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Abstract. Baumann, Brewka and Ulbricht recently introduced weak admissibil-
ity as an alternative to Dung’s notion of admissibility, and they use it to define
weakly preferred, weakly complete and weakly grounded semantics of argumen-
tation frameworks. In this paper we analyze their new semantics with respect to
the principles discussed in the literature on abstract argumentation. Moreover, we
introduce two variants of their new semantics, which we call qualified and semi-
qualified semantics, and we check which principles they satisfy as well. Since the
existing principles do not distinguish our new semantics from the ones of Baumann
et al., we also introduce some new principles to distinguish them. Besides selecting
a semantics for an application, or for algorithmic design, our new principle-based
analysis can also be used for the further search for weak admissibility semantics.
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1. Introduction

There are three classes of abstract argumentation semantics, which can be illustrated
on their behaviour on odd and even cycles in the three argumentation frameworks in
Figure 1. Roughly, in Dung’s admissibility-based semantics [8], the maximal extensions
may contain arguments of even-length cycles but no arguments of odd-length cycles,
unless the odd-length cycle is attacked by some accepted argument. For example, the set
of preferred extensions of F1 is { /0}, of F2 is {{d,g},{e,g}}, and of F3 is { /0}. In naive-
based semantics like the CF2 semantics [2], the extensions typically include arguments
that are only attacked by self-attacking arguments, such as the argument b in F1 below. In
addition, odd-length cycles and even-length cycles are treated similarly in the sense that
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Figure 1. Three argumentation frameworks



naive extensions may also contain arguments from odd-length cycles, for example one of
h, i or j in F3. Under the weakly admissible semantics, recently introduced by Baumann,
Brewka and Ulbricht (BBU) [3], the set of weakly preferred extensions of F1 is {{b}},
of F2 is {{d,g},{e,g}}, and of F3 is {{k}}. These extensions are visualised in Figure 1:
green arguments are in all the extensions, red arguments are not in the extensions and
attacked by an argument in the extension (called out) and blue arguments are not in the
extension and not out (called undecided). The arguments colored both red and green are
in some but not all extensions.

At the moment of writing of this paper, the BBU semantics was only compared to
existing semantics by their behaviour on a few examples, but a more systematic compari-
son was lacking. Just before sending the camera-ready version of this paper, we received
a paper of the same authors [4] which will appear at a conference this year. That paper
contains a table with a principle-based analysis, though most of the principles introduced
and discussed in that paper are quite different from the ones in this paper, and thus that
paper is complementary to this one.

The weakly admissible semantics are defined in terms of a recursive defini-
tion, which makes the analysis more difficult. Whereas many different variants of
admissibility-based and naive-based semantics have been introduced and analysed, thus
far only weakly complete, weakly grounded and weakly preferred semantics have been
introduced from the third category. We therefore raise the following questions in this
paper:

1. How do BBU’s weak-admissibility based semantics compare to the existing se-
mantics? That is, which principles does they satisfy?

2. Which other semantics can be defined along the lines of weak admissibility, giv-
ing the same results for the frameworks in Figure 1?

3. How can these new semantics be distinguished from the weak-admissibility
based semantics? Which principles do these new semantics satisfy?

In general, one of the main purposes of axiomatisation in formal logic is to under-
stand the logic with an intuitively understandable small set of principles. In proposing
axioms, care should be taken to ensure that each axiom is sufficiently reasonable and
sufficiently independent of others. Ideally, there should be some degree of philosophical
motivation behind them. However, in the principle-based analysis of abstract argumen-
tation, thus far the focus has been on the use of principles to differentiate semantics, and
to assist computational techniques using decomposibility. Concerning the first question,
Baumann et al. show that the weakly grounded extensions are not necessarily unique,
and the principle-based analysis in this paper shows that weakly complete semantics does
not satisfy directionality or SCC decomposibility.

