

Proceedings of the 5th Workshop
on Logical Aspects of Multi-Agent Systems

LAMAS 2012

Satellite workshop of AAMAS 2012,
June 5, 2012, Valencia, Spain

Edited by Valentin Goranko and Wojciech Jamroga

Preface

LAMAS is a scientific network spanning an interdisciplinary community of researchers working
on logical aspects of MAS from the perspectives of logic, artificial intelligence, computer science,
game theory, etc. The LAMAS workshop is the pivotal event of the network and it provides a
platform for presentation, exchange, and publication of ideas in all these areas, including:

– Logical systems for specification, analysis, and reasoning about MAS
– Modeling MAS with logic-based models
– Deductive systems and decision procedures for logics for MAS
– Development, complexity analysis, and implementation of algorithmic methods for formal

verification of MAS
– Logic-based tools for MAS
– Applications of logics in MAS

Programme Committee

Thomas Agotnes, University of Bergen
Natasha Alechina, University of Nottingham
Thomas Bolander, Technical University of Denmark
Nils Bulling, Clausthal University of Technology
Hans van Ditmarsch, University of Sevilla
Juergen Dix, Clausthal University of Technology
Barbara Dunin-Keplicz, University of Warsaw
Valentin Goranko, Technical University of Denmark
Andreas Herzig, University of Toulouse
Wojtek Jamroga, University of Luxembourg
Joao Leite, New University of Lisbon
Alessio Lomuscio, Imperial College London
John-Jules Meyer, Utrecht University
Wojciech Penczek, Polish Academy of Sciences, Warsaw
Ram Ramanujam, IMSc Chennai
Dirk Walther , Universidad Politcnica de Madrid

Additional reviewers:

Martin Slota, New University of Lisbon

Invited speakers:

Wiebe van der Hoek, University of Liverpool
Alessio Lomuscio, Imperial College London

Workshop organizers

The workshop is organized by Valentin Goranko, Technical University of Denmark, and Wojtek
Jamroga, University of Luxembourg.

Contents

Local Properties in Modal Logic (abstract of invited talk) 1
Wiebe van der Hoek

Verification of Artifact-Centric Multi-Agent Systems (abstract of invited talk) 2
Alessio Lomuscio

Embedding of Coalition Logic into a Normal Multi-Modal Logic (extended abstract) 3
Thomas Ågotnes and Natasha Alechina

No big deal: Introducing roles to reduce the size of ATL models (regular paper) 6
Sjur Dyrkolbotn, Piotr Kaźmierczak, Erik Parmann and Truls Pedersen

Decision support for extensive form negotiation games (system description) 22
Sujata Ghosh, Thiri Haymar Kyaw and Rineke Verbrugge

Modal Logics for Argumentation (extended abstract) . 34
Cristian Gratie, John-Jules Meyer and Adina Magda Florea

New Questions about Voting Rules, With Some Answers (regular paper) 39
Jan van Eijck and Floor Sietsma

Public Announcements are Exponentially More Succinct than ”Everybody Knows” and
”Somebody Knows” (regular paper) . 55

Petar Iliev and Wiebe van der Hoek

Ockhamist Propositional Dynamic Logic and its application to norm modelling: a prelimi-
nary study (regular paper) . 68

Emiliano Lorini

ATL with contexts: agency and explicit strategies (regular paper) 78
Nicolas Troquard and Dirk Walther

Local Properties in Modal Logic

Wiebe van der Hoek
(joint work with Hans van Ditmarsch and Barteld Kooi)

University of Liverpool

Abstract

In modal logic, when adding a syntactic property to an axiomatisation, this property will seman-
tically become true in all models, in all situations, under all circumstances. For instance, adding
a property like Kap → Kbp (agent b knows at least what agent a knows) to an axiomatisation
of some epistemic logic has as an effect that such a property becomes globally true, i.e., it will
hold in all states, at all time points (in a temporal setting), after every action (in a dynamic
setting) and after any communication (in an update setting), and every agent will know that it
holds, it will even be common knowledge. We propose a way to express that a property like the
above only needs to hold locally: it may hold in the actual state, but not in all states, and not
all agents may know that it holds. We achieve this by adding relational atoms to the language
that represent (implicitly) quantification over all formulas, as in ∀p(Kap → Kbp). We show how
this can be done for a rich class of modal logics and a variety of syntactic properties. We then
study the epistemic logic enriched with the syntactic property ‘knowing at least as much as’ in
more detail. We show that the enriched language is not preserved under bisimulations. We also
demonstrate that adding public announcements to this enriched epistemic logic makes it more
expressive, which is for instance not true for the ‘standard’ epistemic logic S5.

1

Verification of Artifact-Centric Multi-Agent Systems

Alessio Lomuscio
(joint work with F Belardinelli and F Patrizi)

Imperial College London

Abstract

Artifact-Centric systems are a particular kind of web-services where data feature prominently
in the system description. The emphasis on data makes automata-based formalisms commonly
used to model services insufficient and calls for the explicit representation of the evolution of
the underlying databases. In this talk I will explore the verification problem for artifact-centric
multi-agent systems, i.e., systems of agents interacting through artifact systems. I will point to the
undecidability of the model checking problem of these systems when analysed against specifications
based on first-order temporal-epistemic logic. I will then analyse conditions that enable us to obtain
a decidable problem through finite abstractions that are bisimilar to a given model.

The talk is based on results published at IJCAI2011, ICSOC2011, and KR2012.

2

Embedding of Coalition Logic into a Normal
Multi-Modal Logic

Thomas Ågotnes1 and Natasha Alechina2

1 Department of Information Science and Media Studies,
University of Bergen, Norway

thomas.agotnes@infomedia.uib.no
2 School of Computer Science
University of Nottingham, UK
nza@cs.nott.ac.uk

1 Introduction

We define a satisfiability-preserving embedding of coalition logic into a fragment of
a standard normal modal logic, namely multi-modal K with intersection. An advan-
tage of standard, normal, modal logics is a well understood theoretical foundation and
the availability of tools for automated verification and reasoning. Multi-modal K with
intersection is a fragment of Boolean Modal Logic [3] which has been extensively stud-
ied (and implemented) as a variant of propositional dynamic logic with intersection and
also by researchers in description logic (see for example [6]). Although other logics
that are normal modal logics and/or have PDL-type operators and can express coalition
operators have been studied recently [2, 5], these typically have non-standard syntac-
tic operators and/or non-standard semantics. In this abstract we define a fragment of
multi-modal K with intersection of modalities interpreted over models corresponding
to game structures. This extended abstract is partly based on [1].

The idea of the embedding is as follows. Consider a formula φ of Coalition Logic
(CL) [7]. As a side effect of the completeness proof for Alternating Time Temporal
Logic (ATL) in [4], if φ has a concurrent game structure (CGS) model, then it has a CGS
model where each agent has at most k + 1 actions, where k is the number of formulas
of the form [C]ψ or ¬[C]ψ in ecl(φ), and ecl(φ) is the set of subformulas of φ closed
under single negations and the condition that if [C]ψ ∈ ecl(φ), then [C ′]ψ ∈ ecl(φ) for
all C ′ ⊆ N . We will refer to set of actions required for constructing a satisfying model
for φ as Actφ.

In this paper we use this fact (‘bounded action property’ of coalition logic) to pro-
vide an embedding of CL into a normal modal logic. This normal modal logic is based
on Kn with intersection of modalities and some additional restrictions on models, ex-
plained below. We call it a logic of joint action.

The main result is as follows:

Theorem 1. A CL formula φ is satisfiable iff TAct
φ

(φ) has a joint action logic model.

where TAct
φ

is defined as follows (where g is the number of agents mentioned in φ):

– TAct
φ

(p) = p

3

– TAct
φ

(¬φ) = ¬TActφ(φ)
– TAct

φ

(φ ∧ ψ) = TAct
φ

(φ) ∧ TActφ(ψ)
– TAct

φ

([{1, . . . ,m}]ψ) ≡ ∨a1,...,am∈Actφ(∨
am+1,...,ag∈Actφ〈(1, a1) ∩ . . . ∩ (m, am) ∩ (m+ 1, am+1) ∩ . . . ∩ (g, ag)〉>∧∧
am+1,...,ag∈Actφ [(1, a1)∩. . .∩(m, am)∩(m+1, am+1)∩. . .∩(g, ag)]TAct

φ

(ψ))

In the rest of this extended abstract, we define joint action logic and state some
theorems about it.

2 Joint action logic

First we briefly define Kn (where n is the number of atomic modalities) with intersec-
tion of modalities.

First we define the language of K∩n . Assume a set of primitive propositions Θ and
actions A:

φ ::= p ∈ Θ | ¬φ | φ ∧ φ | [π]φ

π ::= a ∈ A | π ∩ π
As usual, 〈π〉φ is defined as ¬[π]¬φ.

A K∩n model M is a tuple 〈S, V, {Rπ : π ∈ Π}〉 where

– S is a set of states;
– V : S → 2Θ is a valuation function;
– For each π ∈ Π , Rπ ⊆ S × S
– Rπ1∩π2 = Rπ1 ∩Rπ2 (INT)

The modality truth definition clause:

M, s |= [π]φ iff ∀(s, s′) ∈ Rπ , M, s′ |= φ

Now we impose additional conditions on K∩n models to define joint action mod-
els. Let Act be a finite set of actions and N a set of g agents. Define a set of atomic
modalities as follows:

A = N ×Act
An atomic modality in A is an individual action A composite modality π = π1 ∩ π2 is
a joint action. Joint actions of the form (1, a1)∩ . . .∩ (g, ag) with one individual action
for every agent in N will be called complete (joint) actions.

A K∩n model over A (where Act is finite) is a joint action model if it satisfies:

Seriality (SER) For any state s and agent i, at least one action is enabled in s for
i (where a is enabled for i in s means that there is a state accessible from s by
R(i,a)).

Independent Choice (IC) For any state s, agents C = {i1, . . . , ik} and actions
a1, . . . , ak ∈ Act, if for every j aj is enabled for ij in s, then there is a state
s′ such that (s, s′) ∈ R(i1,a1)∩···∩(ik,ak).

4

Deterministic Joint Actions (DJA) For any complete joint actionα and states s, s1, s2,
(s, s1), (s, s2) ∈ Rα implies that s1 = s2.

Unique Joint Actions (UJA) For any complete joint actions α and β and states s, t, if
(s, t) ∈ Rα ∩Rβ then α = β.

Theorem 2. The logic of joint action models is completely axiomatised by the following
set of axioms:

K [π](φ→ ψ)→ ([π]φ→ [π]ψ)
A1

∨
a∈Act〈(i, a)〉>

A2 〈π〉φ→ ∨
a∈Act〈π ∩ (i, a)〉φ

A3
∧
i∈N 〈(i, ai)〉> → 〈(1, a1) ∩ . . . ∩ (g, ag)〉>

A4 〈(1, a1) ∩ · · · ∩ (g, ag)〉φ→ [(1, a1) ∩ . . . ∩ (g, ag)]φ
A5 [π]φ→ [π ∩ π′]φ
A6 [(i, a) ∩ (i, b)]⊥ when a 6= b
MP From φ→ ψ and φ infer ψ
G From φ infer [π]φ

Theorem 3. The complexity of satisfiability problem of formulas in joint action models
is PSPACE-complete.

References

1. Ågotnes, T., Alechina, N.: Reasoning about joint action and coalitional ability in Kn with
intersection. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) Compu-
tational Logic in Multi-Agent Systems - 12th International Workshop (CLIMA XII, Proceed-
ings. Lecture Notes in Computer Science, vol. 6814, pp. 139–156. Springer (2011)

2. Broersen, J., Herzig, A., Troquard, N.: A normal simulation of coalition logic and an epistemic
extension. In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK-2007), Brussels, Belgium, June 25-27, 2007. pp. 92–101
(2007)

3. Gargov, G., Passy, S.: A note on boolean modal logic. In: Mathematical Logic. Proc. of The
Summer School and Conf. on Mathematical Logic ”Heyting’88”. pp. 311–321. Plenum Press,
New York (1988)

4. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-
time temporal logic. Theor. Comput. Sci. 353(1-3), 93–117 (2006)

5. Lorini, E.: A dynamic logic of agency II: Deterministic DLA, coalition logic, and game theory.
Journal of Logic, Language and Information 19, 327–351 (2010)

6. Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In: Wolter, F.,
Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic. vol. 3, pp.
329–348. World Scientific (2002)

7. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation
12(1), 149–166 (2002)

5

No big deal: introducing roles to reduce the size
of ATL models

Sjur Dyrkolbotn1, Piotr Kaźmierczak2,3?, Erik Parmann1, and Truls Pedersen3

1 Department of Informatics, University of Bergen
2 Department of Computing, Mathematics and Physics, Bergen University College

3 Department of Information Science and Media Studies, University of Bergen
sjur.dyrkolbotn@uib.no, phk@hib.no, erik.parmann@uib.no,

truls.pedersen@uib.no

Abstract. In the following paper we present a new semantics for the
well-known strategic logic atl. It is based on adding roles to concurrent
game structures, that is at every state, each agent belongs to exactly
one role, and the role specifies what actions are available to him at that
state. We show advantages of the new semantics, analyze model checking
complexity and prove equivalence between standard atl semantics and
our new approach.

1 Introduction

One of the most intensively studied [8, 9, 16] areas of research in the field of
multi-agent systems are strategic or cooperation logics – formalisms that allow
for reasoning about agents’ strategies and behavior in a multi-agent setting. Two
of the most known logics are Marc Pauly’s Coalition Logic (cl) [10, 11] and Alur,
Henzinger and Kupferman’s Alternating-time Temporal Logic (atl) [5], which
can be considered a temporal extension of Coalition Logic. Both these logics
gained much popularity and generated a ‘zoo’ of derivatives [15, 13, 1, 3, 2].

This popularity is in no small part due to relative high expressive power of
both cl and atl, but also due to low complexity of model checking problems
for these respective logics. Model checking of Coalition Logic can be solved in
polynomial time in the size of the model and the length of the formula [10]. It
remains polynomial for atl as well [5], which is considered a very good result.
However, as investigated by Jamroga and Dix [7], in both cases the number
of agents must be fixed. If it is not then model checking of atl models repre-
sented as alternating transition systems is NP-complete, and if the models are
represented as concurrent game structures (cgs) it becomes ΣP

2 -complete. Also,
van der Hoek, Lomuscio and Wooldridge show [14] that complexity of model
checking for atl is sensitive to model representation. It is polynomial only if
an explicit enumeration of all components of the model is assumed. For models
represented in a (simplified) reactive modules language (rml) [4] complexity of
? Piotr Kaźmierczak’s research was supported by the Research Council of Norway

project 194521 (FORMGRID).

6

model checking for atl becomes as hard as the satisfiability problem for this
logic, namely EXPTIME [14].

We present an alternative semantics that interprets formulas of ordinary atl
over concurrent game structures with roles. As we describe in Section 2.1, such
structures introduce an extra element – a set R of roles. Agents belonging to
the same role are considered homogeneous in the sense that all consequences of
their actions are captured by considering only the number of votes an action
gets (one vote per agent). We give some examples that motivate our approach
and prove equivalence with atl based on concurrent game structures. We then
discuss model checking, showing it to be of polynomial complexity in the size of
models. This seems significant, since as long as the number of roles remain fixed,
the size of our models does not grow exponentially in the number of players.

The structure of our paper is as follows. We present a revised formalism for
atl in Section 2, prove equivalence with the standard one in Section 3, discuss
model checking results in Section 4 and conclude in Section 5.

2 Role-based semantics for ATL

The language of ordinary atl is the following, as presented in [5]:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉 © φ | 〈〈A〉〉�φ | 〈〈A〉〉φUφ
where p is propositional letter, and A is a coalition of agents. We follow standard
abbreviations (e.g. 〈〈 〉〉 for 〈〈∅〉〉) and skip connectives that are derivable.

2.1 Concurrent Game Structures with Roles

In this section we will introduce concurrent game structures with roles (rcgs)
and consider some examples. We will be using the notation [n] = {1, . . . , n},
and we will let AB denote the set of functions from B to A. We will often work
with tuples v = 〈v1, . . . , vn〉 and we will often view v as a function with domain
[n] and write v(i) for vi. We will do addition and subtraction on tuples of the
same arity component by component, e.g. for v = 〈v1, . . . , vn〉, v′ = 〈v′1, . . . , v′n〉,
v − v′ = 〈v1 − v′1, . . . , vn − v′n〉. Given a function f : A × B → C and a ∈ A,
we will use fa to denote the function B → C defined by fa(b) = f(a, b) for all
b ∈ B.

Definition 2.1. An rcgs is a tuple H = 〈A, R,R, Q,Π, π,A, δ〉 where:

– A is a non-empty set of players. In this text we assume A = [n] for some
n ∈ N, and we will reserve n to mean the number of agents.

– Q is the non-empty set of states.
– R is a non-empty set of roles. In this text we assume R = [i] for some i ∈ N.
– R : Q×R→ ℘(A), such that for every q ∈ Q we have
• For all r, r′ ∈ R, if r 6= r′ then R(q, r) ∩R(q, r′) = ∅
• ⋃r∈RR(q, r) = A

7

For a coalition A ⊆ A we write Ar,q for the agents in A which belong to role
r at q, i.e. Ar,q = R(q, r) ∩A.

– Π is a set of propositional letters and π : Q → ℘(Π) maps states to the
propositions true at that state.

– A : Q × R → N+ is the number of available actions in a given state for a
given role.

– For A = [n] = {1, . . . n}, we say that the set of complete votes for a role r in
a state q is Vr(q) = {vr,q ∈ [n][A(q,r)] | ∑1≤a≤A(q,r) vr,q(a) = |R(q, r)|}, the
set of functions from the available actions to the number of agents performing
the action. The functions in this set account for the actions of all the agents.
The set of complete profiles at q is P (q) =

∏
r∈R Vr(q). For each q ∈ Q we

have a transition function at q, δq : P (q) → Q defining a partial function
δ : Q×⋃q∈Q P (q)→ Q such that for all q ∈ Q, P ∈ P (q), δ(q, P) = δq(P)

To illustrate how rcgs differs from an ordinary concurrent game structure, we
provide some examples.

Example 2.1. We construct an example similar to the well-known train-controller
scenario [5], but in contrast to the original, in our scenario there are nt trains.
Consider a turn-based synchronous game structure with roles Strain = 〈A,
R,R, Q,Π, π,A, δ〉 where:

– A = {1, . . . , nt, nt + 1}. There are nt trains and one controller.
– R = {train, ctr}. There are two roles: one for trains and one for the con-

troller.
– Q = {q0, q1, q2, q3}.
– R(qi, train) = [nt], and R(qi, ctr) = {nt + 1}, for all qi ∈ Q.
– Π = {out of gate, in gate, request, grant}
– π(q0) = {out of gate}, π(q1) = {out of gate, request},
π(q2) = {out of gate, grant}, π(q3) = {in gate}.

– A(q0, train) = 2, A(q0, ctr) = 1, A(q1, train) = 1, A(q1, ctr) = 3,
A(q2, train) = 2, A(q2, ctr) = 1, A(q3, train) = 1, A(q3, ctr) = 2.

– and finally

δ(q0, 〈(0, nt), 1〉) = δ(q1, 〈nt, (1, 0, 0)〉) = δ(q2, 〈(0, nt), 1〉)
= δ(q3, 〈(a, nt − a), 1〉) = q0 where 1 ≤ a ≤ nt

δ(q0, 〈(a, nt − a), 1〉) = δ(q1, 〈nt, ((0, 1, 0))〉) = q1 where 1 ≤ a ≤ nt
δ(q1, 〈nt, (0, 0, 1)〉) = δ(q2, 〈(a, nt − a), 1〉) = q2 where 2 ≤ a ≤ nt
δ(q2, 〈(1, nt − 1), 1〉) = δ(q3, 〈(0, nt), 1〉) = q3

Figure 1 presents the example in a visual way. The model can be seen as a
generalization of the classical train-controller example. In q0 we stay in q0 unless
at least one train issues a request. In q1 the controller behaves as before; it can
postpone making a decision (staying in q1), reject all requests (going to q0), or
accept the requests (going to q2). In q2 the trains can choose to enter the tunnel,

8

but only one of them may do so; if nobody attempts to enter the grant is revoked
(or relinquished), if more than one train attempts to enter we stay in q2, and
finally if (the trains reach an agreement and) only one train enters we go to q3. In
q3 any train may decide that the train in the tunnel has to leave (returning to q0),
and the train in the tunnel must comply. This reflects the homogeneity among
players in the trains role. The action of deciding to leave the tunnel is shared
among all trains, and the train actually in the tunnel remains unidentified.

h(0, nt), 1i

h(0, nt), 1i

q0 q1

q2q3

out of gate
out of gate

request

out of gate
grant

in gate

request
delay

grantrelinquish

deny

delay

enter

h(1, nt � 1), 1i

h(0, n
t), 1i

hnt, (1, 0, 0)i

#nt

8
><
>:

h(1, nt � 1), 1i
...
h(nt, 0), 1i

#nt

8
><
>:

h(nt, 0), 1i
...
h(1, nt � 1), 1i

h(2, nt � 2), 1i
...

h(nt, 0), 1i

9
>=
>;

#(nt � 1)

hn
t ,(0

,0,1)i

hnt, (0, 1, 0)i

Fig. 1. Train controller model for nt trains (similar to the one presented in [5]).

Notice that in the single-train case (nt = 1), the train can not wait before
entering the tunnel after being granted permission (and retain the permission).
This could of course easily be avoided by adding another action. More impor-
tantly, in the case of several trains, the controller can not distinguish between
the different trains, so permission must be granted to all or none. This is a
consequence of the strict homogeneity in the model: not only are the agents
homogeneous in terms of the actions available to them, we can not reasonably
distinguish between them as long as they remain in the same role. Notice that
this feature allow us to add any number of trains to the scenario without in-
curring more than a linear increase in the size of the model (total number of
profiles). This would not be possible if we did not have roles. If the model above
was to be rendered as a concurrent game structure, the number of possible ways
in which trains could act would be exponential in all states where trains have to
make a choice of what action to perform. This would be the case even if, as in

9

the scenario above, almost all possible combinations of choices should be treated
in the same way by the system.

Sometimes homogeneity is desirable. In our trains and controller example,
for instance, homogeneity strongly encourages cooperation among trains; no one
can enter the gate unless everyone agree, and everyone knows that whoever gets
to enter must leave as soon as he is asked to. On the other hand, we notice that
it is impossible for any train to enter the gate unless all trains cooperate. This
might be overly restrictive. By adding more roles, however, we can amend this
while still retaining many of the benefits of using roles.

Example 2.2. In the previous example all trains were equal before the controller;
the controller could not distinguish between trains. We could grant the agents
much more individual identity by simply adding one more role, and in this
example we sketch the result of doing so. First we make nt “copies” of the
previous model sharing the state q0. In Figure 2 we illustrate the resulting model
for nt = 3. In q0 we let the trains vote for which train should be allowed to
request permission to enter the tunnel. We assume majority voting, but we do
not resolve ties. It means that if one train, x, gets more votes then all others we
go to ”his” state, q1x. Otherwise we just loop on q0. If we get to a q1-state, the
controller can grant or reject the request. Contrary to the previous example the
controller now knows which train is being proposed. If the controller grants the
request, the selected train is put in a privileged role and given the sole choice of
what to do with the permission.

The model has grown, so the trains gain autonomy at a cost. Still, this cost
is much less than the cost of modelling this scenario in a cgs. There, if each
train is to have the option to “vote” for any train in q0, each train must have
nt actions available. We would get nnt

t edges leading out from q0! In the rcgs
model we get a substantially smaller degree, the following table summarizes the
difference (formulas for counting the degree are explained and discussed further
in section 4)

nt: 3 4 5 6 . . . n

cgs: 27 256 3125 46656 . . . nn

rcgs: 10 35 127 462 . . . (2n−1)!
n!(n−1)!

Before we move on we introduce some more notation. Given a role r ∈ R,
a state q and a coalition A, the set of A-votes for r at q is Vr(q,A), defined as
follows:

Vr(q, A) =

v ∈ [|Ar,q|][A(q,r)]

∣∣∣∣∣∣
∑

a∈[A(q,r)]

v(a) = |Ar,q|

The A-votes for r at q gives the possible ways agents in A that are in role r at q
can vote. Given a state q and a coalition A, we define the set of A-profiles at q:

P (q, A) = {〈v1, . . . , v|R|〉 | 1 ≤ i ≤ |R| : vi ∈ Vr(q, A)}

10

q1b

q0

q2b

q3b

q1a q2a

q3a

q3cq1c

q2c

h(1, 1, 1), 0, 1i

h(3
, 0

, 0
),
0,

1i

h(2
, 1

, 0
),
0,

1i

h(2
, 0

, 1
),
0,

1i

h3,
0,

(0
, 1

, 0
)i

h3, 0, (0, 0, 1)i
h2,(0,1

,0),1ih2,(0,0
,1),1i

h2,(1
,0),1i

h2, (0, 1), 1i

h2, (
1, 0

, 0)
, 1i

h(0, 3, 0), 0, 1i

h(1, 2, 0), 0, 1i

h(0, 2, 1), 0, 1i
h3, 0, (0, 1, 0)i

h3
, 0

, (
0,

1,
0)

i

h2
,(

0,
1,

0)
,1

i
h2

,(
1,

0)
,1

i

h2, (0, 1, 0), 1i

h2,(1
,0),1i

h3, 0, (0, 0, 1)i

h2, (1, 0, 0), 1i

h2, (0, 1), 1i

h2
,(

0,
0,

1)
,1

i

h(0,
0, 3

), 0
, 1i

h(1,
0, 2

), 0
, 1i

h(0,
1, 2

), 0
, 1i

h3, 0, (0, 0, 1)i h2, (
0, 0

, 1)
, 1i

h2,(1,0
,0),1i

h2, (0, 1), 1i

(1)

(1) (1)

(1)

(2)

(3)

(4)

(2)

(4)

(3)

(3)

Fig. 2. The “autonomous trains” model for nt = 3. Numbers in red indicate member-
ship in roles: (1) = 〈A, ∅, {ctr}〉, (2) = 〈A\{a}, {a}, {ctr}〉, (3) = 〈A\{b}, {b}, {ctr}〉,
(4) = 〈A \ {c}, {c}, {ctr}〉. Also, each q1 state has a transition pointing at q0 labeled
〈3, 0, (1, 0, 0)〉 that was omitted from the picture for the sake of clarity.

When we say that a function v : [A(q, r)]→ [n] is a complete vote (for r at q), we
mean that v ∈ Vr(q,A). For any v ∈ Vr(q, A) and w ∈ Vr(q,B) we write v ≤ w

iff for all i ∈ [A(q, r)] we have v(i) ≤ w(i). If v ≤ w, we say that w extends v.
If F = 〈v1, . . . , vR〉 ∈ P (q, A) and F ′ = 〈v′1, . . . , v′R〉 ∈ P (q,B) with vi ≤ v′i for
every 1 ≤ i ≤ |R|, we say that F ≤ F ′ and that F extends F ′.

