPIC-END: a framework for

explanatory argumentation using

natural deduction

In this chapter, we will introduce ASPIC-END, an extension of ASPIC+ which features
explanations and natural-deduction-style arguments. We add explanations as we will
later focus on arguments about the proposed solutions to the liar paradox, it is thus
essential to be able to model how the solutions explain the paradox. We also allow
argument to be built using natural deduction as arguments in the context of logical
paradoxes often involve natural deduction and this thus allows for better representation
of such arguments. The last notable modi�cation we make is that we replace strict rules
by intuitively strict rules which can sometimes be attacked, but are still stronger than
defeasible rules.

3.1 Natural deduction arguments and explananda

In order to use the system ASPIC-END, one has to select a language L and a set of rules
R. L must be a logical language closed under negation. R (possibly empty) is made
of two subsets of rules, intuitively strict rules and defeasible rules, such that each rule
belongs to exactly one of these subsets. We need a way to assign a formula from L to
some of the rules, so that these rules can later be attacked by an argument claiming its
negation. One hence also has to specify a partial function n (for �naming�) from R to L.
The intuition is that for some rules r ∈ R, n(r) is a well formed formula in L which says
that r is applicable, and so an argument claiming ¬n(r) attacks the inference step in r.

Formally, we have:

De�nition 3.1.1. Argumentation Theories:

An argumentation theory is a triple AT = (L,R, n), where:

• L is a logical language closed under negation (¬).

• R = Ris∪Rd is a set of intuitively strict (Ris) and defeasible (Rd) rules of the form
ϕ1, . . . , ϕn ; ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-variables
ranging over well-formed formulae in L and intuitively strict rules may have no
antecedents), and Ris ∩Rd = ∅.

• n is a partial function such that n: R 7→ L, and for every rule R of the form ; ϕ,
we have n(; ϕ) = ϕ.

25
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We de�ne a negation function −: L 7→ L such that −ϕ = ψ if ϕ = ¬ψ and −ϕ = ¬ϕ
otherwise.

Also, the language L may contain some formulas of the form ¬Assume(ϕ), where
ϕ ∈ L does not contain the Assume operator. These formulas will represent the fact
that it does not make sense to assume ϕ and will be used later on as a point of attack
for proofs by contradictions.

In our study of the liar paradox, we come to question the inference of rules which
seemed strict to begin with. Hence, we introduce intuitively strict rules to replace strict
rules in our system. For example, it seems fair to say that if a sentence is not true, then it
must be false. However, Kripke's solution to the liar paradox suggests that some sentences
such as the liar sentence are neither true nor false, since giving them either one of the
two truth values leads to a contradiction. Here, the solution is not putting forward an
argument against the falsehood of the sentence by rebutting it, nor is it undermining any
of the argument's premises. It is undercutting the argument by attacking the inference
made from the negation of truth to falsehood. However, these intuitively strict rules are
still di�erent from defeasible rules in the sense that if one accepts its application, then
one cannot question its conclusion. Therefore, intuitively strict rules are not defeasible
in the sense that they cannot be rebutted, only undercut.

With this idea in mind, it seems unjusti�ed to allow for some rules to be completely
strict, as it would be hard to justify being able to question the inference of some rules
but not others. This also allows for new solutions, if properly motivated, to be modeled
in our system.

Recall that in ASPIC+ we have premises as well as axioms. The di�erence between
a premise and an axiom lies in the fact that an argument using a premise ϕ can be
undermined on ϕ, while an argument using an axiom ψ cannot be undermined on ψ.
Just as we do not want to have rules which cannot be undercut, we also do not wish
to have axioms which cannot be undermined. However, this being the only di�erence
between an axiom and a premise, we do not have a reason to distinguish them anymore,
and keep only premises.

Also, note that contrary to ASPIC+, we do not have a separate set of premises
representing the knowledge base. Instead, premises are represented as intuitively strict
rules with no antecedent and are hence included in R. We thus require that for each rule
with no antecedent (; ϕ) ∈ Rd, we have that n(; ϕ) = ϕ. By representing premises
as intuitively strict rules instead of defeasible rules, we prevent rebuttal attacks from
targeting arguments which introduce premises, and make a clear distinction between
rebuttal and undermining attacks. We have found however that undermining functions
closely to undercutting and hence make undermining a special case of undercutting. In
this way, we view an undermining attack as attacking the rule which introduces the
premise. Note that having premises as a separate entity in our system would not add to
its expressive power.

Now that we have de�ned what an argumentation theory is, we must now provide the
ways of constructing arguments. One should be able to build arguments from ordinary
premises, using chain applications of rules of inference from the theory. For every argu-
ment, we de�ned �ve functions which allow us to retrieve some of their speci�c properties.
Conc returns the conclusion of the argument. Sub returns the set of its sub-arguments.
Rules returns the set of all rules which have been used in its construction. TopRule re-
turns the last inference rule which has been used in the argument, and is unde�ned in
the case of arguments without such a rule, i.e. assumption introduction and proof by
contradiction arguments. As returns the set of assumptions under which the argument
is working. This will allow us to construct arguments in a natural deduction manner, as
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we will see in an example later. Notice that do not require the Prem function which was
present in ASPIC+, as the premises in ASPIC-END are counted as rules and hence part
of the elements retrieved by the Rules function. Also, the ProofByContradiction construct
is based on natural deduction, namely the ¬-introduction rule from natural-deduction.

De�nition 3.1.2. Arguments:

An argument A on the basis of an argumentation theory (L,R, n) has one of the
following forms:

1. A1, . . . An ; ψ where A1, . . . An are arguments such that there exists an intuitively
strict rule Conc(A1),. . . ,Conc(An) ; ψ in Ris.
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
Rules(A) = Rules(A1) ∪ · · · ∪ Rules(An) ∪ {Conc(A1),. . . ,Conc(An) ; ψ},
TopRule(A) = Conc(A1),. . . ,Conc(An) ; ψ,
As(A) = As(A1) ∪ · · · ∪ As(An).

2. A1, . . . An ⇒ ψ where A1, . . . An are arguments such that there exists a defeasible
rule Conc(A1),. . . ,Conc(An) ⇒ ψ in Rd and As(A1) ∪ · · · ∪ As(An) = ∅.
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
Rules(A) = Rules(A1) ∪ · · · ∪ Rules(An) ∪ {Conc(A1),. . . ,Conc(An) ⇒ ψ},
TopRule(A) = Conc(A1),. . . ,Conc(An) ⇒ ψ,
As(A) = ∅.

3. Assume(ϕ) where ϕ ∈ L with Conc(A) = ϕ, Sub(A) = {Assume(ϕ)}, Rules(A) = ∅,
TopRule(A) is unde�ned and As(A) = {ϕ}.

4. ProofByContrad(¬ϕ, A′) whereA′ is an argument such that ϕ ∈ As(A′) and Conc(A′)
= ⊥.
Conc(A) = ¬ϕ,
Sub(A) = Sub(A′) ∪ {ProofByContrad(¬ϕ, A′)},
Rules(A) = Rules(A′),
TopRule(A) is unde�ned,
As(A) = As(A′) \{ϕ}.

In all examples, we present the rules in the form n(r) : r, so that the label in front
of the rule represents the result of applying the naming function to the rule. Also, for
the sake of notational convenience, we will write pi :; ϕ when introducing rules with
no antecedents (recall that formally, n(; ϕ) = ϕ) and refer to them as pi (with the
appropriate i).

Example 3.1.1. Consider an argumentation theory AT1 = (L,R, n), where L consists
of p, q, r, s, u and their negations, Ris = {t1, t2, p1} and Rd = {d1, d2}, where:

• t1: p; q

• t2: q ; ⊥

• p1: ; r

• d1: ¬p, r ⇒ s

• d2: u⇒ q
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We can then construct an argument for s as follows:

• A1: Assume(p), As(A1) = {p}, Conc(A1) = p

• A2: A1 ; q, As(A2) = {p}, Conc(A2) = q

• A3: A2 ; ⊥, As(A3) = {p}, Conc(A3) = ⊥

• A4: ProofByContrad(¬p, A3), As(A4) = ∅, Conc(A4) = ¬p

• A5: ; r, As(A5) = ∅, Conc(A5) = r

• A6: A4, A5 ⇒ s, As(A6) = ∅, Conc(A6) = s

We can see that A1 introduces the assumption p, and from there the arguments A2

and A3 manage to derive a contradiction, which allows the construction of argument A4

with conclusion ¬p under no assumption. We can then use this together with the premise
r to form an argument for s. Note however that we cannot form an argument for ¬u
using a proof by contradiction, because to derive an inconsistency from u we would have
to use d2. However, defeasible rules can only be applied under no assumption, hence we
would be unable to apply it in the proof by contradiction for ¬u.

The aim of our system is to generate graphs belonging to an extension of Dung-Style
argumentation frameworks, namely Explanatory Argumentation Frameworks, which we
will refer to as EAFs. In this extension, there are not only arguments but also explananda.
Hence, we need to de�ne a way to construct them:

De�nition 3.1.3. Explananda:

There is an explanandum E such that Source(E) = A if and only if there exists an
argument A such that:

Conc(A) = ⊥, As(A) = ∅ and Rules(A) ⊆ Ris.

Now this de�nition might be adapted to the application you are making of ASPIC-
END, and in our case was made for the purpose of explaining inconsistencies arising
from studying the truth value of liar sentences when using informal reasoning which
appears intuitive. For this reason, we require that the source for the explananda uses only
intuitively strict rules to reach a contradiction under no assumption. Notice however that
we do not want every self-contradicting argument to give rise to an explanandum, only
ones which do not use any defeasible rules but only intuitively strict ones. Argumentation
theory already gives us a way to handle the con�icting arguments which use defeasible
rules, namely by allowing one to attack and reject the conclusion of an argument which
uses defeasible rules. Rejecting such an argument does not warrant an explanation,
because some of the rules used are defeasible and hence known to not always hold.

Example 3.1.2. Consider an argumentation theory AT2 = (L,R, n) where L consists
of p, q, r and their negations, Ris = {t1, t2, t3, p1} and Rd = ∅, where:

• t1: p; q

• t2: q ; r

• t3: r ; ⊥

• p1: ; p
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We can construct an explanandum as follows:

• A1: ; p, Conc(A1) = p

• A2: A1 ; q, Conc(A2) = q

• A3: A2 ; r, Conc(A3) = r

• A4: A3 ; ⊥, Conc(A4) = ⊥

• E: Source(E) = A4

3.2 Attacks and explanations

We now need to de�ne attack and explanation relations in our framework. In general,
we distinguish three kinds of attacks in argumentation: undermining, undercutting and
rebuttal. Intuitively, for one argument to undermine another, it needs to conclude the
negation of one of its premises. In the case of undercut, it needs to claim that one of
the rules the other argument has used is not applicable and so is attacking one of the
inferences that the argument is making. In the case of rebuttal, one has to provide
an argument for accepting the negation of the proposed conclusion. Hence, rebuttals
are often symmetrical. As mentioned earlier however, we do not allow for rebuttal of
an intuitively strict rule's conclusion, only for undercutting attacks where an argument
would motivate the non-applicability of the rule. In the case of defeasible rules however,
the inference steps are weaker and so providing an argument which concludes the opposite
should be enough to warrant an attack.

In ASPIC-END, we also allow for an argument A to attack an argument B which
makes an assumption ϕ if A concludes that it makes no sense to assume ϕ. For example,
if one were to assume that the number 5 is yellow, since numbers do not have colors, it
should be possible to attack the argument introducing this assumption and any argument
making an inference from this assumption.

De�nition 3.2.1. Attacks:

A attacks B if and only if A rebuts, undercuts or assumption-attacks B, where:

• A rebuts argument B (on B′) i� Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ and As(A) = ∅.

• A undercuts argument B (on B′) i� Conc(A) = −n(r) for some B′ ∈ Sub(B) such
that TopRule(B′) = r, As(A) ⊆ (As(B) ∪ As(B′)) and there is no ϕ ∈ As(B′) such
that −ϕ = Conc(A′) for some A′ ∈ Sub(A).

• A assumption-attacks B (onB′) i� for someB′ ∈ Sub(B) such thatB′ =Assume(ϕ),
Conc(A) = ¬Assume(ϕ) and As(A) = ∅.

We require that the attacking argument is making less assumptions than the one it
attacks, as to prevent arguments from attacking outside of their scope of assumption.
In the case of rebuttal, notice that since the attacked argument is using a defeasible
rule, it has an empty set of assumptions, as defeasible rules cannot be applied under any
assumption. Hence, the attacking argument must also have an empty set of assumption.
Also, notice that we introduce assumptions in the hope of deriving an inconsistency, and
so every successful proof by contradiction would rebut every other argument due to ex
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falso quolibet, which allows one to derive any formula from ⊥. This is another reason to
allow only arguments with an empty set of assumptions to rebut other arguments.

Regarding undercutting, we have again the requirement that no argument may attack
out of its scope of assumption. However, in this case, it may very well be possible
that the argument (or sub-argument) whose top-rule the attack is being directed at is
working under a non-empty set of assumptions. Notice that we consider the union of
the assumption sets of both the super-argument being attacked and the sub-argument
introducing the inference attacked. This is due to the fact that we have to consider
the argument using the said inference in the context it was introduced as well as in the
context of the argument being attacked. For example, an argument B with As(B)={ϕ}
might be undercut on a sub-argument B′ ∈ Sub(B) with As(B′)={ψ} by an argument A
with As(A)={ϕ,ψ}. While B′ would not be subjected to the same undercutting attack
because A would not stand in the assumption scope of {ψ}, it is important to consider
that when supporting B, B′ must be considered in the union of its own as well as B's
assumption scopes, which is {ϕ,ψ}. In this context, A stands and thus is able to undercut
B on B′.