The new semantics we define in this paper are based on SCC decomposability prin-
ciples due to Baroni et al. [2]. This approach has previously been used to define the
CF2 and Stage2 semantics. When we consider only the extensions of the framework in
Figure 1, a recursive procedure comes to mind. As we show in detail later, if we use
the scheme introduced by Baroni et al. to define CF2 (where all arguments are quali-
fied), and we replace the base function with Dung’s semantics, we get a procedure which
gives the same extensions as BBU’s weakly preferred semantics for the argumentation
frameworks in Figure 1.

The layout of this paper is as follows. In Section 2 we introduce the reduct admis-
sibility principle. We also repeat the definitions of weak admissibility and the related



semantics, and we illustrate them using some new examples. In Section 3 we introduce
the semi-qualified admissibility principle and we show that it is not satisfied by the BBU
semantics. In Section 4 we introduce weak SCC decomposability and show it is not sat-
isfied by the BBU semantics. In Section 5 we introduce our new two variants of semi-
admissible semantics and we show which principles they satisfy. In Section 6 we discuss
related and future work.

2. Weak Admissibility And The Reduct Principle

In this section we recall the definitions of the recently introduced weak-admissibility
based semantics [3], and we introduce the reduct admissibility principle to characterise
these semantics. Some notation: Given an AF F = (A,→) and E ⊆ A, we use E+ to
denote the set {b ∈ A | a→ b,a ∈ E}, use F↓E to denote the set (E,→ ∩E ×E), and
use FE to denote the E-reduct of F , which is the set F↓E∗ where E∗ = A\ (E ∪E+). So
the E-reduct of an argumentation framework F consists of the arguments that are neither
in E nor attacked by E, and the attacks between these arguments.

The notion of weak admissibility weakens the requirement that every argument is
defended against every attacker. Whereas an admissible extension must defend every
member from every attacker, a weakly admissible extension does not require defence
from attackers that do not appear in any weakly admissible set of FE .

Definition 1. [3] Let F = (A,→) be an AF. The set of weakly admissible sets of F is
denoted adw(F) and defined by E ∈ adw(F) if and only if E is conflict-free (i.e., there
are no x,y ∈ E such that x→ y) and for every attacker y of E we have y 6∈ ∪adw(FE).

Furthermore, a set E is said to weakly defend a set X if for every attacker y of X we
have that either E attacks y, or y does not appear in E, does not appear in some weakly
admissible set of FE , and X is included in some weakly admissible set of F .

Definition 2. [3] Let F = (A,→) be an AF. A set E ⊆ A weakly defends a set X ⊆ A
whenever, for every attacker y of X, either E attacks y, or y 6∈ ∪adw(FE), y 6∈ E and
X ⊆ X ′ ∈ adw(F).

Weak defense is related to weak admissibility in the sense that every conflict-free
set is weakly admissible if and only if it weakly defends itself [3]. The weakly complete,
preferred and grounded semantics are defined as follows.

Definition 3. [3] Let F = (A,→) be an AF and E ⊆ A. We say that E is:

• a weakly complete extension of F (E ∈ cow(F)) iff E ∈ adw(F) and for every X
such that E ⊆ X that is w-defended by E, we have X ⊆ E.

• a weakly preferred extension of F (E ∈ prw(F)) iff E is ⊆-maximal in adw(F).
• a weakly grounded extension of F (E ∈ grw(F)) iff E is ⊆-minimal in cow(F).

We give some examples to illustrate these definitions.

Example 1. The AF visualized on the left in Fig. 2 consists of a cycle of length three
with one self-attacking argument. While the unique complete extension is /0, the unique
weakly complete extension is {a1}. Intuitively, since b is self-attacking, a1 does not need
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Figure 2. On the left: A self-attacking argument inside a 3-cycle, with a single weakly complete extension
{a1}. On the right: A 2-3 cycle, with only weakly complete extension {a3}.

to be defended from b and can therefore be accepted. Now consider the AF visualized
on the right in Fig. 2, consisting of a combination of a 2 cycle with a 3 cycle. While this
AF has two complete extensions /0 and {a3} it has one weakly complete extension {a3}.
Intuitively, since a2 is not in any extension we have that the empty set weakly defends
a3, and so there is no reason not to accept it. The last AF we discuss is two connected
3-cycles, visualized in Fig. 3. This AF demonstrates that the weakly grounded extension
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Figure 3. Two connected 3-cycles with one extra argument. grw(F) = {{b},{a1,d}}.

is not unique. Since the empty set defends both {a1} and {b}, yet not both at the same
time, both of these sets are weakly grounded.