An A profile F ∈ P (q, A) is a complete profile iff the sum of its components
equal |A|, i.e. F ∈ P (q) iff

(∑
r≤|R|

∑
a∈A(q,r) v(a)

)
= |A| iff A = A. Given a

(partial) profile F ′ at a state q we write ext(q, F) for the set of all complete
profiles that extend F ′.

Given two states q, q′ ∈ Q, we say that q′ is a successor of q if there is
some F ∈ P (q) such that δ(q, F) = q′. A computation is an infinite sequence
λ = q0q1 . . . of states such that for all positions i ≥ 0, qi+1 is a successor of qi. We
follow the standard abbreviations, hence q-computation denotes a computation
starting at q, and λ[i], λ[0, i] and λ[i,∞] denote the i-th state, the finite prefix
q0q1 . . . qi and the infinite suffix qiqi+1 . . . of λ for any computation λ and its
position i ≥ 0. An A-strategy for A ⊆ A is a function sA : Q → ⋃

q∈Q P (q, A)
such that sA(q) ∈ P (q, A) for all q ∈ Q. That is, sA maps states to A-profiles
at that state. The set of all A-strategies is denoted by strat(A). If s is an A-

11

strategy and we apply δq to s(q), we obtain a unique new state q′ = δq(s(q)).
Iterating, we get the induced computation λs,q = q0q1 . . . such that q = q0 and
∀i ≥ 0 : δqi(s(qi)) = qi+1. Given two strategies s and s′, we say that s ≤ s′ iff
∀q ∈ Q : s(q) ≤ s′(q). Given an A-strategy sA and a state q we get an associated
set of computations out(sA, q). This is the set of all computations that can result
when at any state, the players in A are voting in the way specified by sA:
out(sA, q) = {λs,q | s is an A-strategy and s ≥ sA} It will also be useful to have
access to the set of states that can result in the next step when A ⊆ A follows
strategy sA at state q, succ(q, sA) = {q′ ∈ Q | ∃F ∈ ext(q, sA) : δ(q, F) = q′}.
Clearly, q′ ∈ succ(q, sA) iff there is some λ ∈ out(q, sA) such that q′ = λ[0].

2.2 New Semantics for ATL

Definition 2.2. Given a rcgs S and a state q in S, we define the satisfaction
relation |= inductively:

S, q |=p iff p ∈ π(q)
S, q |=¬φ iff not S, q |= φ

S, q |=φ ∧ φ′ iff S, q |= φ and S, q |= φ′

S, q |=〈〈A〉〉 © φ iff there is sA ∈ strat(A) such that
for all λ ∈ out(sA, q), we have S, λ[1] |= φ

S, q |=〈〈A〉〉�φ iff there is sA ∈ strat(A) such that
for all λ ∈ out(sA, q) we have S, λ[i] |= φ for all i ≥ 0

S, q |=〈〈A〉〉φUφ′ iff there is sA ∈ strat(A) such that
for all λ ∈ out(sA, q) we have S, λ[i] |= φ′ and S, λ[j] |= φ

for some i ≥ 0 and for all 0 ≤ j < i

3 Equivalence between RCGS and CGS

In this section we show that definition 2.2 provides an equivalent semantics for
atl. We do this by first giving a surjective function f that takes an rcgs and
returns a cgs. Then we show that S and f(S) satisfy the same atl formulas.

Remember that a concurrent game structure is a tuple 〈A, Q,Π, π, d, δ′〉
where every element is defined as for an rcgs except d : A × Q → N+ that
maps agents and states to actions available at that state, and δ′ that is a partial
function from states and action tuples to states defined by δ′(q, t) = δ′q(t) where
δ′q :

∏
a∈A[da(q)] → Q is a transition function at q based on tuples of actions

rather than profiles. The satisfaction relation for atl based on cgss can be de-
fined exactly as in definition 2.2, the difference concerning only what counts as
a strategy.

We refer to elements of
∏
a∈A[da(q)] as complete action tuples at q. A (memory-

less) strategy for a ∈ A in a cgs M is a function sa : Q→ N+ such that for all

12

q ∈ Q, sa(q) ∈ [da(q)] while a strategy for A ⊆ A is a list of strategies for all
agents in A, sA = 〈sa1 , sa2 , . . . , sa|A|〉, for A = {a1, a2, . . . , a|A|}. We denote the
set of strategies for A ⊆ A by strat(A). When needed to distinguish between
different structures we write strat(S,A) to indicate that we are talking about
the set of strategies for A in S.

We say that a complete action tuple at q, t = 〈ia1 , . . . , ian〉 extends a strategy
sA ∈ strat(A) if for all aj ∈ A we have iaj = saj (q). We denote the set of all
complete action tuples at q extending sA by ext(q, sA). For any state q ∈ Q we
have the set of all computations that comply with sA:

out(q, sA) ={λ = q0q1q2 . . .

| q = q0 and for all i ∈ N : ∃t ∈ ext(qi, sA), δ(q, t) = qi+1}

We define the set of sA-successors at q ∈ Q:

succ(q, sA) = {q′ ∈ Q | ∃t ∈ ext(q, sA), δ(q, t) = q′}
When we need to make clear which structure we are talking about, we write
succ(S, q, sA). Observe that q′ ∈ succ(q, sA) iff q′ = λ[1] for some λ ∈ out(q, sA).

The translation function f from rcgs to cgs is defined as follows:

f〈A, R,R, Q,Π, π,A, δ〉 = 〈A, Q,Π, π, d, δ′〉
where:

da(q) = A(q, r) where a ∈ R(q, r)
δ′(q, α1, . . . , αn) = δ(q, v1, . . . , v|R|) where for each role r

vr = 〈|{i ∈ R(q, r) | αi = 1}|, . . . , |{i ∈ R(q, r) | αi = A(q, r)}|〉

We can see straight away that f is surjective because for any cgs S′ with n
agents we could define a rcgs S with that many roles where each role contains
exactly one agent. A vote for a role r, vr, at q would then simply be a da(q)-tuple
consisting of a single 1 (representing the agents chosen action) and otherwise
zeros. It is easy to verify that f(S) = S′.

Given either a cgs or an rcgs S, we define the set of sets of states that
a coalition A can enforce in the next state of the game:

force(S, q,A) = {succ(q, sA) | sA is a strategy for A in S}.

The first thing we do towards showing equivalence is to describe a surjective
function m : strat(f(S)) → strat(S) mapping action tuples and strategies of
f(S) to profiles and strategies of S respectively. For all A ⊆ A and any action
tuple for A at q, tq = 〈αa1 , αa2 , ..., αa|A|〉 with 1 ≤ αai

≤ dai
(q) for all 1 ≤ i ≤

|A|, the A-profile m(tq) is defined in the following way:

13

m(tq) = 〈v(tq, 1), . . . , v(tq, |R|)〉 where for all 1 ≤ r ≤ |R| we have
v(tq, r) = 〈|{a ∈ Ar,q | αa = 1}|, . . . , |{a ∈ Ar,q | αa = A(q, r)}|〉

Thus the i-th component of v(tq, r) will be the number of agents from A in
role r at q that perform action i.

Given a strategy sA in f(S) we define the strategy m(sA) for S by taking
m(sA)(q) = m(sA(q)) for all q ∈ Q.

Surjectivity of m is helpful since it means that for every possible strategy that
exists in the rcgs S, there is a corresponding one in f(S). This in turn means
that when we quantify over strategies in one of S and f(S) we are implicitly also
quantifying over strategies in the other. Showing equivalence, then, can be done
by showing that these corresponding strategies have the same strength. Before
we proceed, we give a proof of surjectivity of m.

Lemma 3.1. For any rcgs S and any A ⊆ A, the function m : strat(f(S), A)→
strat(S,A) is surjective

Proof. Let pA be some strategy for A in S. We must show there is a strategy sA
in f(S) such that m(sA) = pA. For all q ∈ Q, we must define sA(q) appropriately.
Consider the profile pA(q) = 〈v1, . . . , v|R|〉 and note that by definition of a profile,
all vr for 1 ≤ r ≤ |R| are A-votes for r and that by definition of an A-vote, we
have

∑
1≤i≤A(q,r) vr(i) = |Ar,q|. Also, for all agents a, a′ ∈ Ar,q we know, by

definition of f , that da(q) = da′(q) = A(q, r).
From this it follows that there are functions α : A → N+ such that for all

a ∈ A, α(a) ∈ [da(q)] and |{a ∈ Ar,q | α(a) = i}| = vr(i) for all 1 ≤ i ≤ A(q, r),
i.e.

vr = 〈|{a ∈ Ar,q|α(a) = 1}|, . . . , |{a ∈ Ar,q|α(a) = A(q, r)}|〉
We choose some such α and sA = 〈α(a1), . . . , α(a|A|)〉. Having defined sA in this
way, it is clear that m(sA) = pA.

Using the surjective function m we can prove the following lemma, showing
that the ”next time” strength of any coalition A is the same in S as it is in f(S).

Lemma 3.2. For any rcgs S, any state q ∈ Q and any coalition A ⊆ A, we
have force(S,A, q) = force(f(S), A, q)

Proof. By definition of force and lemma 3.1 it is sufficient to show that for all
sA ∈ strat(f(S), A), we have succ(S,m(sA), q) = succ(f(S), sA, q). We show
⊆ as follows: Assume that q′ ∈ force(S,m(sA), q). Then there is some com-
plete profile P = 〈v1, . . . , v|R|〉, extending m(sA)(q), such that δ(q, P) = q′. Let
m(sA)(q) = 〈w1, . . . , w|R|〉 and form P ′ = 〈v′1, . . . , v′|R|〉 defined by v′i = vi − wi
for all 1 ≤ i ≤ |R|. Then each v′i is an (A \ A)-vote for role i, meaning that
the sum of entries in the tuple v′i is |(A \ A)r,q|. This means that we can de-
fine a function α : A → N+ such that for all a ∈ A, α(a) ∈ [da(q)] and for

14

all a ∈ A, α(a) = sa(q) and for every r ∈ R and every a ∈ (A \ A), and
every 1 ≤ j ≤ A(q, r), |{a ∈ (A \ A)r,q | α(a) = j}| = v′r(j). Having de-
fined α like this it follows by definition of m that for all 1 ≤ j ≤ A(q, r),
|{a ∈ Ar,q | α(a) = j}| = wr(j). Then for all r ∈ R and all 1 ≤ j ≤ A(q, r)
we have |{a ∈ R(q, r) | α(a) = j}| = vr(j). By definition of f(S) it follows
that q′ = δ(q, P) = δ′(q, α) so that q′ ∈ force(f(S), sA, q). We conclude that
force(S, f(sA), q) ⊆ force(f(S), sA, q). The direction ⊇ follows easily from the
definitions of m and f .

Given a structure S (with or without roles), and a formula φ, we define
true(S, φ) = {q ∈ Q | S, q |= φ}. Equivalence of models S and f(S) is now
demonstrated by showing that the equivalence in next time strength established
in lemma 3.2 suffices to conclude that true(S, φ) = true(f(S), φ) for all φ.

Theorem 3.1. For any rcgs S, any φ and any q ∈ Q, we have S, q |= φ iff
f(S), q |=CGS φ

Proof. We prove the theorem by showing that for all φ, we have true(S, φ) =
true(f(S), φ). We use induction on complexity of φ. The base case for atomic
formulas and the inductive steps for Boolean connectives are trivial, while the
case of 〈〈A〉〉 © φ is a straightforward application of lemma 3.2. For the cases
of 〈〈A〉〉�φ and 〈〈A〉〉φUψ we rely on the following fixed point characterizations,
which are well-known to hold for atl, see for instance [6], and are also easily
verified against definition 2.2:

〈〈A〉〉�φ↔ φ ∧ 〈〈A〉〉 © 〈〈A〉〉�φ
〈〈A〉〉φ1Uφ2 ↔ φ2 ∨ (φ1 ∧ 〈〈A〉〉 © 〈〈A〉〉φ1Uφ2

(1)

We show the induction step for 〈〈A〉〉�φ, taking as induction hypothesis true(S, φ) =
true(f(S), φ). The first equivalence above identifies Q′ = true(S, 〈〈A〉〉�φ) as the
maximal subset of Q such that φ is true at every state in Q′ and such that A
can enforce a state in Q′ from every state in Q′, i.e. such that ∀q ∈ Q′ : ∃Q′′ ∈
force(q, A) : Q′′ ⊆ Q′. Notice that a unique such set always exists. This is
clear since the union of two sets satisfying the two requirements will itself sat-
isfy them (possibly the empty set). The first requirement, namely that φ is true
at all states in Q′, holds for S iff if holds for f(S) by induction hypothesis.
Lemma 3.2 states force(S, q,A) = force(f(S), q, A), and this implies that also
the second requirement holds in S iff it holds in f(S). From this we conclude
true(S, 〈〈A〉〉�φ) = true(f(S), 〈〈A〉〉�φ) as desired. The case for 〈〈A〉〉φUψ is sim-
ilar, using the second equivalence. ut

4 Model checking and the size of models

We have already seen that using roles can lead to a dramatic decrease in the
size of atl-models. In this section we give a more formal account, first by inves-
tigating the size of models in terms of the number of roles, players and actions,

15

then by an analysis of model checking atl over concurrent game structures with
roles.

Given a set of numbers [a] and a number n, it is a well-known combinatorial
fact that the number of ways in which to choose n elements from [a], allowing
repetitions, is (n+(a−1))!

n!(a−1)! . Furthermore, this number satisfies the following two
inequalities:4

(n+(a−1))!
n!(a−1)! ≤ an ,

(n+(a−1))!
n!(a−1)! ≤ na (2)

These two inequalities provide us with an upper bound on the size of rcgs
models that makes it easy to compare their sizes to that of cgs models. Typically,
the size of concurrent game structures is dominated by the size of the domain of
the transition function. For an rcgs and a given state q ∈ Q this is the number
of complete profiles at q. To measure it, remember that every complete profile
is an |R|-tuple of votes vr, one for each role r ∈ R. It follows that |P (q)| is
the set of all possible combinations of votes for each role. Also remember that
a vote vr for r ∈ R is an A(q, r)-tuple such that the sum of entries is |R(q, r)|.
Equivalently, the vote vr can be seen as the number of ways in which we can
make |R(q, r)| choices, allowing repetitions, from a set of A(q, r) alternatives.
Looking at it this way, we obtain:

|P (q)| =
∏

r∈R

(|R(q, r)|+ (A(q, r)− 1))!
|R(q, r)|!(A(q, r)− 1))!

We sum over all q ∈ Q to obtain what we consider to be the size of an rcgs
S. In light of equation 2, it follows that the size of S is upper bounded by both
of the following expressions.

O(
∑
q∈Q

∏
r∈R |R(q, r)|A(q,r)) , O(

∑
q∈Q

∏
r∈R A(q, r)|R(q,r)|) (3)

We observe that growth in the size of models is polynomial in a = maxq∈Q,r∈RA(r, q)
if n = A and |R| is fixed, and polynomial in p = maxq∈Q,r∈R|R(q, r)| if a and
|R| are fixed. This identifies a significant potential advantage arising from intro-
ducing roles to the semantics of atl. The size of a cgs M , when measured in the
same way, replacing complete profiles at q by complete action tuples at q, grows
exponentially in the players whenever da(q) > 1 for each player a. We stress that
we are not just counting the number of transitions in our models differently. We
do have an additional parameter, the roles, but this is a genuinely new seman-
tic construct that gives rise to genuinely different semantic structures. We show
that it is possible to use them to give the semantics of atl, but this does not
mean that there is not more to be said about them. Particularly crucial is the
question of model checking over rcgs models.

4 If this is not clear, remember that na and an are the number of functions [n][a] and
[a][n] respectively. It should not be hard to see that all ways in which to choose n
elements from a induce non-intersecting sets of functions of both types

16

4.1 Model checking using roles

For strategic logics, checking satisfiability is usually non-tractable, and the ques-
tion of model checking is often crucial in assessing the usefulness of different
logics. For atl there is a well known “standard” algorithm, see e.g. [5]. It does
model checking in time linear in the length of the formula and the size of the
model. The algorithm is based on the fixed point equation 1 from the proof
of Theorem 3.1, so it will work also when model checking rcgs models. It is
not clear, however, how the high level description should be implemented and,
crucially, what the complexity will be in terms of the new parameters that arise.

Given a structure with roles, S, and a formula φ, the standard model checking
algorithm returns the set true(S, φ), proceeding as detailed in algorithms 1 and
2.

Algorithm 1 mcheck(S, φ)
if φ = p ∈ Π then

return π(p)
if φ = ¬ψ then

return Q \mcheck(S, ψ)
if φ = ψ ∧ ψ′ then

return mcheck(S, ψ) ∩mcheck(S, ψ′)
if φ = 〈〈A〉〉 © ψ then

return {q | enforce(S, q,A,mcheck(S, ψ))}
if φ = 〈〈A〉〉�ψ then
Q1 := Q, Q2 := mcheck(S, ψ)
while Q1 6⊆ Q2 do
Q1 := Q2, Q2 := {q ∈ Q | enforce(S,A, q,Q2)} ∩Q2

return Q1

if φ = 〈〈A〉〉ψUψ′ then
Q1 := ∅, Q2 = mcheck(S, ψ), Q3 = mcheck(S, ψ′)
while Q3 6⊆ Q1 do
Q1 := Q1 ∪Q3, Q3 := {q ∈ Q | enforce(S,A, q,Q1)} ∩Q2

return Q3

Given a structure S, a coalition A, a state q ∈ Q and a set of states Q′,
the method enforce answers true or false depending on whether or not A can
enforce Q′ from q. That is, it tells us if at q there is Q′′ ∈ force(q,A) such that
Q′′ ⊆ Q′. Given a fixed length formula and a fixed number of states, this step
dominates the running time of mcheck (algorithm 1). It is also the only part of
the standard algorithm that behaves in a different way after addition of roles to
the structures. It involves the following steps:5

5 In implementations one would seek to take advantage of information collected by
repeating calls to enforce and not just do a Boolean check for every new instance
in the way we do it here. This aspect is not crucial for our analysis, so we do not
address it further

17

Algorithm 2 enforce(S,A, q,Q′)
for F ∈ P (q,A) do
p = true
for F ′ ∈ ext(q, F) do

if δ(q, F ′) 6∈ Q′ then
p = false

if p = true then
return true

return false

For all profiles F ∈ P (q, A) the algorithm runs through all complete profiles
F ′ ∈ P (q) that extend F . Over cgss, given a coalition A and two action tuples
t = 〈αa1 , αa2 , . . . , αa|A|〉, t′ = 〈α′a1

, α′a2
, . . . , α′a|A|〉 for A at q, the sets of complete

action tuples that extend t and t′ respectively do not intersect. It follows that
running through all such extensions for all possible action tuples for A at q is at
most linear in the total number of complete action tuples at q. This is no longer
the case for rcgs models. Given two profiles P, P ′ for A at q, there can be many
shared extensions. In fact, P and P ′ can share exponentially many in terms of
the number of players and actions available.6 So, in general, running enforce
requires us to make several passes through the set of all complete profiles, and the
complexity is no longer linear. Still, it is polynomial in the number of complete
profiles, since for any coalition A and state q we have |P (q, A)| ≤ |P (q)|, meaning
that the complexity of enforce is upper bounded by |P (q)|2. It follows that model
checking of atl over concurrent game structures with roles is polynomial in the
size of the model. We summarize this result.

Proposition 4.1. Given a cgs S and a formula φ, mcheck(S, φ) takes time
O(le2) where l is the length of φ and e =

∑
q∈Q

P (q) is the total number of tran-

sitions in S

Since model checking atl over cgss takes only linear time, O(le), adding
roles apparently makes model checking harder. On the other hand, the size of
cgs models can be bigger by an exponential factor, making model checking much
easier after adding roles. In light of the bounds we have on the size of models,
c.f. equation 3, we find that as long as the roles and the actions remain fixed,
complexity of model checking is only polynomial in the number of agents. This
is a potentially significant argument in favor of roles.

In practice, however, finding an optimal rcgs for a given cgs model M might
be at least as difficult as model checking on M directly. It involves identifying the
6 To see this, consider P = 〈v1, v2 . . . , v|R|〉 and P ′ = 〈v′1, v′2, . . . , v′|R|〉. Each vr, v

′
r ∈

VA(q, r) sums to Σ1≤j≤A(q,r)vi(j) = |Aq,r|. Then form a complete profile P ′′ =
〈v′′1 , v′′2 , . . . , v′′|R|〉 at q such that for all 1 ≤ r ≤ |R| and all 1 ≤ j ≤ A(q, r) we
have v′′r (j) = max(vr(j), v′r(j)). Then, if it exists, choose a coalition A′ such that
|A′r,q| = Σ1≤j≤A(q,r)v

′′
r (j). It is clear that the number of complete profiles that

extends both v and v′ is equal to the number of all A \A′-profiles at q.

18

structure from f−(M) that has the minimum number of roles. In general, one
cannot expect this task to have sub-linear complexity in the size of M .7 Roles
should be used at the modelling stage, as they give the modeller an opportunity
for exploiting homogeneity in the system under consideration. We think that
it is reasonable to hypothesize that in practice, most large scale systems that
lends themselves well to modelling by atl do so precisely because they exhibit
significant homogeneity. If not, identifying an accurate atl model of the system,
and model checking it, seems unlikely to be tractable at all.

The question arises as to whether or not using an rcgs is always the best
choice, or if there are situations when the losses incurred in the complexity of
model checking outweigh the gains we make in terms of the size of models. A
general investigation of this in terms of how fixing or bounding the number of
roles affect membership in complexity classes is left for future work. Here, we
conclude with the following proposition which states that as long we use the
standard algorithm, model checking any cgs M can be done at least as quickly
by model checking an arbitrary S ∈ f−(M).

Proposition 4.2. Given any cgs-model M and any formula φ, let c(mcheck(M,φ))
denote the complexity of running mcheck(M,φ). We have, for all S ∈ f−(M),
that complexity of running mcheck(S, φ) is O(c(mcheck(M,φ))

Proof. It is clear that for any S ∈ f−(M), runningmcheck(S, φ) andmcheck(M,φ),
a difference in overall complexity can arise only from a difference in the com-
plexity of enforce. So we compare the complexity of enforce(S,A, q,Q′′) and
enforce(M,A, q,Q′′) for some arbitrary q ∈ Q, Q′′ ⊆ Q. The complexity in both
cases involves passing through all complete extensions of all strategies for A at
q. The sizes of these sets are can be compared as follows, the first inequality is
an instance of equation 2 and the equalities follow from definition of f and the
fact that M = f(S).

∏

r∈R

(
(|Ar,q|+ (A(r, q)− 1))!
|Ar,q|!(A(r, q)− 1)!

)
×
∏

r∈R

(
((|R(r, q)| − |Ar,q|) + (A(r, q)− 1))!

(|R(r, q)| − |Ar,q|)!(A(r, q)− 1)!

)

≤
(∏

r∈R
A(r, q)|Ar,q| ×

∏

r∈R
A(r, q)|R(r,q)|−|Ar,q|

)

=
∏

r∈R

 ∏

a∈Ar,q

A(r, q)

×

∏

r∈R

 ∏

a∈R(a,r)\Ar,q

A(r, q)

=

∏

a∈A
da(q)×

∏

a∈A\A
da(q)

 =

∏

a∈A
da(q)

7 Although in many practical cases, when models are given in some compressed form,
the situation might be such that it is possible. The question of how to efficiently find
small rcgs-models will be investigated in future work.

19

We started with the number of profiles (transitions) we need to inspect when
running enforce on S at q, and ended with the number of action tuples (transi-
tions) we need to inspect when running enforce on M = f(S). Since we showed
the first to be smaller or equal to the latter and the execution of all other ele-
ments of mcheck are identical between S and M , the claim follows.

5 Conclusions, related and future work

In this paper we have described a new type of semantics for the strategic logic
atl. We have provided motivational examples and argued that although in prin-
ciple model checking atl interpreted over concurrent game structures with roles
is harder than the standard approach, it is still polynomial and generates ex-
ponentially smaller models. We believe this provides conclusive evidence that
concurrent game structures with roles are an interesting semantics for atl, and
should be investigated further.

Relating our work to ideas already present in the literature we find it some-
what similar to the concept of exploiting symmetry in model checking, as inves-
tigated by Sistla and Godefroid [12]. Our approach is however different, since we
we only look at agent symmetries in atl. When it comes to work related directly
to strategic logics, we find no similar ideas present, hence concluding that our
approach is indeed novel.

For future work we plan on investigating the homogeneous aspect of our
‘roles’ in more depth. We are currently working on a derivative of atl with
a different language that will fully exploit the role based semantics.

Acknowledgements We thank anonymous reviewers of LAMAS 2012 and P̊al
Grøn̊as Drange for helpful comments.

References

1. Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Quantified
coalition logic. Synthese (Special Section on Knowledge, Rationality and Action),
165(2):269–294, 2008.

2. Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Reasoning about
coalitional games. Artificial Intelligence, 173(1):45–79, 2009.

3. Natasha Alechina, Brian Logan, Hoang Nga Nguyen, and Abdur Rakib. Logic for
coalitions with bounded resources. Journal of Logic and Computation, 21(6):907–
937, 2011.

4. Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in
System Design, 15(11):7–48, July 1999.

5. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. Journal of the ACM (JACM), 49(5):672–713, 2002.

6. Wojciech Jamroga. Easy yet hard: Model checking strategies of agents. In Michael
Fisher, Fariba Sadri, and Michael Thielscher, editors, Computational Logic in
Multi-Agent Systems, pages 1–12. Springer-Verlag, Berlin, Heidelberg, 2009.

20

7. Wojciech Jamroga and Jürgen Dix. Do agents make model checking explode (com-
putationally)? In M. Pechoucek, P. Petta, and L. Z. Varga, editors, Multi-Agent
Systems and Applications IV (LNAI Volume 3690), 2005.

8. Wojciech Jamroga and Wiebe van der Hoek. Agents that Know How to Play.
Fundamenta Informaticae, 63(2-3):185–219, 2004.

9. Magdalena Kacprzak and Wojciech Penczek. A sat-based approach to un-
bounded model checking for alternating-time temporal epistemic logic. Synthese,
142(2):203–227, November 2004.

10. Marc Pauly. Logic for Social Software. ILLC dissertation series 2001-10, University
of Amsterdam, 2001.

11. Marc Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic and
Computation, 12(1):149–166, February 2002.

12. A. Prasad Sistla and Patrice Godefroid. Symmetry and reduced symmetry in model
checking. ACM Trans. Program. Lang. Syst., 26(4):702–734, July 2004.

13. Wiebe van der Hoek, Wojciech Jamroga, and Michael Wooldridge. A logic for
strategic reasoning. In Proceedings of AAMAS’05, pages 157–164, 2005.