Additionally, we have the requirement that the attacking argument does not use the
negation of any assumptions made by the attacked argument in any of its inferences,
because in the scope of the attacked argument, the attack would not stand. See Example
3.2.2 below for an illustration of why this is needed.

Example 3.2.1. Consider an argumentation theory AT3 = (L,R, n) where L consists of
p, q, r, s, u, v, w and their negations, Ris = {t1, t2, t3, t4, p1, p2} andRd = {d1, d2, d3, d4},
where:

• t1: p; q

• t2: q ; u

• t3: q, u; ⊥

• t4: s; ¬w

• p1: ; r

• p2: ; v

• d1: r ⇒ s

• d2: v ⇒ w

• d3: w ⇒ ¬r

• d4: ¬r ⇒ ¬t1

We can then construct the following arguments (when not speci�ed, As(A) = ∅ for each
argument):

• A1: Assume(p), As(A1) = {p}, Conc(A1) = p

• A2: A1 ; q, As(A2) = {p}, Conc(A2) = q

• A3: A2 ; u, As(A3) = {p}, Conc(A3) = u

• A4: A2, A3 ; ⊥, As(A4) = {p}, Conc(A4) = ⊥
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• A5: ProofByContrad(¬p, A4), Conc(A5) = ¬p

• B1: ; v, Conc(B1) = v

• B2: B1 ⇒ w, Conc(B2) = w

• B3: B2 ⇒ ¬r, Conc(B3) = ¬r

• B4: B3 ⇒ ¬t1, Conc(B4) = ¬t1

• C1: ; r, Conc(C1) = r

• C2: C1 ⇒ s, Conc(C2) = s

• C3: C2 ; ¬w, Conc(C3) = ¬w

In this example, we have that B4 undercuts A2, A3, A4 and A5 on A2, C3 rebuts
B2, B3 and B4 on B2, C1 rebuts B3 and B4 on B3 and B3 undermines C1, C2 and C3 on
C1.

Example 3.2.2. Consider an argumentation theory AT4 = (L,R, n) where L consists
of p, q, r, s and their negations, Ris = {t1, t2, p1} and Rd = {d1, d2}, where:

• t1: s; p

• t2: p; ⊥

• p1: ; r

• d1: r ⇒ ¬s

• d2: ¬s⇒ ¬t2

We can construct the following arguments:

• A1: ; r, Conc(A1) = r

• A2: A1 ⇒ ¬s

• A3: A2 ⇒ ¬t2

• B1: Assume(s), As(B1) = {s}, Conc(B1) = s

• B2: B1 ; p, As(B2) = {s}, Conc(B2) = p

• B3: B2 ; ⊥, As(B3) = {s}, Conc(B3) = ⊥

• B4: ProofByContrad(¬s,B3), Conc(B4) = ¬s

Notice that we do not have an undercutting attack from A3 to B4 on B3, since
A2 ∈ Sub(A3), Conc(A2) = ¬s and s ∈ As(B3). The intuition is that since A3 is using ¬s
in its inferences, it would not stand as a valid argument under the assumption s under
which B3 is working. Hence, there is no undercutting attack from A3 to B4 nor B3.
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Let us now de�ne how explanations arise in our system. One type of explanatory
relation is from arguments to explananda, where the argument proposes an explanation
of the phenomenon described by the explananda. Recall that in our case, explananda are
generated by arguments which derive an inconsistency from no assumption. Hence, for
an argument to explain it, we want it to prevent the derivation of the inconsistency by
attacking one of the inferences it made. This way, the inconsistency from no assumption
would not be derivable anymore. However, note that the attack must also be properly
motivated, otherwise the explanation would easily be attacked by other arguments and
would not stand a chance as an interesting explanation in the later stages of the modeling
process.

The other type of explanatory relation is between arguments themselves, which allows
for explanations to be deepened. An argument A which explains an explanandum E may
be further explained by another argument B which explains one of A's premises or the
link between A's premises and conclusion. Notice that in our system, premises are merely
intuitively strict rules with no antecedents, and thus both of these intuitive cases combine
into one formal case: B explains A if B non-trivially concludes one of the inference rules
r used in A. The case where B explains one of A's premises corresponds to the case where
r has no antecedent while the case where B explains the link between A's premises and
conclusion corresponds to the case where r has at least one antecedent. By non-trivial,
we mean that B must have some sub-argument which is not itself. This way, an argument
which merely concludes r from no antecedent will not deepen A's explanation. This is in
line with our intuition as such an argument would realistically not provide any further
details on the origin of the premise.

De�nition 3.2.2. Explanatory relations:

• An argument A explains an explanandum E if and only if A attacks Source(E).

• An argument B explains another argument A (on A′) if and only if Conc(B) =
TopRule(A′) for some A′ ∈ Sub(A) such that As(B) ⊆ As(A′) and Sub(B) \B 6= ∅.

Notice that we require B to be under less assumptions than A′, as it would reasonably
not count as an explanation if B was working under more assumptions than A′. It is
however possible for B to provide more details on a speci�c step in a proof by contra-
diction leading to the explanation of an explanandum, hence why we allow A′ and B to
have non-empty sets of assumptions.

Example 3.2.3. Consider an argumentation theory AT5 = (L,R, n) where L consists
of p, q, r, s, t, u and their negations, Ris = {p1, p2, p3, p4, p5, t1, t2, t3, t4, t5, t6, t7} and
Rd = ∅, where:

• t1: p; q

• t2: q ; r

• t3: r ; ⊥

• t4: s; ¬p

• t5: t; u

• t6: u; ¬t2

• t7: v ; t8
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• p1: ; p

• p2: ; s

• p3: ; t

• p4: ; u

• p5: ; v

We can then construct the following arguments and explanandum:

• A1: ; p, Conc(A1) = p

• A2: p; q, Conc(A2) = q

• A3: q ; r, Conc(A3) = r

• A4: r ; ⊥, Conc(A4) = ⊥

• E: Source(E) = A4

• B1: ; s, Conc(B1) = q

• B2: s; ¬p, Conc(B2) = ¬p

• C1: ; t, Conc(C1) = t

• C2: t; u, Conc(C2) = u

• D1: ; u, Conc(D1) = u

• D2: u; ¬t2, Conc(D2) = ¬t2

• F1: ; v, Conc(F1) = v

• F2: v ; t8, Conc(F2) = t8

The explanandum E arises from A4's derivation of ⊥ from no assumption. By under-
cutting A4 on A1, B2 explains E. Similarly, by undercutting A4 on A3, D2 also explains
E and is further explained by C2, which non-trivially concludes u. In turn, C2 is further
explained by F2, which non-trivially concludes t8 ∈ Rules(C2).

3.3 Defeats and successful explanations

Similarly as in ASPIC+, one can also de�ne a notion of successful and unsuccessful
attack. As mentioned before, rebuttal is symmetrical and hence if one argument rebuts
another one, the second also rebuts the �rst. This might lead to situations where two
arguments A and B are in con�ict, yet even supposing A seems more plausible than B,
B would still be able to defend itself from A and come out as an acceptable argument
in the end. To prevent this kind of scenario, we use the notion of preference over the
rules used in ASPIC+, which will translate into a similar relation over the arguments.
One should provide a preference relation ≤ over the rules, where t1 ≤ t2 means that t2
is preferred to t1. We also de�ne a strict preference relation (denoted <), where t1 < t2
if and only if t1 ≤ t2 and t2 � t1. Note that, contrary to ASPIC+, we do not restrict the
preference relation to the defeasible rules, and also allow comparison of the intuitively
strict rules.

We can then lift the preference relation from rules to arguments using the weakest-link
principle, which we de�ne for ASPIC-END as follows:
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De�nition 3.3.1. Weakest-link preference:

Let A and B be two arguments. We have that A �w B if and only if Rules(A) 6= ∅
and:

There exists ra ∈ Rules(A), such that for all rb ∈ Rules(B), we have ra ≤ rb

Notice that this de�nition of weakest-link preference di�ers from the one presented
in Section 2.6 in the fact that we do not have a set of premises in ASPIC-END, and thus
it is only needed to compare the preference of the rules. We do however compare the
preference of all rules, including the intuitively strict ones, as we allow for a preference
to be de�ned between di�erent intuitively strict rules and also between intuitively strict
rules and defeasible ones.

Example 3.3.1. Consider an argumentation theory AT6 = (L,R, n) where L consists
of p, q, r, s and their negations, Ris = {p1, p2} and Rd = {d1, d2, d3}, where:

• p1: ; p

• p2: ; r

• d1: p⇒ q

• d2: s⇒ ¬q

• d3: r ⇒ s

We also de�ne a preference relation ≤ such that d3 < d1 and d1 < d2. We can then
construct the following arguments:

• A1: ; p, Conc(A1) = p

• A2: A1 ⇒ q, Conc(A2) = q

• B1: ; r, Conc(B1) = r

• B2: r ⇒ s, Conc(B2) = s

• B3: B2 ⇒ ¬q, Conc(B3) = ¬q

Notice that by the weakest-link principle, B3 �w A2, but we do not have that A2 �w B3.

We can then use this notion of preference over arguments to de�ne defeat and suc-
cessful explanations.

De�nition 3.3.2. Defeats:

An argument A defeats an argument B with respect to a preference relation � if and
only if:

A rebuts, undercuts or assumption-attacks B on B′ and B′ � A

We now have that con�icts can be resolved through preferences. This will prevent
symmetrical attacks from surviving between arguments with di�erent preferences. Also,
note that we also consider the preference of the argument in the case of undercutting. In
our study of the liar paradox, we will often come across low preference arguments which
derive an inconsistency from no assumption and thus will be able to derive any formula
in the language, including the negation of any rule. This kind of argument would then be
able to undercut every argument, even ones with higher preference. Also, note that since
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we consider premises as intuitive rules with no antecedent and thus regard undermining
a special case of undercutting, not considering preferences in the cases of undercutting
means we would also not take preferences into account in the cases of undermining. Yet,
we want to be able to block undermining attacks from low preference arguments to high
preference ones.

Let us now de�ne what it means for an explanation to be successful, using this new
notion of defeat.

De�nition 3.3.3. Successful explanations:

Let A be an argument and E an explanandum. A successfully explains B with respect
to a preference relation � if and only if:

A defeats Source(B) with respect to �

By using the notion of �defeat� instead of �attack�, this de�nition of successful expla-
nations takes into account preferences.

3.4 Explanatory argumentation frameworks and argument
selection procedures

We now have the tools to not only generate arguments and explananda from a set of
rules, but we also have de�ned what it means for an argument to be preferred to another
and how this a�ects the defeat and successful explanation relations. We can now use this
to build explanatory argumentation frameworks. After this, we will de�ne the procedures
which allow one to extract the most relevant explanations from such a framework.

De�nition 3.4.1. Explanatory argumentation frameworks:

Let AT = (L,R, n) be an argumentation theory and ≤ a preference relation de�ned
over R. An explanatory argumentation framework (EAF) de�ned by AT and ≤, is a
tuple 〈A,X ,→, 99K〉, where:

• A is the set of all arguments that can be constructed from R satisfying De�nition
3.1.2;

• X is the set of all explananda that can be constructed from the arguments in A
satisfying De�nition 3.1.3;

• � is the preference relation over arguments obtained from lifting ≤ according to
the weakest-link principle;

• (X,Y ) ∈→ if and only if X defeats Y with respect to �, where X,Y ∈ A;

• (X,E) ∈99K if and only if X successfully explains E with respect to �, where
X ∈ A and E ∈ X ;

• (X,Y ) ∈99K if and only if X explains Y , where X,Y ∈ A.

Notice that for the explanation between arguments, we have not used any notion
of preference, as it is mostly used to resolve attacks. While explanations from argu-
ments to explananda are generate from attacking the explanandum's source, explaining
another argument does not involve any attack and thus does not require one to consider
preferences.

Once such a framework has been generated, we want to be able to extract the most
interesting set of arguments from the graph. Such a set should be able to explain as many
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explananda as possible while providing as many details as possible, as well as being self-
consistent and plausible. To do so, we consider con�ict-freeness, defense, explanatory
power and explanatory depth as de�ned in chapter 2. As a reminder, the explanatory
power is de�ned by how much of the explananda a given explanation can explain, while
the explanatory depth is de�ned by how deep an explanation is, i.e. how long the longest
chain of explanation is.

We de�ne two selection procedures similar to the ones introduced by �e²elja and
Straÿer [13]. As they have suggested in their paper, we chose to reverse the ordering of
the steps 2 and 3 and thus give higher importance to the criterion of defense compared
to the criterion of explanatory power. This prevents some absurd theories which manage
to explain all explananda but fall prey to many attacks from beating plausible theories
which fail to explain some of the explananda but are sound and fully defended. Also,
notice that once the con�ict-free sets of arguments have been selected, selecting the most
defended sets is equivalent to selecting the self-defending ones. Indeed, the empty set is
always con�ict-free and self-defended and hence if no other con�ict-free set of arguments
is fully self-defended, the empty set will be the only remaining set after this step. This
is why we rephrase the defense criterion step as the selection of the self-defending sets.