We now define a weaker version of the admissibility principle based on the definition
of adw, which we call reduct admissibility. The motivation for the reduct admissibility
principle is taken directly from BBU’s motivation of weak admissibility. We quote: “It is
indeed important that a set of arguments defends itself. However, [...] isnt it sufficient to
counterattack those arguments which have the slightest chance of being accepted?” [3].

Definition 4 (Reduct admissibility). We say that a semantics σ satisfies reduct admis-
sibility iff for any argumentation framework F = (A,→), for every extension E ∈ σ(F),
we have that ∀a ∈ E, (b,a) ∈ R, we have b /∈

⋃
σ(FE).

Proposition 1. cow, grw and prw satisfy reduct admissibility.

Proof. For σ ∈ {cow,grw, prw}, for all E ∈ σ(F) we have that E is weakly admissible.
So, for every attacker y of E, y /∈

⋃
adw(FE), and therefore also y /∈

⋃
σ(FE).

As a principle, reduct admissibility is a bit complex due to the use of the reduct.
In the following section we define an alternative principle that formalizes the same idea
without referring to the reduct.

3. The Semi-qualified Admissibility Principle

We now define the semi-qualified admissibility principle and determine which semantics
satisfy it. We then focus on some of the principles already found in the literature [9] and
investigate whether the BBU semantics satisfy them.

When looking at the reduct admissibility principle, we may ask why the acceptabil-
ity of an attacker is judged based on the reduct, and not on the original framework itself.
For the definition of a semantics, assessing the acceptability of attackers on the reduct



allows for a recursive definition that is guaranteed to terminate for finite AFs. When
looking at a principle, this concern disappears and we therefore provide the definition of
a different principle, which we call semi-qualified admissibility. Semi-qualified admissi-
bility states that an extension only needs to defend itself against attackers that appear in
at least one extension of the same framework.

Definition 5 (Semi-Qualified admissibility). We say that a semantics σ satisfies semi-
qualified admissibility iff for every argumentation framework F = (A,→) and every ex-
tension E ∈ σ(F) we have that ∀a ∈ E, if b→ a and b ∈

⋃
σ(F) then ∃c ∈ E s.t. c→ b.

Proposition 2. cow, grw and prw don’t satisfy semi-qualified admissibility.

Proof. Consider the AF F shown in Figure 3. Here, the set {a1,d} is a cow, grw and prw

extension of F . This extension is attacked by b and we also have b ∈ ∪cow(F) (similarly
for grw and prw). However there is no x ∈ {a1,d} such that x→ b.

One can easily see that our two new principles fail for CF2 and stage2 in a 3-cycle.

Proposition 3. CF2 and stage2 don’t satisfy reduct nor semi-qualified admissibility.

The following definition introduces a number of well-known principles from the
literature [9].

Definition 6. A semantics σ satisfies the principle of:

• admissibility iff for every argumentation framework F, every E ∈σ(F) is conflict-
free and classically defends itself in F;

• naivety iff for every argumentation framework F, for every E ∈ σ(F), E is a
⊆-maximal conflict-free set in F;

• reinstatement iff for every argumentation framework F = (A,→), for every E ∈
σ(F) and a ∈ A it holds that if E classically defends a then a ∈ E;

• I-maximality iff for every AF F, for every E1,E2 ∈ σ(F), if E1 ⊆ E2 then E1 = E2;
• allowing abstention iff for every AF F = (A,→) and a ∈ A, if there exist E1,E2 ∈

σ(F) s.t. a ∈ E1 and a ∈ E+
2 , then there exists E3 ∈ σ(F) s.t. a /∈ E3∪E+

3 ;
• directionality iff for every AF F = (A,→) and S⊆ A s.t. S∩ (A\S)+ = /0, it holds

that σ(F↓S) = {E ∩S | E ∈ σ(F)}.