14. Wiebe van der Hoek, Alessio Lomuscio, and Michael Wooldridge. On the complex-
ity of practical atl model checking. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, pages 201–208. ACM,
2006.

15. Wiebe van der Hoek and Michael Wooldridge. Time, knowledge, and coopera-
tion: Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

16. Wiebe van der Hoek and Michael Wooldridge. On the logic of cooperation and
propositional control. Artificial Intelligence, 164(1-2):81–119, May 2005.

21

Decision support for extensive form
negotiation games

Sujata Ghosh1 ?, Thiri Haymar Kyaw2 and Rineke Verbrugge2

1 Indian Statistical Institute, Chennai Centre
SETS Campus, MGR Film City Road

Chennai 600113, India.
sujata@isichennai.res.in

2 Department of Artificial Intelligence
University of Groningen

The Netherlands
thirihaymarkyaw@gmail.com, rineke@ai.rug.nl

Abstract. This paper presents an implementation tool NEGEXT for
finding individual and group strategies to achieve certain goals while
playing extensive form negotiation games. We consider sequential and
parallel combinations of such games also. NEGEXT is used as a model-
checking tool which investigates the existence of strategies in negotiation
situations. Thus it may aid students of negotiation in their understanding
of extensive game-form negotiation trees and their combinations, as well
as in their learning to construct individual and group strategies.

1 Introduction

Negotiation may be found everywhere: From mundane conversations between
partners about who will fetch the children from school and who will cook dinner,
to the sale of an apartment whilst the seller is trying to hide from the buyer that
she has bought a new house already, and to fully-fledged international multi-
party multi-issue negotiations about climate control, and so forth. Negotiation
is a complex skill, and one that is not learnt easily. Thus, many negotiations
are broken off, even when they have potential for a win-win solution. Moreover,
in many negotiations that do result in an agreement, one or more participants
“leave money on the table”: they could have done better for themselves [1].
Thus, it is no wonder that several scientific fields have made contributions to
analyzing, formalizing, and supporting negotiation.

Kuhn [2] highlighted the importance of using extensive form games in mod-
eling negotiation situations in an objective way, by focusing on the temporal
and dynamic nature of the negotiations. Bargaining, one of the main forms of
negotiation, has been modeled in various situations and in various forms, for ex-
ample, the alternating-offers model [3], private information models [4], and leg-
islatures [5]. An overview of different models of conflict resolution can be found

? This research was supported by the Netherlands Organisation of Scientific Research
grant 600.065.120.08N201

22

in [6]. For a general overview on negotiation games, see [7]. Game-theoretic mod-
els of important real-life negotiations can be found in [8,9] and in the numerous
case-studies published by the Harvard Project on Negotiation.

Researchers in multi-agent systems investigate many aspects of negotiations:
some design negotiation mechanisms [10], some analyze negotiation as a form
of dialogue [11], whilst others build software to simulate and support negotia-
tion [12,13]. In recent years, the logical perspective has started to shed light on
negotiation [14,15]. In summary, the fast-growing body of research on negotiation
provides varied sophisticated models for negotiations.

This paper reports the development of a simple tool, NEGEXT (http://
www.ai.rug.nl/~sujata/negext.html), written in the platform-independent
Java language. NEGEXT has been constructed to aid students of negotiation.
This toolkit will aid in understanding how to combine negotiations, and in plan-
ning one’s strategic moves in interaction situations when the opponents’ possible
moves can be approximated. Even though some visualization tools for extensive
form game trees already exist,3 as well as software for negotiation support,4 we
believe we are the first to make a tree-based negotiation toolkit that incorporates
the possibility of representing learning from game to game, by sequential and
parallel composition (cf. [16]). Moreover, the toolkit has a model-checking com-
ponent which computes whether and how an individual or a specific coalition
can achieve a given objective.

The rest of the paper is structured as follows. Two negotiation situations are
described in Section 2, where they are modeled as perfect information extensive
form games and their combinations. Section 3 presents the toolkit NEGEXT.
Section 4 describes runs of the toolkit on examples described in Section 2. Finally,
pointers for further development of the toolkit are provided in Section 5.

2 Analyzing negotiation situations using game trees

A finite extensive form game can be represented by a finite tree where the nodes
correspond to players’ positions and edges correspond to moves of the players.
The terminal nodes of the tree are the end-points of the game, which are generally
termed as leaves of the tree. A strategy for a player i is a subtree of the finite game
tree, which consists of single edges from player i nodes, and all possible edges
from the other players’ nodes. A strategy for a group of players K is a subtree
consisting of single edges from player k’s nodes, where k ∈ K, and all possible
edges from player k′’s nodes, where k′ 6∈ K. Let us briefly describe the notion
of sequential and parallel combinations of extensive form games and players’
strategies in such games, providing an application of each in negotiations.

2.1 Sequential composition

Two extensive form games are sequentially composed by plugging in the second
game at each leaf node of the first game, such that each leaf node of the first
3 See for example http://www.gametheory.net/Mike/applets/ExtensiveForm/

ExtensiveForm.html and http://www.gambit-project.org
4 See for example http://www.negotiationtool.com/

2

23

game becomes the root node of the second game [16]. One can extend this idea
to define sequential composition of a game with a set of games. In this case,
at each leaf node of the first game, some game from the given set of games is
plugged in.
Story-I: Sequential cooperation between two companies Suppose that
two Research & Development companies on biotechnology, Biocon and Wock-
hard, have just entered into a joint project concerning the discovery of biomark-
ers. They need to hire two types of specialists, a genomic expert and a proteomic
expert, one specialist per company. Unfortunately the two companies did not
discuss beforehand which of them should hire which type of expert. The hiring
process can be represented by the simple game trees in Figure 1, where action
“hire g” stands for “hire a genomic expert” and action “hire p” stands for “hire
a proteomic expert”. The propositional atoms have the following meanings:

gB : genomics is covered by Biocon gW : genomics is covered by Wockhard
pB : proteomics is covered by Biocon pW : proteomics is covered by Wockhard

B

gB

hir
e g

pB

hire p

1

W

gW

hir
e g

pW

hire p

1

Fig. 1. Hiring game trees

Now Wockhard notices that it is a good idea to await Biocon’s hiring deci-
sion. In order to analyze the different possibilities, they combine the two games
sequentially (Figure 2), plugging in the right game of Figure 1 at each leaf node
of the left game of Figure 1. Figure 2 clearly shows that hiring one expert af-
ter another, in a perfect information game, is much better than the imperfect
information game represented by the two game trees in Figure 1. The second
company learns who was hired by the first company, and hires someone with
complementary expertise. The two ‘middle branches’ in Figure 2 provide win-
win solutions.

2.2 Parallel composition

An interleaving parallel combination of two extensive form games, as defined
in [16], gives rise to a set of games. The main idea of the interleaving parallel
operator is as follows: A play of such a game basically moves from one game
to the other. One player can move in one of the games, and in the next instant
some other player or even the same player may move in the other game. A
parallel game takes care of such interleaving. The different orders in the way
moves of the players can be interleaved give rise to different games in a parallel

3

24

B

W

gB , gW

hi
re

g

gB , pW

hire
p

hir
e g

W

pB , gW

hi
re

g

pB , pW

hire
p

hire p

1

Fig. 2. Sequentially hiring game tree

combination of two games. Interleaving parallel games allows for copy-cat moves,
and in general enables the transfer of strategies in between games. For the formal
details, see [16].

Story-II: Analysis of job application in lockstep synchrony This example
has been inspired by the trick regarding how not to lose while playing chess with
a grandmaster [16], but with additional aspects of translation. Suppose that
Prof. Flitwick (FL) applied for a position in the research group of Prof. Sprout
(SP), and he turns out to be the favored candidate. Job negotiations N1 between
Flitwick and Sprout are on the verge of starting. In the same period, Prof. Sprout
herself applied for a professorship in the department of Prof. Quirrell (QR), and
has just been selected by Prof. Quirrell. The time arises to discuss the particulars
of this position as well, in negotiation N2.

Prof. Sprout is not a very savvy negotiator herself, but she knows that both
Prof. Flitwick and Prof. Quirrell are. Moreover, Prof. Sprout notices that the
issues of negotiation are quite similar in both cases: The prospective employer
can offer either a much higher salary than the standard one, or a standard salary.
On the employee’s turn, he or she can choose to offer teaching subjects of their
own choice, or whatever the department demands (Figure 3).

SP

FL

pFL ∧ ¬qSP

ch
oic

e
su

bj
ec

t

pFL ∧ qSP

arbitrary

subject

high salar
y

FL

pFL ∧ qSP

ch
oic

e
su

bj
ec

t

¬pFL ∧ qSP

arbitrary

subject

standard salary

1

QR

SP

¬qQR ∧ pSP

ch
oic

e
su

bj
ec

t

qQR ∧ pSP

arbitrary

subject

high salar
y

SP

qQR ∧ pSP

ch
oic

e
su

bj
ec

t

qQR ∧ ¬pSP

arbitrary

subject

standard salary

1

Fig. 3. Appointment game trees for negotiation N1 (left) and negotiation N2 (right)

The main pay-offs of the negotiators can be given in terms of propositional
letters as follows, where:

– pi: the new employee i gets more satisfaction in the job (for i is FL or SP);
– qj : the new employer j is happy with the terms (where j is SP or QR).

4

25

In both negotiations, the goal of the new employee can be formulated con-
ditionally: either she procures a higher salary, and then he or she is ready to do
whatever he or she is asked; or, if she gets a standard salary, then she would like
to teach her favorite subjects only. The goal of the employer would be to have
a settlement favorable for the group, i.e. favoring paying a standard salary and
/ or the new employee teaching according to demand. The salaries and subjects
in question are different in both negotiations, but there is a reasonable one-one
map of possible offers from one negotiation to the other, represented by the ac-
tions of offering “high salary” versus “low salary” and “choice subject” versus
“arbitrary subject”. The general idea for Prof. Sprout is to be a copy-cat:

– wait for QR to make an offer in negotiation N2 about the salary;
– translate that offer to the terms of negotiation N1, and propose a similar

offer to FL;
– await the counteroffer from FL about subjects to teach, translate it to the

terms of negotiation N2, and make that offer to QR.

To model this, one needs to compose the trees in Figure 3 in a parallel
fashion with interleaving moves, see Figure 4. It is clear that winning proposals
are possible in both subtrees, namely on the two ‘middle branches’ of each, and
therefore also in the parallel copy-cat negotiation.

QR

tthhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

SP

zzttttt
$$JJJJJ SP

zzttttt
$$JJJJJ

FL

zzuuuuu
��7777 FL

������
""EEEE FL

||zzzz
��7777 FL

������
$$IIIII

SP

�� ��@@@@@ SP

		����
��**** SP

		����
��**** SP

}}{{{{{
��

SP

�� !!CCCCC SP

		����
��**** SP

		����
��**** SP

�������
��

(¬qQR,pSP) (qQR,pSP) (qQR,pSP) (qQR,¬pSP)

Fig. 4. A parallel game tree

3 NEGEXT toolkit

We have developed the NEGEXT toolkit to aid students in strategic interactions
during negotiations, with negotiations represented as extensive form games and
their sequential and parallel combinations. NEGEXT has been written in Java
version 1.7.0 02 using the Eclipse editor. It can run on any system that has a
Java Virtual Machine (JVM) or Java-enabled web browsers. NEGEXT uses an
applet to display the graphical user interface. The user can draw game trees using
a menu of input nodes. NEGEXT can also generate the sequential combination
of two game trees and all possible parallel combinations. Another feature of the
software is that for both individual players and coalitions, it can check whether
a strategy to achieve a proposition exists, and if so, point to such a winning

5

26

strategy in the tree. We used a modified form of binary tree data structure for
organizing the tree nodes.

The main frame of the program consists of two panels. The left panel is the
menu panel where the user can make choices for drawing input trees in a step-
by-step fashion. The right panel has two canvas areas for displaying the game
trees (Figure 6).

3.1 Drawing a tree using NEGEXT

For negotiation problems that can be represented as extensive form games, one
can draw a tree using NEGEXT. The user draws a tree from the root node to
the terminal leaf nodes, one after another. For a current node, he needs to define
the current level of the tree, the parent node, and the player whose turn it is.
For the example described in Figure 2, the user may draw the tree as follows:

Level 0 for root node and no need to define the parent (as it has
none). Select player i on the left panel (i =1 to 10). Players are
represented by colors; in this case red represents Biocon.

Level 1 nodes: no need to define the parent (default parent is root
node). Select the player i (i =1 to 10) for the left child and right
child nodes; in this case both are green, representing Wockhard.

Level 2: terminal nodes with blue color; parent = 1 (level 1, left
child) or parent = 2 (level 1, right child). Define the proposition
and add the terminal nodes one after another.

Checking strategy for the coalition of player 1 and player 2 and
for formula gB ∧ pW . The red line shows their joint strategy.

3.2 Checking for strategies that achieve goals in NEGEXT

After the user has drawn a tree, NEGEXT can check whether a strategy exists
for either one player or a coalition of players by applying Algorithm 1. The
basic idea behind the algorithm for finding strategies for an individual player
i is to observe every edge from the root to the terminal nodes, considering a
single edge from any node representing this player’s turn and all possible edges
from the nodes representing other players’ turns. If there is no alternate strategy
for a different player that prevents the player under consideration from having

6

27

a winning strategy, then there exists a strategy for this player to achieve the
proposition (see Algorithm 1).

Algorithm 1 Algorithm1 Finding strategy for Player(s)

Input: A single player i or set of players Sp, Formula ϕ
for all TreeNode do

if IsTerminalNode(TreeNode) and IsTrue(Formula ϕ, Node TreeNode)
then

if Input of Player == Player i then
if ParentOf(Node TreeNode) == Player i then

if IsRoot(Player i) then
Print Player i has a winning strategy for Formula;

else
Print Player i has no winning strategy for Formula;

end if
else if (ParentOf(ParentOf(Node TreeNode))) == Player i then

Check both left child and right child of ParentOf(Node TreeNode);
if (Check is OK) then

Print Player i has a winning strategy for Formula;
else

Print Player i has no winning strategy for Formula;
end if

end if
else if Input of Player == set of players Sp then

while (ParentOf(Node TreeNode) != null) do
if ParentOf(Node TreeNode) == Player i ε Sp then
Sp = Sp \ {Player i};
Node = (ParentOf(Node TreeNode));

else
Print set of players Sp has no winning strategy for Formula.

end if
end while
if Sp == ∅ then

Print set of players Sp has a winning strategy for Formula
end if

end if
end if

end for

For the user to find a strategy to achieve a particular formula, he needs to
input the player’s name (“player 1”) or the names of the coalition of players
(“player 1, player 2”) and input the goal formula corresponding to a proposition
at a terminal node. Then NEGEXT checks all tree nodes starting from the root
to the terminal nodes: If a proposition of any terminal node t matches with
the input formula, NEGEXT checks the parent node of t. If the parent node
of t is matched with player i and it is also the root node, then player i has an
individual strategy for this proposition. For example, in the left part of Figure

7

28

5, player 1 (red) has a strategy to achieve formula ¬p. If it is a node at level 1
at which it is another’s turn, then the algorithm needs to check whether all its
children have p. For example, in the right part of Figure 5, player 1 (red) has
a strategy to achieve formula p. Otherwise, player i has no strategy to achieve
this proposition.

To find a group strategy for a formula, NEGEXT also checks all tree nodes
starting from the root to the terminal nodes. If a proposition of any terminal
node t matches with the input formula, NEGEXT checks the parent node of
t recursively up to the root. If all predecessor nodes of t are matched with all
players in the group, then the group has a strategy for the formula, otherwise
it does not. In the toolkit, the input tree is shown in the left canvas area, and
the output tree with a strategy path (red line) is shown in the right canvas area
(Figure 6).

Fig. 5. Strategy checking for an individual player

4 Sequential and parallel combination in NEGEXT

Let us consider how NEGEXT can be used to analyze the stories in Subsections
2.1 and 2.2 which involve combinations of trees. For sequentially combining the
trees of Subsection 2.1, NEGEXT first takes as inputs the different trees to
combine, one after another, and then gives the sequential combination tree in a
separate window (Figure 7). To combine the trees sequentially, NEGEXT first
traverses all nodes of tree 1 from the root to the leaf nodes, and then concatenates
tree 2 to all leaf nodes of tree 1. Suppose the user asks the system to find one
possible strategy for achieving (gB∧pW) by the coalition {B,W}, depicted by the
red and green players in the screenshots. If company B chooses a genomic expert
and company W chooses a proteomic expert, then they can achieve (gB ∧ pW),
as shown in Figure 7.

Now let us consider the parallel combination of trees, corresponding to the
situation described in Section 2.2. As in the previous case, the different trees
that are to be combined are taken as separate inputs, one after another, as given

8

29

Fig. 6. Strategy checking for a group of players

in Figure 8. Here, agents QR, SP and FL are represented by pink, red, and
green, respectively. Let us define abbreviations as follows: a for pFL ∧ ¬qSP ; b
for pFL ∧ qSP ; c for ¬pFL ∧ qSP ; d for ¬qQR ∧ pSP ; e for qQR ∧ pSP ; and f for
qQR ∧ ¬pSP .

Before combining these trees in an interleaving way, we should note here
that the parallel combination of two trees will give rise to a bunch of possible
trees. These trees will appear in an enumeration, from which the user selects one
combination as the final tree. In this case, the particular tree as depicted by the
story is given in Figure 8. Figure 9 presents a copy-cat strategy that the common
red player (Sprout) can follow in order to end up in a winning situation in the
parallel game. Note that formally this strategy is a 〈QR,SP, FL〉-strategy, which
may have been elicited by the user’s question as to whether the set {QR,SP, FL}
can achieve the goal pFL∧pSP∧qQR∧qSP .Thus, using NEGEXT enables students
to see clearly how players QR, FL, and SP can jointly achieve an intuitive goal.

5 Conclusions and future work

In this work we have presented a toolkit to represent negotiations which span
over a finite time, and we consider the actions of the negotiators one after another
in response to each other. Two examples have been provided to advocate the fact
that many real-life negotiations can be aptly described by perfect information
extensive form games. The NEGEXT toolkit can help students of negotiation
to learn how to respond in order to achieve their goals, including situations
where it is not easy to compute the optimal response. The current version of the
toolkit has not been tested for learnability and usability yet, so a first step in
future research will be to improve it on the basis of a usability study, in which

9

30

Fig. 7. Sequential combination and strategy checking

subjects will be asked to use the tool in order to find strategies given particular
negotiation trees.

We used a binary tree data structure for drawing trees in the NEGEXT
toolkit, implemented on a pure Java applet. In real life, players often have more
than two options. In addition, current NEGEXT still allows only at most level
2 trees (root plus intermediate level plus leaves) for sequential or parallel com-
bination, because of the node placing in the current graphical user interface. We
aim to relax both restrictions in future work so that NEGEXT will be able to
represent various types of branching at different nodes, as well as deeper trees.

In parallel combination, NEGEXT presents all possible parallel combinations
to the user. NEGEXT allows the user to click the “Parallel Combination” button
repeatedly in order to view all parallel combined trees in different interleaving
ways. If the user wants to know of only an optimally combined tree, NEGEXT
may confuse him. Solving this problem is also left for future work.

Note that while defining parallel combination of trees we only considered
interleaving moves in between trees. We plan to incorporate simultaneous moves
as well, bringing NEGEXT closer to the spirit of concurrent games, which have
been used extensively in the context of alternating-time temporal logic [17].
The current version of NEGEXT is restricted to perfect information situations.
However, in many real-life negotiations, the information dilemma looms large:
Which aspects to make common knowledge and which aspects to keep secret or
to divulge to only a select subset of co-players? For example, Raiffa distinguishes
negotiation styles with “full or partial open truthful exchange” [1]. Such aspects
of imperfect or incomplete information cause far-reaching asymmetries between
parties, sometimes with grave consequences [18]. It will be future work to extend
NEGEXT so that incomplete, imperfect, and asymmetric information can be
incorporated in its tree representations and its strategic advice.

10

31

Fig. 8. An interleaving parallel combination

References

1. Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and
Art of Collaborative Decision Making. Belknap Press of Harvard Univ. Press,
Cambridge (MA) (2002)

2. Kuhn, H.: Game theory and models of negotiation. The Journal of Conflict Reso-
lution 6(1) (1962) 1–4

3. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50 (1982)
97–109

4. Kennan, J., Wilson, R.: Bargaining with private information. Journal of Economic
Literature 31(1) (March 1993) 45–104

5. Baron, D.P., Ferejohn, J.A.: Bargaining in legislatures. The American Political
Science Review 83(4) (1989) 1181–1206

6. Arrow, K., others, eds.: Barriers to Conflict Resolution. In Arrow, K., others, eds.:
Barriers to Conflict Resolution, New York, Norton (1995)

7. Brams, S.J.: Negotiation Games: Applying Game Theory to Bargaining and Ar-
bitration. Routledge, London (2003)

8. Birner, R.: Analyzing negotiation approaches in natural resource management: A
case study of crop-livestock conflicts in Sri Lanka. In: Proceedings of the 25th In-

11

32

Fig. 9. A group strategy for combined tree

ternational Conference of Agricultural Economists (IAAE), Durban, International
Association of Agricultural Economists (2003)

9. Forgó, F., Fulop, J., Prill, M.: Game theoretic models for climate change negotia-
tions. European Journal of Operational Research 160(1) (2005) 252–267

10. Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Au-
tomated Negotiation Among Computers. MIT-Press, Cambridge (MA) (1994)

11. Parsons, S., Wooldridge, M., Jennings, N.: Agents that reason and negotiate by
arguing. Journal of Logic and Computation 8 (1998) 261–292

12. Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational
agents in environments with incomplete information using an automated agent.
Artificial Intelligence Journal 172(6-7) (2008) 823–851

13. Hindriks, K., Jonker, C., Tykhonov, D.: Towards an open negotiation architecture
for heterogeneous agents. In Klusch, M., others, eds.: Cooperative Information
Agents XII. Volume 5180 of LNCS. Springer, Berlin (2008) 264–279

14. Endriss, U., Pacuit, E.: Modal logics of negotiation and preference. In Fisher,
M., others, eds.: Logics in Artificial Intelligence. Volume 4160 of LNCS. Springer,
Berlin (2006) 138–150

15. Sadri, F., Toni, F., Torroni, P.: Logic agents, dialogues and negotiation: An ab-
ductive approach. In: Proceedings AISB’01 Convention, AISB (2001)

16. Ghosh, S., Ramanujam, R., Simon, S.E.: Playing extensive form games in parallel.
In Dix, J., others, eds.: Proceedings 11th International Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA XI). Volume 6245 of LNCS., Berlin,
Springer (2010) 153–170

17. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49 (2002) 672–713

18. Oakman, J.: The Camp David Accords: A case study on international negotiation.
Technical report, Princeton University, Woodrow Wilson School of Public and
International Affairs (2002)

12

33

Modal Logics for Argumentation

Cristian Gratie1, John-Jules Ch. Meyer2, and Adina Magda Florea1

1 AI-MAS Group, Computer Science Department
University “Politehnica”, Bucharest, Romania

cristian.gratie@cs.pub.ro, adina.florea@cs.pub.ro
2 Intelligent Systems Group, Computer Science Department

Utrecht University, Utrecht, The Netherlands
jj@cs.uu.nl

Abstract. Previous research has linked modal logic and argumentation
by providing formulas that describe extension-based semantics. This pa-
per presents ongoing work on the same topic and proposes several re-
search directions. More precisely, we aim to describe other argumenta-
tion semantics, with the use of multimodal logics such as Boolean Modal
Logic and Propositional Dynamic Logic. Also, we aim to investigate how
argumentation can be useful for modal logic.

Keywords: modal logic, argumentation, extension-based semantics

1 Introduction

Argumentation and modal logic were brought together in the work of Grossi
[1]. A link between the two is appealing because, once established, it allows for
porting theoretical results and algorithms from one domain to the other. While
the foundations have been laid, we argue that there is still a lot that we don’t
know about mixing argumentation and modal logics.

This paper proposes several research directions for extending Grossi’s work.
We present results that we have already obtained and also the intuition behind
considering other modal logics for certain argumentation semantics.

In the following section we provide a minimal argumentation background,
while Section 3 discusses a part of Grossi’s work together with the intuition
behind using modal logic for argumentation. The main results and research di-
rections we propose are presented in Section 4. The paper ends with conclusions
in Section 5.

2 Argumentation Background

This section aims to provide a basic background on abstract argumentation, so
that the context and the goals of our research can be better understood. We start
by introducing argumentation frameworks as proposed by Dung [2] in 1995, with
a slightly different notation.

34

Definition 1. An argumentation framework is a pair F = (A,R), where A is
a set of arguments and R ⊆ A × A is a binary attack relation on A. We say
that an argument a attacks another argument b and we write this as a → b iff(a, b) ∈ R. Otherwise, a does not attack b and we write a /→ b. Also, we say that
a set of arguments S attacks an argument a iff S contains an attacker of a. A set
of arguments S defends an argument a (or, alternatively, a is acceptable with
respect to S) iff S attacks all the attackers of a.

Given a set of arguments and the attacks between them, one must be able
to identify the arguments that are acceptable. Usually, several sets of accept-
able arguments (extensions) can be identified. In the argumentation literature
a method that provides the extensions of an argumentation framework (based
on their properties, computed by an algorithm or using some other approach)
is referred to as argumentation semantics. Several such semantics were defined,
starting with those introduced by Dung in [2], which are listed in Definition 2.

Definition 2. Let F = (A,R) be an arbitrary argumentation framework and let
S be a set of arguments.

– S is conflict-free (CF) iff S does not attack any of its arguments.
– S is admissible (AS) iff S is conflict-free and S defends all its arguments.
– S is a complete extension (CO) iff S is admissible and S contains all the

arguments it defends.
– S is a stable extension (ST) iff S is conflict-free and S attacks all the

arguments it does not contain.
– S is a preferred extension (PR) iff S is a maximal (with respect to set

inclusion) admissible set.
– S is the grounded extension (GR) of F iff S is the least (with respect to set

inclusion) complete extension.

For an argumentation semantics Sem we will use ESem to denote the set of
all extensions prescribed by it, for example ECO(F) stands for all the complete
extensions of F .

Several additional semantics were defined in the literature, such as: ideal [3],
semi-stable [4], eager [5], resolution-based grounded [6] and CF2 semantics [7].
We will refer some of them later on and only provide the distinguishing features
that link them to modal logic. For further details, the reader is encouraged to
consult the referred papers.

3 Argumentation and Modal Logic

This section links argumentation and modal logic based on the work of Grossi
[1]. A minimal background of modal logic is assumed; a more detailed account
of modal logics can be found in Blackburn et al [8].