De�nition 3.4.2. Argument selection procedures:

Procedure 1:

In order to select the argumentative core of the most explanatory theories, proceed
as follows:

1. Select all the con�ict-free sets of arguments.

2. Out of these, select the self-defending ones.

3. Out of these, select the most explanatory powerful ones.

4. Out of these, select the maximal ones with respect to set inclusion.

Procedure 2:

In order to select the explanatory core of the most explanatory theories, proceed as
follows:

1. Select all the con�ict-free sets of arguments.

2. Out of these, select the self-defending ones.

3. Out of these, select the most explanatory powerful ones.

4. Out of these, select the explanatory deepest ones.

5. Out of these, select the minimal ones with respect to set inclusion.

Notice again that in both cases, steps 1 and 2 can be merged into the step �Select all
admissible sets of arguments�.



Chapter 4

Applying ASPIC-END to the liar

paradox

In the previous chapter, we have de�ned a system, ASPIC-END, which was designed for
building a formal argumentative model of the liar paradox and its proposed solutions.
We will now apply ASPIC-END to model the arguments from a few short texts, which
will each focus on a speci�c solution of the liar paradox. These texts were provided by
my collaborator Marcos Cramer for the purpose of this research. Afterwards, we will put
these frameworks together in one bigger model and analyze it.

4.1 The paracomplete solutions

We will start by observing a general description of the paracomplete solutions. There
exist many di�erent versions, however they all share this in common: they reject the law
of excluded middle in some way, which says that every formula is either true or false. Let
us �rst look at the following short text which describes the main idea of the paracomplete
solutions:

Excerpt 1

De�ne L to be the sentence �L is false�. If L is true, i.e. �L is false� is true, then L is
false, which is absurd.
So L is not true, i.e. L is false. So �L is false� is true, i.e. L is true. So we have the
absurdity that L is both true and false from no assumption.
One possible solution: L is neither true nor false. When concluding that L is false
because L is not true, we are making the assumption that any sentence is either true
or false. Even though applicable in many situations, this principle is not applicable
to problematically self-referential sentences like L.

Let us try to construct an argumentation theory which re�ects the reasoning present
in the text. For this, we need to de�ne a language, a set of intuitively strict and defeasible
rules and a naming function n. We will then need to de�ne a preference relation over
these rules. Let us start by the construction of the rule set. Once this is done, we can
de�ne the name of each rule and then simply take the closure under negation of all the
symbols we used as our language. The goal of our set of rules is to be able to capture
the author's reasoning from the text, but also any implicit inferences the author might
have made which does not appear explicitly in the text. To do so, we will analyze the
text sentence by sentence.

37
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We will represent our rules in the same format as we did in the examples from the
previous chapter, where the label in front of the rule represents its name given by the
function n.

From the �rst sentence, De�ne L to be the sentence �L is false�, we can create the
rule:

t1: Ltrue; “Lfalse”true

Here, the formula Ltrue represents the proposition `L is true' and the formula “Lfalse”true
represents the proposition `�L is false� is true'.

This would correspond to one direction of an instance of the rule of intersubstitutivity
of equivalents. We can create another rule which represents the equivalence in the other
direction:

t2: “Lfalse”true; Ltrue

Notice that we make these rules intuitively strict, as the intersubstitutivity of equivalents
is not defeasible in the sense that if applicable, its conclusion cannot be trivially rejected.
One can however question its applicability in the given context.

Let us now look at the second sentence: If L is true, i.e. �L is false� is true, then

L is false, which is absurd. This sentence contains a number of reasoning steps. Let us
break the sentence down further and �rst focus on If L is true, i.e. �L is false� is true.
Notice that the If marks the introduction of an assumption, namely Ltrue. This will
be important during the construction of the arguments so let us keep it in mind, even
though it is less relevant for our current task of creating rules. The use of the word i.e.

represents the usage of rule t1, the inference from Ltrue to “Lfalse”true. We now have
then L is false, where the author is making an inference from “Lfalse”true to Lfalse.
This can be represented as the following rule:

t3: “Lfalse”true; Lfalse

Here, the formula Lfalse represents the proposition `L is false'.
This would be an instance of the truth schema which says that for every sentence S,

`S' is true if and only if S. This allows one to infer the sentence S from a statement that
S is true. Notice that the truth schema also allows the inference to be made in the other
direction, and hence we should also include the following rule:

t4: Lfalse; “Lfalse”true

Notice that again we represent them as intuitively strict rules, as unless one has an
argument against the applicability of the truth schema in this context, one must accept
any conclusion derived from it.

We then have the last segment of this sentence: which is absurd. In the whole
sentence, the author has made three sub-conclusions: `L is true', `�L is false� is true' and
`L is false'. Two of them are in obvious contradiction, namely `L is true' and `L is false'.
This gives us the following rule:

t5: Ltrue, Lfalse; ⊥

We can now move on to the next sentence: So L is not true, i.e. L is false. First notice
that the author has now retracted the assumption `L is true', and because it led to a
contradiction, has concluded `L is not true'. There is now an inference from `L is not
true' to `L is false', which we will represent as the following rule:
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t6: ¬Ltrue; Lfalse

Here, the formula ¬Ltrue represents the proposition `L is not true'.
After this, the author writes: So �L is false� is true, i.e. L is true. There we have

the use of rule t4 to infer `�L is false� is true' from `L is false'. This is followed by the use
of rule t2 which derives `L is true' from `�L is false� is true'. Hence no new rules need to
be added here.

We then have the sentence: So we have the absurdity that L is both true and false

from no assumption. This is the same reasoning step that was used previously in the �rst
paragraph and that we modeled as rule t5. Notice that this time the author explicitly
mentioned there being no assumptions at this point.

We then move on to the solution. The �rst sentence L is neither true nor false seems
to introduce the following premise:

p1 :; ¬LEitherTrueOrFalse

Here, the formula ¬LEitherTrueOrFalse represents the proposition `L is neither true
nor false'.

From this we should be able to infer separately that `L is not true' and `L is not false':

t7: ¬LEitherTrueOrFalse; ¬Ltrue
t8: ¬LEitherTrueOrFalse; ¬Lfalse

We then focus on the next sentence: When concluding that L is false because L is not true,

we are making the assumption that any sentence is either true of false. Here, the author
seems to question the applicability of the rule t6 by saying that for it to be applicable,
we need to have that L is either true or false. By claiming that the sentence is neither
true nor false, there is motivation to attack the applicability of the rule t6:

t9: ¬LEitherTrueOrFalse; ¬t6

Notice that here we use again an intuitively strict rule, as to defend the applicability of
the rule t6, one would need to either attack the premise `L is neither true nor false' or
attack the rule t9 itself, a rebuttal does not intuitively seem enough to warrant an attack.

The author then proceeds to further explain the solution by giving motivations for
the premise ¬LEitherTrueOrFalse in the last sentence: Even though applicable in many

situations, this principle is not applicable to problematically self-referential sentences like

L. This can be modeled as introducing a premise about L's self-reference and a rule which
links it to the formula ¬LEitherTrueOrFalse.

p2: ; LProblSelfRef
t10: LProblSelfRef ; ¬LEitherTrueOrFalse

We now have a set of 12 intuitively strict rules Ris = {t1, ..., t10, p1, p2} and a
language L which consists of Ltrue, Lfalse, “Lfalse”true, ⊥, LEitherTrueOrFalse,
LProblSelfRef , t1, ..., t10, and their negations. Also, we have a preference relation over
the rules. We consider the rules on the meta-level of higher preference than the ones on
the object level, and hence get the following relation:

t1, ..., t6 < t7, ..., t10, p1, p2

Meaning that each rule t1, ..., t6 is strictly less preferred than each of t7, ..., t10, d1, d2.
We can now construct the following arguments and explanandum:

• A1: Assume(Ltrue), TopRule is unde�ned, As = Ltrue, Conc = Ltrue
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• A2: A1 ; “Lfalse”true, TopRule = t1, As = Ltrue, Conc = “Lfalse”true

• A3: A2 ; Lfalse, TopRule = t3, As = Ltrue, Conc = Lfalse

• A4: A1, A3 ; ⊥, TopRule = t5, As = Ltrue, Conc = ⊥

• A5: ProofByContrad(¬Ltrue, A4), TopRule is unde�ned, As = ∅, Conc = ¬Ltrue

• A6: A5 ; Lfalse, TopRule = t6, As = ∅, Conc = Lfalse

• A7: A6 ; “Lfalse”true, TopRule = t4, As = ∅, Conc = “Lfalse”true

• A8: A7 ; Ltrue, TopRule = t2, As = ∅, Conc = Ltrue

• A9: A8, A6 ; ⊥, TopRule = t5, As = ∅, Conc = ⊥

• E1: Source = A9

• B1: ; ¬LEitherTrueOrFalse, TopRule = p1, As = ∅, Conc = ¬LEitherTrueOrFalse

• B2: B1 ; ¬t6, TopRule = t9, As = ∅, Conc = ¬t6

• C1: ; LProblSelfRef , TopRule = p2, As = ∅, Conc = LProblSelfRef

• C2: C1 ; ¬LEitherTrueOrFalse, TopRule = t10, As = ∅, Conc = ¬LEitherTrueOrFalse

• D1: B1 ; ¬Ltrue, TopRule = t7, As = ∅, Conc = ¬Ltrue

• D2: B1 ; ¬Lfalse, TopRule = t8, As = ∅, Conc = ¬Lfalse
Notice that there is an explanandum E1 with source A9 as it is an argument with con-
clusion ⊥ under no assumption. We can see that there is an undercutting attack from
B2 to A9 on its sub-argument A6. Hence, B2 provides an explanation for E1. Also, this
explanation is further explained by C2 as it concludes ¬LEitherTrueOrFalse, one of
B2's premises, in a non-trivial way.

We then get the following explanatory argumentation framework. Notice that most
solitary arguments have been omitted for clarity as they are of little relevance to the
framework. Also, A7 and A8 are not represented, because even though they are also
subject to an undercutting on A6, the impact on the rest of the framework is irrelevant.

Figure 4.1: EAF representing the arguments in the �rst excerpt
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By applying the selection procedure 1, we get that the argumentative core of the most
explanatory powerful theory is S1 = {B2, C2, D1, D2}. With the selection procedure 2,
we get that the explanatory core is S2 = {B2, C2}.

4.2 The presupposition solution

One of the main problems in defending a solution to the liar paradox is that the solutions
are easily subject to so called revenge paradoxes, which rephrase the paradox in a speci�c
way so that the solution fails to explain this new paradox. However, for each revenge
paradox we usually �nd another solution to explain it. Let us examine the following
short text which illustrates such a case:

Excerpt 2

De�ne L to be the sentence �L is not true�. If L is true, i.e. �L is not true� is true,
then L is not true, which is absurd.
Therefore, L is not true. So �L is not true� is true, i.e. L is true. So we have an
absurdity from no assumption.
One possible solution: When we say that a sentence is true, what we really mean
is that the proposition expressed by the sentence is true. But some grammatically
well-formed sentences do not express a proposition. For example, �the present king
of France is bald� does not express a proposition as France does not currently have
a king. Both when saying that a sentence is true or when saying that a sentence is
not true, we are presupposing that it expresses a proposition. L does not express a
proposition, because interpreting L requires �nding a proposition expressed by the
sentence called L, which requires interpreting L etc. ad in�nitum, so that it can never
be fully interpreted. So already the step where we assume L to be true is problematic.

We will proceed in the same fashion as we did for the previous text and start by
extracting rules from the text sentence by sentence. Again, we will present the rules in
the format name: rule.

Let us start with De�ne L to be the sentence �L is not true�. Again we have a
de�nition here of the sentence L. Since we wish to combine the frameworks later, let
us call this sentence L2 in our argumentation theory. We can then create the following
rules:

t1: L2true; “¬L2true”true
t2: “¬L2true”true; L2true

Here, the formulas L2true and “¬L2true”true stand for the propositions `L2 is true' and
`�L2 is not true� is true' respectively.

These rules are similar to the �rst ones we created in the previous text and the few
next ones will also have some similarity, as the process to derive a contradiction from a
liar sentence usually follows the same pattern. After de�ning the sentence, one assumes
for a contradiction that it is true, and then using the principle of intersubstitutivity of
equivalents and some instance of the truth schema, one concludes that it is both true
and not true, which allows one to retract the assumption that this liar sentence is true
and conclude under no assumption that it is not true. From there one can derive a
contradiction from no assumption with a similar process. To represent this reasoning
process for the sentence L2, we create the following rules:

t3: “¬L2true”true; ¬L2true
t4: ¬L2true; “¬L2true”true
t5: L2true,¬L2true; ⊥
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Here we have again an instance of the truth schema in both directions, as well as a
rule representing the contradiction which arises from L2 being true and not true at the
same time.

Let us now move on to modeling the solution to this version of the paradox. Instead
of trying to build a set of rules sentence by sentence as we have done before, we will
this time try to analyze the main points of the author's explicit reasoning, but also the
implicit steps which do not appear directly in the text.

In direct relation to the paradox, there is the statement that L2 does not express a
proposition, followed by the explanation that trying to interpret it requires an in�nite
loop of interpreting L2 so that the interpretation can never be completed. We can model
this as such:

p1: ; InterpretL2AdInf
d1: InterpretL2AdInf ⇒ ¬L2ExpressProp

Here, the formulas InterpretL2AdInf and ¬L2ExpressProp represent the propo-
sitions `L2 requires interpreting L2 ad in�nitum' and `L2 does not express a property'
respectively.