We now state some results regarding these principles for the semantics based on
weak admissibility. Table 1 summarises our findings. Note that one can easily see that
reduct and semi-qualified admissibility follow from admissibility.

Proposition 4. cow, grw and prw don’t satisfy admissibility.

Proof. Consider the AF F = ({a,b},{(a,a),(a,b)}. We have
cow(F) = grw(F) = prw(F) = {{b}}, but {b} does not classically defend itself
from a.

Proposition 5. cow, grw and prw don’t satisfy naivety.

Proof. Consider the AF F = ({a,b,c},{(a,b),(b,c),(c,a)}). We have
cow(F) = grw(F) = prw(F) = { /0} while e.g. {a} is conflict-free.



co pr CF2 st2 cow grw prw q-co q-gr q-pr sq-co sq-pr
Admissibility X X × × × × × × × × × ×

Naivety × × X X × × × × × × × ×
Reinst. X X × × X X X X X X X X

I-Max. × X X X × X X × X X × X

Allow. abs. X × × × × × × × X × X ×
Directionality X X X X × × ? X X X X X

Semi-qual. adm. X X × × × × × × X × X X

Reduct adm. X X × × X X X × ? ? ? ?

SCC Decomp. X X X X × × ? X X X × ×
W-SCC Decomp. X X X X ? ? ? X X X X X

Table 1. Principles satisfied by the weak-admissibility and qualified and semi-qualified semantics, with com-
plete, preferred, CF2 and stage2 for comparison.

Proposition 6. cow, grw and prw satisfy reinstatement.

Proof. Follows from Proposition 5.9 from Baumann et al. [3].

Proposition 7. cow does not satisfy I-maximality.1

Proof. Consider the AF F = ({a,b},{(a,b),(b,a)}). cow = {{a},{b}, /0}, and /0 ⊆ {a}
but /0 6= {a}.

Proposition 8. grw and prw satisfy I-maximality.

Proof. By definition, every set in prw is a ⊆-maximal weakly admissible set, therefore
none is a strict subset of the other. Similarly, every set in grw is by definition a⊆-minimal
weakly grounded extension, and therefore none is a strict subset of another.

Proposition 9. cow, grw and prw do not satisfy allowing abstention.

Proof. Consider the AF visualized in Fig. 3. cow = grw = prw = {{a1,d},{b}}, and
d ∈ {b}+, but there is no extension E3 where d /∈ E3∪E+

3 .
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Figure 4. The weak complete and grounded semantics are not directional.

The following proposition answers two open questions of Baumann et al. [4].

Proposition 10. cow and grw are not directional.

Proof. Consider the AF F = ({a,b,c,d,e},{(a,b),(b,a),(b,c),(c,d),(d,e),(e,c)}) vi-
sualized in Figure 4. Directionality would imply that

1In [4] it is mistakenly mentioned that grw does not satisfy I-maximality.



cow(F↓{a,b}) = cow(F)↓{a,b}.

However we have cow(F↓{a,b}) = {{a},{b}, /0} and cow(F) = {{a},{b,d}} and hence
cow(F)↓{a,b} = {{a},{b}}. Similarly, we have grw(F↓{a,b}) = { /0},
but grw(F)↓{a,b} = {{a},{b}}.

Open Question 1. Is the weakly preferred semantics directional? Baumann et al. [4]
answer this question affirmative, but they do not provide a proof.

4. Decomposability Principles

We now discuss two additional principles. We will use these principles as a basis for
the definition of two families of semantics in the next section. The first principle is SCC
decomposability. This principle was introduced by Baroni et al. under the name full
decomposability w.r.t. SCC partitioning [1].