We consider the basic modal language ML(◇), constructed in the usual way
with ⊺,�,¬,∧,∨,◇,◻ and a set of proposition symbols Prop. A Kripke model

35

M = (W,R,V) is given by the set of worlds (or states)W , an accessibility relation
R ⊆W ×W and a valuation function V ∶ Prop→ 2W , where V (p) ⊆W is the set
of worlds where p holds. Satisfiability of modal formulas (φ,ψ) at a given world
w of a model M is recursively defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M,w /⊩ �
M,w ⊩ p⇔ w ∈ V (p)
M,w ⊩ ¬φ⇔ M,w /⊩ φ
M,w ⊩ φ ∨ ψ⇔ (M,w ⊩ φ) ∨ (M,w ⊩ ψ)
M,w ⊩◇φ⇔ ∃w′(w′ ∈W ∧ (w,w′) ∈ R ∧M,w′ ⊩ φ)

It is sometimes convenient to extend the valuation function V of a model
from proposition symbols to arbitrary formulas so that V (φ) always gives the
set of worlds where φ is true: V (φ) = {w ∈W ∣ M,w ⊩ φ}.

Now, given an argumentation framework F = (A,R) we can see the argu-
ments as worlds and use the converse of the attack relation as an accessibility
relation. The converse makes more sense because the argumentation semantics
are usually defined by looking at the attackers of an argument rather than the
arguments it attacks. With these observations, we can add a valuation function
V and convert the argumentation framework to a Kripke model M = (A,R−, V).

Given an argumentation semantics Sem, we will say that the modal formulaSem(x) describes Sem iff the following relation holds for any modal formula φ:

(A,R−, V), a ⊩ Sem(φ) ⇔ V (φ) ∈ ESem(F)
where Sem(φ) denotes the formula obtained by replacing all occurrences of
the formal variable x with φ. In words, the modal description Sem(x) holds
whenever the valuation of its argument corresponds to an extension prescribed
by the argumentation semantics Sem.

Since the truth value of Sem(φ) does not depend on the world (argument)
a where it is evaluated, we need a modal language that can express this, so we
will add the global modalities A and E to ML(◇) and get the global modal
language ML(◇,E). Satisfiability is extended using the following relations:

M,w ⊩ Eφ⇔ ∃w′(w′ ∈W ∧M,w′ ⊩ φ)
M,w ⊩Aφ⇔∀w′(w′ ∈W → M,w′ ⊩ φ)

In words, Aφ holds whenever φ holds in all worlds, whereas Eφ holds when-
ever φ holds in at least one world. For more details about the global modality
see Chapter 7 of Blackburn et al [8]. In the work of Grossi [1], the following
formulas are shown to describe the corresponding argumentation semantics.

CF(x) =A(x→ ¬◇ x)AS(x) =A(x→ ¬◇ x ∧ ◻◇ x)CO(x) =A((x→ ¬◇ x) ∧ (x↔ ◻◇ x))ST (x) =A(x↔ ¬◇ x)
We present the intuition behind the first formula. We have that x is true for

an argument a iff a ∈ V (x), while ◇x is true iff a has an attacker in V (x). So, if

36

a is in V (x), no attacker of a is in V (x), exactly what conflict-free sets require.
For a more detailed explanation please see [1].

4 Further Use of Modal Logic in Argumentation

In this section we describe the main goals of our current work on the use of modal
logic for argumentation. We discuss several aspects that we consider important
for extending the work of Grossi [1].

Consider and formalize impossibility results. It is suggested in [1]
that the grounded and preferred semantics cannot be described within global
modal logic. A bisimulation proof is provided for the preferred semantics, but
the grounded semantics is just described within modal calculus. In our previous
work, we have provided an even stronger impossibility result, showing that the
only argumentation semantics that satisfies a small set of very reasonable con-
straints and can at the same time be described with a global modal formula is
the complete semantics. The result covers the grounded and preferred seman-
tics, but also newer proposals from the literature. The direct implication of this
result is that further use of modal logic for argumentation (especially for the
more interesting argumentation semantics) requires extending the basic modal
language with more than the global modalities.

Consider other modal logics. In his work, Grossi provides a description
for the grounded semantics, using modal mu calculus. There is, however, no
indication whether other modal languages, less expressive than mu calculus, can
describe it as well. Of the modal logics that lie in between global modal logic
and mu calculus with respect to expressiveness, our main focus is on multimodal
logics that contain operators on modalities, such as Propositional Dynamic Logic
(PDL) and Boolean Modal Logic (BML).

BML modalities consider boolean operators on modalities, where negation
corresponds to the complement of the accessibility relation, conjunction to the
intersection and disjunction to the union of the accessibility relations. PDL, on
the other hand, uses modalities to talk about programs, the basic modalities
corresponding to atomic actions. The relevant operators are: composition (cor-
responds to the composition of the accessibility relations), iteration (corresponds
to the transitive closure of the accessibility relation) and choice (which is in fact
the same as disjunction from BML). PDL and BML are presented in Blackburn
et al [8], in Chapter 1, respectively Chapter 7.

Consider the other argumentation semantics. The argumentation lit-
erature contains several other interesting argumentation semantics aside from
those proposed by Dung. Since most of them are already covered by our im-
possibility result, we need something more expressive than global modal logic,
so we expect the description to come from a multi-modal logic. For example,
the weak reinstatement principle [9] requires one to consider both the attacking
and the attacked arguments, so it needs the converse operator for the modal-
ities; mutual attacks, used in the definition of resolution-based semantics [6],
can be identified using the conjunction and the converse; indirect attacks, used

37

for prudent semantics [10], can be described using iteration and composition.
A combination of iteration, converse and conjunction (at least) is needed for
capturing SCC-recursiveness [7].

Add argumentation-based operators to modal logics that cannot
express them. Instead of focusing only on what modal logic can do for argumen-
tation, it might be interesting to check whether the use of argumentation-based
operators with modal logics gives rise to useful and well behaved (axiomatizable,
decidable) logics.

5 Conclusions

In this paper we have provided a brief but intuitive presentation of the use of
modal logic for argumentation. We have also shown that existing work can be
continued in several directions that can benefit both the argumentation and the
modal logic communities. We have also presented partial results and intuition
on choosing certain modality operators for describing several argumentation se-
mantics proposed in the literature.

References

1. Grossi, D.: On the logic of argumentation theory. In W. van der Hoek, G. Kaminka,
Y. Lesperance, M.L., Sandip, S., eds.: Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2010), IFAAMAS
(2010) 409–416

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2) (1995) 321–357

3. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artificial Intelligence 171(10-15) (July 2007) 642–674

4. Caminada, M.: Semi-stable semantics. In Dunne, P.E., Bench-Capon, T.J.M., eds.:
Computational Models of Argument; Proceedings of COMMA 2006, IOS Press
(2006) 121–130

5. Caminada, M.: Comparing two unique extension semantics for formal argumenta-
tion: Ideal and eager. In: Proceedings of the 19th Benelux Conference on Artificial
Intelligence (BNAIC 2007). (2007) 81–87

6. Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: Pro-
ceedings of the 2nd Conference on Computational Models of Argument (COMMA
2008), Tolouse, France (2008) 25–36

7. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for ar-
gumentation semantics. Artificial Intelligence 168(1-2) (October 2005) 162–210

8. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Volume 27 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge
(2001)

9. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argu-
mentation semantics. Artificial Intelligence 171(10-15) (July 2007) 675–700

10. Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation
frameworks. In: Proceedings of the 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2005), Hong-Kong, China (2005) 568–572

38

Questions about Voting Rules, With Some Answers

Jan van Eijck and Floor Sietsma

CWI and ILLC, Amsterdam

Abstract. We raise questions about voting rules, and provide some of the an-
swers. The method is to define a number of new formal properties of voting rules,
and use these for classification and analysis. The aim is to get a better perspective
on vices and virtues of individual voting rules.

Keywords: Voting rules, collective choice, multi-agent decision making.

1 Ballots, Profiles, Voting Rules

Voting is the process of selecting an item or a set of items from a finite set A of
alternatives, on the basis of the stated preferences of a set of voters. See [3] for
a detailed account. By calling the voters agents, voting can be seen as a form of
multi-agent decision making.

A ballot is a linear ordering of A. Let ord(A) be the set of all ballots on A.
We assume that the preferences of a voter are represented by a ballot. A profile
is a vector of ballots, one for each voter. We assume voter anonymity, so it
does not matter which voter has which ballot. The only thing that matters is the
number of voters holding a certain ballot. Under this assumption voting profiles
can be represented as mappings from ballots to non-negative integers. Another
way to say this is by saying that our profiles are quantified, and the voting rules
to be introduced below act like quantifiers: they calculate an outcome based on
numbers (of voters holding certain ballots).

We will use P,Q to range over profiles, and b,b′ to range over ballots.
Profiles can be represented as lists of non-negative integers, where the length

of the list equals m!, with m the number of alternatives. The size of a profile is
equal to the length of its ballots. If a profile P has size m, this means that its
alternative set A has |A| = m.

If b is a ballot and P a profile, we use P(b) for the number of voters with
ballot b in P.

For example, assume the set of alternatives A equals {a, b, c}. Then the ballot
that has a in first position, b is second position, and c in third position is abc.
The following represents the profile P with P(abc) = 2 (two voters hold ballot
abc), P(bca) = 6 (six voters hold ballot bca), and so on:

(abc, 2), (bca, 6), (cab, 0), (acb, 4), (cba, 0), (bac, 2).

39

Profiles can be normalized by dividing with the gcd of the list of all nonzero
vote numbers. If P is a profile, we use P◦ for the normalized form of the profile.
The normalized form of the above example profile is:

(abc, 1), (bca, 3), (cab, 0), (acb, 2), (cba, 0), (bac, 1).

Definition 1. An (anonymous) voting rule V for set of alternatives A is a func-
tion from A-profiles to P+(A) (the set of non-empty subsets of A). A voting rule
V is resolute if V maps every profile to a singleton set. If V(P) = B, then the
members of B are called the winners of P under V.

Anonymity means that all voters are treated equally. This is built into our
framework because we take profiles to be given by numbers of voters for each
ballot.

If P is a profile for A, and π is a permutation of A, then Pπ is the result of
replacing x by π(x) everywhere in P. If B ⊆ A, then π(B) = {π(x) | x ∈ B}.
Definition 2. A voting rule V is neutral if for every profile P and for every per-
mutation π of the set A of alternatives,

V(Pπ) = π(V(P)).

Neutrality means that all alternatives are treated equally.

Definition 3. A voting rule V is normal if it holds for every profile P that V(P) =

V(P◦).

Proposition 1. There are anonymous and neutral voting rules that are not nor-
mal.

Proof. Let Vk be given by x ∈ Vk(P) if at least k voters have x at the top of their
ballots. Then Vk is anonymous and neutral, but Vk is not normal. ut
Question 1. Characterize the normal voting rules.

A scoring vector for ballots of size m is a list of non-negative integers
(w0, . . . ,wm−1) satisfying wi ≥ wi+1. The number wi indicates the weight of
position i in the ballot. The plurality rule has scoring vector (1, 0, · · · , 0). The
anti-plurality rule (or: veto rule) has scoring vector (1, · · · , 1, 0). The Borda rule
(see [2]) has scoring vector (m − 1,m − 2, · · · , 1, 0). The trivial voting rule that
always returns the set of all alternatives has scoring vector (0, . . . , 0).

Every scoring vector w determines a voting rule S w by means of:

S w(P) = {x ∈ A | x has maximal w-scores in P}.

40

For any scoring vector w = (w0, . . . ,wm−1), let w◦ be the result of dividing out
common factors in (w0 − wm−1, . . . ,wm−2 − wm−1, 0). Call w◦ the normalization
of w.

Proposition 2. Scoring vector normalization does not affect the set of winners:
for all P and all scoring vectors w it holds that S w(P) = S w◦(P).

Proof. Let (w1, . . . ,wm−1) be a scoring vector. If x is a winner under this vector
for profile P, this means that the score N of x for P is maximal among the scores,
i.e., greater than or equal to the score M of any alternative y , x. Scoring for the
vector (w1−wm−1, . . . ,wm−2−wm−1, 0) give scores N−kmwm−1 and M−kmwm−1,
so the score of x is still maximal. In the other direction, the scores change by
adding a constant, so winners are also preserved.

Next, compare (w1, . . . ,wm−1) and (w1K, . . . ,wm−1K), with K > 1. Scores
M and N for x and y under (w1, . . . ,wm−1) change into MK and NK. Since
M > N iff MK > NK, winners are not affected in either direction. ut

Absolute majority is the voting rule that selects an alternative with more
than 50 % of the votes as winner, and returns the whole set of alternatives other-
wise. This is not the same as plurality, which selects an alternative that has the
maximum number of votes as winner, regardless of whether more than half of
the voters voted like this or not. Unanimity: if all voters have an alternative a
at the top of their ballots then a is the winner, otherwise all alternatives tie for
a win. Near-unanimity: if all but at most one of the voters have an alternative a
at the top of their ballots then a is the winner, otherwise all alternatives tie for a
win.

In the examples below we also use the Condorcet rule. the Copeland rule
and the Hare rule. Here are the definitions (see also [15]).

A Condorcet winner is an alternative that beats every other alternative in
pairwise contests. An alternative x beats another alternative y in a one-to-one
contest if more than half of the voters prefer x to y. The Condorcet voting rule
(proposed in 1785 by the marquis of Condorcet in [6]) selects the Condorcet
winner if it exists, and the set of all alternatives otherwise. The Copeland voting
rule [7] selects the alternative that maximizes the difference between the number
of won and lost pairwise majority contests. The voting rule of single transferable
vote, also known as the Hare rule (see [9]; the rule is also described by John
Stuart Mill, with an attribution to Thomas Hare, in [11]), works as follows. If
one of the candidates gets an absolute majority, that candidate wins. Otherwise
prune the candidate(s) who is/are ranked first by the fewest number of voters
from the profile, and repeat.

41

2 Profile Restriction

Profile restriction is computing a new profile for a subset of the alternative set
of the original profile. The relative preferences of the voters in the new profile
should remain unchanged.

If B ⊆ A, we use PB for the result of restricting P to B. Formally, let b ∼B b′

if the ballots b and b′ become the same after restriction to the set B. Then PB is
given by

PB(b) =
∑
{P(b′) | b′ ∈ ord(A),b ∼B b′}.

For example, let P be the following profile:

(abc, 1), (bca, 2), (cab, 0), (acb, 3), (cba, 0), (bac, 2).

Then the restriction of P to {a, b} is given by

(ab, 4), (ba, 4),

the restriction of P to {a, c} is given by

(ac, 6), (ca, 2),

and the restriction of P to {b, c} is given by

(bc, 5), (cb, 3).

Definition 4. A voting rule V is invariant for restriction if it holds for every
B ⊆ A and every profile P that

V(P) , A and V(P) ∩ B , ∅ imply V(P) ∩ B = V(PB).

Note: Invariance for restriction can be viewed as a strengthening of a prop-
erty that is known as Chernoff’s condition [4], or as Sen’s property alpha [14],
or as Arrow’s principle of invariance for irrelevant alternatives [1], applied to
voting rules. A voting rule V satisfies this condition if winners in a subset B of
the set of all alternatives remain winners if the choice is limited to B. In our
terminology: if V(P) ∩ B ⊆ V(PB).

Proposition 3. The Hare rule and the Copeland rule are not invariant for re-
striction.

Proof. For the Hare rule, consider the following profile P (ballots that are not
mentioned get 0 votes):

(abc, 3), (bca, 2), (cab, 2).

42

If V is the Hare rule we get V(P) = {a}. The restricted profile P{a,c} looks like
this:

(ac, 3), (ca, 4).

This gives V(P{a,c}) = {c}.
For the Copeland rule, consider the following profile:

(bacde, 1), (acdeb, 1), (debac, 1).

Under the Copeland rule, this is a win for a. Next, restrict the profile to {a, b, c}.
This gives:

(bac, 2), (acb, 1).

Now b is the Copeland winner. ut

Theorem 1. The Condorcet rule is invariant for restriction.

Proof. If there are no Condorcet winners then there is nothing to prove. A win-
ner in the contest between a and b in P is still a winner in a contest between a
and b in PB for any B with {a, b} ⊆ B, and vice versa. ut

Theorem 2. Positional scoring rules with weights (w0, ...,wm−1) such that w0 >

wm−1 are not invariant for restriction.

Proof. Consider the following profile P consisting of 3 ballots of 7 voters:

(abc, 3), (bca, 2), (cab, 2).

Suppose the scoring rule gives weights (w0,w1,w2) to the three positions. Then
the scores of the candidates are as follows:

a : 3w0 + 2w1 + 2w2
b : 2w0 + 3w1 + 2w2
c : 2w0 + 2w1 + 3w2

Note that the difference in score between a and c is exactly w0 − w2. Since by
assumption w0 > w2, the score of a is larger than that of c. This means that
the set of winners is either V(P) = {a} or V(P) = {a, b}. Now let us remove b
from the set of candidates. In both cases, the intersection of V(P) with the set
of remaining candidates is {a}. The profile that remains after removing b is the
following:

(ac, 3), (ca, 4).

43

Now since there is a different number of candidates, the scoring rule may give
different weights to the positions. Suppose the weights are (v0, v1). Then the
scores of the candidates are as follows:

a : 3v0 + 4v1
c : 4v0 + 3v1

By assumption v0 > v1, so c wins the election. Because V(P) ∩ {a, c} = {a}, this
shows that V is not invariant for restriction. ut
Question 2. Characterize the voting rules that are invariant for restriction.

Question 3. Is invariance for restriction a desirable property for a voting rule to
have, or not?

The last question may seem a bit vague, but in any case, here are some
relevant observations. Notice that restriction destroys information. If there are
m alternatives and k voters then there are m! possible ballots. The number of
integer solutions for

x1 + · · · + xn = k

under the condition that xi ≥ 0 for all i = 1, . . . , n is
(
n+k−1

k

)
[10, Proposition

1.5]. Thus, for m alternatives and k voters there are
(
m! + k − 1

k

)

possible profiles. There are m ways to prune away one alternative. After pruning,
there are (m − 1)! possible ballots, which leaves

(
(m − 1)! + k − 1

k

)

profiles. All in all this gives

m
(
(m − 1)! + k − 1

k

)

possibilities.
To put these outcomes in perspective, here are some calculations for m = 4

and k = 10: (
4! + 10 − 1

10

)
= 92561040.

4
(
3! + 10 − 1

10

)
= 12012.

44

To see that the information destruction is vast, consider the case where the prun-
ing process leaves only pairs. m alternatives give m(m − 1) pairs, so after pair
pruning there are only m(m−1)(k+1) possibilities left, since there are k+1 ways
to split k into non-negative integers k1, k2 with k1 + k2 = k. For 4 alternatives
and 10 voters, this reduces the number of possibilities from 92561040 to 132.

3 Profile Addition, Additivity of Voting Rules

Intuitively, we can merge two elections into a single election, by adding the
numbers of votes for the various ballots. Call this operation ⊕. Note that the
two operand profiles have to be of the same size (i.e., over the same set of
alternatives). Note also that (P ⊕ P)◦ = P◦.

Definition 5. A voting rule V is additive if it holds for all m-profiles P and Q
that V(P) ∩ V(Q) ⊆ V(P ⊕ Q). Or in words: V is additive if winners of two
separate elections concerning the same set of alternatives remain winners if the
elections are merged.

The following definition is from [16].

Definition 6. A voting rule V is consistent if it holds for all m-profiles P and Q
that V(P) ∩ V(Q) , ∅ implies V(P) ∩ V(Q) = V(P ⊕Q).

Clearly, every consistent rule is additive, but the property of additivity is
weaker than the property of consistency: see Proposition 8 below.

The requirement of additivity seems entirely reasonable. Still, there are re-
spectable voting rules that do not satify it.

Proposition 4. The Condorcet rule is not additive.

Proof. Consider the following two profiles P and Q:

(abc, 3), (bca, 0), (cab, 0), (acb, 0), (cba, 0), (bac, 2),

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

The first of these has Condorcet winner a, the second has no Condorcet winner.
So V(P) = {a} and V(Q) = {a, b, c}, and therefore V(P)∩V(Q) = {a}. Their sum
is:

(abc, 4), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 5).

The Condorcet winner of this sum is b. ut

45

A voting rule satisfies the Condorcet Criterion if it always elects the Con-
dorcet winner if there is one. The above proposition should worry anyone who
thinks of the Condorcet criterion as a benchmark for voting rule quality.

Proposition 5. The Hare rule is not additive.

Proof. Consider the following two profiles (ballots that are not mentioned have
no voters):

P = {(abcd, 5), (bacd, 6), (cabd, 2), (dabc, 10)}.
Q = {(abcd, 4), (bacd, 4), (cabd, 8), (dabc, 2)}.

If V is the Hare rule, then V(P) = V(Q) = {a}, and V(P ⊕Q) = {b}. ut
Question 4. Is the Copeland rule additive?

Proposition 6. The majority, unanimity and near-unanymity rules are additive.

Proof. Suppose P and Q are m-profiles, V is the majority rule, and a ∈ V(P) ∩
V(Q). Let P have N voters and Q have M voters. Then either no x ∈ A has
an absolute majority, or more than N/2 ballots in P have a in first position.
Similarly, either no x ∈ A has an absolute majority in Q, or more than M/2
ballots in Q have a in first position. It follows that either no x ∈ A has an
absolute majority in P ⊕ Q, in which case a ∈ V(P ⊕ Q) = A, or (N + M)/2
ballots in P ⊕Q have a in first position, i.e., a is the majority winner in P ⊕Q.

Same reasoning for the unanimity and near-unanymity rule. ut
Proposition 7. The near-unanymity rule is not consistent.

Proof. Let V be the near-unanimity rule and let P be the following profile:

(ab, 2), (ba, 1).

Then V(P) = {a} and V(P ⊕ P) = {a, b}. This shows that V is not consistent. ut
Proposition 8. Additivity does not imply consistency.

Proof. Immediate from Propositions 6 and 7. ut
Theorem 3. Every positional voting rule is additive.

Proof. Let V be a positional voting rule, and let P, Q be a pair of m-profiles, for
some m. Suppose a ∈ V(P) ∩ V(Q). We have to show that a ∈ V(P ⊕ Q). But
this is immediate from the fact that if the score of a is maximal in P and Q, it is
also maximal in P ⊕Q. ut
Question 5. Can we prove an if and only if for additivity?

46

4 Cycles, Reduction

Definition 7. A permutation of alternatives π on A = {a0, . . . , am−1} is a full
cycle if π can be given as a0 = π0(a0) 7→ π(a0) 7→ π2(a0) 7→ · · · 7→ πm−1(a0),
with the πi(a0) all different.

Any full cycle on A can be considered as a linear ordering on A with a0 as least
element, and vice versa. Thus, there are (m − 1)! full cycles on {a0, . . . , am−1}.

Customary notation for full cycles π on a list of m elements is to give the
list:

(a0, π(a0), π2(a0), · · · , πm−1(a0)).

For example, the full cycle in the following picture can be given as (adbc).

a d

bc

So cycles can also be represented as ballots. Moreover, cycles can be used
to classify ballots. Two ballots b and b′ are in the same ballot cycle if there is a
full cycle π on A and a number k such that πk maps b to b′. If the ballot size is
m, then each ballot is part of a cycle of m ballots.

For example, the ballot abcd is part of the following cycle:

abcd, bcda, cdab, dabc.

The following definition is from Saari [13].

Definition 8. A profile is reduced if each cycle in the profile contains a ballot
with no voters.

Example 1. The profile

(abc, 3), (bca, 1), (cab, 0), (acb, 2), (cba, 0), (bac, 2)

is reduced.

Explanation: there are two cycles, {abc, bca, cab} and {acb, cba, bac}, and
both have a ballot with no voters.

Definition 9. A profile is balanced if each cycle in the profile is such that each
ballot in the cycle has the same number of voters. Use B for balanced profiles.

47

Example 2. The profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3)

is balanced.

Proposition 9. For every profile P there exist a reduced Q and a balanced B
such that P = Q ⊕ B.

Definition 10. If P = Q ⊕ B, as in Proposition 9, then call B the surplus of P
and Q the reduced form of P. Use Pr for the reduced form of P.

Proposition 10. A profile P is both balanced and reduced iff P has no voters.

Definition 11. Call the operation of subtracting a balanced profile from P re-
duction. Call the operation of adding a balanced profile to P dilution.

Here is an obvious algorithm for putting a profile P in reduced form:
For each cycle π of P, let the minimum of the vote numbers in that cycle
be k. Subtract k from every vote number in the cycle.

The surplus of a profile indicates by how much the profile can be reduced.

Example 3. The surplus of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

Example 4. The reduced form of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 3), (bca, 1), (cab, 0), (acb, 0), (cba, 0), (bac, 3).

Theorem 4. Any anonymous and neutral voting rule maps a balanced profile
to the set of all alternatives.

48

Proof. Let P be a balanced profile for A. Let V be an anonymous and neutral
voting rule. We must prove that V(P) = A.

Suppose not, i.e., suppose there is some b < V(P). There also is some a ∈
V(P), for V(P) , ∅.

Let σ be any permutation of A that satisfies σ(a) = b.
Observe that each cycle will remain a cycle under the permutation σ. There-

fore, because of anonymity and the fact that P is balanced: Pσ = P. Because of
neutrality V(Pσ) = σ(V(P)), and therefore b = σ(a) ∈ V(Pσ) = V(P), and con-
tradiction. ut
Theorem 5. If |A| = m then the number of voters in any balanced profile for A
is a multiple of m.

Proof. Each cycle in an m-profile has m elements. There are (m−1)! cycles. Let
cycle i have ki voters. Then all in all we have m

∑(m−1)!
i=1 ki voters. ut

Definition 12. A voting rule V is safe for dilution if it holds for all profiles P
and balanced profiles B that V(P) ⊇ V(P ⊕ B).

Safety for dilution means that dilution does not introduce new winners.

Definition 13. A voting rule V is safe for reduction if it holds for all profiles P
and balanced profiles B that V(P) ⊆ V(P ⊕ B).

Safety for reduction means that reduction does not introduce new winners.

Theorem 6. Any anonymous, neutral and additive voting rule is safe for reduc-
tion.

Proof. Assume V is anonymous and neutral. Then V(B) equals the set of all
alternatives. By additivity we have:

V(P) = V(P) ∩ V(B) ⊆ V(P ⊕ B).

ut
Proposition 11. The Condorcet rule is neither safe for reduction nor safe for
dilution.

Proof. Consider the profile:

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

The Condorcet winner for this profile is a. The reduced form of this is:

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0).

The Condorcet winner for the reduced profile is c. ut

49

Proposition 12. The absolute majority rule is safe for reduction, but not safe
for dilution.

Proof. The example from Proposition 11 works here as well. In the reduced
profile

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0)

there is an absolute majority for c. Dilute this profile with

(abc, 1), (bac, 1), (bca, 1), (acb, 3), (cab, 3), (cba, 3).

There is no absolute majority in the diluted profile

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

ut
Theorem 7. Any voting rule V with positional scoring will assign to every al-
ternative in a balanced profile B the same score.