However, one could say that is seems far-fetched to say that L2 does not express
a proposition when every other sentence does. And this is where the beginning of the
paragraph comes into play. The author �rst states that some sentences, even though well-
formed, do not express a proposition, and defends this point of view with the example
that the sentence �the present king of France is bald�, even though it is well-formed, does
not express a proposition because France currently does not have a king. We can model
this as follows:

p2: ; EverySentExpressProp
d2: EverySentExpressProp⇒ L2ExpressProp

p3: ; FranceHasNoKing
d3: FranceHasNoKing ⇒ ¬KingBaldExpressProp

d4: ¬KingBaldExpressProp⇒ ¬EverySentExpressProp

Here, the formulasEverySentExpressProp, FranceHasNoKing and ¬KingBaldExpressProp
represent the propositions `every sentence expresses a proposition', `France currently has
no king' and `�the present king of France is bald� does not express a proposition' respec-
tively.

Finally, the last part of this reasoning is present in the �rst and also the last sentences
of the paragraph. When the author says So already the step where we assume L to be

true is problematic, he is referring to the fact that When we say a sentence is true, what

we really mean is that the proposition expressed by the sentence is true. Since L2 does
not express a proposition however, making a statement about the truth value of this
non-existing proposition expressed by L2 is problematic. Hence, making an assumption
on the truth value of L2 would not make sense since, in this train of thought, L2 does
not have a truth value. We can represent this as follows:

d5: ¬L2ExpressProp⇒ ¬L2HasTruthV alue
d6: ¬L2HasTruthV alue⇒ ¬Assume(L2true)

Here, the formula ¬L2HasTruthV alue represents the proposition `L2 does not have
a truth value'.

We now have a language, a set of rules and a naming function de�ned. We also de�ne
the following preference ordering on the set of rules, representing once again the fact that
meta-level reasoning is preferred to object-level reasoning:
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t1, ..., t5 < d1, ..., d6, p1, p2, p3

Additionally, we have the following preference:

p2 < p3, d3, d4

Since even though p2 and d4 have opposite conclusion, showing a counter-example
is a much stronger argument than simply making a statement that all sentences satisfy
some property. Since p3 and d3 are also contributing to the construction of the counter-
example, they are also preferred to p2.

We can then construct the following arguments and explanandum:

• D1: Assume(L2true), TopRule is unde�ned, As = L2true, Conc = L2true

• D2: D1 ; “¬L2true”true, TopRule = t1, As = L2true, Conc = “¬L2true”true

• D3: D2 ; ¬L2true, TopRule = t3, As = L2true, Conc = ¬L2true

• D4: D1, D3 ; ⊥, TopRule = t5, As = L2true, Conc = ⊥

• D5: ProofByContrad(¬L2true, D4), TopRule is unde�ned, As = ∅, Conc = ¬L2true

• D6: D5 ; “¬L2true”true, TopRule = t4, As = ∅, Conc = ¬”L2true”true

• D7: D6 ; L2true, TopRule = t2, As = ∅, Conc = L2true

• D8: D7, D5 ; ⊥, TopRule = t5, As = ∅, Conc = ⊥

• E2: Source = D8

• F1: ; InterpretL2AdInf , TopRule = p1, As = ∅, Conc = InterpretL2AdInf

• F2: F1 ⇒ ¬L2ExpressProp, TopRule = d1, As = ∅, Conc = ¬L2ExpressProp

• F3: F2 ⇒ ¬L2HasTruthV alue, TopRule = d5, As = ∅, Conc = ¬L2HasTruthV alue

• F4: F3 ⇒ ¬Assume(L2true), TopRule = d6, As = ∅, Conc = ¬Assume(L2true)

• G1: ; EverySentExpressProp, TopRule = p2, As = ∅, Conc = EverySentExpressProp

• G2: G1 ⇒ L2ExpressProp, TopRule= d2, As = ∅, Conc = L2ExpressProp

• H1: ; FranceHasNoKing, TopRule = p3, As = ∅, Conc = FranceHasNoKing

• H2: H1 ⇒ ¬KingBaldExpressProp, TopRule = d3, As = ∅, Conc = ¬KingBaldExpressProp

• H3: H2 ⇒ ¬EverySentExpressProp, TopRule = d4, As = ∅, Conc = ¬EverySentExpressProp

We have an explanandum E2 which arises from the argument D8. By attacking D8

on D1, F4 provides an explanation for E2. However, there is an attack from G2 to F4 on
F2 on the sub-conclusion ¬L2ExpressProp. Notice that this attack is symmetrical as
F2 also rebuts G2. This con�ict is however resolved by H3's undercutting of G2 on G1.
Note that this attack is not symmetrical since all rules used in H3, namely p3, d3, d4, are
strictly preferred to the rule used in G1, which is p2. The resulting graph is illustrated
below:
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Figure 4.2: EAF representing the arguments in the second excerpt

By applying the selection procedures, we get that the argumentative core of the most
explanatory powerful theory is S3 = {F2, F4, H3}, whereas the argumentative core is
{F4, H3}.

4.3 A. Prior's solution

The third solution we will attempt to formalize is one which was proposed by A. Prior
in 1961 [11]. This solution focuses on implicit assertions, and the main idea is described
in our third excerpt:

Excerpt 3

We consider the case where L is de�ned as �L is false�. Every statement includes an
implicit assertion of its own truth. E.g. when asserting �Snow is white�, we implicitly
assert that it is true that snow is white. So L says explicitly that L is false, but
also implicitly that L is true. So it is just a contradictory sentence and thus false.
We cannot conclude from �L is false� that L is true, because �L is false� contradicts
the implicit assertion of L and thus actually makes L false. So we cannot derive a
contradiction about the truth-value of L.

Since this excerpt refers to the same version of the liar paradox as the �rst one, it
does not repeat how the contradiction is reached from no assumption. Hence, we will
simply reuse the rules we created for the �rst excerpt:

t1: Ltrue; “Lfalse”true
t2: “Lfalse”true; Ltrue
t3: Lfalse; “Lfalse”true
t4: “Lfalse”true; Lfalse
t5: Ltrue, Lfalse; ⊥
t6: ¬Ltrue; Lfalse

Let us now try to model this new solution. In the �rst sentence, we can identify the
introduction of a new premise. This would give us the following rule:



4.3. A. PRIOR'S SOLUTION 45

p1: ; EveryStatAssertTrue

Here, the formula EveryStatAssertTrue represents the proposition `Every statement
includes an implicit assertion of its own truth'.

This is followed by an example which illustrates this principle. We could imagine
that someone would doubt the principle just introduced and even come to claim that the
opposite is true, namely that no statement does follow this principle. One could then
introduce this claim as another premise:

p2: ; NoStatAssertTrue

Here, the formula NoStatAssertTrue represents the proposition `No statement in-
cludes an implicit assertion of its own truth'.

Notice that the formulaNoStatAssertTrue is not equivalent to ¬EveryStatAssertTrue
as this simply translates into the proposition `There exists some statement which does not
include an assertion of its own truth'. The two formulas are however clearly incompatible
and thus we need the rules:

t7: NoStatAssertTrue; ¬EveryStatAssertTrue
t8: EveryStatAssertTrue; ¬NoStatAssertTrue

The examples comes now into play as it defends the principle introduced in the excerpt
from this potential attack. By being an example for the principle that all statements
contain an assertion of their own truth, it is a counter-example for the principle that no
statement does so.

p3: ; SnowWhiteAssertTrue
t9: SnowWhiteAssertTrue; ¬NoStatAssertTrue

Here, the formula SnowWhiteAssertTrue represents the proposition `�Snow is white�
contains an assertion of its own truth'.

Notice that once again we will give preference to the counter-example compared to
the general principle that no statement contains an assertion of its own truth. This way,
the example provides indirect support to the principle that every statement contains an
assertion of its own truth by defending it against this potential attack. Note that this
does not qualify however as a deepening of the explanation.

We now come back to the liar sentence L and apply the newly introduced principle.
From this principle, we can derive that L states about itself that it is false, but also
implicitly that it is true:

t10: EveryStatAssertTrue; LAssertTrueAndFalse

Here, the formula LAssertTrueAndFalse represents the proposition `L contains an
assertion of its own truth and of its own falsehood'.

The author then states that L is contradictory and thus false. We can represent this
as such:

t11: LAssertTrueAndFalse; LContradictory
t12: LContradictory ; Lfalse
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Here, the formula LContradictory represents the proposition `L is contradictory'.
In the derivation to a contradiction from no assumption from the liar sentence, one

step is that because it is true that �L is false�, we can say that L is true. However,
according to the principle just introduced, having �L is false� contradicts L's assertion of
its own truth and thus does not make L true but actually false. There is now an attack
on this inference step from the contradictory nature of L.

d1: LContradictory ⇒ ¬t2

We now have a full set of rules which represent the reasoning in the text, a language
and a naming function. We de�ne the preference relation as usual by preferring the
meta-level rules to the object-level ones:

t1, ..., t6 < t7, ..., t12, d1, p1, p2, p3

Also, as mentioned earlier, we prefer the counter-example to the principle which is
targeted:

p2 < p3, t9

We can then construct the following arguments and explanandum:

• A1: Assume(Ltrue), TopRule is unde�ned, As = Ltrue, Conc = Ltrue

• A2: A1 ; “Lfalse”true, TopRule = t1, As = Ltrue, Conc = “Lfalse”true

• A3: A2 ; Lfalse, TopRule = t3, As = Ltrue, Conc = Lfalse

• A4: A1, A3 ; ⊥, TopRule = t5, As = Ltrue, Conc = ⊥

• A5: ProofByContrad(¬Ltrue, A4), TopRule is unde�ned, As = ∅, Conc = ¬Ltrue

• A6: A5 ; Lfalse, TopRule = t6, As = ∅, Conc = Lfalse

• A7: A6 ; “Lfalse”true, TopRule = t4, As = ∅, Conc = “Lfalse”true

• A8: A7 ; Ltrue, TopRule = t2, As = ∅, Conc = Ltrue

• A9: A8, A6 ; ⊥, TopRule = t5, As = ∅, Conc = ⊥

• E1: Source = A9

• I1: ; EveryStatAssertTrue, TopRule = p1, As = ∅, Conc = EveryStatAssertTrue

• I2: I1 ; ¬NoStatAssertTrue, TopRule = t8, As = ∅, Conc = ¬NoStatAssertTrue

• I3: I1 ⇒ LAssertTrueAndFalse, TopRule = t10, As = ∅, Conc = LAssertTrueAndFalse

• I4: I3 ⇒ LContradictory, TopRule = t11, As = ∅, Conc = LContradictory

• I5: I4 ⇒ ¬t2, TopRule = d1, As = ∅, Conc = ¬t2

• I6: I4 ⇒ Lfalse, TopRule = t12, As = ∅, Conc = Lfalse

• J1: ; NoStatsAssertTrue, TopRule = p2, As = ∅, Conc = NoStatsAssertTrue

• J2: J1 ; ¬EveryStatAssertTrue, TopRule = t7, As = ∅, Conc = ¬EveryStatAssertTrue
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• K1: ; SnowWhiteAssertTrue, TopRule = p3, As = ∅, Conc = SnowWhiteAssertTrue

• K2: K1 ⇒ ¬NoStatAssertTrue, TopRule = t9, As = ∅, Conc = ¬NoStatAssertTrue

Notice that the argument to the contradiction and the explanandum are the same as
in the model of the �rst text, since these two texts are focusing on the same version of
the paradox.

This time, we have that I5 explains E1 by attacking A9 on A8. I5 is then attacked by
both J1 and J2 on I2 and I1 respectively, with rebuttals. These rebuttals also translate
in attacks from I1 and I2 to J2 and J1 respectively. Note that we also have another
symmetrical rebuttal from I2 to J2 on J1 and from J2 to I2 on I1. This con�ict is
however resolved by K2 attacking J2 on J1. This attack is unidirectional since the rules
in K2 are all strictly preferred to the rules in J1. We get the following graph:

Figure 4.3: EAF representing the arguments in the third excerpt

By applying the argument selection procedures, we get that the argumentative core
of the most explanatory theory is {I1, I2, I5,K2}, while the explanatory core is {I5,K2}.

4.4 Global analysis

We will now group all the arguments we have constructed from the three texts and
analyze the resulting framework. Notice that the explanatory argument F4 we had in
the second excerpt could be slightly modi�ed to also explain E1 by attacking A9 on
A1. Indeed, if the sentence L2 does not express a proposition, neither does the sentence
L. Hence, making the assumption that L is true makes as little sense as making the
assumption that L2 is true. Therefore, F4 also explains E1.

Similarly, I5 could be slightly modi�ed to also explain E2. If L includes an assertion
of its own truth, then so does L2. Hence L2 explicitly states its own untruth, but also
implicitly states its own truth. Therefore L2 is contradictory in the same way that L
is, and one cannot infer from �L2 is not true� that L2 is true, and thus cannot derive a
contradiction from no assumption. So it is fair to say that I5 also explains E2.
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On the other hand, as was mentioned earlier, the �rst solution does not explain E2

as the step it attacks in the �rst version of the liar paradox does not appear in any form
in the second version. Indeed, it is a �revenge liar� on the �rst solution which aims at
deriving a contradiction from no assumption in a way which that solution does not reject.

Let us look at the framework with all the main arguments from the three previous
models:

Figure 4.4: EAF representing the combined arguments in all three excerpts

Notice that we have collapsed all arguments from a given chain of arguments into
one. For example, I1, I2 and I5 have been merged into I5.