SCC decomposability is defined for labelling-based semantics [6]. We first need to
introduce some notation. A labelling L of an AF F is a function that maps each argument
of F to a label I (in, or accepted), O (out, or rejected) or U (undecided). We use L(F)
to denote the set of all possible labellings of F . A labelling-based semantics σ maps
each AF F to a set Lσ (F) ⊆ L(F). We denote the set of SCCs (strongly connected
components) of F by S (F). Let F = (A,→) be an AF. An outparent of an SCC S of F
is an argument x ∈ A\S such that x→ y for some y ∈ S. We denote by OPF(S) the set of
outparents of S. Given a labelling L ∈L(F) we denote by L↓S the restriction of L to S
and, given a set X ⊆L(F) of labellings, denote by X↓S the set {L↓S | L ∈ X}.

The SCC decomposability principle states that the set of labellings of an AF F is
decomposable into the product of the sets of labellings of each SCC of F , where the set
of labellings of an SCC S is a function of the labels of the outparents of S. To formalise
the principle we first define the notion of AF with input.

Definition 7. An AF with input is a tuple (F,Ain,→in,Lin) where F = (A,→) is an AF;
Ain a set of input arguments such that A∩ Ain = /0; →in⊆ Ain × A is an input attack
relation; and Lin ∈L(Ain) is an input labelling.

A semantics is SCC decomposable if it is represented by some local function. A
local function is a function f that maps each AF with input to a set of labellings. A
semantics σ is represented by a local function f if the set of σ labellings of every AF F
coincides with the product of the labellings of each SCC of F as determined by f .

Definition 8. A local function f assigns to every AF with input (F,Ain,→in,Lin) a set
f (F,Ain,→in,Lin)⊆L(F). We say that f represents the semantics σ if for every AF F,

L ∈Lσ (F)↔∀S ∈S (F),L↓S ∈ f (F↓S,OPF(S),→∩OPF(S)×S,L↓OPF(S)).

A semantics σ is SCC decomposable if it is represented by some local function.

Examples of semantics that are known to be SCC decomposable are the complete,
grounded and preferred semantics. We denote by fco, fgr and fpr the local functions
representing these semantics. Their definition can be found in [1]. As for the weak-



admissibility based semantics, we observe that the weak complete and weak grounded
semantics are not SCC decomposable. We first define a labelling-based version of these
semantics in the usual way [6]: given an AF F = (A,→), define Ext2LabF : 2A→L(F)
by Ext2LabF(E)(x) = I, if x ∈ E; Ext2LabF(E)(x) = O, if y→ x for some y ∈ E; and
Ext2LabF(E)(x) = U, otherwise. We then define the labelling-based weak complete se-
mantics cow by Lcow(F) = {Ext2LabF(E) | E ∈ cow(F)} and define the labelling-based
weak preferred prw and grounded grw similarly. It then holds that

Proposition 11. The cow and grw semantics are not SCC decomposable.

Proof. We prove it for grw (cow is similar). Consider the AFs F1 =({b,c},{(b,b),(b,c)})
and F2 = ({a,b,c},{(a,b),(b,a),(b,c)}). We then have Lgrw(F1) = {{a : U,b : I}} and
Lgrw(F2) = {{a1 : U,a2 : U,b : U}} If the grw semantics is SCC decomposable then there
must be a local function fgrw that represents grw. But then fgrw({c},{b},{(b,c)},{b : U})
equals both {{c : I}} and {{c : U}}, which is impossible. Hence, the grw semantics is
not SCC decomposable.

Open Question 2. Is the prw semantics SCC Decomposable?