Proof. Let B be a balanced m-profile. Then there are (m − 1)! cycles, and there
are ki voters in each ballot in the i-th cycle. Let V be a positional voting rule
with (x0, · · · , xm−1) as its scoring vector. Let πi be an arbitrary cycle of P, let a
be an arbitrary alternative, and let j be an arbitrary position (i.e., 0 ≤ j < m).
Then the score for a for this position in the cycle under the voting rule is given
by kix j, for a occurs in this position exactly once in the cycle. Summing over
the cycles, we get that a collects the following score in B:

(m−1)!∑

i=1

kix j.

Summing over the positions, we see that a collects the score:

m−1∑

j=0

(m−1)!∑

i=1

kix j.

Since a was arbitrary, every alternative collects this same score. ut
Theorem 8. Any voting rule V with positional scoring is safe for reduction and
safe for dilution.

Proof. Let P be an m-profile, and let B be a balanced m-profile.
Since B is balanced, it follows from the previous Theorem that the scores

for the alternatives under V for P can be computed from those for P ⊕ B by
subtracting a constant c from each score, and vice versa, by adding a constant
c to each score. These subtractions and additions do not affect the outcome of
V . ut

50

Question 6. Does the converse hold as well? If a voting rule is safe in both
directions, does it follow that it is positional?

If this is too difficult to answer, the following questions may be easier:

Question 7. If a voting rule is safe in both directions, does it follow that it is
additive?

Question 8. If a voting rule is safe in both directions, does it follow that it is
consistent?

Notice that for all voting rules V that are not invariant under reduction, the
derived voting rule Vr defined by Vr(P) = V(Pr) is different from V . Also,
for any voting rule V , the derived voting rule Vr is invariant for reduction and
dilution by definition.

Question 9. What are the formal properties of the Condorcetr rule?

Question 10. Are there non-positional voting rules V with the property that Vr

is positional?

5 Strategizing

Strategizing is replacing a ballot b by a different one, b′, in the hope or expec-
tation to get a better outcome (where better is “closer to b” in some sense).

As is explained in [15], there are many ways to interpret ‘better’. One way is
that X is better than Y if X weakly dominates Y , that is if every x ∈ X is at least
as good as every y ∈ Y and some x ∈ X is better than some y ∈ Y . Formally:

Definition 14. If X,Y ⊆ A X , ∅, Y , ∅, and b ∈ ord(A), then X >b Y if
∀x ∈ X∀y ∈ Y: x = y or x is above y in b, and ∃x ∈ X∃y ∈ Y: x is above y in b.

Let P ∼i P′ express that P and P′ differ only in the ballot of voter i.

Definition 15. A voting rule is strategy-proof if P ∼i P′ implies V(P) ≥i V(P′),
where ≥i expresses ‘betterness’ according to the i-ballot in P.

Note: the following definition does not assume voter anonymity. The defini-
tion uses P−i for the result of removing the ballot of voter i from profile P.

Definition 16. A voting rule V is monotone if for any profile P and any alter-
native a ∈ V(P), if b′i is a new ballot for some voter i that results from moving a
up in the ranking of i and not changing the order between the other alternatives,
then a ∈ V(P−i ∪ b′i).

51

Definition 17. A voting rule is resolute if V(P) is a singleton for any profile P.

Theorem 9. Any resolute voting rule that is monotone and invariant for restric-
tion is strategy-proof.

Proof. Take some resolute voting rule V , profile P and voter i. Suppose V(P) =

{a}. Then for any other candidate c, V(P{a,c}) = {a} by winner preservation under
restriction. Suppose i can strategize by submitting some dishonest ballot b′i in
order to elect some candidate b such that b >i a.

Let V(P−i ∪ b′i) = {b}. It is possible that a >′i b. By monotonicity, if we
construct the ballot b′′i by moving b up until b >′′i a then V(P−i ∪ b′′i) = {b}.
By winner preservation under restriction, V(P{a,b}) = a. But because b >′′i a,
(P−i ∪ b′′i){a,b} = P{a,b} so V((P−i ∪ b′′i){a,b}) = V(P{a,b}) = {a}. This contradicts
our assumption that b >i a, so strategizing is not possible. ut

The concept of weak domination is borrowed from game theory (see, e.g.,
[12]). As Taylor [15, p. 39] remarks:

In point of fact, an election can be thought of as a game in which a
strategy for a player (voter) is a choice of ballot, and the outcome of the
game is the set of winners in the election.

To formalize this, let a ballot vector for A be a list of A-ballots (b0, . . . ,bn−1).
We assume that a ballot vector represents the true ballots of voters {0, . . . , n−1},
in the sense that bi represents the true preferences of voter i.

Define a payoff function in terms of ≥b from Definition 14, as follows.

Definition 18. payoff(b, X) = |{Y | Y ∈ P+(A), X >b Y}|.
Thus, the payoff of a voting outcome X, given a ballot b serving as a point

of reference, is the size of the set of possible voting outcomes that are strictly
worse than X.

This payoff function can be used to define the value of a move for a player
with true ballot b, as follows:

Definition 19. move(V,P,b,b′) = payoff(b,V(P′)), where P′ is the result of
adding ballot b′ to P.

The game for voting rule V and ballot vector (b0, . . . ,bn−1) is now given in
terms of the move function, as follows.

Definition 20. Assume P is some profile for n − 1 voters. Then

Game(V, (b0, . . . ,bn−1),P, i) = {(b,move(V,P,bi,b) | b ∈ ord(A)}.

52

Thus, we see that a voting rule together with a ballot vector determines an
n-player game Game(V, (b0, . . . ,bn−1)), where each voter has a choice between
the members of ord(A) (the possible ballots), and where the payoff for player i
for a profile P for n−1 voters, and for (cast) ballot b is given by move(V,P,bi,b).

Clearly, a voting rule V is strategy-proof iff it holds for each ballot vec-
tor (b0, . . . ,bn−1) that the profile P corresponding to vector (b0, . . . ,bn−1) is a
Nash equilibrium for Game(V, (b0, . . . ,bn−1)). But we can take a more general
perspective:

Question 11. Characterize the ballot vectors for which Game(V, (b0, . . . ,bn−1))
(for given V) has nontrivial pure Nash equilibria.

The following proposition shows that there are many trivial Nash equilibria.

Proposition 13. Let V be a voting rule and P a profile. If for all i and P′

with P ∼i P′ it holds that V(P) = V(P′), then P is a Nash equilibrium for
Game(V, (b0, . . . ,bn−1)), for any ballot vector (b0, . . . ,bn−1).

Proof. No voter has an incentive to deviate from his ballot in P, as it makes no
difference for the outcome. ut

Players who realize they have lost the game have no incentive to strategize.
Similarly for players who realize they have won the game. If all players know
they are in one of these two categories, no strategizing will occur. Compare also
[5] for a first analysis of the crucial role of knowledge in strategic voting.

Question 12. Analyze the abstention game for a voting rule and a ballot vector,
where each player has the choice between casting his true ballot or abstaining
from the vote. A voting rule V is abstention-proof if it holds for each ballot
vector (b0, . . . ,bn−1) that the profile corresponding to that vector is a Nash equi-
librium for the abstention game for V and (b0, . . . ,bn−1). Characterize the voting
rules that are abstention-proof.

6 Conclusion and Further Research

We have introduced a number of concepts to classify and analyze voting rules:
invariance for restriction, additivity, safety for dilution, safety for reduction. We
have demonstrated the use of these concepts by proving some new results about
voting rules. Further clarification of relations between voting rules will no doubt
result from finding answers to the list of questions we have left open. Answering
the list of questions we have raised (or in some cases, finding the answers in the
literature) is future work.

53

We have an implemented system for voting with anonymous voting rules
that we used for checking a number of the factual propositions in this paper.
The present version of the software implements strategizing, under the assump-
tion that the rest of the profile is known to the strategizer. Our intention is to
extend this implementation to an epistemic model checker for voting under par-
tial uncertainty about the profile. The software is available on the internet as a
literate Haskell program [8].

Acknowledgement Thanks to Krzysztof Apt, Ulle Endriss and Sunil Simon
for enlightening discussions on the topic of this paper. The participants of the
Lorentz workshop on Modeling Strategic Reasoning (Leiden, Feb 20–24, 2012)
and three anonymous LAMAS 2012 reviewers also gave useful feedback.

References

1. K. Arrow. Social Choice and Individual Values. Wiley, New York, 1951, second edition:
1963.

2. J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des
Sciences, Paris, 1781.

3. Steven J. Brams and Peter C. Fishburn. Voting procedures. In K.J. Arrow, A.K. Sen, and
K. Suzumura, editors, Handbook of Social Choice and Welfare, volume I, chapter 4. Elsevier,
2002.

4. H. Chernoff. Rational selection of decision functions. Econometrica, 22:422–443, 1951.
5. Samir Chopra, Eric Pacuit, and Rohit Parikh. Knowledge-theoretic properties of strategic

voting. In Proceedings of the 9th European Conference on Logics in Artificial Intelligence
(JELIA-2004), pages 18–30, 2004.

6. M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilité des
décisions rendues à la pluralité des voix. Imprimerie Royale, Paris, 1785.

7. A.H. Copeland. A ”reasonable” social welfare function. Seminar on Mathematics in Social
Sciences, 1951.

8. Jan van Eijck and Floor Sietsma. Basic voting theory. Literate Haskell Program, available
from www.cwi.nl/˜jve/software/voting/, 2012.

9. T. Hare. The Election of Representatives, Parliamentary and Municipal: A Treatise. Long-
man, Green, London, 1861.

10. Stasys Jukna. Extremal Combinatorics, with Applications in Computer Science — Second
Edition. Texts in Theoretical Computer Science. Springer, 2011.

11. John Stuart Mill. Considerations of a Representative Government. Parker, Son, and Bourn,
London, 1861. Electronically available from Project Gutenberg.

12. Martin J. Osborne. An Introduction to Game Theory. Oxford University Press, New York,
Oxford, 2004.

13. D.G. Saari. Basic Geometry of Voting. Springer, 1995.
14. Amartya Sen. Collective Choice and Social Welfare. Holden-Day, 1970.
15. Alan D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University

Press, 2005.
16. H.P. Young. Social choice scoring functions. SIAM Journal on Applied Mathematics,

28(4):824–836, 1975.

54

Public Announcements are Exponentially More Succinct
than “Everybody Knows” and “Somebody Knows”

Wiebe van der Hoek and Petar Iliev

Department of Computer Science, University of Liverpool,
Ashton Building, Ashton Street, Liverpool, L69 3BX, UK

{wiebe,pvi}@liverpool.ac.uk

Abstract. Formula-Size games are generalisation of Ehrenfeucht - Fraisse games
that are used to give bounds on the length of first-order formulas rather than their
quantifier depth. Using a suitable version of these games, we prove that the public
announcement logic PAL is exponentially more succinct than both the logics ELS

(basic epistemic logic extended with an operator for “somebody knows”) and ELE

(basic epistemic logic extended with an operator for “everybody knows”).
Keywords: epistemic logic, artificial intelligence, multi-agent systems, finite model
theory of modal logics, formula-size games

1 Introduction

Consider the following general question. Let L1 and L2 be two formalisms that express
the same class of “properties” or “situations”. Is one of the formalisms representation-
ally more succinct (allowing for a more “economical” representation of information)
than the other and by how much? A famous instance of this question is whether there
is a family of Boolean functions for which boolean circuits can be exponentially more
succinct than boolean formulas. It is widely believed that the answer is beyond our cur-
rent mathematical knowledge and techniques. On a more positive note, there are some
well-known instances of the question that have been solved, e.g. CTL+ is exponentially
more succinct than CTL (see [9] and [1]); the four-variable fragment of first-order logic
is exponentially more succinct than the three-variable one (see [6]); first-order logic is
non-elementary more succinct than LTL (see [8]).

Here we prove that the logic PAL (basic epistemic logic EL extended with an opera-
tor for “public announcements”) is exponentially more succinct than the logic ELS (i.e.,
EL extended with an operator for “somebody knows”) and the logic ELE (i.e., EL ex-
tended with an operator for “everybody knows”). Hence, there are semantic properties
that are more economically expressed by using the “public announcement” operator,
than by using the E or S operator. One disadvantage of our proof is that the commonly
accepted semantics of epistemic logic is given via models in which every relation is a
relation of equivalence. This is not true for the models we use. We intend to solve this
technically more complicated problem in a future paper.

Intuitively, a public announcement formula [φ]ψ is true at a given point w in some
model M if the truth of φ in w implies that ψ remains true at w when we remove from
M all points that do not satisfy φ. It is well known that every such formula is equivalent
to an EL formula.

55

A formula of the form E{a,...,m}φ (intuitively, everybody in the group of agents
{a, . . . ,m} knows φ) is just an abbreviation of the EL formula Kaφ ∧ . . . ∧ Kmφ (intu-
itively, a knows φ and b knows φ, etc). In the same way, a formula of the form S{a,...,m}φ
(intuitively, somebody in the group of agents {a, . . . ,m} knows φ) is just an abbrevi-
ation of the EL formula Kaφ ∨ . . . ∨ Kmφ (intuitively, at least one agent in the group
knows φ). It is obvious that adding formulas of the form E{a,...,m}φ to EL does not
increase its expressive power; what is more, the computational complexity of the satis-
fiability problem for ELE is the same as that for EL [7]. In the same way, ELS is not more
expressive than EL. It is known, however, that PAL, ELE and ELS are exponentially more
succinct than EL. We invate the reader to consult [7] and [4] for proofs of these results.
This shows that abbreviations are not just “syntactic sugar” but a genuinely powerful
tool. Proving that PAL is exponentially more succinct than ELS and ELE is a further
continuation of the line of work started in [4] and [7].

We would like to stress that despite the fact that we can translate every ELE, ELS and
PAL formula into an equivalent EL formula, it is by no means obvious that our translation
is optimal. In particular, it may seem “trivial” that deep nesting of the E operator, as in
the formula ψ = E{a,b}E{a,b}p, “inevitably” leads to an exponential blow-up in the
length of any equivalent EL formula but this “intuition” is supported only by the fact
that we define ψ as an abbreviation of the formula φ = Ka(Kap∧Kbp)∧Kb(Kap∧Kbp).
However, it does not follow that there is no “considerably” shorter EL formula θ that is
equivalent to ψ especially if we impose specific conditions on our semantics. A proof
that there is no such θ on S5 models can be found in [4].

As far as we know, the first systematic study of knowledge representation for-
malisms in terms of succinctness is [5]. We would like to stress that many of the results
in this important paper are based on unproven computational complexity conjectures,
while the results presented here are absolute in the sense that we do not rely on such
conjectures.

2 Preliminaries

In this section we fix the main definitions and provide the technica tools we use.

2.1 Epistemic logic, Public announcements, Everybody knows, and Somebody
knows

Definition 1 (PAL with Everybody knows and Somebody knows). The signature
of public announcement logic with operators for “everybody knows” and “somebody
knows” (ESPALm

n) is a pair S = {P, I}, where P = {p0, p1, . . . , pn} is a finite set of
propostional symbols and Ag = {a1, . . . , am} is a finite set of agent names. Let PAg be
the set of nonempty subsets of Ag. The formulas of ESPALm

n are built according to the
rule:

ψ := ⊥ | > | p ∈ P | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Kaψ | Maψ | SΓψ | EΓψ, | [ψ]ψ,

where a ∈ Ag and Γ ∈ PAg.

56

A formula Kaϕ is read as ‘agent a knows ϕ’ and Maϕ = ¬Ka¬ϕ is read as ‘given the
information to a, he cannot rule out ϕ’, or, briefly, ‘agent a considers ϕ possible’.

Definition 2 (PALm
n , ELESm

n , ELEm
n , ELSm

n , and ELm
n). The formulas of the logic PALm

n
are the formulas of ESPALm

n with the exception of all formulas of the form SΓ and
EΓ . The formulas of the logic ELESm

n are the formulas of the logic ESPALm
n with the

exception of all formulas of the form [ψ1]ψ2. The formulas of the logic ELEm
n are the

formulas of the logic ESPALm
n with the exception of all formulas of the form [ψ1]ψ2

and SΓψ. The formulas of ELSm
n are the formulas of ESPALm

n with the exception of all
formulas of the form [ψ1]ψ2 and EΓψ. Finally, the formulas of epistemic logic ELm

n are
the formulas of ESPALm

n with no formulas of the forms EΓψ, SΓψ, and [ψ1]ψ2 allowed.

Next we define the length of a formula ϕ (denoted |ϕ|). Usually, |ϕ| is defined as the
length of the binary string that encodes ϕ given some binary encoding of the formulas
of ESPALm

n . Such precission, however, is irrelevant for our purposes and we define
formula length as follows.

Definition 3. The length of an ESPALm
n formula ϕ, denoted |ϕ|, is defined by induction

on the structure of ϕ.

(ϕ is either a propositional symbol p ∈ P, or >, or ⊥): |ϕ| = 1;
(ϕ is ¬ψ): |ϕ| = 1 + |ψ|;
(ϕ is either ψ1 ∧ ψ2 or ψ1 ∨ ψ2) : |ϕ| = 1 + |ψ1|+ |ψ2|;
(ϕ is either Kaψ, or Maψ, or SΓψ, or EΓψ): |ϕ| = 1 + |ψ|;
(ϕ is [ψ1]ψ2): |ϕ| = |ψ1|+ |ψ2|.

We give the usual Kripke semantics for ESPALm
n (see for example [2]).

Definition 4 (Model). A model for the signature S = {P,Ag} is a triple M = 〈W,R,V〉,
where

– W is a set of points;
– R : Ag → 2W×W is a function that assigns a binary relation R(a) on W to every

a ∈ Ag. We write wRav for (w, v) ∈ R(a) and say that v can be reached from w in
one a-step.

– V : P→ 2W is a function that assigns a subset V(p) ⊆ W to every p ∈ P.

A model M = 〈W,R,V〉 is said to be finite if W is finite. Given a model M = 〈W,R,V〉,
a pointed model is a pair (M,w), where w ∈ W. Sets of pointed models are denotedM,
N,M1,N1,M2,N2, etc.

The notion “formula ϕ is true in a pointed model (M,w)” is defined in the well-known
way (see for example [3]). In particular:

(M,w) |= Maψ iff there is a v ∈ W such that wRav and (M, v) |= ψ;
(M,w) |= Kaψ iff (M, v) |= ψ for all v ∈ W such that wRav;
(M,w) |= EΓψ iff (M,w) |= ∧a∈Γ Kaψ;
(M,w) |= SΓψ iff (M,w) |= ∨a∈Γ Kaψ.
(M,w) |= [ψ1]ψ2 iff If (M,w) |= ψ1 then (M|ψ1 ,w) |= ψ2.

57

where M|ψ1 is the model obtained from M by removing all points that do not satisfy
ψ1.

Given this semantics, it is obvious that ELEm
n and ELSm

n are just extensions by defi-
nition of the logic ELm

n and, if Γ = {a}, then both EΓψ and SΓψ are the formula Kaψ
1.

What is more, every PALm
n formula can be rewritten into an equivalent ELm

n formula
using the rules below ([3]).

[ψ]p ↔ ψ → p,
[ψ](φ1 ∧ φ2) ↔ [ψ]φ1 ∧ [ψ]φ2

[ψ]¬φ ↔ ψ → ¬[ψ]φ
[ψ]Kaφ ↔ ψ → Ka[ψ]φ
[ψ1][ψ2]φ ↔ [ψ1 ∧ [ψ1]ψ2]φ

(1)

From now on, if (M,w) is a pointed model, where M = 〈W,R,V〉, we write v ∈ M
instead of v ∈ W; all models and all sets of pointed models are finite. We writeM |= ϕ
to mean that for all (M,w) ∈ M, (M,w) |= ϕ. Note that if M = ∅, then for every
ESPALm

n formula ϕ, it is trivially true thatM |= ϕ. We are going to use the well-known
fact that if two pointed models (M,w) and (N, v) are bisimilar, then for every ELESm

n
formula ϕ, (M,w) |= ϕ if and only if (N, v) |= ϕ (see [2]).

2.2 Formula-Size Games

Formula-Size games were first introduced in [1]. Our version is as follows.

Definition 5 (Formula-Size Game). The rules of the one-person (called Spoiler) for-
mula size game (FSG) are the following. The game is played on a tree, where each
node is labeled with a pair 〈M ◦N〉 such thatM andN are finite sets of finite pointed
models. At each step, a node is labeled with one of the symbols from the set Σ =
{>,⊥, p,¬,∨,∧,Mi,Ki,EΓ , SΓ } and either it is closed or at most two new nodes are
added. Let a node 〈M◦N〉 be given. Spoiler can make the following moves at this node:

⊥-move This can be played only if M = ∅. When Spoiler plays this move, the leaf
〈M ◦N〉 is closed and labeled with the symbol ⊥.

>-move This can be played only if N = ∅. When Spoiler plays this move, the node is
closed and labeled with the symbol >.

atomic-move Spoiler chooses a propositional variable p ∈ P such that M |= p, and
N |= ¬p. Then the node is closed and labeled with the symbol p.

not-move Spoiler labels the node with the symbol ¬ and adds one new node denoted
〈N ◦M〉 as a successor to the node 〈M ◦N〉.

and-move Spoiler labels the node with the symbol ∧ and splits N in two sets N =
N1 ∪N2. Two new nodes are added to the tree as successors to 〈M ◦N〉, namely
〈M ◦N1〉 and 〈M ◦N2〉.

or-move Spoiler labels the node with the symbol ∨ and splits M in two sets M =
M1∪M2. Two new nodes are added to the tree as successors to the node 〈M◦N〉,
namely 〈M1 ◦N〉 and 〈M2 ◦N〉.

1 Hence, in what follows, we assume that the set Γ contains at least two indices.

58

Ki-move Spoiler labels the node with the symbol Ki and for each pointed model (N, v) ∈
N, he chooses a model (N, v′) such that vRiv′. All those choices are collected inN1.
Then, for each pointed model (M,w) ∈M, Spoiler choses all the possible pointed
models (M,w′) such that wRiw′ and collects them in M1. If for some (M,w), the
point w does not have an Ri successor, nothing is added toM1 for this model. The
node 〈M1 ◦N1〉 is added as a successor of 〈M ◦N〉.

Mi-move Spoiler labels the node with the symbol Mi and for each pointed model
(M,w) ∈ M, he chooses a model (M,w′) such that wRiw′. All those choices are
collected inM1.Then, for each pointed model (N, v) ∈ N, Spoiler chooses all the
possible pointed models (N, v′) such that vRiv′ and collects them inN1. If for some
(N, v), the point v does not have an Ri successor, nothing is added to N1 for this
model. A new node 〈M1 ◦N1〉 is added as a successor of 〈M ◦N〉.

EΓ -move Spoiler choses a subset Γ ⊆ Ag, then labels the node with the symbol EΓ and
for each pointed model (N,w) ∈ N he choses an agent i ∈ Γ and a model (N, v)
such that wRiv. Let N1 be the set of all such models. For each model (M, s) ∈ M
and each agent j ∈ Γ , Spoiler choses all the possible models (M, t) such that sRjt.
If for some (M, s), the point s does not have an Rj successor, no model is chosen for
(M, s) and the agent j . LetM1 be the set of all such models. The node 〈M1 ◦N1〉
is added as a successor of the node 〈M ◦N〉.

SΓ -move Spoiler choses a subset Γ ⊆ Ag, then labels the node with the symbol SΓ
and, for each pointed model (N,w) ∈ N and every agent i ∈ Γ , he choses a
model (N, v) such that wRiv. Let N1 be the set of all such models. For each model
(M, s) ∈M, Spoiler choses an agent j ∈ Γ , and all the possible models (M, t) such
that sRjt. If for some (M, s), the point s does not have an Rj successor, no model is
chosen for (M, s) and the agent j . LetM1 be the set of all such models. The node
〈M1 ◦N1〉 is added as a successor of the node 〈M ◦N〉.

And-moves and or-moves are collectively called splitting moves. Splitting moves and
the not-move are called Boolean moves. Mi-moves and Ki-moves are called agent-
moves. In a node η = 〈M ◦N〉, we callM the models on the left and N the models on
the right. Formula-size games in which no SΓ and EΓ moves are allowed are called EL-
games. Games with no SΓ moves allowed are called ELE-games and games in which
no EΓ moves are allowed are called ELS-games.

Definition 6 (FSG Winning Condition). We say that Spoiler wins the FSG starting at
〈M ◦N〉 in n moves iff there is a game tree T with root 〈M ◦N〉 and precisely n nodes
such that every leaf of T is closed.

The next theorem connects the formula size games with the length of formulas of
ELESm

n . A proof can be found in [4].

Theorem 1. Spoiler can win the FSG starting at 〈M ◦ N〉 in n moves iff there is an
ELESm

n formula ψ that is true in all the models in M and false in all the models in N
and for which |ψ| ≤ n.

Example 1. Figure 1 shows a 4-round FSG starting at a node with two models on each
side: 〈(M1, s1), (M2, s2) ◦ (M3, s3), (M4, s4)〉. Only the atoms true at a given state are
shown. There is only one agent. The big circles represent the nodes in the game tree.

59

Black circles designate closed leaves. The current points in the models are also black.
Spoiler starts by playing an and-move. He exploits the fact that in one of the models
on the right q is false in the current state, whereas in the other the current world has no
successor. Spoiler can close the left branch by playing an atomic move q. In the right
branch, Spoiler plays an M-move taking advantage of the fact that s4 has no successor
in M4. Hence, there is no model on the right in the next node. Therefore, Spoiler plays
a >-move and wins the game. His strategy is induced by the formula q ∧M>.

s1

t1

q

s2

t2

q

p

M1
M2 s3

t3

M3

p

s4

q

M4and

s1

t1

q

s2

t2

q

p

M1
M2 s1

t1

q

s2

t2

q

p

M1
M2s3

t3

M3

p

s4

q

M4
atom

s1

t1

q

s2

t2

q

p

M1
M2

M

Fig. 1. The 4-round FSG starting in node 〈{(M1, s1), (M2, s2)} ◦ {(M3, s3), (M4, s4)}〉.

Definition 7 (Isomorphism of branches). A branch in a closed game tree is any path
leading from the root of the tree to a closed leaf.

1. Let two closed game trees T1 and T2 be given and let the branch B1, consisting
of the nodes n0, n1, ..., nk, and the branch B2, consisting of the nodes t1, t2, ...tl
(where the nodes in each branch have been numbered in increasing order starting
from the root of the tree), belong to T1 and T2 respectively. We call B1 and B2

isomorphic, and write B1
∼= B2, iff k = l and the symbols from the set Σ =

{>,⊥, p,¬,∨,∧,Mi,Ki} labelling the nodes nj, tj (0 ≤ j ≤ k) are the same.
2. Let Ag(B) be the sequence of agent names obtained from B in such a way that they

represent the agent moves along B, when traversing the branch from the root to the
closed leaf. For instance, the branches B1 (left) and B2 (right) of the game tree of
Figure 1 satisfy Ag(B1) = ε2 and Ag(B2) = a.