In the EAFs, there is an incompatibility relation which allows to distinguish between
the rivaling theories. We will de�ne it here so as to separate the di�erent solutions.
Even though the solutions are technically not mutually exclusive, once a solution has
been accepted, most paradoxes will be solved and hence the need for an explanation
will be diminished. At that point, one is much less likely to accept another solution
in conjunction with the previous one, even though this might be logically possible. We
represent the di�erent theories by grouping them in boxes on the graph. This means
that we have three sets Sol1 = {B2, C2}, Sol2 = {F4} and Sol3 = {I5}, and each
element of one set is incompatible with the elements of the other sets. For example, B2

is incompatible with the elements of Sol2 and Sol3, F4 is incompatible with the elements
of Sol1 and Sol3, etc. Recall that the incompatibility relation does not represent a bi-
directional attack but only the fact that they cannot be in the same con�ict-free set and
hence extension.

All three theories are fully defended and so the most relevant self-defending con�ict-
free sets are S1 = {B2, C2, H3,K2}, S2 = {B2, C2, H3}, S3 = {B2, C2,K2}, S4 =
{B2, C2}, S5 = {F4, H3,K2}, S6 = {F4, H3}, S7 = {I5,K2, H3}, S8 = {I5,K2}. Let
us now select the most explanatory ones. This removes all supersets of {B2, C2} as
they only provide an explanation for E1 while the others also explain E2. We have now
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completed all the common steps between the two selection procedures and end up with
S5, S6, S7, S8 as extension candidates. Let us investigate the results of the �rst procedure.
We then have to select the maximal sets. We then get S5 and S7. These would be the
two extensions to consider from an argumentative point of view.

Continuing with the second procedure, we will now focus on the explanatory cores.
After the common steps between the two procedures we get the sets S5, S6, S7, S8. We
then have to select the explanatory deepest sets. All four of the candidate sets are either
of the same depth or incomparable, hence we retain them all. Finally, we select the
minimal sets with respect to set inclusion, which leaves us with S6 and S8 as the two
extensions from the second procedure. These are the explanatory cores which contain
only arguments which either form the explanations or directly defend them.
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Chapter 5

Modeling arguments about the liar

paradox using an extension of EAFs

In this chapter, we will introduce Extended Explanatory Argumentation Frameworks
(EEAFs), an extension of EAFs from Section 2.2 with meta-argumentation features such
as higher order attacks, support and joint attacks. We will then apply this EEAF ap-
proach to excerpts from the introduction of the book Saving truth from paradox by H.
Field [6]. It discusses several families of solutions for Grelling's and Russell's paradoxes,
which are very similar to the liar paradox. Since these excerpts feature reasoning on a
more complex level, we believe using EEAFs to be more suited for this task than ASPIC-
END. In this approach we will not be using structured argumentation and will instead
be attempting to mine arguments directly from the text.

In order to motivate the semantics of EEAFs based on a �attening function, we will
start by suggesting a �attening for a subset of AFRAs which we will call grounded
AFRAs. We will prove that this �attening leads to the same extensions as the AFRA
semantics de�ned by Baroni et al. [1].

5.1 Grounded AFRAs

In the de�nition of an AFRA in Section 2.3, notice that it is possible in an AFRA to
have an attack relation which attacks itself, or two attack relations which attack each
other. These two situations are depicted in Figure 5.1 and Figure 5.2 respectively.

Figure 5.1: Ungrounded self-attacking attack relation
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Figure 5.2: Ungrounded attacks attacking each other

These cases are not only unintuitive but also lead to problematic loops with regard
to the �attening function we will de�ne. Thus we introduce the notion of a grounded
AFRA.

De�nition 5.1.1. Grounded AFRA:
Let F = 〈A,→〉 be an argumentation framework with recursive attacks. We induc-

tively de�ne (ϕ,ψ) ∈→ to be grounded if and only if either ψ ∈ A or ψ ∈→ is a grounded
attack. We say that F is grounded if and only if for all ψ ∈→, ψ is grounded.

Let us now focus on a �attening function for grounded AFRAs. Notice that for second
order AFRAs, the names of the auxiliary arguments X and Y were always subscripted
with the source and target arguments. Notice that for AFRAs of order higher than two,
attacks can be nested an unbounded number of times and thus the names of the auxiliary
arguments become more complex. The problem of loops that we mentioned earlier is that
the arguments are the only elements with names, and in order to generate the names for
auxiliary arguments representing the attacks, these attacks must lead to an argument at
some point.

For the �attening function, we will de�ne a function m which will associate each
argument and each attack relation to the corresponding meta-argument. For an argument
a, it will be the meta-argument acc(a), while for an attack, it will be the Y auxiliary
argument, since its acceptability is synonym of success of the attack.

De�nition 5.1.2. Flattening of grounded AFRAs:
Let F = 〈A,→〉 be a grounded AFRA. The set of corresponding meta-arguments

is MA = {acc(a) | a ∈ A} ∪ {Xa,ψ, Ya,ψ} | a ∈ A, ψ ∈ (A ∪ →)}. We de�ne a
partial function m which assigns for each element of the framework a corresponding
meta-argument.

m: (A ∪ →) 7→MA.

such that:

• if ϕ ∈ A, then m(ϕ) = acc(ϕ).

• if ϕ ∈→ such that for some ψ ∈ A and some δ ∈ (A ∪ →), ϕ = (ψ, δ), then
m(ϕ) = Yψ,δ.

We de�ne the �attening function f to be f(F ) = 〈MA,→2〉, where →2⊆MA×MA
is a binary relations on MA such that

acc(a)→2 Xa,ψ, Xa,ψ →2 Ya,ψ and Ya,ψ →2 m(ψ) for all a ∈ A, ψ ∈ (A ∪ →)
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One can then apply the classical abstract argumentation semantics such as complete,
stable, preferred and grounded. We then need to de�ne a function which can transform
a meta-extension from the �attened grounded AFRA to an extension for the original
grounded AFRA. The unneeded meta-arguments will need to be �ltered out while the
relevant ones will have to be converted back into regular arguments or attacks. A similar
un�attening function has been introduced in [2], and has been slightly modi�ed here to
also un�atten attacks.

De�nition 5.1.3. Un�attening function

Given a set of meta-arguments B ⊆MA, we de�ne the un�attening function g to be:

g(B) = {a | acc(a) ∈ B} ∪ {(a, ψ) | Ya,ψ ∈ B}

We also de�ne a function f̄ which provides a correspondence between a set of argu-
ments and attacks from a grounded AFRA and a set of meta-arguments from its �attened
version.

De�nition 5.1.4. Correspondence function f̄ :
Let F = 〈A,→〉 be a grounded AFRA and f(F ) = 〈MA,→2〉 its �attening. We

de�ne the correspondence function f̄ as follows:

f̄ : P(A ∪ →) 7→ P(MA)
f̄(S) = {acc(a) | a ∈ S ∩A} ∪ {Ya,ψ | (a, ψ) ∈ S ∩ →}∪ {Xb,ψ | (a, b) ∈ S ∩ →, ψ ∈ →}

Notice that g(f̄(S)) = S. We add the extra Xi,j meta-arguments in order to represent
the indirect attacks which the arguments in S might carry out, i.e. the attacks which are
indirectly attacked by arguments in S due to them attacking the source of these attacks.

In [1], Baroni et al. de�ne the semantics of AFRAs without having recourse to
�attening. We will show that the process of �attening, applying complete semantics on
the �attened frameworks and then un�attening it is equivalent to the directly applying
the semantics they de�ne for the complete semantics. We will show this gradually by
�rst stating and proving three lemmas:

Lemma 5.1.1. Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆
(A ∪ →). S is con�ict-free in F if and only if f̄(S) is con�ict-free in f(F ).

Proof:

Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. We will �rst show that if S is con�ict-free in F , then f̄(S) is con�ict-free in f(F ).
Assume that S is con�ict-free in F . Then, there is no ϕ,ψ ∈ S such that trg(ϕ) = ψ
or trg(ϕ) = src(ψ). Suppose for a contradiction that f̄(S) is not con�ict-free in
f(F ). This means that there exists two arguments p, q ∈ f̄(S) such that p →2 q.
By the construction of →2 de�ned by the �attening function, there are only four
possible cases:

(a) p = acc(a) and q = Xa,ψ for some a ∈ A and ψ ∈ (A ∪ →). Then, by the
de�nition of f̄ , since Xa,ψ ∈ f̄(S), we have (b, a) ∈ (S ∩ →) for some b ∈ A.
Also, since acc(a) ∈ f̄(S), we have a ∈ S. But (b, a) defeats a, and so S is not
con�ict-free.

(b) p = Xa,ψ and q = Ya,ψ for some a ∈ A and ψ ∈ (A ∪ →). Then, by the
de�nition of f̄ , since Xa,ψ ∈ f̄(S), we have (b, a) ∈ (S ∩ →) for some b ∈ A.
Also, since Ya,ψ ∈ f̄(S), we have (a, ψ) ∈ S. But (b, a) defeats (a, ψ), and so
S is not con�ict-free.
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(c) p = Ya,b and q = acc(b) for some a, b ∈ A. Then, by the de�nition of f̄ ,
(a, b) ∈ S and b ∈ S. Thus, S is not con�ict-free since (a, b) defeats b.

(d) p = Ya,(b,ψ) and q = Yb,ψ for some a, b ∈ A and ψ ∈ (A ∪ →). Then, by the
de�nition of f̄ , (a, (b, ψ)) ∈ S and (b, ψ) ∈ S. Since trg(a, (b, ψ)) = (b, ψ), S
is not con�ict-free.

In each case, we get that S is not con�ict-free. However, S being con�ict-free is
one of our assumptions, so we have a contradiction. Therefore f̄(S) is con�ict-free.

2. We will now show that if f̄(S) is con�ict-free in f(F ), then S is con�ict-free in F .
Suppose f̄(S) is con�ict-free. Then, there is no p, q ∈MA such that p→2 q. Sup-
pose for a contradiction that S is not con�ict-free. Then, there exists (a, ϕ), (b, ψ) ∈
S such that ϕ = (b, ψ) or ϕ = b. Let us consider the two cases individually:

(a) Suppose ϕ = (b, ψ). Then, we have that (a, (b, ψ)), (b, ψ) ∈ S. By the de�ni-
tion of f̄ , this means that Ya,(b,ψ), Yb,ψ ∈ f̄(S). However, by the construction
of →2 de�ned by the �attening function, Ya,(b,ψ) →2 Yb,ψ. Hence, f̄(S) is not
con�ict-free. Since f̄(S) being con�ict-free is one of our assumptions, we have
a contradiction.

(b) Suppose ϕ = b. Then, we have that (a, b), (b, ψ) ∈ S. By the de�nition of
f̄ , this means that Ya,b, Yb,ψ ∈ f̄(S), but also that Xb,ψ ∈ f̄(S). However,
by the construction of →2 de�ned by the �attening function, Xb,ψ →2 Yb,ψ.
Hence, f̄(S) is not con�ict-free. Since f̄(S) being con�ict-free is one of our
assumptions, we have a contradiction.

In both cases we have a contradiction, therefore S is con�ict-free.

Hence, we can conclude that S is con�ict-free in F if and only if f̄(S) is con�ict-free in
f(F ). �

Lemma 5.1.2. Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →)
and S ⊆ (A ∪ →). We have that:

ϕ is acceptable with respect to S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S
if and only if

m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also defended by
f̄(S).

Proof :
Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →) and

S ⊆ (A ∪ →).

1. We will �rst show that if ϕ is acceptable with respect to S in F and if ϕ = (a, ψ) ∈
→, we have a ∈ S, then m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S).
Suppose that ϕ is acceptable with respect to S in F and if ϕ = (a, ψ) ∈ →, we
have a ∈ S. Then, for all ψ ∈ → such that ψ defeats ϕ, there exists some δ ∈ S
such that δ defeats ψ. Now consider m(ϕ) in f(F ). Suppose for some p ∈ MA,
p →2 m(ϕ). By the construction of →2 de�ned by the �attening function, either
p = Ya,ϕ for some a ∈ A or p = Xsrc(ϕ),trg(ϕ). The second case is possible only if
ϕ ∈ →. Let us examine the two cases separately:
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(a) Suppose p = Ya,ϕ for some a ∈ A. We have that (a, ϕ) defeats ϕ in F and
thus there exists some δ ∈ S such that δ defeats (a, ϕ). We distinguish two
cases:

i. Suppose δ = (b, a) for some b ∈ A. This means that Yb,a ∈ f̄(S) and
that Xa,ϕ ∈ f̄(S). By the construction of →2 de�ned by the �attening
function, Xa,ϕ →2 Ya,ϕ and thus m(ϕ) is defended by f̄(S).

ii. Suppose δ = (b, (a, ϕ)) for some b ∈ A. This means that Yb,(a,ϕ) ∈ f̄(S).
By the construction of →2 de�ned by the �attening function, Yb,(a,ϕ) →2

Ya,ϕ and thus m(ϕ) is defended by f̄(S).

(b) Now suppose ϕ ∈ → and p = Xsrc(ϕ),trg(ϕ). Then, src(ϕ) ∈ S and thus
acc(src(ϕ)) ∈ f̄(S). By the construction of →2 de�ned by the �attening
function, acc(src(ϕ)) →2 Xsrc(ϕ),trg(ϕ) and thus m(ϕ) = Ysrc(ϕ),trg(ϕ) is de-
fended by f̄(S).