We now introduce a new principle called weak SCC decomposability. Like SCC de-
composability, this principle states that the set of labellings of an AF F can be decom-
posed into the product of the sets of labellings of each SCC of F . The difference with
SCC decomposability is that the set of labellings of an SCC S is a function not only of
a particular labelling of the outparents of S, but also of the set of all other labellings that
the outparents of S may receive. This provides extra information in how the labellings of
an SCC are determined since, in addition to knowing the actual labels of the outparents,
we also know how these arguments are labelled in other labellings. To define it we extend
the notion of AF with input to that of AF with total input as follows.

Definition 9. An AF with total input is a tuple (F,Ain,→in,Lin,Sin) where F,Ain,→in
and Lin are defined as in definition 7, Sin ⊆L(Ain), and Lin ∈ Sin. We call Sin the set of
total input labellings and Lin ∈ Sin the actual input labelling.

We say that σ is weakly SCC decomposable if there exists a weak local function
(i.e., a function that maps each AF with total input to a set of labellings) that represents σ .
A weak local function represents a semantics σ if the set of σ labellings of every AF F
coincides with the product of the labellings of each SCC S ∈S (F) as a determined by
the weak local function.

Definition 10. A weak local function g assigns to every AF with total input
(F,Ain,→in,Lin,Sin) a set g(F,Ain,→in,Lin,Sin)⊆L(F). A weak local function g repre-
sents a semantics σ whenever, for every AF F, L ∈Lσ (F) if and only if

∀S ∈S (F),L↓S ∈ g(F↓S,OPF(S),→∩OPF(S)×S,L↓OPF(S),Lσ (F)↓OPF(S)).

A semantics σ is weakly SCC decomposable if some weak local function represents σ .

Note that SCC decomposability implies weak SCC decomposability but that the
reverse does not hold. In the next section we use the weak SCC decomposability principle
to define new semantics. For the weak admissibiity-based semantics we have:



Open Question 3. Are the weakly complete, weakly grounded and weakly preferred
semantics weakly SCC decomposable? Our conjecture is that they are.

5. Qualified and Semi-Qualified Semantics

We now define two new families of semantics. They are neither admissible nor naive
and they represent two new ways to deal with propagation of undecidedness. The first
family are the qualified semantics. A qualified semantics builds on the SCC decompos-
ability principle and is based on applying the local function of any SCC decomposable
semantics with one change: in determining the labellings of an SCC S, the label U for an
outparent x of S is treated like the label O. This means that, if an argument x is attacked
by an U-labelled argument y, and if x and y are elements of different SCCs, then y is still
qualified for acceptance (i.e., may still be labelled I).

Definition 11. Let σ be an SCC decomposable semantics. Let fσ denote the local func-
tion that represents σ . We define the qualified σ (or q-σ ) semantics as the semantics
represented by the local function fq-σ defined by

fq-σ ((A,→),Ain,→in,Lin) = fσ ((A,→),Ain,→in,L′in)

where L′in(x) = I if Lin(x) = I, and L′in(x) = O, if Lin(x) = O or Lin(x) = U.

We now focus on three examples of qualified semantics, namely the qualified com-
plete (q-co), qualified grounded (q-gr), and qualified preferred (q-pr) semantics. Note
that, by definition, all these semantics are SCC decomposable.

Example 2. Consider the argumentation frameworks shown in Figure 1. The AF F1
has a unique q-co, q-gr and q-pr labelling, namely {a : U,b : I,c : O}. The AF F2
has three q-co labellings, namely {d : I,e : O, f : O,g : I}, {d : O,e : I, f : O,g : I}, and
{d : U,e : U, f : I,g : O}, where the first two are also the q-pr labellings and the last one
is also the q-gr labelling. The AF F3 has a unique q-co, q-gr and q-pr labelling, namely
{h : U, i : U, j : U,k : I, l : O}.