2 We use ε to denote the empty word.

60

Intuitively, isomorphism of branches means that the branches are equally long and look
the same provided that we do not take into account the sets of pointed models labelling
the respective nodes nj, tj (0 ≤ j ≤ k). It is obvious that if a game tree T has two non
- isomorphic branches B1 and B2, then T has at least two different branches. The word
Ag(B) encodes the agent-moves played along the branch B starting from the root.

Definition 8 (Isomorphism of game-trees). Let Br(T) be the set of branches of the
game tree T. We call two closed game-trees T1 and T2 isomorphic, and write T1

∼= T2,
iff there is a bijective function f : Br(T1) → Br(T2) such that for all branches B ∈
Br(T1), f (B) ∼= B.

The reader may think about this notion in the following way. If we have two closed
game-trees that look identical provided that we do not take into account the sets of
pointed models labelling each node, then these trees are isomorphic. It is easy to see
that if T1

∼= T2, then T1, T2 are both parse trees of the same EL formula.

Lemma 1 (Properties of FSG). For any FSG starting at a node 〈M ◦N〉.
1. If there are two bisimilar models (M,w) ∈M and (N, v) ∈ N, then Spoiler cannot

win this game.
2. IfM = ∅ and N 6= ∅, then Spoiler can win this game by playing according to any

formula φ such thatN |= ¬φ.
3. IfM 6= ∅ and N = ∅, then Spoiler can win this game by playing according to any

formula φ such thatM |= φ.
4. IfM = N = ∅, then Spoiler can win this game in any number of steps n ≥ 1.
5. If Spoiler can win this game in n moves, then Spoiler can also win the FSG starting

at 〈M1 ◦N1〉 in n moves, for all M1 ⊆ M, N1 ⊆ N; what is more, every closed
game tree for the FSG starting at the node 〈M◦N〉 is isomorphic to a closed game
tree for the FSG starting at the node 〈M1 ◦N1〉.

6. Suppose that Spoiler can win this game in n moves. Let M1 ⊆ M, N1 ⊆ N and
let k be the smallest possible number of moves that Spoiler needs to win the FSG
starting at 〈M1 ◦N1〉, then k ≤ n.

7. Suppose that Spoiler can win this game. Let M1,M2, . . . ,Mk be subsets of M
and N1, N2, . . . ,Nk be subsets of N. If for every k winning games for Spoiler
starting at 〈M1 ◦N1〉, 〈M2 ◦N2〉, . . . , 〈Mk ◦Nk〉 resulting in closed game trees
T1, T2, . . . ,Tk we can find branches B1, B2, . . . ,Bk respectively such that Bi � Bj

for all i 6= j, then every closed game tree for the FSG starting at 〈M ◦N〉 contains
at least k different branches.

8. For any two branches B1 and B2, if Ag(B1) 6= Ag(B2), then B1 � B2.

Proof.

1. Immediate from Theorem 1 (bisimilar models satisfy the same formulas [2]).
2. LetN |= ¬ψ. SinceM = ∅, we haveM |= ψ. The result follows from Theorem 1.
3. LetM |= ψ. SinceN = ∅, it is trivially true thatN |= ¬ψ. The result follows.
4. Let M = N = ∅. Then, for any formula ψ, M |= ψ and N |= ¬ψ. Therefore, if
|ψ| = n, then Spoiler can win the FSG starting at 〈M ◦ N〉 in n moves. Obviously,
for any n ≥ 1, we can find a formula of length n, e.g., ¬n−1p, i. e., n−1 occurrences
of ¬ followed by the propositional symbol p.

61

5. Suppose that Spoiler can win the FSG starting at 〈M ◦N〉 in n moves. Then, there
is a closed game tree T that is a parse tree of a formula ψ of length n such that
M |= ψ and N |= ¬ψ. Hence, Spoiler can win the FSG starting at 〈M1 ◦N1〉 in n
moves by playing according to ψ. It is obvious that the resulting closed game tree
T1 with root 〈M1 ◦N1〉 is isomorphic to T .

6. Suppose that k > n. It follows immediately from 5 that Spoiler can win the FSG
starting at 〈M1 ◦N1〉 in n moves. Therefore, k is not the minimal number of moves
that Spoiler needs to win the FSG starting at 〈M1 ◦N1〉.

7. Since Spoiler can win the FSG starting at 〈M ◦ N〉, it follows from 5 that the
resulting closed game tree T is isomorphic to a closed game tree Ti for each FSG
starting at 〈Mi ◦Ni〉, 1 ≤ i ≤ k. According to our assumption there are branches
B1, . . . ,Bk in T1, . . . ,Tk respectively, such that Bi � Bj, i 6= j. Hence, there are
branches B′1, . . ., B′k in T such that B′i ∼= Bi. Therefore, T has at least k different
branches.

8. Immediate from the definition of B1
∼= B2.

2.3 Succinctness

We say that logic L1 is at least as expressive as L2 on the class of models C, written
L2 ≤expr

C
L1, if for every ϕ2 ∈ L2 there is a formula ϕ in L1 such that C |= ϕ1 ↔ ϕ2.

Following [6], our formal definition of the term succinctness is:

Definition 9 (Succinctness). Let L1, L2 be two logics. LetC be a class of models such
that L1 ≤expr

C
L2. Let F be a class of functions f : N → R. We say that L1 is F-

succinct in L2 on C, and write L1 ≤FC L2, iff there is a function f ∈ F such that for
every L1-formula φ1, there is an L2-formula φ2 for which the following is true:

– C |= φ1 ↔ φ2;
– |φ2| ≤ f (|φ1|).

Intuitively, this means that F gives an upper bound on the size of L2 formulas needed
to express all of L1 on C. It is worth mentioning that the function f ∈ F bounding the
size of L2 formulas need not be computable.

Using this definition, when we say that L1 is exponentially more succinct than L2

on C, we mean L1 ≤expr
C

L2 and L1 �SUBEXP
C

L2, i.e., the length of formulas of L2

expressing all of L1 onC cannot be bounded from above by a sub-exponential function.

3 Main Results

In order to prove that for two logics L1 and L2 we have L1 �SUBEXP
C

L2, it is enough to
show that there are two infinite sequences of formulas φ1, φ2, . . . in L1 and χ1, χ2, . . .
in L2, and rational numbers k and t such that

1. |φn| = kn + t;
2. |χn| ≥ 2i;
3. χn is the shortest formula in L2 such that C |= φn ↔ χn.

62

Definition 10. Let S = {P,Ag} be a signature where P contains at least one proposi-
tional symbol p and Ag contains at least two agent names a and b and let Γ = {a, b}.
For every n ≥ 1, the PALm

n formulas ϕn and θn, and the ELm
n formulas ψn and χn are

defined as follows.

Table 1. Formulas

φ1 := (Map ∨Mbp), ψ1 := (Map ∨Mbp);
φn := 〈φn−1〉(Map ∨Mbp) ψn := ψn−1 ∧ (Ma(p ∧ ψn−1) ∨Mb(p ∧ ψn−1)), n > 1.

θ1 := (Kap ∨ Kbp), χ1 := (Kap ∨ Kbp);
θn := 〈θn−1〉(Kap ∨ Kbp) χn := χn−1 ∧ (Ka(p ∧ χn−1) ∨ Kb(p ∧ χn−1)), n > 1.

Using the rewriting rules for PALm
n formulas, it is easy to see that the formulas in the

right column are equivalent to the formulas in the left column. It is obvious that the
length of the latter formulas is linear in n while the length of the former is exponential in
n. Firstly, we would like to prove that even if we extend ELm

n with formulas of the form
SΓψ and thus, obtain the logic ELSm

n , there is no sequence of ELSm
n formulas δn such

that φn ↔ δn and at the same time the length of δn is subexponential in n. To this end,
for every n ≥ 1, we must define a suitable class of modelsMn such thatMn |= φn. We
need to find another class of models Nn such that Nn |= ¬φn. Finally, we must prove
that Spoiler cannot win any ELS-game starting at 〈Mn ◦ Nn〉 in less than 2n moves.
Intuitively, it is clear that the main problem in ELS-games is the “power” of the SΓ -
move. Therefore, we can try and define the modelsMn andNn in such a way as to force
Spoiler not to play any SΓ -moves during the game. Secondly, we would like to prove
that there is no ELEm

n formula γn of subexponential length such that θn ↔ γn. Again,
the main problem here is the power of the EΓ -move. Guided by the same intuition, for
every n ≥ 1, we define sets of models On and Pn such that On |= θn, Pn |= ¬θn ,
Spoler cannot win the ELE-game in less than 2n moves, and the models in On and Pn

are such that he is forced not to play any EΓ -moves.
Definition 11 and items (b) and (c) from Lemma 2 are the formalization of this idea.

Definition 11 (Tree models). Figures 2 and 3 show the sets of modelsMn,Nn,On, and
Pn. We start with the tree-like models in O1 and P1 and define recursively the models
inOn+1 and Pn+1 by taking a model fromO1, and using the leaves of the tree as roots
for the respective models from On and Pn3 as shown. Similar strategy is employed in
the construction of the models inMn andNn.

Lemma 2. Let the sequences of formulas φn, θn, ψn, and χn be defined as in Table 1
and letMn, Nn,On, and Pn be as in Definition 11. Then, for every n

3 Intuitively, the subscript in the name of the model On+1
ak encodes a path (starting with an a-

step) leading from the root of the tree to a leaf satisfying the proposition p. The same path in
the model Pn+1

ak leads to a leaf that does not satisfy p. Appart from this difference, the models
On+1

ak and Pn+1
ak look the same.

63

p

a ba

p

a bb a b

N1

11

M1
a M1

b

a ba a bb

n+1

Mn+1
ak

Mn+1
bk

Mn
k Mn

kNn Nn Nn Nn

n+1

a b

Nn+1

Nn Nn

p p

p p

p

a b

p

a b

a b a b

1 1

n+1n+1

On+1
ak

On+1
bk

O1
bO1

a P 1
a

b

b

a

a

P 1
b

p p

a bb

p

a ba

p

On
k On

k Pn
k Pn

k On
k On

k

a bb

Pn+1
ak

a ba

Pn+1
bk

Pn
k Pn

k Pn
k Pn

kOn
k

On
k

p p p p

p p p p

Fig. 2. The sets of modelsMn,Nn,On, and Pn .

(a) Mn |= φn,Nn |= ¬φn,On |= θn, Pn |= ¬θn;
(b) If Spoiler plays an S{a,b}-move at a node of the form 〈Mn+1

ak ◦ Nn+1〉 or 〈Nn+1 ◦
Mn+1

ak 〉, he will lose the game. The same is true for nodes of the form 〈Mn+1
bk ◦Nn+1〉

or 〈Nn+1 ◦Mn+1
bk 〉, where n ≥ 0 and k may be the empty word ε.

(c) If Spoiler plays an E{a,b}-move at a node of the form 〈On+1
ak ◦ Pn+1

ak 〉 or 〈Pn+1
ak ◦

On+1
ak 〉, he will lose the game. The same is true for nodes of the form 〈On+1

bk ◦Pn+1
bk 〉

or 〈Pn+1
bk ◦ On+1

bk 〉, where n ≥ 0 and k may be the empty word ε.
(d) For (n ≥ 0), every closed game tree with root 〈Mn+1

w ◦Nn+1〉 has a branch B, where
Ag(B) = w.

(e) For (n ≥ 0), every closed game tree with root 〈On+1
w ◦Pn+1

w 〉 has a branch B, where
Ag(B) = w.

Proof.

(a) It is easily seen thatMn |= ψn,Nn |= ¬ψn,On |= χn, Pn |= ¬χn.

64

(b) Immediate from the definitions of the models. Playing an S{a,b} move at a node of
this form will result in the occurrence of two bissimilar models, one on the left and
the other on the right, in the successor node added to the game tree (see Figure 2).

(c) Similar to item (b) above.
(d) It is clear that there is at least one closed game tree with root 〈Mn+1

w ◦ Nn+1〉. This
follows from item (a) and Theorem 1. We prove the statement by induction on n.
Consider the base case n = 0 and a game tree with root 〈M1

a ◦ N1〉 (see Figure 2).
The remaining cases can be proven in the same way. It is obvious that Spoiler can-
not begin the game with an atomic, > or ⊥ move. It follows from (b) that Spoiler
cannot play an S{a,b}-move, because he will lose the game. Playing an Sa or Sb-
move is equivalent to playing a Ka or a Kb-move, respectively. Hence, w.l.o.g. we
may assume that Spoiler does not play SΓ -moves, where Γ is a singleton. There-
fore, Spoiler can begin the game by playing either some boolean-moves, or an
agent-move. Playing a boolean-move will result in adding at least one node of the
form 〈M1

a ◦N1〉 or 〈N1 ◦M1
a 〉 to the game tree. The reasoning above shows that this

node cannot be closed, hence Spoiler must play an agent-move in order to close
the branch containing this node. It is obvious that this agent-move cannot be a Kb

or Mb because this means that the successor node in the game tree will contain two
bisimilar models - one on the left and the other on the right. Applying the first item
from Lemma 1, we see that Spoiler will lose the game. Therefore, Spoiler must
play a Ma or a Ka-move. Playing a Ka move at a node of the form 〈M1

a ◦N1〉, leads
to loss for Spoiler. In the same way, playing an Ma-move at a node of the form
〈N1 ◦M1

a 〉 leads to loss. This means that in a node of the form 〈M1
a ◦ N1〉, Spoiler

must play an Ma-move and thus reaching the point that satisfies p in the model M1
a

or a Ka-move at a node of the form 〈N1 ◦ M1
a 〉 and again reaching the point that

satisfies p in the model M1
a . Hence, the statement is true for n = 0.

Assume now that the statement is true for n. We will prove it for n+1 when we have
a closed game tree with root 〈Mn+1

w ◦Nn+1〉 such that w = ak. The remaining cases
are similiar. Absolutely the same reasoning as above shows that there must be a
branch in which the first agent-move is either an Ma-move leading to the point that
is a root of a submodel Mn

k (see Figure 2) or a Ka-move again leading to the point
that is a root of a submodel Mn

k . Such a move will result in reaching a submodel Nn

in the model Nn+1 and we can apply the inductive hypothesis.
(e) The proof is analogous to the proof of item d above.

Theorem 2. LetM denote the union of allMn andNn models. LetO denote the union
of allOn and Pn models. Then

(1) PALm
n �SUBEXP

M
ELSm

n .

(2) PALm
n �SUBEXP

O
ELEm

n .

Proof. We prove (2). The proof of (1) is analogous. We claim that for every ELEm
n

formula δn such thatO |= θn ↔ δn, |δn| ≥ 2n. The general proof is best understood via
an example. Let’s consider the case n = 2. We know that O2 = {O2

aa,O
2
ab,O

2
ba,O

2
bb}

andP2 = {P2
aa,P

2
ab,P

2
ba,P

2
bb}. It follows from Lemma 2 (e) that every closed game tree

with root 〈O2
aa ◦P2

aa〉 contains a branch B such that Ag(B) = aa; every closed game tree

65

with root 〈O2
ab◦P2

ab〉 contains a branch B1 such that Ag(B1) = ab, etc. Applying Lemma
1 items 7 and 8, we see that every closed game tree with root 〈O2 ◦ P2〉 must contain
at least 22 different branches. This means that Spoiler must play at least 22− 1 splitting
moves followed by at least 22 atomic moves since each branch must be closed. Had
there been an ELEm

n formula δ2 such that O |= 〈θ1〉(Kap ∨ Kbp) ↔ δ2 and |δ2| < 22,
Spoiler could have won the game starting at 〈O2 ◦P2〉 in less than 22 moves4 which is
a contradiction.

4 Conclusion and Open Questions

As we pointed out in the introduction, one aspect of our result is unsatisfactory, namely
the fact that the semantics of epistemic logics is usually given via models in which all
relations are relations of equivalence, whereas the models we use do not have this prop-
erty. Proving that PALm

n is exponentially more succinct than ELSm
n or ELEm

n on such a
class of models presents technical difficulties which we intend to solve in a future paper.
In addition, it would be nice to see whether at least one of ELEm

n or ELSm
n is exponen-

tially more succinct than PALm
n . One possible way of attacking this problem is to define

a suitable move in our formula-size games that corresponds to a formula of the form
[φ]ψ. This is not difficult to do but the resulting game is much more combinatorially
involved than the games presented here. This suggests that proving such a result will be
more difficult. Another seemingly difficult problem is whether PALm

n is exponentially
more succinct than ELESm

n .
In conclusion, we would like to stress two important points: Consider two logics L1

and L2

1. Even if L1 and L2 are not equally expressive they can be compared in terms of
succinctness. As long as we have a set of properties P that are expressible in both
L1 and L2, we can ask wether L1 is more succinct than L2 and by how much.

2. It is perfectly possible to have a situation where L1 is exponentially more succinct
than L2 and vice versa even on the same class of models C.

References

1. Adler, M., Immerman, N.: An n! lower bound on formula size. ACM Transactions on Com-
putational Logic, (2003) vol 4(3):296–314.

2. Blackburn, P., de Rijke, M., Venema, Y. Modal logic. Cambridge University Press, (2001).
3. van Ditmarsch, H., van der Hoek, W., Kooi, B. Dynamic Epistemic Logic. Springer, (2007).
4. French, T., van der Hoek, W., Iliev, P., Kooi, B. Succinctness of epistemic languages. In Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), (2011):
881–886.

5. Gogic, G., Papadimitriou, C., Selman, B., Kautz, H. The comparative linguistics of knowl-
edge representation. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI), (1995): 862–869.

4 This follows immediately from the fact thatO2 |= 〈θ1〉(Kap∨Kbp)p,P2 |= ¬〈θ1〉(Kap∨Kbp)
and Theorem 1.

66

6. Grohe, M., Schweikardt, N.: The succinctness of first-order logic on linear orders. In Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), (2004) :
438–447.

7. Lutz, C.: Complexity and succinctness of public announcement logic. In Proceedings of the
5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
(2006) : 137 – 143.

8. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory. In PhD thesis, ,
(1999) : 110 – 121. Department of Electrical Engineering, MIT (1974)

9. Wilke, T.: CTL+ is exponentially more succinct than CTL . In Proceedings of Proceedings of
the 19th Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), (1999) : 110 – 121.

67

Ockhamist Propositional Dynamic Logic
and its application to norm modelling:

a preliminary study

Emiliano Lorini

IRIT-CNRS, Toulouse, France

Abstract. I present a new logic called Ockhamist Propositional Dynamic Logic
OPDL and highlight its relationship with well-known logics in the field of multi-
agent systems such as PDL and CTL∗. Furthermore, I show that OPDL provides
a rich logical framework for representing different kinds of normative concepts
such as conditional obligations and obligations with deadline.

1 Introduction

Different logical systems are traditionally used to model the properties of agents, multi-
agent systems (MAS) and normative multi-agent systems (NorMAS). Among them we
should mention Propositional Dynamic Logic PDL [8], Computational Tree Logic CTL
[6], Full Computation Tree Logic CTL∗ [13], Coalition Logic CL [12] and Alternating-
time Temporal Logic ATL [1], STIT logic (the logic of “seeing to it that”) by Belnap,
Horty and coll. [10, 2], Dynamic Logic of Agency DLA [9]. Some relationships between
these different logical systems have been studied. For instance, it is well-known that
both CL and CTL are fragments of ATL [7]. Furthermore, it has been shown that the
‘strategic’ variant of STIT logic embeds ATL [4] and that DLA embeds both CL and
STIT [9]. However at the current stage the general picture remains incomplete. For
example, there are no clear relationships between the logic of programs PDL and Full
Computational Tree Logic CTL∗ (e.g., it is not clear whether we can find a natural
translation from PDL to CTL∗), or between PDL and logics of agency and capabilities
such as ATL and STIT (i.e., it is not clear whether PDL can be embedded in ATL
or STIT or, viceversa, whether ATL or STIT can be embedded in PDL). Even more
importantly, there is still no logical system that can be said to be more general than
the others. For this reason a challenge arises of making the previous competing logical
systems for modelling MAS converge into a single logical system. The aim of this work
is to make a first step in this direction.

I propose an Ockhamist variant of Propositional Dynamic Logic PDL [8], called
Ockhamist Propositional Dynamic Logic OPDL. Ockhamist semantics for temporal
logic have been widely studied in the 80ies and in the 90ies (see, e.g., [14, 15, 5]). The
logic of agency STIT (the logic of “seeing to it that”) by Belnap, Horty and coll. [2]
is based on such semantics. According to the Ockhamist conception of time the truth
of statements is evaluated with respect to a moment on a particular whole linear his-
tory through time. In this paper I present the general features of the OPDL syntax and

68

semantics and discuss its relationship with PDL and CTL∗ (Section 2). Moreover, I
present an application of OPDL to norm modelling (Section 3). I show that OPDL
provides a rich logical framework for representing different kinds of normative con-
cepts such as obligations and permissions, conditional obligations and commitments,
obligations and commitments with deadline.

There are plenty of interesting issues that are not investigated in the present paper
and that are postponed to future work. My research agenda for the future includes:
(1) a study of the mathematical properties of OPDL such as the decidability of its
satisfiability problem as well as the search for a sound and complete axiomatization of
OPDL, (2) a study of the relationship between OPDL and some well-known logics of
agency and capabilities such as CL and the version of STIT logic with time [11] and,
finally, (3) the proposal of an extension of OPDL which allows to capture the concept
of strategic capability which is expressed in ATL and in ‘strategic’ STIT.

2 Ockhamist Propositional Dynamic Logic

The syntax and the semantics of OPDL are presented (Sections 2.1 and 2.2). As shown
in Section 2.3, an interesting aspect of OPDL is its clear connection with PDL and
CTL∗.

2.1 Syntax

Assume a countable set of atomic propositions Prop = {p, q, . . .} and a countable set
of atomic programs (or atomic actions) Atm = {a, b, . . .}. The language L of OPDL
is defined by the following grammar in Backus-Naur Form (BNF):

Prg : π ::= a |≡| π1;π2 | π1 ∪ π2 | π∗ |?ϕ
Fml : ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [[π]]ϕ

where p ranges over Prop and a ranges over Atm . The other Boolean constructions >,
⊥, ∨,→ and↔ are defined from p, ¬ and ∧ in the standard way. The dual 〈〈π〉〉 of the
operator [[π]] is defined in the expected way as follows 〈〈π〉〉ϕ def= ¬[[π]]¬ϕ.

Complex programs of sequential composition (π1;π2), non-deterministic choice
(π1 ∪ π2), iteration (π∗) and test (?ϕ) are built from atomic programs in Atm , from
the special program ≡ and from formulas in Fml . The special program ≡ allows to
move from a history to an alternative history passing through the same moment. The
behavior of this program will become clearer in Section 2.2 when presenting the OPDL
semantics.

The formula [[π]]ϕ has to be read “ϕ will be true at the end of all executions of
program π” whereas 〈〈π〉〉ϕ has to be read “ϕ will be true at the end of some possible
execution of program π”. As it is assumed that atomic programs in Atm are linear (i.e.,
all atomic programs in Atm occurring at a given state lead to the same successor state),
[[a]]ϕ can also be read “if the atomic program a occurs, ϕ will be true afterwards”.
Indeed, from the assumption of linearity, it follows that atomic programs in Atm are
deterministic (i.e., there is at most one possible execution of an atomic program a at a
given state). Finally, the formula [[≡]]ϕ has to be read “ϕ is true in all histories passing
through the current moment” or, more shortly, “ϕ is true in the current moment”.

69

2.2 Semantics

OPDL frames are structures with two dimensions: a vertical dimension correspond-
ing to the concept of history, a horizontal dimension corresponding to the concept of
moment.

Definition 1 (OPDL frame). A OPDL frame is a tuple F = 〈W,S,A,R≡〉 where:

– W is a set of states (or worlds),
– S is a successor state function S : W −→W
– A is a mapping A : T −→ 2Atm from state transitions to sets of atomic programs,
– R≡ is an equivalence relation between states in W ,

and T = {(w, v) : w, v ∈ W and S(w) = v} is the transition relation induced by the
successor state function S.

For every w, v ∈W , S(w) = v means that v is the successor state of w.
If A(w, v) = {a, b}, then the actions a and b are responsible for the transition from

the state w to the state v. In other words, the function A labels every state transition
with a set of atomic actions (viz. the actions that are responsible for the transition).
R≡-equivalence classes are called moments. If w and v belong to the same moment

then they are called alternatives. A maximal sequence of states according to the tran-
sition relation T starting at a given state w is called history starting in w. If w and v
belong to the same moment, then the history starting in w and the history starting in v
are alternative histories (viz. histories starting at the same moment).

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10 w

11
w
12

w
13

w
14

a,c a b,d b

c c,db,c d

a,b b

w
15

w
16

b,c b

Fig. 1: A OPDL frame

70

Figure 1 is an example of OPDL frame. TheR≡-equivalences classes {w1, w2, w3, w4},
{w5, w6}, {w7, w8}, {w9}, {w10}, {w11}, {w12}, {w13}, {w14}, {w15} and {w16} are
the moments. The sequences of states (w1, w5, w9, w13), (w2, w6, w10, w14),
(w3, w7, w11, w15) and (w4, w8, w12, w16) are the alternative histories starting at the
same moment {w1, w2, w3, w4}. Actions a and c are responsible for the transition from
the state w1 to the state w5, actions b and c are responsible for the transition from the
state w5 to the state w9, and so on.

Definition 2 (π-transitions). Given a OPDL frameF = 〈W,S,A,R≡〉 and an atomic
program a ∈ Atm , let

Ra = {(w, v) : S(w) = v and a ∈ A(w, v)}
be the set of a-transitions in the frame F . The binary relations for atomic programs are
generalized to complex programs in Prg in the usual way as follows:

Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪Rπ2

Rπ∗ = (Rπ)∗
R?ϕ = {(w,w) : w ∈W and M,w |= ϕ}

A OPDL model is a OPDL frame supplemented with a valuation function mapping
every state to the set of atomic propositions which are true in it. More precisely:

Definition 3 (OPDL model). A OPDL model is a tupleM = 〈W,S,A,R≡,V〉where:

– 〈W,S,A,R≡,V〉 is a OPDL frame and
– V : W −→ 2Prop .

The truth of a OPDL formula is evaluated with respect to a world w in a OPDL
model M .

Definition 4 (Truth conditions). Given a OPDL model M , a world w and a formula
ϕ, M,w |= ϕ means that ϕ is true at world w in M . The rules defining the truth
conditions of formulas are:

– M,w |= p iff p ∈ V(w)
– M,w |= ¬ϕ iff not M,w |= ϕ
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
– M,w |= [[π]]ϕ iff M,v |= ϕ for all v such that (w, v) ∈ Rπ

2.3 Relationships between OPDL, PDL and CTL

Propositional Dynamic Logic PDL [8] is the well-known logic of programs. Again
assume the countable set of atomic propositions Prop = {p, q, . . .} and the countable
set of atomic programs Atm = {a, b, . . .}. The language of PDL is defined by the
following grammar in Backus-Naur Form (BNF):

Prg : π ::= a | π1;π2 | π1 ∪ π2 | π∗ |?ϕ
Fml : ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ

71

where p ranges over Prop and a ranges over Atm .
PDL models are tuples M = 〈W, {Ra : a ∈ Atm},V〉 where:

– W is a nonempty set of possible worlds or states;
– {Ra : a ∈ Atm} is a set of binary relations on W ;
– V : W −→ 2Prop is a valuation function.