In both cases, m(ϕ) is defended by f̄(S). Hence, if ϕ is acceptable with respect
to S in F , then m(ϕ) is defended by f̄(S) in f(F ). We now have to show that if
ϕ ∈ →, then acc(src(ϕ)) is also defended by f̄(S).
Suppose ϕ ∈ → and p ∈ MA such that p →2 acc(src(ϕ)). Then, p must be of
the form Ya,src(ϕ) for some a ∈ A, and hence there exists (a, src(ϕ)) ∈ →. Since
(a, src(ϕ)) defeats ϕ, there exists some δ ∈ S such that δ defeats (a, src(ϕ)). We
distinguish two cases:

• Suppose δ = (b, a) for some b ∈ A. This means that Yb,a ∈ f̄(S) and that
Xa,src(ϕ) ∈ f̄(S). By the construction of→2 de�ned by the �attening function,
Xa,src(ϕ) →2 Ya,src(ϕ) and thus acc(src(ϕ)) is defended by f̄(S).

• Suppose δ = (b, (a, src(ϕ))) for some b ∈ A. This means that Yb,(a,src(ϕ)) ∈
f̄(S). By the construction of→2 de�ned by the �attening function, Yb,(a,src(ϕ)) →2

Ya,src(ϕ) and thus acc(src(ϕ)) is defended by f̄(S).

Hence, acc(src(ϕ)) is also defended by f̄(S).
Therefore, if ϕ is acceptable with respect to S in F and if ϕ = (a, ψ) ∈ →, we have
a ∈ S, then m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S).

2. We will now show that if m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is defended by f̄(S) also, then ϕ is acceptable with respect to S in F
and if ϕ = (a, ψ) ∈ →, we have a ∈ S.
Suppose m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also
defended by f̄(S). So, for each p ∈MA such that p→2 m(ϕ), we have that there
exists a q ∈ f̄(S) such that q →2 p. Now consider ϕ in F . Suppose that for some
ψ ∈ →, ψ defeats ϕ. This means that either ψ = (a, ϕ) or ψ = (a, src(ϕ)) for some
a ∈ A. Let us consider both cases individually:

(a) Assume ψ = (a, ϕ). Suppose for a contradiction that there is no δ ∈ S such
that δ defeats ψ. Then, by the construction of →2 de�ned by the �attening
function, there exists no Ysrc(δ),(a,ϕ) ∈ f̄(S) nor Xa,ϕ ∈ f̄(S). Hence, there
is no s ∈ f̄(S) such that s →2 Ya,ϕ and thus m(ϕ) is not defended by f̄(S).
However, one of our assumptions is that m(ϕ) is defended by f̄(S) and thus
we have a contradiction. Hence, there exists a δ ∈ S such that δ defeats ψ.

(b) Assume ψ = (a, src(ϕ)). Suppose for a contradiction that there is no δ ∈
S such that δ defeats ψ. Then, by the construction of →2 de�ned by the
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�attening function, there exists no Ysrc(δ),(a,src(ϕ)) ∈ f̄(S) nor Xa,src(ϕ) ∈
f̄(S). Hence, acc(src(ϕ)) is not defended by f̄(S). However, we have that
acc(src(ϕ)) is defended by f̄(S). Hence, we have a contradiction, and therefore
there exists a δ ∈ S such that δ defeats ψ.

Hence, we can conclude that there exists a δ ∈ S such that δ defeats ψ. Therefore,
ϕ is acceptable with respect to S.

We now have to show that if ϕ = (a, ψ) ∈ →, we have a ∈ S, still under the
assumption that m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ))
is also defended by f̄(S).
Suppose that ϕ = (a, ψ) ∈ →. Then, by the construction of →2 de�ned by the
�attening function, we have Xa,ψ →2 Ya,ψ. Since m(ϕ) = Ya,ψ is defended by f̄(S),
there exists p ∈ f̄(S) such that p →2 Xa,ψ. By the construction of →2, the only
possibility is p = acc(a). Hence, acc(a) ∈ f̄(S). Therefore, we have a ∈ S.

Thus, we can conclude that ϕ is acceptable with respect to S in F and if ϕ = (a, ψ) ∈ →,
we have a ∈ S, if and only if m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S).�

Lemma 5.1.3. Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆
(A ∪ →). We have that:

S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S
if and only if

f̄(S) is admissible in f(F ).

Proof : Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. We will �rst show that if f̄(S) is admissible in f(F ), then S is admissible in F and
for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.
Suppose f̄(S) is admissible in f(F ). Then, f̄(S) is con�ict-free. Hence, according
to Lemma 5.1.1, S is also con�ict-free.
Let ϕ ∈ S. We need to show that ϕ is acceptable with respect to S. We do this by
applying Lemma 5.1.2, i.e. by establishing that m(ϕ) is defended by f̄(S) in f(F )
and if ϕ ∈ →, then acc(src(ϕ)) is also defended by f̄(S). We havem(ϕ) ∈ f̄(S) and
m(ϕ) is defended by f̄(S) since f̄(S) is admissible. By the de�nition of f̄ , for every
(a, ψ) ∈ (S ∩ →), we have Ya,ψ ∈ f̄(S). Therefore, acc(a) ∈ f̄(S), since it is the
only argument which can defend Ya,ψ from Xa,ψ's attack and f̄(S) is admissible.
This means that acc(a) is defended by f̄(S). Thus, according to Lemma 5.1.2,
every ϕ ∈ S is acceptable with respect to S, which means that S is admissible, and
for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.

2. We now have to show that if S is admissible in F and for every (a, ψ) ∈ (S ∩ →),
we have that a ∈ S, then f̄(S) is admissible in f(F ).
Suppose S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.
Then, S is con�ict-free and so, according to Lemma 5.1.1, f̄(S) is also con�ict-free.
To conclude that f̄(S) is admissible, we still need to show that for every p ∈ f̄(S),
f̄(S) defends p. So let p ∈ f̄(S). p is either of the form m(ϕ) for some ϕ ∈ S,
or of the form Xa,b for some a, b ∈ MA and (ψ, a) ∈ S. We treat these two cases
separately.
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(a) Suppose p = m(ϕ) for some ϕ ∈ S. ϕ is acceptable with respect to S and if
ϕ = (a, ψ) for some a ∈ A and some ψ ∈ →, then a ∈ S. Hence, according to
Lemma 5.1.2, p = m(ϕ) is defended by f̄(S).

(b) Suppose p = Xa,b for some a, b ∈ MA and (ψ, a) ∈ S. By construction,
Xa,b ∈ f̄(S) means that (c, a) ∈ S ∩ → for some c ∈ A. Therefore, Yc,a ∈ f̄(S)
and Yc,a →2 acc(a). Since by construction, the only argument attacking Xa,b

is acc(a), Yc,a ∈ f̄(S) defends Xa,b. Therefore, p = Xa,b is defended by f̄(S).

In both cases, p is defended by f̄(S). Hence, f̄(S) is admissible in f(F ).

Therefore, S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S, if
and only if f̄(S) is admissible in f(F ).�

Theorem 5.1.1. Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆
(A ∪ →). S is a complete extension of F if and only if f̄(S) is a complete extension of
f(F ).

Proof :
Let F = 〈A,→〉 be a grounded AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. We will �rst show that if S is a complete extension of F , then f̄(S) is a complete
extension of f(F ).
Suppose S is a complete extension of F . Then, S is admissible and for every
a ∈ A such that a is acceptable with respect to S, we have a ∈ S. For every
(a, ψ) ∈ (S ∩ →), if δ ∈→ defeats a, then δ defeats (a, ψ). Hence, since (a, ψ) is
acceptable with respect to S, we have that a is acceptable with respect to S. Hence,
since S is a complete extension, we have a ∈ S. So we have that S is admissible
and for all (a, ψ) ∈ (S ∩ →), we have that a ∈ S. Therefore, by Lemma 5.1.3, f̄(S)
is admissible.

Take some arbitrary p ∈ MA and suppose that p is defended by f̄(S). We have
two cases, either p = m(ϕ) for some ϕ ∈ (A ∩ →), or p = Xa,b for some a, b ∈ A.
Let us consider both cases individually:

(a) Suppose that p = m(ϕ) for some ϕ ∈ (A ∩ →). Now assume that ϕ ∈→.
Then,m(ϕ) = Ysrc(ϕ),trg(ϕ). By construction of→2, we have thatXsrc(ϕ),trg(ϕ) →2

Ysrc(ϕ),trg(ϕ). The only argument which can defend Ysrc(ϕ),trg(ϕ) fromXsrc(ϕ),trg(ϕ)

is acc(src(ϕ)). Since f̄(S) defends Ysrc(ϕ),trg(ϕ), we have that acc(src(ϕ)) ∈
f̄(S). As f̄(S) is admissible, acc(src(ϕ)) is defended by f̄(S). Hence, if
ϕ ∈ →, then acc(src(ϕ)) is defended by f̄(S).
Therefore, by Lemma 5.1.2, ϕ is acceptable with respect to S. Since S is a
complete extension, this means that ϕ ∈ S. Therefore, p = m(ϕ) ∈ f̄(S).

(b) Now suppose that p = Xa,b for some a, b ∈ A. According to our assumptions,
f̄(S) defends Xa,b. By construction of ⇒2, the only argument which attacks
Xa,b is acc(a). Hence, there exists Yc,a ∈ f̄(S) for some c ∈ A. So, by
de�nition of f̄ , we have that p = Xa,b ∈ f̄(S).

In either case, we have that p ∈ f̄(S). Hence, f̄(S) contains all arguments it
defends. Since it is also admissible, f̄(S) is a complete extension of f(F ).

2. We will now show that if f̄(S) is a complete extension of f(F ), then S is a complete
extension of F .
Suppose that f̄(S) is a complete extension of f(F ). Then, f̄(S) is admissible and
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contains all arguments it defends. According to Lemma 5.1.3, we have that S is
admissible and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S. Suppose that
for some ϕ ∈ (A ∪ →), ϕ is acceptable with respect to S. Hence, by Lemma
5.1.2, m(ϕ) is defended by f̄(S). Since f̄(S) is a complete extension of f(F ),
m(ϕ) ∈ f̄(S). Hence, by construction of f̄(S), we have that ϕ ∈ S. Therefore, for
any ϕ ∈ (A ∪ →) such that ϕ is acceptable with respect to S, we have ϕ ∈ S.
Since S is also admissible, S is a complete extension of F .

Hence, S is a complete extension of F if and only if f̄(S) is a complete extension of
f(F ).�

5.2 Extended Explanatory Argumentation Frameworks

We will now extend EAFs, as seen in Section 2.2, by integrating it with multiple meta-
argumentation techniques. In order to produce a model of the reasoning present in the
excerpts which captures as closely as possible the author's reasoning, we require that
our formalism have enough expressive power. We need the explanatory relation as the
reasoning is about di�erent solutions which aim to explain a given paradox and hence
we need our formalism to feature some measure of explanatory power and depth.

Also, we require higher-order attacks in order to be able to express some subtleties
in the reasoning. For example, we might wish to be able to represent the fact that
some argument A actually fails to explain a certain explanandum E. In such a case,
the argument A might be sound and �ne on its own, and thus attacking it would not
capture the idea of failure to explain E. Hence why we require that in our formalism
some argument may attack an explanation or even attack relation.

We also require a relation of support separate from the explanatory relation between
arguments. An argument explains another argument by adding depth to the its expla-
nation. Hence, the explanatory relation between arguments only makes sense if it forms
a chain which leads to an explanandum. On the other hand, an argument supports an-
other by deductively concluding it. The relation of support is not tied in any way to
the explananda and the measures of explanatory power and depth. Also, notice that if
a explains b, c attacking b has no in�uence on a, while if a supports b, then c attacking
b will result in an indirect attack on a. This will be apparent in the �attening.

De�nition 5.2.1. EEAF:
An extended explanatory argumentation framework (EEAF) is a tuple 〈A,X ,→, 99K

,∼,⇒〉, where A is a set of arguments, X is a set of explananda, 99K ⊆ (A × A) ∪
(A×X ) is an explanatory relation, → ⊆ (P(A) ∪ 99K ∪ →)× (A ∪ 99K ∪ → ∪ ⇒) is a
grounded higher-order attack relation, ∼ ⊆ A×A is an incompatibility relation and ⇒
⊆ A×A is a support relation. → is a grounded higher-order attack relation means that
every element of → is grounded, which we de�ne inductively as follows: (ϕ,ψ) ∈ → is
grounded if and only if either ψ ∈ (P(A) ∪ 99K) or ψ ∈ → is grounded.

We then de�ne the semantics of EEAFs in terms of their �attening.

De�nition 5.2.2. Flattening of EEAFs:
Let F = 〈A,X ,→, 99K,∼,⇒〉 be an EEAF. The set of meta-arguments correspond-

ing to F is MA = {acc(a), rej(a) | a ∈ A} ∪ {Xm(ϕ),m(ψ), Ym(ϕ),m(ψ) | ϕ ∈ (A ∪ →
∪ 99K), ψ ∈ (A ∪ → ∪ 99K ∪ ⇒)} ∪ {e(S) | S ⊆ A with at least two elements}
∪ {Pa,ψ, Qa,ψ | a ∈ A, ψ ∈ (A ∪ X )} ∪ {Za,b | a, b ∈ A} and the set of meta-explananda
is MX = X . We de�ne a partial function m which assigns for each element of the
framework a corresponding meta-argument.
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m: (A ∪ → ∪ 99K ∪ ⇒) 7→MA.

such that:

• if ϕ ∈ U , then m(ϕ) = acc(ϕ).