This example shows that the qualified co/gr/pr and weak co/gr/pr semantics of
the three AFs in Figure 1 coincide for the AFs F1 and F3 but not for F2. In F2, the set { f}
(which corresponds to the labelling {d : U,e : U, f : I,g : O}) is not weakly admissible be-
cause it does not defend itself from d, while d does appear in some weakly admissible set
of the { f}-reduct of F2. To capture this intuition we define a second family of semantics,
which builds on the weak SCC decomposability principle. It is based on applying the
local function of any SCC decomposable semantics with the following change: in deter-
mining the labellings of an SCC S, the label U for an outparent x of S is treated like the
label O, but only if there is no other labelling of the outparents of S where x is labelled I.
This means that, if an argument x is attacked by an U-labelled argument y, and if x and y
are elements of different SCCs, and there is no other labelling in which y is labelled I,
then x may still be labelled I. We call the resulting semantics semi-qualified.



Definition 12. Let σ be an SCC decomposable semantics. Let fσ denote the local func-
tion that represents σ . We define the semi-qualified σ (or sq-σ ) semantics as the seman-
tics represented by the weak local function gsq−σ defined by

gsq−σ ((A,→),Ain,→in,Lin,Sin) = gσ ((A,→),Ain,→in,L′in)

where L′in(x) = I, if Lin(x) = I; L′in(x) = O, if Lin(x) = O; L′in(x) = O, if Lin(x) = U and
there is no L ∈ Sin such that L(x) = I; and L′in(x) = U, if Lin(x) = U and there is some
L ∈ Sin such that L(x) = I.

Any semi-qualified semantics is, by definition, weakly SCC decomposable. Further-
more, note that, for a unique status semantics σ (such as the grounded semantics) the
qualified σ and semi-qualified σ semantics coincide.

Example 3. The sq-co, sq-gr and sq-pr labellings of the AFs F1 and F3 shown in Fig-
ure 1 are the same as the q-co, q-gr and q-pr labellings (see Example 2). The sq-co
labellings of F2 are different from the q-co labellings. The sq-co labellings of F2 are
{d : I,e : O, f : O,g : I}, {d : O,e : I, f : O,g : I}, and {d : U,e : U, f : U,g : U}, where the
first two are also the q-pr labellings and the last one is also the q-gr labelling.

Note that the semi-qualified labellings in the example above coincide with the weak-
admissibility based extensions. Thus, they provide an alternative approach to achieve
weak-admissibility like behaviour. They are not equivalent, however. In particular, the
semi-qualified complete, grounded and preferred semantics are different in how they
evaluate isolated SCCs. For instance, consider the AF shown in Figure 3 but without the
argument d. This AF consists of a single SCC and has only one semi-qualified complete
(and hence grounded and preferred) labelling in which all arguments are undecided.

Table 1 includes an overview of principles satisfied by the (semi)-qualified complete,
grounded and preferred semantics. We omit the sq-gr semantics, which is equivalent to
the q-gr semantics. Failure of admissibility and naivety is demonstrated by Examples 2
and 3. The same holds for failure of allowing abstention under the q-pr and sq-pr se-
mantics and I-maximality under the q-co and sq-co semantics. Satisfaction of reinstate-
ment under all semantics follows easily, and so does satisfaction of I-maximality under
the q-pr and q-pr semantics. The q-gr semantics trivially satisfies allowing abstention
and I-maximality. Non-interference and Directionality follow from weak SCC decom-
posability together with the property that a local function returns a non-empty set of la-
bellings for all possible inputs, which holds for the local functions that we use. Finally,
allowing abstention does not hold under the q-co semantics (see the argument b in the
AF F2 in Example 2). We now consider the remaining principles and state a number of
open questions at the end.

Proposition 12. sq-co satisfies allowing abstention.

Proof. (Sketch) We show that we can transform an AF F into an AF F ′ such that
Lsq-co(F) = Lco(F ′). Let S1, . . . ,Sn be an ordering SCCs of F such that if a directed
path from Si to S j exists, then i < j. Define Ai and→i by A0 = /0,→0= /0, and for i > 0,
Ai = Ai−1∪Si and→i=→i−1 ∪(→∩(Si×Si))∪ (→∩(Xi×Si)), where Xi = {x ∈ Ai−1 |
∃L ∈Lsq-co((Ai−1,→i−1)),L(x) = I}. We then have Lsq-co(F) = Lco((An,→n)). Since
co satisfies allowing abstention it thus follows that sq-co does too.