The accessibility relations for atomic programs are generalized to complex programs in
the usual way.

PDL is completely axiomatized by the tautologies of propositional calculus and the
following axioms and rules of inference:

([π]ϕ ∧ [π](ϕ→ ψ))→ [π]ψ(K[π])
[π1;π2]ϕ↔ [π1][π2]ϕ(Seq)
[π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ(Choice)
[?ψ]ϕ↔ (ψ → ϕ)(Test)
[π∗]ϕ↔ (ϕ ∧ [π][π∗]ϕ)(FixPoint)
(ϕ ∧ [π∗](ϕ→ [π]))→ [π∗]ϕ(Induction)
ϕ

[π]ϕ
(Nec[π])

We can prove that OPDL is at least as expressive as PDL. Consider the following
translation from the language of PDL to the OPDL language.

tr(p) = p
tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)
tr([π]ϕ) = [[tr(π)]]tr(ϕ)

where

tr(a) = ≡; a
tr(π1;π2) = tr(π1); tr(π2)
tr(π1 ∪ π2) = tr(π1) ∪ tr(π2)
tr(π∗) = (tr(π))∗

tr(?ϕ) = ?tr(ϕ)

As the following theorem shows, the preceding translation is a correct embedding.

Theorem 1. Let ϕ be a PDL formula. ϕ is satisfiable in PDL iff tr(ϕ) is OPDL satis-
fiable.

Proof (Sketch). As to the right-to-left direction of the theorem, it is a routine task to
prove that the translations of the axioms of PDL are OPDL valid and that the translated
rules of inference of PDL preserve validity.

The proof of the left-to-right direction requires more work. Given a PDL model
which satisfies ϕ, we have to build a OPDL model which satisfies tr(ϕ). The construc-
tion goes as follows.

72

Suppose M ′′ = 〈W ′′, {R′′a : a ∈ Atm},V ′′〉 is a PDL model which satisfies
ϕ. We can unravel M ′′ into a new PDL model M ′ = 〈W ′, {R′a : a ∈ Atm},V ′〉
which satisfies the same formulas as M ′′. Therefore, there exists w0 in M ′ such that
M ′, w0 |= ϕ.

Let Z =
⋃
a∈Atm R′a be the successor relation in M ′. Z identifies the successors

of a given world in M ′. Let Z ∗ be the transitive closure of Z . Z ∗ is a strict partial order
because M ′ satisfies the tree-like property. Let a history starting in w be a maximal
Z ∗-linearly ordered subset {w1, . . . , wn, . . .} ⊆ W ′ with w1 = w.1 For any world
w ∈ W ′, let H(w) be the set of all histories starting in w and let H =

⋃
w∈W ′ H(w)

be the set of all histories. For notational convenience, elements ofH are noted h, h′, . . .
We define the OPDL model M = 〈W,S,A,R≡,V〉 as follows:

– W = {w/h : w ∈W ′ and h ∈ H(w)},
– for all w/h, v/h′ ∈ W , S(w/h) = v/h′ if and only if (w, v) ∈ Z and h =
h′ ∪ {w},

– for all w/h, v/h′ ∈W such that S(w/h) = v/h′ and a ∈ Atm , a ∈ A(w/h, v/h′)
if and only if (w, v) ∈ R′a,

– for all w/h ∈W and p ∈ Prop, p ∈ V(w/h) if and only if p ∈ V ′(w).

By induction on the structure of ϕ, it can be shown that M,w0/h |= tr(ϕ) for all
h ∈ H(w0). ut

In OPDL we can also reconstruct the basic operators of Full Computation Tree
Logic CTL∗ [13]: the operators next and until of Linear Temporal Logic (LTL), and the
modal operator quantifying over possible paths. In order to do this, it is necessary to add
a specific constraint on OPDL frames, namely the assumption that the successor state
function S in a OPDL frame is total. The two LTL operators can then be expressed as
follows:

Xϕ
def= [[

⋃

a∈Atm

a]]ϕ

ϕ U ψ def= 〈〈(?ϕ;
⋃

a∈Atm

a)∗〉〉ψ

where Xϕ and ϕ U ψ respectively mean that “ϕ will be true in the next state along the
current history” and “ψ will be true at some point in the future along the current history
and ϕ has to hold until ψ”. The CTL∗ universal path-quantifier operator A is defined as
follows:

Aϕ
def= [[≡]]ϕ

and its dual, the existential path-quantifier operator E, is defined as Eϕ
def= ¬A¬ϕ. The

preceding three operators can be used to express other kinds of temporal notions such
as eventually Fψ

def= > U ψ (i.e., ψ will be true at some point in the future along the

1 Note that a history might be infinite.

73

current history), henceforth Gψ
def= ¬F¬ψ (i.e., ψ will be true in all future points along

the current history), and before ϕ B ψ def= ¬(¬ϕ U ψ) (i.e., ϕ will precede ψ along the
current history).

3 Application to norm modeling

In order to model norms I need to enrich the definition of OPDL frame with the concept
of illegal state transition.

Definition 5 (OPDL frame with illegal transitions). A OPDL frame with illegal tran-
sitions is a tuple F = 〈W,S,A,R≡, I 〉 where:

– 〈W,S,A,R≡〉 is a OPDL frame,
– I ⊆ T is the set of illegal transitions,

with T = {(w, v) : w, v ∈W and S(w) = v}.
If (w, v) ∈ I , then the transition from the state w to the state v is illegal. Conversely, if
(w, v) ∈ T and (w, v) 6∈ I , then the transition from the state w to the state v is legal. It
is assumed that the set I of illegal transitions satisfies the following constraint:

(IllHist) for every w, v, u ∈W , if (w, v) ∈ I and (v, u) ∈ T then (v, u) ∈ I .

The preceding constraint (IllHist) ensures that the notion of illegal state transition can
be generalized to the notion of illegal history. In fact, due to the constraint (IllHist), if
the transition from the state w to its successor state v is an illegal transition, then the
transition from the state v to its successor state v′ is an illegal transition, the transition
from the state v′ to its successor state v′′ is an illegal transition, and so on ad infinitum.
In other words, saying that the transition from the state w to its successor state v is an
illegal transition is the same as saying that, the history starting in w is an illegal history.

A OPDL model with illegal transitions is a OPDL frame with illegal transitions
supplemented with a valuation function mapping every state to the set of atomic propo-
sitions which are true in it. More precisely:

Definition 6 (OPDL model with illegal transitions). A OPDL model with illegal tran-
sitions is a tuple M = 〈W,S,A,R≡, I ,V〉 where:

– 〈W,S,A,R≡, I 〉 is a OPDL frame with illegal transitions and
– V : W −→ 2Prop .

Figures 2a and 2b are examples of OPDL models with illegal transitions and illegal
histories. The illegal histories are the first and the third history (the thick red lines).

I extend the OPDL language with the special atomic formula Illeg whose reading
is “the current transition is illegal” or alternatively, due to the constraint (IllHist), “the
current history is illegal”. This new construction is interpreted with respect to a given
state w in a OPDL model M = 〈W,S,A,R≡, I ,V〉 with illegal transitions:

M,w |= Illeg iff (w,S(w)) ∈ I

74

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10 w

11
w
12

w
13

w
14

a,c a b,c b

c c,db,c d

a,b b

w
15

w
16

b,c b

p p

pp

(a)

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10 w

11
w
12

w
13

w
14

a,c a b,c b

c c,db,c b

a,b d

w
15

w
16

b,c b

p p

pp pp

(b)

Fig. 2: Examples of OPDL models with illegal state transitions.

75

The extended OPDL language is rich enough to express interesting normative con-
cepts. For instance, in OPDL we can define the concept of obligation with deadline
DObg(a,ϕ), i.e., the action a must be performed before the deadline ϕ:

DObg(a,ϕ) def= [[≡]](([[a]]⊥ U ϕ)→ Illeg)

The formula DObg(a,ϕ) is true at a given state w of a OPDL model with illegal tran-
sitions if and only if, all histories which are alternatives to the history starting in w and
in which the action a is not performed before ϕ becomes true are illegal histories. For
example, in the model of Figure 2a the formula DObg(d,p) is true at the state w1, be-
cause all histories which are alternatives to the history starting in w1 and in which the
action a is not performed before p are illegal histories.

OPDL also allows to define a concept of conditional obligation CObg(a,ϕ) which
has to be read “it is obligatory that the action a is performed as soon as the condition ϕ
becomes true”:

CObg(a,ϕ) def= [[≡]]((¬ϕ U (ϕ ∧ [[a]]⊥))→ Illeg)

This kind of conditional obligation is typical of e-commerce scenarios. For example,
in EBay it is obligatory that the seller sends the product as soon as he receives the
payment. The formula CObg(a,ϕ) is true at a given state w of a OPDL model with
illegal transitions if and only if, all histories which are alternatives to the history starting
in w and in which the action a is not performed as soon as ϕ becomes true are illegal
histories. For example, in the model of Figure 2b the formula CObg(d,p) is true at the
state w1 because at state w1 it is the case that all histories which are alternatives to the
history starting in w1 and in which the action d is not performed as soon as p becomes
true are illegal histories.

4 Conclusion

I have presented a new logic called Ockhamist Propositional Dynamic Logic OPDL and
studied its relationship with PDL and CTL∗. I have presented an application of OPDL
to norm modelling. As emphasized in the introduction, directions of future research
are manifold. First of all, I plan to prove the decidability of the OPDL satisfiability
problem using a technique similar to the one used by [3] for proving the decidability
of Deterministic PDL. Secondly, I intend to refine the results given in Section 2.3 by
providing a translation tr from CTL∗ to OPDL and by proving that, for any CTL∗

formula ϕ, ϕ is CTL∗ satisfiable if and only if tr(ϕ) is OPDL satisfiable. Indeed, the
results of Section 2.3 only show that CTL∗ operators can be reconstructed in OPDL.
Finally, as emphasized in the introduction, the present paper is just a preliminary step
towards a more comprehensive study of the relationship between OPDL and existing
logics for multi-agent systems including Coalition Logic, STIT and ATL.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM
49, 672–713 (2002)

76

2. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist
world. Oxford University Press (2001)

3. Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Deterministic propositional dynamic logic: finite
models, complexity and completeness. Journal of Computer and System Sciences 25 (3),
402–417 (1982)

4. Broersen, J., Herzig, A., Troquard, N.: Embedding alternating-time temporal logic in strate-
gic STIT logic of agency. Journal of Logic and Computation 16(5), 559–578 (2006)

5. Brown, M., Goranko, V.: An extended branching-time ockhamist temporal logic. Journal of
Logic, Language and Information 8(2), 143–166 (1999)

6. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics. North-Holland Pub.
Co./MIT Press (1990)

7. Goranko, V.: Coalition games and alternating temporal logics. In: Proceedings of the 8th
conference on Theoretical aspects of rationality and knowledge (TARK’01). pp. 259–272.
Morgan Kaufmann Publishers Inc. (2001)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
9. Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, abilities and powers. Journal of

Logic, Language and Information 19(1), 89–121 (2010)
10. Horty, J.F.: Agency and Deontic Logic. Oxford Univ. Press, Oxford (2001)
11. Lorini, E.: A STIT logic analysis of commitment and its dynamics. Journal of Applied Logic

To appear
12. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation

12(1), 149–166 (2002)
13. Reynolds, M.: An axiomatization of full computation tree logic. Journal of Symbolic Logic

66(3), 1011–1057 (2001)
14. Thomason, R.: Combinations of tense and modality. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. 2, p. 135165. Reidel, Dordrecht (1984), 2nd edition
15. Zanardo, A.: Branching-time logic with quantification over branches: The point of view of

modal logic. Journal of Symbolic Logic 61(1), 143–166 (1996)

77

ATL with contexts: agency and explicit
strategies

Nicolas Troquard1 and Dirk Walther2

1 Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy
2 Technical University of Madrid (UPM), Spain

Abstract. This paper reports on first results of our study of the re-
cently proposed family of ATLsc logics. We provide the intuitions for
that it could serve as an (already well-studied) unifying framework for
the verification of properties about time, ability, strategies and agency
in societies of agents. We relate it with STIT logics of actual agency,
and with ATL with explicit strategies. We establish that the problem of
satisfiability checking for ATLsc over general concurrent game structures
(with possibly infinitely many moves and states) is undecidable.

1 Introduction

The first aim of this paper is to consider the recent extension of ATL with
strategy contexts [6, 7, 11, 10] and reveal its relevance for the general discussion
of strategies, ability and agency, and ground it in the topic of logics for multi-
agent systems as well.1 We explain how ATLsc and ATL∗sc can capture a variety
of notions of strategic actual agency that lie beyond the mere ability of coalitions
as captured by ATL.

The second goal is to contrast the use of strategy contexts with explicit strate-
gies, to point out their similarities and differences in expressivity and flexibility.
ATLsc and ATLES capture both notions of commitment to and release of strate-
gies. We relate the two logics and discuss how they capture these notions as well
as notions like irrevocable strategies, forgetting forever and recall of strategies.

The third contribution is technical. The focus of ATLsc has been on model
checking so far, and not satisfiability. To make as few semantic assumptions as
possible, we consider a generalisation of concurrent game structures with possibly
infinitely many states and possibly infinitely many choices. We establish that,
over such structures, the satisfiability problem for the logic ATLsc is undecidable.
In this more general setting, it is then not fit for reasoning about multi-agent
systems. However, this is the price to pay as even apparently much simpler
logics present the same drawback (e.g., Chellas’ STIT logic of group agency [14]).
Nevertheless, when interpreted over finite models, we identify a positive fragment
1 For the moment, we leave aside the variants of ATLsc designed to specify perfect-

recall and bounded-memory strategies, although it is also a prominent aspect of
societies of agents. We do not consider strategies in imperfect information either.

78

of ATLsc that can be translated into ATLES, for which a decision procedure is
known.

The paper is organized as follows. We present syntax and semantics of ATLsc

in Section 2. In Section 3, we explain how ATLsc and ATL∗sc are adequate for
describing notions of actual agency and ATL-like ability. We try to illustrate
the richness of the languages by proposing several variants and we point out
a difficulty with how the ATL modality was defined in ATLsc. We introduce
ATLES on concurrent game structures in Section 4 and compare ATLsc with
ATLES. Moreover, we determine a fragment of ATLsc that corresponds to ATLES.
In Section 5, we show that ATL∗sc is undecidable over general concurrent game
structures (with possibly infinitely many states and choices).

2 ATL with strategy contexts

Any language in this paper is defined over a signature containing an infinite
supply of ingredients. While it is typically accepted to have infinitely many
propositions available to use in formulas, languages for multiple agents often
assume the set of agents to be finite. Using a finite set of agents in the signature,
instead of an infinite set, gives rise to a different language that, although of same
cardinality, may lead to a different computational complexity for their respective
reasoning problems. A finite bound on the number of agents limits the modelling
capability of the language and, thus, restricts its generality. We fix Π and Σ to
be countable infinite sets of, respectively, atomic propositions and agents (or
players). All languages here are defined using Π and Σ as their signature.

The following grammar was given for ATL∗sc in [11]. In this paper, however,
we differ from the original definition in that we do not assume the set of agent
symbols in the signature to be finite.

Definition 1 (ATL∗sc syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π and A over finite subsets of Σ.
The language of ATL∗sc consists of the state formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ·〉A〈·ϕ | 〈·A·〉ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ©ϕ | ϕU ϕ

The language is enumerable. To see this, verify that there are countably many
coalitions, i.e. finite subsets of a countable set.

The remaining Boolean operators ∧,→ and↔ as well as the logical constants
> and ⊥ can be defined as usual in terms of the operators given. The linear
temporal logic operators ‘sometime’ and ‘forever’ can be defined as path formulas
3ϕ = (>U ϕ) and 2ϕ = ¬(>U ¬ϕ). Informally, the formula 〈·A·〉ψ states that
A has a strategy to ensure the temporal property ψ. The modality 〈·A·〉 commits
the members of A to their selected strategy, while the operator ·〉A〈· releases
this commitment.

The language of ATLsc consists only of some formulas from ATL∗sc. The syntax
of the path formulas ψ is restricted as follows (where ϕ refers to the state formulas
in Def. 1):

ψ ::= ¬ψ | ©ϕ | ϕU ϕ

79

Notice that 2ϕ is still definable in ATLsc as this grammar allows for path for-
mulas of the form ¬(ϕ1 U ϕ2). In contrast, the syntax of ATL [4] is restricted
to not allow the application of negation to the next-time and until operator.
It does not matter in the case of ¬©ϕ, because the negation can be pushed
inside the next-time operator yielding the equivalent ATL path formula ©¬ϕ.
But it does matter for path formulas of the form ¬(ϕ1 U ϕ2). Their absence in
the ATL syntax is compensated by including the 2 operator explicitly. However,
the compensation is only partial, because the dual of until2 cannot be expressed
in ATL, cf. [17].

ATL has been defined using Alternating Transition Systems (ATSs) [2, 3] and
Concurrent Game Structures (CGSs) [4]. It is readily seen that both types of
structures can be used interchangeably for logics that do no address the names
for moves in the object language. In the case of ATL, this has been shown in [13].
In terms of computational complexity of model checking, however, it makes a
difference when we use ATSs or CGSs as was studied in [16, 17].

In this paper, we evaluate formulas on Concurrent Game Structures (CGSs),
which are defined as follows.

Definition 2 (Concurrent Game Structure). Let Σ = {1, . . . , n} ⊂ Σ,
with n ≥ 1, be a finite set of agents, and Π ⊂ Π be a finite set of atomic
propositions. A Concurrent Game Structure (CGS) C for 〈Σ,Π〉 is a tuple C =
〈W,V,Σ,M,Mov,E〉, where:

– W is a finite, non-empty set of worlds (or game positions);
– V : W → 2Π is a valuation function;
– M is a finite, non-empty set of moves;
– Mov : W × Σ → 2M \ ∅ specifies for every world w and agent a a set
Mov(w, a) of moves available to a at w;

– E : W ×MΣ → W is a transition function mapping a world w and a move
profile m = 〈m1, . . . ,mn〉 (one move for each agent) to the world E(w,m).

Let C be a CGS. The component Mov determines which of the moves from
M are available for an agent at a world w. Let prof(w) be the set of available
move profiles at world w, i.e.,

prof(w) = {〈m1, . . . ,mn〉 | mi ∈Mov(w, i)}.

A move profile is used to determine a successor of a world using the transition
function E. Let succ(w) be the set of possible successors of w, formally

succ(w) = {E(w,m) |m ∈ prof(w)}.

An infinite sequence λ = x0x1x2 · · · ∈ Wω of worlds is called a play or
computation if xi+1 ∈ succ(xi) for all positions i ≥ 0. Denote with λ[i] the i-th
component xi in λ, and with λ[0, i] the initial sequence x0 · · ·xi of λ.
2 The dual of the temporal logic operator until U is called release R, and it is defined

as (ϕRψ)
def
= (¬ϕU ¬ψ). In LTL we have the equivalence (ϕRψ) ≡ 2ψ∨(ψ U (ϕ∧ψ)).

In CTL, it is defined as (ϕRψ)
def
= E2ψ ∨ E(ψ U (ϕ ∧ ψ)).

80

A strategy for an agent a ∈ Σ is a function fa that maps a world w from
W to a move profile fa(w) ∈ Mov(w, a) available to a at w. A strategy for a
coalition A ⊆ Σ is a set FA of strategies with FA = {σa | a ∈ A} containing one
strategy for every agent in A. We refer to a strategy also as strategy context. We
denote with strat(A) the set of strategies available to coalition A. The strate-
gies considered here are memoryless as they are functions from worlds to move
profiles and, thus, do not take previously visited states into account.

We define two operations on strategies: upgrade and release of strategies.
Let FA and F be strategies for sets of agents, where FA contains strategies for
the agents in A. The upgrade of F with the strategies in FA is the result of
overwriting F with strategies for the agents in A ∩ dom(F) and supplementing
F with strategies for agents for which F does not already provide a strategy
(i.e., for agents in A \ dom(F)). We will use ◦ as a strategy upgrade operator.
Formally,

FA ◦ F = FA ∪ {fa ∈ F | a /∈ A}.
The release of the strategies for the agents in B from F is the restriction of F to
strategies for agents that do not occur in B (i.e., for agents in Σ \B). Formally,
for C = Σ \B,

F |C = {fa ∈ F | a ∈ C}.
The set out(w,FA) of outcomes of a strategy FA for the agents in A starting

at a world w is the set of all plays λ = x0x1x2 · · · ∈ Wω such that x0 = w and,
for every i ≥ 0, there is a move profile m = 〈m1, . . . ,mn〉 ∈ prof(xi) such that

(i) ma = fa(xi), for all a ∈ A, and
(ii) xi+1 = E(xi,m).

The semantics of ATL∗sc over CGSs is given as follows, where state formulas
are evaluated at worlds (or game positions) and path formulas over infinite paths
in a CGS.

Definition 3 (ATL∗sc Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and a strategy context F , the consequence relation |= is inductively
defined as follows.

– C, w |=F p iff p ∈ V (w), for all atomic propositions p ∈ Π;
– C, w |=F ¬ϕ iff C, w 6|=F ϕ;
– C, w |=F ϕ1 ∨ ϕ2 iff C, w |=F ϕ1 or C, w |=F ϕ2;
– C, w |=F ·〉A〈·ϕ iff C, w |=S ϕ, where S = F |Σ\A;
– C, w |=F 〈·A·〉ψ iff there is FA ∈ strat(A) such that for all plays λ ∈ out(w, S),

it holds that C, λ |=S ψ, where S = FA ◦ F ;
– C, λ |=F ϕ iff C, λ[0] |=F ϕ, when ϕ is a state formula;
– C, λ |=F ¬ψ iff C, λ 6|=F ψ;
– C, λ |=F ψ1 ∨ ψ2 iff C, λ |=F ψ1 ∨ ψ2;
– C, λ |=F ©ϕ iff C, λ[1] |=F ϕ;
– C, λ |=F (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, λ[i] |=F ϕ2 and C, λ[j] |=F

ϕ1 for all j with 0≤j<i.

81

A formula ϕ is satisfiable if C, w |=F ϕ for some CGS C, some world w in C
and some strategy context F in C; a formula is called valid if C, w |=F ϕ for all
C, all w and all F .

In this paper, we do not assume agents being capable of perfect recall. In fact,
we use a semantics for ATLsc and ATL∗sc that is based on memoryless strategies.
This means that agents use strategies that prescribe for every world which move
to take. The history of previously visited worlds is not taken into account. This
differs from the original definition in [11] that introduces the logics with a perfect
recall semantics.

The language seems rather rich. Sometimes, different formulations of the
same simple property will seem natural. We shall illustrate this in the next
section by defining a few modalities that the community of logics in MAS has
become familiar with.

3 Common modalities of agency

We now turn to the definition in the object language of ATLsc and ATL∗sc of
a few modalities often discussed in the literature: ATL(∗) modality of ability
(Section 3.2) and the modality of strategic actual agency (Section 3.3).3 In order
to express those modalities in the language of ATL∗sc, it requires to write formulas
referring explicilty to all agents. For this purpose we have to consider a fragment
of the language defined in the previous section containing only a finite number
of agents. We leave for future work a study of properties that can be expressed
in the full language or variants of it.

3.1 Whatever A do

Brihaye et al. [6] define a modality that is going to be useful later:

[·A·]ψ def= ¬〈·A·〉¬〈·∅·〉ψ.

They provide the reading: “for any strategy of coalition A, every run in the
corresponding outcome satisfies a formula ψ”. Notice that it is defined in the
language of ATL∗sc and not in the one of ATLsc. Its semantics is:

– C, w |=FB
[·A·]ψ iff ∀SA ∈ strat(A),∀λ ∈ out(w, SA ◦ FB). C, λ |=SA◦FB

ψ

The modality [·A·] is not the dual of 〈·A·〉. It is also important to observe that
the truth of the path formula ψ is in the context of SA ◦ FB . A more precise
reading of [·A·]ψ is therefore: “for any strategy of coalition A, every run in
the corresponding outcome satisfies a formula ψ in the current strategy context
updated by the new strategies of A.”
3 ‘Strategic’ is not to be understood in the sense of game theory, where agents strate-

gize to maximize their utility. It is to be opposed to actual agency that considers
only the current move. Strategic actual agency is a property of agents or coalitions
currently doing something by planning more than one move ahead.

82

3.2 Simulating the ATL(∗) path quantifier

Brihaye et al. [7, 11], propose to simulate the ATL(∗) formula 〈〈A〉〉ψ as follows:

〈〈A〉〉1ψ def= ·〉Σ〈·〈·A·〉ψ.

That is, one first releases the current strategies of all agents, then we find a
strategy for A that only yields runs that satisfy ψ. Its truth condition is:

– C, w |=FB
〈〈A〉〉1ψ iff ∃SA ∈ strat(A),∀λ ∈ out(w, SA). C, λ |=SA

ψ

Notice that ψ must hold on each elected run, in the context of the current
strategy of the members of A.

When the signature contains a finite set Σ of agents, 〈〈Σ〉〉 and 〈〈∅〉〉 are
dual: we have that 〈〈Σ〉〉ψ ↔ ¬〈〈∅〉〉¬ψ is a valid schema in ATL∗. Now, take
the ATL∗sc path formula Ψ = ©[·b·]©p. We can see that 〈〈Σ〉〉1Ψ → ¬〈〈∅〉〉1¬Ψ
is not an ATL∗sc-validity. It is falsified at the world w0 of the model in Fig. 1.

p

(0, 0)

(0, 0)

(0, 0)

(0, 0)

w0
(0, 0)

(1, 1)

(2, 2)

(1, 2)

p
(2, 1)

Fig. 1. A CGS for two agents.

We have that 〈〈Σ〉〉1©p →
¬〈〈∅〉〉1©¬p, with p a propositional
variable from Π is indeed a valid for-
mula in ATL∗sc. But we have just seen
that the uniform substitution of p
with [·b·]©p yields a non-validity of
ATL∗sc. It means that ATL∗sc does not
obey the rule of uniform substitution.

A translation tr from the language
of ATL∗ into the language of ATL∗sc
such that tr(〈〈A〉〉ψ) def= 〈〈A〉〉1tr(ψ)
and homomorphic for the proposi-
tional connectives is indeed satisfiabil-
ity preserving. But the definition does not interact well with the richer language
of ATL∗sc. A more fitting definition of the ATL(∗) modality would be:

〈〈A〉〉2ψ def= ·〉Σ〈·〈·A·〉·〉Σ〈·ψ.