• if ϕ ∈⇒ such that for some a, b ∈ A, ϕ = (a⇒ b), then m(ϕ) = Za,b.

• if ϕ ∈→ such that for some S ⊆ A with at least two elements and some ψ ∈ (A
∪ 99K ∪ → ∪ ⇒), ϕ = (S → ψ), then m(ϕ) = e(S).

• if ϕ ∈→ such that for some ψ ∈ (A ∪ 99K ∪ →) and some δ ∈ (A ∪ 99K ∪ → ∪ ⇒),
ϕ = (ψ → δ), then m(ϕ) = Yψ,δ.

• if ϕ ∈99K such that for some a ∈ A and ψ ∈ (A ∪ X ), ϕ = (a 99K ψ), then
m(ϕ) = Pa,ψ.

We de�ne the �attening function f to be f(F ) = 〈MA,X ,→2, 99K2,∼〉, where
→2, 99K2⊆MA×MA are binary relations on MA such that

• Xm(ϕ),m(ψ) →2 Ym(ϕ),m(ψ), Ym(ϕ),m(ψ) →2 m(ψ) for all ϕ,ψ ∈ (A ∪ → ∪ 99K ∪ ⇒)

• m(ϕ)→2 Xm(ϕ),m(ψ) if and only if ϕ→ ψ and ϕ is not a set of arguments with at
least two elements

• acc(a)→2 rej(a) for all a ∈ A

• e(S)→2 m(ϕ) if and only if S → ϕ for S ⊆ A with at least 2 elements

• rej(a)→2 e(S) if and only if a ∈ S

• Za,b →2 acc(a) for all a, b ∈ A

• acc(b)→2 Za,b if and only if a⇒ b

• acc(a) 99K2 Pa,ϕ, Pa,ϕ 99K2 m(ϕ), acc(a)→2 Qa,ϕ and Qa,ϕ →2 Pa,ϕ if and only if
a 99K ϕ.

Notice that the set of meta-arguments MA and the correspondence function m
are de�ned through a simultaneous inductive de�nition which terminates because →
is grounded.

Note that we do not fully �atten the explanatory relation and �atten EEAFs into
EAFs and not classical abstract argumentation frameworks. This is due to the fact that
the explanatory relation is not easily �attened, and extensions can still be extracted
from explanatory argumentation frameworks via the two selection procedures which are
well-suited for our task. In order to do this, we need to de�ne an un�attening function
which will map a set of meta-arguments from a �attened EEAF to the corresponding set
of arguments from the original EEAF.

De�nition 5.2.3. Un�attening function for EEAFs:
Given an EEAF F and a set of meta-arguments B ⊆MA such thatMA corresponds

to F , we de�ne the un�attening function g to be:

g(B) = {a | acc(a) ∈ B}
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Notice that in the un�attening, we only care about the arguments and do not un�atten
the meta-arguments which represent the other elements of EEAFs. This is due to the fact
that we are only interested in selecting the arguments of the EEAF, which make up the
argumentative and explanatory cores. Also taking into consideration other elements the
EEAF would not add much information while adding possible unnecessary confusions.

We then describe the two argument selection procedures as follows:
Procedure 1:

1. Flatten the framework F into M = f(F ).

2. Select the con�ict-free sets in M .

3. Out of those, select the defended ones.

4. Out of those, select the most explanatory powerful ones.

5. Out of those, select the maximal ones with respect to ⊆ and call the resulting set
AC.

6. For each S ∈ AC, compute and output g(S).

This �rst procedure selects the argumentative cores of the EEAF while the next
procedure will select the explanatory cores of the EEAF.

Procedure 2:

1. Flatten the framework F into M = f(F ).

2. Select the con�ict-free sets in M .

3. Out of those, select the defended ones.

4. Out of those, select the most explanatory powerful ones.

5. Out of those, select the most explanatory deep ones.

6. Out of those, select the minimal ones with respect to ⊆ and call the resulting set
AC.

7. For each S ∈ AC, compute and output g(S).

5.3 Applying EEAFs to the liar paradox

We can now proceed to formalizing the excerpts using EEAFs.
The �rst extract we will examine is taken from the introduction of [6] and focuses on

the Russell property. There is a principle which the author refers to as (INST), where F
is some intelligible predicate:

(INST) �The property of being F is instantiated by all and only those things that are
F.�

Now the Russell property is the property of not instantiating itself. By plugging the
Russell property in INST, we get:

�The Russell property is instantiated by all and only those things that don't instantiate
themselves.�
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Which can also be rephrased as:

�The Russell property instantiates itself if and only if it does not instantiate itself.�

This is the Russell paradox, which is similar in many ways to the liar paradox as
it has the form B ↔ ¬B. Let us now examine excerpt 4, which can be found in the
appendix.

We have the following arguments:

1. Ep: this is an explanandum which represents Russell's paradox.

2. A: The Non-existence solution, which suggests that there is no such property as
the Russell property.

3. B: One could argue that it would violate the raison d'être of properties to suppose
that for an intelligible predicate such as `doesn't instantiate itself', there is no
corresponding property of not instantiating itself.

4. C: As an answer to this, one could deny that the Russell property is intelligible.

5. D: It seems odd to say that the property of not instantiating itself is not intelligible
as all parts of it are intelligible.

6. E: By de�ning intelligible as �expresses a property�, one can deny that the Russell
property is intelligible.

These arguments give us the following framework:

Figure 5.3: EEAF representing the reasoning behind excerpt 4

The non-existence solutionA explains the paradox Ep and is attacked by the argument
B that it violates the raison dêtre of properties to suppose that such a property does not
exist. B is in turn attacked by the argument C that the property is not -intelligible, which
also deepens A's explanation. The argument D then states that all parts of `does not
instantiates itself' are intelligible and thus attacks C. We then have the argument F that
`intelligible should be read as `expresses a property�. This attacks D and also adds to the
explanatory depth of C as it explains the term `intelligible' used in C. However, notice
that F also attacks the explanatory relation from C to A as the de�nition of `intelligible'
and `express a property' given by the solution are now de�ned in terms of each other
and can thus never be fully settled. This means that the solution has not explained the
failure of the property (COMP). As a consequence, F also attacks the attack from C to
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B as the argument of non-intelligibility does now not seem solid enough to warrant an
attack on B.

The framework can be �attened as follows:

Figure 5.4: Flattened EEAF representing the reasoning behind Excerpt 4

Notice that we have simpli�ed the �attened framework for the purpose of visibility.
We have omitted the auxiliary arguments Xa,b and Ya,b in the cases where (a, b) being
not attacked or the origin of an attack, as including them would then have no impact on
the �nal extensions.

We now apply the �rst selection procedure. The �rst step, the �attening, has al-
ready been done. Steps 2 and 3 give us the con�ict-free and self-defended sets, of
which the most relevant are ∅, {acc(F )}, {acc(F ), PF,C , acc(C)}, {acc(F ), acc(B)} and
{acc(F ), PF,C , acc(C), acc(B)}. Since none of them contain an explanation for Ep, they
are all equally as explanatory powerful and hence step 3 changes nothing. Step 4 makes
us select the maximal ones, and there is one set which is a superset of all the others, the
set {acc(F ), PF,C , acc(C), acc(B)}. g({acc(F ), PF,C , acc(C), acc(B)}) = {F,C,B} and
thus the argumentative core is {F,C,B}.

The second procedure gives us that the explanatory core is ∅. This is due to the fact
that the only argument explaining the explanandum Ep is A, yet A is attacked by B
which is defended by the unattacked argument F . Hence, A can never be defended and
thus we can extract no relevant explanation from this framework.

Let us now examine excerpt 5. Here, the author is focusing on the paracomplete
solutions. The paracomplete solution reject the principle of excluded middle which states
that for every formula ϕ, it always holds that ϕ∨¬ϕ. We have the following arguments:

• Ep: This explanandum represents once again the paradox.

• A: The paracomplete solution explains the paradox by rejecting the law of excluded
middle.

• B: Why would one reject the law of excluded middle when it seems sound in
mathematics, physics etc.

• C: The paracomplete solution only question its applicability to certain circular
predicates such as this paradox.

• D: An interesting paracomplete theory in which the Naive Property Theory is
consistent might not even be possible since intuitionist logic invalidates the central
argument from equivalence to contradiction but still allows for contradictions from
a formula such as B ↔ ¬B.
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• F : In deMorgan logics without LEM, B ↔ ¬B is not contradictory.

• G: B ↔ ¬B not being contradictory is not enough, we also need to maintain Naive
Property Theory and include intersubstitutivity of equivalents.

• H: Intersubstitutivity of equivalents follows from (INST) in classical logic.

• I: We are considering logics weaker than classical logic in which it may not follow
from (INST).

• J : In the reasonably strong deMorgan logic advocated later in the book, (INST)
holds.

We get the following framework:

Figure 5.5: EEAF representing the reasoning behind Excerpt 5

The framework gets �attened into:
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Figure 5.6: Flattened EEAF representing the reasoning behind Excerpt 5

Notice that once again, for the sake of visibility, we have omitted unnecessary auxiliary
arguments Xa,b, Ya,b when (a, b) ∈ → is not being attacked or attacking another element
of the framework, and similarly for Pa,e, Qa,e when (a, e) ∈ 99K is not being attacked or
attacking.

By applying the two selection procedures, we get that the argumentative core is
{A,C, F,G,H, I, J} while the explanatory core is {A,C, F, J}. This means that the
solution modeled in the excerpt seems to be consistent with the proposed arguments
F,G,H and I, even if they do not directly contribute to the explanation of the solution.
In the end, the solution A is defended by C from B and by F from D, which is then
defended by J from G. Hence, the four arguments A,C, F, J are essential and su�cient
to defend the solution in this model. Note that no arguments are explaining each other,
hence we cannot measure explanatory depth in this model.

Let us now move on to excerpt 6, which focuses on two groups of solutions. The �rst
group is the solutions which weaken classical logic, namely the paracomplete, paracon-
sistent and semi-classical solutions. The second group is comprised of the underspill and
overspill solutions.

We have the following arguments:

• Ep: Again, this explanandum represents the paradox.

• A: The paracomplete, paraconsistent and semi-classical solutions which provide
explanations for the paradox by weakening classical logic.

• B: The underspill and overspill solutions which provide their own explanation of
the paradox by suggesting that for some predicates F, F is true of some objects
that aren't F or vice-versa.

• C: We did not change logic to hide the defects in other �awed theories such as
Ptolemaic astronomy, so why should we change the logic simply to hide these
paradoxes?

• D: There is no known way of saving these �awed theories such as Ptolemaic as-
tronomy and even if there was, there is little bene�t to doing so.
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• F : We have worked out the details of the new logics and they allow us to conserve
the theory of truth.

• G: Changing the logic implies changing the meaning.

• H: Change of meaning is bad.

• I: The change is mere.

• J : This is no `mere' relabelling.

• K: Change of truth schema is a change of the meaning of `true'.

• L: The paradox forces a change of meaning.

The framework is represented in Figure 5.7 and its �attening in Figure 5.8.

Figure 5.7: EEAF representing the reasoning behind Excerpt 6
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Figure 5.8: Flattened EEAF representing the reasoning behind Excerpt 6

Once again, we have omitted less-relevant auxiliary arguments for the sake of visibil-
ity.

By applying the selection procedures, we get that the argumentative cores are {A,C,D, F, L,G, J,K}
and {B,C,D, F, L,G, J,K}. We can distinguish here the two rivaling solutions which are
both select. This is due to the fact that even though the author might have a preference
for one or another, in the excerpt we have analyzed, he is merely defending the solutions
represented in A from attacks and making no argument which attacks only the solutions
represented in B.

The explanatory cores are {A,D,F, L}, {A,D,F, J} and {B, J}. Notice that there
are two di�erent explanatory cores which contain A, as there are two arguments which
individually defend A from the coalition attack of {G,H}. Each of these two sets include
only of these two defending arguments for the sake of minimality.



Chapter 6

Future work and conclusions

6.1 Future work

Before concluding the thesis, we present some open problems related to the research of
this thesis which it is worthwhile to research further.

One would be to investigate the equivalence between transpositions of all intuitively
strict rules in R and allowing proofs by contradiction. We have noticed that under some
circumstances, having proofs by contradiction is equivalent to having transpositions of
all intuitively strict rules. However, it is not clear how to generalize this to all cases and
thus this potential equivalence requires further research.

ASPIC-END is based on propositional logic, however philosophical literature about
the liar paradox involves many use of quanti�ers. Hence, it might be interesting to de�ne
a �rst-order version of ASPIC-END, in order to enrich the models and allow one to model
this aspect of philosophical reasoning about the liar paradox.

Another point of interest would be to study the relationship between the ASPIC-END
approach and the EEAF approach. The goal would be to get a better understanding of
what one can do with each of these approaches. A formal correspondence could also be of
interest, as well as informal comparisons of when which approach is best suited. It would
also be interesting to combine both approaches and provide a structured argumentation
system for building EEAFs using natural deduction.

In order to better study the viability of these approaches, one could also attempt
to model more proposed solutions to the liar paradox, in particular paraconsistent ones,
which have been left out of this thesis due to time limitations.