Proposition 13. q-pr does not satisfy semi-qualified admissibility.

Proof. The AF F = ({a,b,c,d,e, f},{(a,b),(b,a),(b,c),(c,d),(d,e),(e,c),(d, f )}) has
a q-pr labelling L = {(a,I),(b,O),(c,U),(d,U),(e,U),( f ,I)}, which corresponds to
the extension E = {a, f}. We have d → E. Therefore, according to semi-qualified
admissibility, since there is no x ∈ E such that x → d it must hold that d is not
in any q-pr extension of F . However, this is false, because F has a s-pr labelling
{(a,O),(b,I),(c,O),(d,I),(e,O),( f ,O)}, which corresponds to the extension {b,d}.

Proposition 14. q-co does not satisfy reduct or semi-qualified admissibility.

Proof. Consider the AF F = ({a,b,c},{(a,b),(b,a),(b,c)}). This AF has a q-co ex-
tension E = {c}. Since b→ E, according to reduct admissibility, b may not be in any
q-co extension of FE . But FE = {({a,b},{(a,b),(b,a)}) has a q-co extension {b}. This
violates reduct admissibility. Semi-qualified admissibility is violated similarly.

Proposition 15. sq-co, sq-gr, sq-pr and q-gr satisfy semi-qualified admissibility.

Proof. Let F = (A,→) be an AF and let L ∈ Lsq-co(F). Let E = {x ∈ A | L(x) = I}.
Suppose x→ y for some y ∈ E. Then either L(x) = O, which implies that there is a z
such that z→ x and x ∈ E; or L(x) = U, which implies (via Definition 12) that there is
no L′ ∈Lsq-co(F) such that L′(x) = I and hence no sq-co extension E ′ of F such that
x ∈ E ′. Hence the sq-co semantics, and thus also the sq-co and sq-co semantics, satisfy
semi-qualified admissibility, and so does q-gr, which coincides with sq-gr.

Open Question 4. Do q-pr, q-gr, sq-co and sq-pr satisfy reduct admissibility?

6. Related and Future Work

The principle-based approach was initiated by Baroni et al. to distinguish argumentation
semantics, and then taken up by various researchers widening the scope of the “principle-
based approach.” For example, Doutre and colleagues have been promoting a principle-
based approach to abstract argumentation, and the SESAME software [5] is an achieve-
ment in this respect. Motivated by empirical cognitive studies on argumentation seman-
tics, Cramer and van der Torre [7] have introduced a new naive-based argumentation
semantics called SCF2. A principle- based analysis shows that it has two distinguishing
features:

1. If an argument is attacked by all extensions, then it can never be used in a dialogue
and therefore it has no effect on the acceptance of other arguments. They call it
Irrelevance of Necessarily Rejected Arguments.

2. Within each extension, if none of the attackers of an argument is accepted and
the argument is not involved in a paradoxical relation, then the argument is ac-
cepted. They define paradoxicality as being part of an odd cycle, and they call
this principle Strong Completeness Outside Odd Cycles.

They argue that these features together with the findings from empirical cognitive studies
make SCF2 a good candidate for an argumentation semantics that corresponds well to
what humans consider a rational judgment on the acceptability of arguments.



As mentioned in the introduction, just before sending the camera-ready version of
this paper, we received a paper [4] with another principle-based analysis for weak admis-
sibility, though most of the principles introduced and discussed in that paper are quite
different from the ones in this paper, and thus that paper is complementary to this one.

A topic for further research is the development of a labeling-based semantics for
weak admissibility, and the weakly complete, weakly grounded and weakly preferred
semantics. We are also looking for labeling-based definitions of the new semantics intro-
duced in this paper. We believe that labeling-based semantics can also be instrumental in
the search for new argumentation semantics.
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