That is, one first releases the current strategies of all agents, then we find a
strategy for A, and one finally releases again all the current strategies to evaluate
the path formula ψ. Its truth condition is:

– C, w |=FB
〈〈A〉〉2ψ iff ∃SA ∈ strat(A),∀λ ∈ out(w, SA). C, λ |=∅ ψ

This seems more adequate with the notion of non-committed ability that we are
familiar in ATL(∗). At least we regain duality in the sense that 〈〈Σ〉〉2©ϕ ↔
¬〈〈∅〉〉2©¬ϕ is a valid axiom schema in ATLsc and 〈〈Σ〉〉2ψ ↔ ¬〈〈∅〉〉2¬ψ is a
valid axiom schema in ATL∗sc.

In ATL∗sc, there is at least one more way to capture the ATL(∗) path quantifier.
It is sometimes interpreted as “coalition A has a strategy to enforce ψ whatever
the choices of the other agents.” This is actually the reading given in [7, p. 97].

83

It would then seem natural to express it as

〈〈A〉〉3ψ def= 〈·A·〉[·Σ \A·]ψ.

(This definition does not fall into the language of ATLsc, but of ATL∗sc.) Its truth
condition is:

– C, w |=FB
〈〈A〉〉3ψ iff ∃SA ∈ strat(A),∀SA ∈ strat(Σ \A),

∀λ ∈ out(w, SA ◦ SA). C, λ |=SA◦SA
ψ

The path formula ψ is then evaluated with respect to a complete context of
strategies, one for each member of the counter-coalition.

To conclude, we have now three sensible notions of ATL-like ability:

C, w |=FB
〈·A·〉[·Σ \A·]ψ ψ eval. wrt. a Σ-commitment

C, w |=FB
·〉Σ〈·〈·A·〉ψ ψ eval. wrt. an A-commitment

C, w |=FB
·〉Σ〈·〈·A·〉·〉Σ〈·ψ ψ eval. wrt. an ∅-commitment

The successive definitions involve an ever decreasing commitment for the evalua-
tion of the path formula in its scope. Interestingly however, their sets of outcomes
are identical, and correspond to these sets of runs that a coalition can enforce
(in the sense of ATL(∗)). They are distinct in ATL∗sc because of the different
commitments, but all are sufficient for an embedding of ATL(∗).

3.3 Strategic actual agency
The modality of actual agency has been widely studied, and is most prominently
known for its treatment in the STIT theories (STIT for “seeing to it that”). It
is a large family of logics with each their own semantics and modalities [5,
15]. Nonetheless, they all share an Ockhamist view of time [19]. Formulas are
evaluated in tree models, with respect to a state and a play. The most basic
modality is the Chellas’ STIT operator (somewhat a misnomer) of actual (one-
shot strategy) agency, proposed by Horty. Integrated in discrete time it allows
to embed Coalition Logic ([9]).

A challenge in formal philosophy of action is to devise a modality similar
to the Chellas’ STIT but for long-term strategies. There is a truth-value gap
of strategic statements, analogous to the truth-value gap for future-tense state-
ments addressed, e.g., in [20] and [19]. In a nutshell, a state and a play are not
enough to evaluate a statement reading that the coalition A strategically see
to it that ψ is true. This is because in general, the context of only a state and
a play does not determine a unique strategy of an arbitrary coalition. See [15,
p. 149] for an illustration. (In a CGS, a play does determine a unique strategy
for the coalition Σ, though.)

Horty observes that two lines of resolution are possible [15, Sec. 7.2]. The
Peircean-like one is to consider all strategies that could determine the current
play. The Ockhamist-like one, that we adopt here, is that a modality of strategic
actual agency should additionally be evaluated wrt. to a strategy context. (This
has been investigated by Müller [18] for the individual case and by Broersen et
al. [8] for the case of coalitions.)

84

We can say here that a coalition A see to it that ψ in a context FB iff the
strategies of A in FB are enough to make all the plays satisfy ψ. The truth value
of such a modality would then be:

– C, w |=FB
[A sstit1]ψ iff ∀λ ∈ out(w,FB |A). C, λ |=FB |A ψ

In fact, the modality [A sstit1] can readily be captured in the language of
ATLsc as follows:

[A sstit1]ψ def= ·〉Σ \A〈·〈·∅·〉ψ.
The notion of strategic actual agency captured by [A sstit1] is the one that

appears the most immediate in the CGSs with contexts. It does capture per-
fectly that the current strategy of a coalition ensures that something happens,
independently of the commitment of the counter-coalition, and independently of
the currently non-committed members of A. We postpone for future research a
thorough comparison, but this will turn out rather different from the solutions
in the more traditional STIT literature, e.g., the proposal in [8]. A striking differ-
ence is that so far we did not feel compelled to explicitly put into the semantics
of actual agency the fact that a coalition see to something whatever the other
agents do. It might be a blunt conceptual error. But like in the simulation of the
ATL(∗) path quantifier in Section 3.2, it might as well reveal interesting differ-
ences on the assumptions about agents’ commitment to strategies between the
two frameworks.

Trying to emulate whatever the other agents do, we can employ the modality
[·A·] defined in Section 3.1. A direct translation of “the coalition A see to it that
ψ whatever the other agents do” would then be:

[A sstit2]ψ def= [A sstit1][·Σ \A·]ψ.

It is clearly equivalent to [·Σ \A·]ψ. We would then have:

– C, w |=FB
[A sstit2]ψ iff ∀SA ∈ strat(A),∀λ ∈ out(w, SA◦FB). C, λ |=SA◦FB

ψ

The modalities [A sstit1] and [A sstit2] are nevertheless very significantly different
in that the evaluation of the path formula in the scope of [A sstit2] is within the
context of a commitment of the counter-coalition. (The evaluation of the path
formula is still independent from the currently non-committed members of A.)

Variants of these modalities can be defined semantically, where instead of
being independent of the strategies of the non-committed members of A, they
reflect a type of actual agency that remains true in whatever context of strategies
for the non-committed members of A.

– C, w |=FB
[A sstit3]ψ iff C, w |=FB

[A sstit1][·A \B·]ψ
– C, w |=FB

[A sstit4]ψ iff C, w |=FB
[A sstit2][·A \B·]ψ

Their truth condition is straightforward. However, note that there is no syntactic
reference in [A sstit3] and [A sstit4] to the committed agents B. Hence, it is
doubtful that they are expressible syntactically in the language of ATLsc or
ATL∗sc as they require some sort of reification of who are the committed agents
in the context.

85

To sum up, when giving an interpretation to a formula representing a state-
ment about actual agency in the context of a long-term strategy, we are offered
again more than one distinct possibility, depending on what commitments we
wish to consider when evaluating the path formulas.

C, w |=FB
·〉Σ \A〈·〈·∅·〉ψ ψ eval. wrt. a (B ∩A)-commitment

C, w |=FB
[·Σ \A·]ψ ψ eval. wrt. a (B ∪ (Σ \A))-commitment

C, w |=FB
·〉Σ \A〈·〈·∅·〉[·A \B·]ψ ψ eval. wrt. an A-commitment

C, w |=FB
[·Σ \A·][·A \B·]ψ ψ eval. wrt. a Σ-commitment

Of course, we did not exhaust the seemingly sensible characterizations of a
modality of strategic actual agency that can be directly expressed in the language
of ATL∗sc. One could also have the very simple variants where we release the
commitment of all the agents when we evaluate the path formula. It is readily
seen that for any 1 ≤ i, j ≤ 4, we have that [A sstiti]·〉Σ〈·ψ ↔ [A sstitj]·〉Σ〈·ψ
is valid.

4 Strategy contexts and explicit strategies
We now turn to the second contribution of the paper. Here we contrast the
notion of strategy contexts with explicit strategies. We first present ATLES, the
extension of ATL with explicit strategies from [22] (Section 4.1), and then we
translate a fragment of ATLsc into ATLES (Section 4.2).

4.1 ATLES
The language of ATL is enriched with symbols for strategies and commitment
functions that assign agents to strategies they are committed to play. Thus
ATLES allows to reason explicitly about strategies. This is not possible with any
of ATL and ATLsc (and their respective LTL-extensions) as strategies are pure
semantic constructs and they do not occur in the object language.

Formally, the signature of the language is extended by a set Υ of strategy
terms, where Υ =

⋃
a∈Σ Υa and Υa is a countable infinite set of strategy terms

σa for agent a in Σ. A commitment function is a partial function ρ : Σ → Υ
with a finite domain mapping an agent a ∈ Σ to a strategy term ρ(a) ∈ Υa for
a. Note that a commitment function ρ is a finite object and as such it is used
to additionally parameterise path-quantifiers as 〈〈A〉〉ρ. The set dom(ρ) consists
of the committed agents. If ρ(a) is defined, then ρ contains a mapping of the
form a 7→ σa which is called a commitment of agent a (or a commits) to play
the strategy denoted by the strategy term σa. On the other hand, if ρ(a) is
undefined, then a does not commit to any strategy and, thus, a can quantify
freely over the strategies available to a. The reading of an ATL-path quantifier
〈〈A〉〉 with commitment function ρ is as follows:

〈〈A〉〉ρϕ states that, given the commitment of any agent b in dom(ρ)
to use the strategy denoted by ρ(b), the agents in A \ dom(ρ) have a
strategy to ensure the temporal property ϕ, no matter what the agents
in Σ \ (dom(ρ) ∪A) do.

Notice that the committed agents in dom(ρ) do not take part in the quantification
over strategies in 〈〈A〉〉ρ.

86

We remark that 〈〈A〉〉ρ is not how the path quantifier really looks like when
used in a formula. The symbol ρ is merely a meta-logical reference to an actual
commitment function, which is a collection of mappings of the form a 7→ σa,
where σa is a strategy term for agent a. This should be considered when analysing
the length of a formula. For instance, take ρ = {a 7→ σa, b 7→ σb}. Then we write
〈〈A〉〉ρ for convenience in order to abbreviate 〈〈A〉〉{a7→σa,b 7→σb}. For modelling
purposes, one may modify the syntax and write 〈〈A : a 7→ σa, b 7→ σb〉〉 instead.

The notion of commitment to strategies requires the same strategies to be
played again later stage. This means, in formulas of the form 〈〈A〉〉ρΨ , the same
commitment a 7→ σa from ρ occurs in a commitment function ξ of a nested path
quantifier 〈〈B〉〉ξ in Ψ . That is, both, ρ and ξ, prescribe the strategy term σa for
agent a (or, in both cases, a commits to σa). We have that ρ(a) = ξ(a). Release of
commitment to σa is modelled as easy as committing to it in the first place. This
is achieved by having a commitment function χ of a nested path quantifier not
include the commitment a 7→ σa, i.e., either χ(a) 6= σa or χ is undefined for a.
In case release of commitment is not desired, the notion of irrevocable strategies
is used. It can be modelled explicitly in ATLES by only allowing commitment
functions ρ to extend conservatively the commitment functions ξ under whose
range they occur, i.e., ρ and ξ agree for all agents in dom(ξ). Thus, IATL can be
defined in ATLES while avoiding the update semantics employed in [1].

The language of ATLES is defined over the extended signature 〈Π,Σ,Υ〉.
Definition 4 (ATLES Syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π, A ranges over finite subsets of
Σ and ρ over commitment functions. The language of ATLES consists of state
formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρψ
ψ ::=©ϕ | 2ϕ | ϕU ϕ

The language of ATLES can easily be extended to allow for negation of the tem-
poral operators next-time and until. But we refrain from extending the syntax
in this paper as we use the established complexity result of the satisfiability
problem for ATLES from [22] in order to use ATLES to determine a decidable
fragment of ATLsc whose satisfiability can be solved in ExpTime.

We define ATLES using concurrent game structures which differs from its
original definition in [22]. The logic was introduced using alternating transi-
tion systems from [4] extended with strategy terms and a denotation function
mapping the strategy terms to actual strategies. Another suitable extension of
alternating transition systems was introduced in [21], so-called action-based al-
ternating transition systems, which explicitly accounts for actions and action
pre-conditions. It can readily be seen that these transition systems give rise to
the same logics.

Strategy terms in Υ are interpreted as strategies in a CGS via assignments.
An assignment a in C is a function mapping strategy terms σa in Υa for any
agent a in Σ to a strategy a(σa) in strat(a) for a in C. Note that the assignment
a in a CGS acts like an assignment in First-order Logic with the difference that
in ATLES strategy terms are mapped to actual strategies in the CGS instead of

87

domain elements as in FOL. In [22] an assignment is called denotation function,
which comes as a component of an ATS.

To define the semantics of ATLES, we use the notions of a strategy and out-
come as in Section 2. We lift the notion of assignment to commitment functions
as follows. The application of an assignment a to a commitment function ρ is
the set a(ρ) of strategies for the agents in dom(ρ). Formally,

a(ρ) = {fa ∈ strat(a) | fa = a(ρ(a)), a ∈ dom(ρ)}.

It is readily checked that a(ρ) is indeed a set of strategies, one for each agent in
dom(ρ). To see this, recall that ρ is functional, i.e., it yields exactly one strategy
term ρ(a) for every agent for which ρ is defined.

An assignment a acts as an interpretation of the commitment function ρ
(i.e. the strategy terms in ρ). We can view a strategy term σa = ρ(a), for any
a in dom(ρ), as a constant rather than a variable. As we will see below in the
semantics of ATLES, the assignment a does not change during the evaluation of a
formula and, thus, the strategy a(σa) is fixed. We can think of the strategy term
σa as being existentially quantified in the sense that there exists a strategy for a
that is referenced by σa and provided by a. ATLES does not provide references
to universally quantified strategies.

Using the notion of assignments, we can now define how to interpret the
formulas of ATLES over CGSs.

Definition 5 (ATLES Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and an assignment a, the consequence relation |= is inductively defined
as follows. The notions of validity and satisfiability are defined as usual.

– C, w |=a p iff w ∈ V (p), for all atomic propositions p ∈ Π;
– C, w |=a ¬ϕ iff C, w 6|=a ϕ;
– C, w |=a ϕ1 ∨ ϕ2 iff C, w |=a ϕ1 or C, w |=a ϕ2;
– C, w |=a 〈〈A〉〉ρψ iff there is a strategy FA in strat(A) such that for all plays
λ ∈ out(w, S), it holds that C, λ |=a ψ, where S = a(ρ) ◦ FA;

– C, λ |=a ©ϕ iff C, λ[1] |=a ϕ;
– C, λ |=a 2ϕ iff C, λ[i] |=a ϕ for all positions i ≥ 0;
– C, λ |=a (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, a, λ[i] |=a ϕ2 and
C, λ[j] |=a ϕ1 for all positions j with 0≤j<i.

The ATLES semantics of 〈〈A〉〉ρ is similar to the semantics of 〈·A·〉 in ATLsc,
which facilitates comparison. We recall that the operator ◦ from Section 2 yields
a(ρ) ◦ FA = a(ρ) ∪ {fa ∈ FA | a /∈ dom(ρ)}. Intuitively, a(ρ) ◦ FA states that
commitments of agents are respected as prescribed in ρ, all other agents in A
play their just selected strategies.

4.2 Comparing ATLsc and ATLES

Obvious differences between ATLsc and ATLES are that, while the former includes
a separate release modality ·〉A〈· and strategy contexts in the semantics, the
latter allows for commitments of the form a 7→ σa in the syntax which are

88

interpreted using assignments. However, commitments and assignments play the
role of strategy contexts in ATLsc. A crucial difference between the logics is
the semantics of the path quantifiers 〈·A·〉 and 〈〈A〉〉ρ; cf. Def. 3 and Def. 5,
respectively. For 〈·A·〉, the strategies FA selected by A upgrade (overwrite) the
strategy context Fcontext, whereas, for 〈〈A〉〉ρ, the strategy commitments a(ρ)
are supplemented by FA. Consequently, due to how context or commitments are
respected in 〈·A·〉 and 〈〈A〉〉ρ, different agents end up quantifying over strategies in
general. The following proposition states under which conditions 〈·A·〉 and 〈〈A〉〉ρ
determine the same set out(x, S) of plays, where S is defined as S = FA ◦Fcontext

in the former case, and S = a(ρ) ◦ FA in the latter.

Proposition 1. It holds that FA ◦ Fcontext = a(ρ) ◦ FA if one of the following
conditions is satisfied:

(i) Fcontext = a(ρ) = ∅;
(ii) FA = ∅ and Fcontext = a(ρ); or

(iii) FA = Fcontext = a(ρ).

The proposition can be shown by using the fact that the strategy upgrade op-
erator ◦ forms an idempotent semigroup on the set strat of strategies, and that
◦ is not commutative.4

Proposition 1 makes clear that a strategy context Fcontext in ATLsc corre-
sponds to the strategy commitment a(ρ) in ATLES with the difference that
Fcontext is a purely semantic object, whereas a(ρ) consists of a syntactic com-
ponent ρ and a semantic component a. This means we can explicitly describe
strategy contexts in the language of ATLES, whereas in ATLsc we have to make
use of 〈·A·〉 and ·〉A〈· that describe that strategies for A are either pushed into
the context or released from it. Notice how using strategy commitments in the
syntax is more flexible than the strategy context model as every path quantifier
in ATLES can be parameterised with a different commitment function, which
describes explicitly which agent is using what strategy. In particular, this does
not require a dedicated release operator.

The notion of irrevocable strategies is captured in ATLsc by carefully avoiding
quantification over strategies of committed agents. In ATLES, irrevocability can
be made explicit in the syntax.

Once a strategy in the strategy context is overwritten with a new strategy
or released, it cannot be recovered in ATLsc, because any reference to it is lost.
This could be described with the notion of forgetting forever. Not so in ATLES,
where ‘forgetting forever’ can be modelled explicitly in the language, but it is
no restriction of the logic as in ATLsc. In fact, an agent in ATLES may resume a
commitment after releasing it, which also captures a notion of agents having a
strategy memory.

A strength of ATLsc is to push any strategy that is available to an agent into
the context. This is achieved with formulas of the form ¬〈·A·〉ψ, where the agents
4 The operation ◦ is a binary function on strat, it is associative (i.e., (FA ◦FB) ◦FC =
FA ◦(FB ◦FC)), the empty strategy ∅ forms the identity element (i.e., F ◦∅ = ∅◦F =
F), and ◦ is idempotent (i.e., F ◦ F = F).

89

in A quantify universally over their strategies FA. In the semantics, before we
continue with the evaluation of the path formula ψ, the strategies FA are used
to upgrade the strategy context (cf. Def. 3). This is another crucial difference to
ATLES, which is restricted to existential quantification over commitments. To
make more precise the relationship between ATLsc and ATLES, we present an
equivalence preserving mapping from a fragment of ATLsc into ATLES. We define
a translation tr(·, ·) as a partial function that maps an ATLsc-formula, in which
every occurrence of a path quantifier 〈·A·〉 is under the scope of an even number
of negations, and a commitment function to formulas of ATLES as follows:

tr(p, ξ) def= p;
tr(¬ϕ, ξ) def= ¬tr(ϕ, ξ);

tr(ϕ1 ∨ ϕ2, ξ)
def= tr(ϕ1, ξ) ∨ tr(ϕ2, ξ);

tr(·〉A〈·ϕ, ξ) def= tr(ϕ, χ), where χ = ξ|Σ\A;
tr(¬·〉A〈·¬ϕ, ξ) def= tr(ϕ, χ), where χ = ξ|Σ\A;
tr(〈·A·〉©ϕ, ξ) def= 〈〈A〉〉ρ© tr(ϕ, ρ);
tr(〈·A·〉2ϕ, ξ) def= 〈〈A〉〉ρ2 tr(ϕ, ρ);

tr(〈·A·〉(ϕ1 U ϕ2), ξ) def= 〈〈A〉〉ρ(tr(ϕ1, ρ)U tr(ϕ2, ρ));

where the commitment function ρ overwrites/updates ξ at A with fresh strategy
terms. Formally,

ρ = ξ|dom(ξ)\A ∪ {a 7→ σa | a ∈ A, σa is fresh}.
The following proposition states that tr(·, ·) is indeed equivalence preserv-

ing. The proof works by induction on the structure of ATLsc-formulas that are
translated.

Proposition 2. Let ϕ be an ATLsc-formula, C a CGS, x a world in C and F a
strategy in C. The following are equivalent:

(a) C, x |=F ϕ;
(b) C, x |=a tr(ϕ, ρF), for some 〈ρF , F 〉-compatible assignment a,

where ρF = {a 7→ σa | fa ∈ F, σa is fresh} and an assignment a is 〈ρF , F 〉-
compatible if a(ρF (a)) = fa, for every a ∈ dom(ρF) and fa ∈ F .

The ATLsc-fragment determined by tr(·, ·) is the fragment that does not allow
for universal quantification over strategy commitments. The latter is expressed
by formulas of the form ¬〈·A·〉ψ or, in general, by the modality 〈·A·〉 under the
scope of an odd number of negations. The satisfiability checking problem for this
fragment can be solved in ExpTime by Proposition 2 and the fact that ATLES
is in ExpTime [22]. This is in contrast with the complexity of full ATLsc, which
we establish in the following section.

5 Complexity
This section is devoted to investigate the computational complexity of ATLsc

and ATL∗sc over general CGSs: we relax CGSs from Def. 2 by allowing infinite
number of states and infinite number of moves.

90

Generally, high expressiveness tends to come with the price of high computa-
tional complexity of reasoning problems. While the model checking problem was
already considered in [11, 7] (and shown to be between 2ExpTime-hard and non-
elementary for ATLsc, while it is 2ExpTime-complete for ATL∗ [4]), we focus here
on the satisfiability problem. Clearly, the lower complexity bounds carry over to
ATLsc and ATL∗sc from their respective fragments ATL and ATL∗. It turns out,
however, that extending ATL with strategy contexts comes with a much higher
price. In the following we show that ATLsc is undecidable. To show this, we
use a reduction of the satisfiability problem for the product logic S5n, which is
known to be undecidable. In Section 3, we demonstrated that ATLsc can cap-
ture some notion of actual group agency (cf. operator [A sstit1] in Section 3.3).
Thus the undecidability of ATLsc may not come as a surprise considering the
undecidability of Chellas’ STIT logic of group agency [14].

We obtain the following lower complexity bounds. It remains to be shown
that Thm. 1 holds for finite CGSs (as defined in Def. 2), which amounts to
showing that S5n over finite frames is undecidable. We also leave the matching
upper bounds as an open problem.

Theorem 1. The satisfiability problem for ATLsc (over general CGSs) is

(i) NP-hard for formulas with n = 1 agent;
(ii) NExpTime-hard for formulas with n = 2 agents; and

(iii) undecidable for formuals with n ≥ 3 agents.

The lower bounds in Theorem 1 can be shown by the following reduction of the
satisfiability problem for S5n to the problem for ATLsc.5 For a formal definition
of S5n, we refer to, e.g., [12]. Define a translation tr(·) mapping S5n-formulas to
formulas of ATLsc as follows:

tr(p) def= 〈·∅·〉©p;
tr(¬ϕ) def= ¬tr(ϕ);

tr(ϕ ∨ ψ) def= tr(ϕ) ∨ tr(ψ);
tr(3iϕ) def= 〈·i·〉(⊥U tr(ϕ)).

We can show the following lemma.

Lemma 1. Let ϕ be an S5n-formula and let Σϕ be the set of agents that occur
in ϕ. The following are equivalent:

(i) ϕ is satisfiable wrt. |=S5n ;
(ii) 〈·Σϕ·〉2tr(ϕ) is satisfiable wrt. |=ATLsc.

Acknowledgements
We are indebted to the reviewers of LAMAS 2012 and the workshop “Modeling
Strategic Reasoning”, Lorentz Center, Leiden, The Netherlands, 20-24 February
2012. Nicolas is supported by a Marie Curie COFUND fellowship, and Dirk by
a Juan de la Cierva fellowship of Spain and the project Agreement Technolo-
gies (Grant CONSOLIDER CSD2007-0022, INGENIO 2010), and the MICINN
projects TIN2006-15455 and TIN2009-14562-CO5.
5 Note that the lower bound of Theorem 1(i) already follows from propositional logic.

91

References

1. T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with
irrevocable strategies. In Proceedings of TARK XI, pages 15–24. Presses Universi-
taires de Louvain, 2007.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of FOCS’97, pages 100–109. IEEE Computer Society, 1997

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Lecture Notes in Computer Science, 1536:23–60, 1998.

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

5. N. Belnap, M. Perloff, and M. Xu. Facing the future: agents and choices in our
indeterminist world. Oxford, 2001.

6. T. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy
contexts and bounded memory. Technical Report LSV-08-14, ENS Cachan, 2008.

7. T. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy
contexts and bounded memory. In Proceedings of LFCS’09, LNCS, vol. 5407,
pages 92–106. Springer, 2009.

8. J. Broersen, A. Herzig, and N. Troquard. A STIT-extension of ATL. In Proceedings
of JELIA’06, LNAI, vol. 4160, pages 69–81. Springer, 2006.

9. J. Broersen, A. Herzig, and N. Troquard. From Coalition Logic to STIT. In
Proceedings of LCMAS’05, ENTCS, vol. 157:4, pages 23–35. Elsevier, 2006.

10. A. Da Costa. Propriétés de jeux multi-agents. Thèse de doctorat, Laboratoire
Spécification et Vérification, ENS Cachan, France, Sept. 2011.

11. A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expres-
siveness and model checking. In Proceedings of FSTTCS’10, LIPIsc, vol. 8, pages
120–132. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

12. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal
logics: theory and applications. Studies in Logic, 148. Elsevier Science, 2003.

13. V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent sys-
tems. Synthese, 139(2):241–280, 2004.

14. A. Herzig and F. Schwarzentruber. Properties of logics of individual and group
agency. In Proceedings of AiML, pages 133–149. College Publications, 2008.

15. J. F. Horty. Agency and Deontic Logic. Oxford University Press, Oxford, 2001.
16. W. Jamroga and J. Dix. Do agents make model checking explode (computation-

ally)? In Proceedings of CEEMAS’05, pages 398–407. Springer-Verlag, 2005.
17. F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity

of ATL. Logical Methods in Computer Science, 4(2), 2008.
18. T. Müller. On the formal structure of continuous action. In Proceedings of AiML

5, pages 191–209. King’s College Publications, 2005.
19. A. N. Prior. Past, Present, and Future. Clarendon Press, 1967.
20. R. H. Thomason. Indeterminist time and truth-value gaps. Theoria, 36:264–81,

1970.
21. W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic for strategic reasoning.

In Proceedings of AAMAS’05, pages 157–164. ACM Press, 2005.
22. D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-time temporal

logic with explicit strategies. In Proceedings of TARK XI, pages 269–278. Presses
Universitaires de Louvain, 2007.

92

	LAMAS2012-cover page
	LAMAS2012-tableofcontents-v4
	LAMAS2012-proc1.pdf