Note that as mentioned before, the models built in the course of this thesis will
serve as material for the empirical studies of the theoretical work of the interdisciplinary
project Cognitive Aspects of Formal Argumentation, which will start in November 2016
and will be led by Prof. Leon Van Der Torre and Prof. Christine Schiltz. In the course
of this project, the cognitive plausibility of the models produced in this thesis, as well as
of formal argumentation in general, will be studied.

While ASPIC-END was developed with the goal of modeling arguments about the
solutions to the liar paradox in mind, it might be interesting to attempt to apply it to
model arguments in a di�erent context than logical paradoxes and allow us to to get a
better idea of which are the features which �t well for explanatory debates in general
and which are the features which are more unique to the modeling of logical paradox
solutions.

67
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6.2 Conclusions

In the course of this thesis, we have revisited some of the existing theories in formal
argumentation, from the well-established abstract argumentation frameworks to the dif-
ferent extensions of it and also the structured argumentation approach of ASPIC+. We
have then proposed a new formalism of structured argumentation, ASPIC-END, which
includes explanatory features and natural deduction style proofs by contradiction, in or-
der to provide us with more expressive power for the modeling of the debates around the
solutions to the liar paradox. After this, we have used that formalism to model three
excerpts describing three di�erent solutions individually, and then have merged the mod-
els together in order to compare the three solutions. Additionally, we have presented a
di�erent approach called Extended Explanatory Argumentation Frameworks, where we
tried to formalize the reasoning behind more complex excerpts in a manual way. We
have �nally reviewed a few open problems and possible future research related to the
formalisms and models we have created in this thesis.

While the structured argumentation approach seemed more automated and well
suited to model arguments in simple texts, attempts to use this formalism to model
complex reasoning which uses several implicit assumptions and philosophical thinking
have proven to be very di�cult. In the manual formalization approach, while we were
able to model more complex arguments which seemed to be closer to the text, multiple
revisions had to be made in order to capture as best as possible the reasoning in the text,
and even still then, di�erent models might arise which also capture the same reasoning
in a justi�able manner.
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Appendix A

Excerpts modeled in Section 5.3

A.1 Excerpt 4, taken from Saving Truth From Paradox [6],
pages 4 and 5

We've seen that one possible reaction to Russell's paradox for (conceptual) properties is

Non-existence Solution: There is no such thing as �the Russell property�, i.e. �the
(conceptual) property of not instantiating itself�. (Put loosely: There is no (conceptual)
property corresponding to the predicate `doesn't instantiate itself'. I take this as just an
informal way of putting what's in the �rst sentence. Note that talk of �correspondence�
doesn't appear in the o�cial formulation.)

The idea is to decompose the schema (INST) into two components: a correct com-
ponent

(INSTw) if there is a property of begin F, then it is instantiated by all and only the
things that are F;

and a component that needs restriction

(COMP) There is a property of being F.

According to the Non-existence Solution, (INSTw) holds for all intelligible predicates
F, but (COMP) fails for some of the, e.g. `doesn't instantiate itself'. There will need to
be may other failures of (COMP) too, if other paradoxes like Russell's are to be handled
along similar lines. A serious theory that incorporates the Non-existence Solution will
have to tell us for which F's (COMP) holds and for which ones it fails.

I've suggested, following Gödel, that the Non-existence solution isn't very attractive
(for anyone who doesn't just reject conceptual properties out of hand). Conceptual
properties aren't like sets, and it would violate their raison d'etre to suppose that for an
intelligible predicate like `doesn't instantiate itself', there is no corresponding property
of not instantiating itself.

This is doubtless too quick, for one possibility would be to grant that every intelligible
predicate has a corresponding property, but to deny that `doesn't instantiate itself' is
intelligible. On the most obvious version of this, we maintain the original (INST) (and
hence, (COMP)),for any intelligible predicate F . But there's something very odd about
holding that `doesn't instantiate itself' isn't intelligible. It can be brought out by asking
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�What part of `doesn't instantiate itself' don't you understand?� It seems that if you
accept (INST) (restricted to intelligible predicates), then you must regard the predicate
`instantiates' as intelligible, since it is used in the formulation of (INST)! Presumably
`not' and `itself' are intelligible too, so how can `doesn't instantiate itself' fail to be
intelligible? `Intelligible' would have to be given a very special reading for this to make
any sense. Of course we can always give it the special reading `expresses a property',
but (COMP) restricted to predicates that are �intelligible� in this sense becomes totally
vacuous. We would in e�ect just be granting that (COMP) and the original (INST)
fail for some predicates that are intelligible by ordinary standards. The pretense that
we've explained the failures of (COMP) as due to the unintelligibility of the predicates is
exposed as a fraud, and we will still need an account of which predicates it is for which
(COMP) fails.

A.2 Excerpt 5, taken from Saving Truth From Paradox [6],
pages 8 to 10

Step Four follows from Step Three, if we assume that B ∨ ¬B is a logical truth. That
assumption is famously called the law of excluded middle (LEM). It is not only famous,
it is famously controversial. There are some (e.g. mathematical intuitionists like the
Dutch mathematicians Brouwer and Heyting) who deny its general applicability even
within mathematics; indeed, some intuitionists (e.g. Michael Dummett) would deny
its applicability to any statement that is not �in principle veri�able�. But on needn't
fall victim to �Dutch LEM disease� to suspect that there might be something suspicious
about Step Four: questioning Step Four needn't involve questioning it in connection with
certain applications of �circular� predicates like `instantiates'.

Without Step Four, it isn't immediately obvious why B ↔ ¬B should be regarded
as contradictory. This suggests the possibility of a fourth solution route:

Paracomplete Solutions: Excluded middle is not generally valid for sentences in-
volving `instantiates'. In particular, the assumption that the Russell property R either

instantiates itself or doesn't should be rejected. Indeed the reasoning of the �paradox�
shows that that assumption leads to contradiction.

For this to be an interesting option it must preclude the need for restrictions on
(INST) and (COMP); that is, an interesting Paracomplete Theory must be one in which
Naive Property Theory is consistent (where Naive Property Theory is the theory that for
every predicate, there is a corresponding property that satis�es the �Instatiation Schema�
(INST)). It is far from evident that an interesting Paracomplete Theory meeting this
requirement is possible.

Indeed, a precondition of its possibility is that the logic vitiate all arguments from
B ↔ ¬B to contradiction, not just the Central Argument; and some logics without
excluded middle, such as intuitionist logic, invalidate the Central Argument for the con-
tradictoriness of B ↔ ¬B while leaving other arguments intact. The most obvious route
from B ↔ ¬B to B ∧ ¬B within intuitionism comes from the intuitionist reductio rule,
which says that if ¬B follows from Γ and B together, than it follows from Γ alone. Al-
though intuitionists have reasons of their own for accepting this rule, the most obvious
arguments for accepting it assumes excluded middle. For instance: ¬B certainly follows
from Γ and ¬B together, so if it also follows Γ and B together then it must follow from
Γ and B ∨ ¬B together, and hence assuming excluded middle it follows from Γ alone.
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There is a class of logics without excluded middle (�deMorgan logics�) that don't
contain the reductio rule and that are in many respects for more natural than intuitionist
logic: for instance, intuitionist logic restricts the inference from ¬¬A to A, and also
restricts one of the deMorgan law (viz., the inference from ¬(A ∧ B) to ¬A ∨ ¬B),
whereas deMorgan logics maintain all the deMorgan laws plus the equivalence of ¬¬A
to A. And in deMorgan logics without excluded middle, B ↔ ¬B is not contradictory.

A logic in which B ↔ ¬B is not contradictory is necessary for a paracomplete solu-
tion, but far from su�cient : it remains to be shown that it is possible to consistently
maintain the Naive Property Theory ((COMP) and (INST)) in such a logic. Indeed, we
really want Naive Property Theory to include a bit more than (COMP) together with the
Instatiation Schema (INST); we want it to include an intersubstitutivity claim, according
to which

(i) o instantiates the property of being F

is fully equivalent to

(ii) Fo

in the sense that the claims (i) and (ii) can be intersubstituted even in embedded con-
texts (so long as these contexts are �transparent�, that is, don't involve quotation marks,
intentional operators, or the like). For instance, we want a principle that guarantees such
a thing as

[It is not the case that o instantiates the property of being F ] if and only if [it is not
the case that Fo];

[If o instantiates the property of being F then B] if and only if [if Fo then B];

and so forth. Don't these follows from (INST)? They do in classical logic, but we're
considering weakening classical logic. Still, I don't myself think a paracomplete solution
would be very satisfactory if it required such a weak logic that these no longer followed.

So a good paracomplete solution would involve showing that (COMP) and (INST)
can be maintained in a reasonably strong paracomplete logic that allows the derivation
of the intersubstitutivity of (i) with (ii). Such a solution is in fact possible, as I will
demonstrate in due course. In fact, it is paracomplete solution within a reasonably
strong deMorgan logic that I will eventually be advocating in this book.

A.3 Excerpt 6, taken from Saving Truth From Paradox [6],
pages 15 to 17

Weakening classical logic (whether by restricting excluded middle or in some other way)
is not something to be done lightly. There are some obvious advantages to keeping to
classical logic even for �circular� predicates: advantages of simplicity, familiarity, and so
on. Choosing to forgo these advantages has its costs. But I will argue (primarily in Part
II) that the disadvantages of keeping classical logic for �circular� predicates are also very
great, so that the undoubted cost of weakening the logic is worth bearing.

Perhaps there are some who think that this cost-bene�t analysis is inappropriate,
that the very idea of tinkering with classical logic is irrational on its face since classical
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logic is obviously superior. The word `logicism' would be a natural name for this attitude
− in analogy to `sexism', `racism', `species-ism' and so forth. Unfortunately it's already
taken, so let's call the view `Logical Dogmatism'.

One possible defense of such Dogmatism is that if logic is not held �xed then anything
goes. As an anonymous referee put it to me, �We didn't weaken the logic as a way of
hiding defects in Ptolemaic astronomy or old quantum theory; why should we modify the
logic to hide the blemishes in the naive theory of truth?� The answer to this, I think, is
that there is no known way (and little prospect of �nding a way) to save either Ptolemaic
astronomy or the old quantum theory by a change of logic, and little bene�t to so doing
since we have far more satisfactory alternatives. The proposal that we save the naive
theory of truth by a change of logic is not the cheap non-solution that the objection
envisages: it is something that must be earned by working out the details of the logic
and of the theory based on it. Once we've worked out such a theory, we must weigh
it against competing theories that keep classical logic but restrict the naive principles
of truth, using the usual (somewhat vague and subjective) criteria for theory choice.
With Ptolemaic astronomy or the old quantum theory, there is no serious prospect for
such a theory being worked out that survives such a competition. The reader may think
there is little prospect in the case of theory of truth either, but I invite him to withhold
judgement until he has read the book.

A second common defense of Logical Dogmatism is based on the idea that �change of
logic requires change of meaning�. To this I say, �rst, that the paradoxes force a change
in the basic laws either of logic in a narrow sense or of the logic of truth, instantiation,
etc.; or if you like, it forces a change in opinion about those laws. If change of (opinion
about) the basic laws of `¬' and `→' counts as change of meaning, why doesn't change
of (opinion about) the basic laws of truth and the basic laws of instantiation? And as
we'll see, adhering to the principles of classical logic requires a huge change in standard
principles about truth and instantiation. The upshot of this is that there is at least as
good a case that the classical truth theorist is �changing the meaning `true' � as that the
defender of the Intersubstitutivity Principle who restricts excluded middle is �changing
the meaning of `not' � (or of `or').

But second, why make a fetish about whether these things involve a change of mean-
ing? As Putnam 1968 taught us, there is a distinction to be made between change of
meaning and mere change of meaning. The switch from Euclidean geometry to gen-
eralized (variable curvature) Riemannian geometry involved revision of enough basic
principles about straight lines that it may be somewhat natural to say that `straight line'
took on a di�erent meaning. But if so, an abandonment of the old meaning and the in-
vention of a new one was required to get a decent physical theory that is observationally
adequate: for no reasonably simple observationally adequate theory allows for the exis-
tence of �straight lines in the Euclidean sense�. We needn't of course have carried over
the old term `straight line' from Euclidean geometry to Riemannian, but there is enough
continuity of doctrine to make it natural to do so. This is certainly not a mere change
of meaning, i.e. a relabelling of terms without alteration of basic theory. The situation
with truth is similar: here the �old theory�, involving both classical logic and the naive
theory of truth, is simply inconsistent. Indeed, it's trivial: it implies everything, e.g.
that the Earth is �at. If you don't want to be committed to the view that the Earth
is �at you need a theory that di�ers from the naive theory in basic principles, either
principles about truth or principles about logical matters more narrowly conceived. If
giving up those basic principles involves a �change of meaning�, so be it: for then the
�old meanings� aren't really coherent, and they need changing. This is certainly no mere

change of meaning, i.e. no mere relabelling.
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Any resolution of the paradoxes will involve giving up (or at least restricting) some
very �rmly held principles: either principles of a narrowly logical sort, or principles
central to the ordinary use of truth and instantiation predicates, or both. The principles
to be given up are ones to which the average person simply can't conceive of alternatives.
That's why the paradoxes are paradoxes. In this situation, I think we should be skeptical
that asking whether the attempted resolution of the paradoxes �changes the meaning� of
the terms involved is a clear question (whether these be ordinary logical terms like `not'
and `if...then' or terms like `true' and `instantiates'). And I'm even more skeptical that
it's a useful question.
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