
ESSLLI08: Deontic Logic in Computer Science
Part 2a/5: The Input/Output Logic Framework

Jörg Hansen and Leendert van der Torre

Makinson and van der Torre see a normative code as a set G of
conditional norms, which is a set of ordered pairs (a, x) [5]. For
each such pair, the body a is thought of as an input, representing
some condition or situation, and the head x is thought of as an out-
put, representing what the norm tells us to be desirable, obligatory or
whatever in that situation. Moreover, given any universe L such that
G ⊆ L2 and an input A ⊆ L, they suggest that the output of A under
G may be understood simply as

G(A) = {x | (a, x) ∈ G for some a ∈ A}

Input/output logic investigates what happens to this basic picture
when we pass to the logical level, i.e. when L is a propositional lan-
guage, closed under at least the usual truth-functional connectives,
and G a set of ordered pairs (a, x) of formulae in L. Since this in-
vestigation is relevant not only for deontic logic, Makinson and van
der Torre refer to G not as a normative code, but as a generating set.
To avoid all confusion, the generators G are not treated as formulae,
but simply as ordered pairs (a, x) of purely boolean (or eventually
first-order) formulae. They read a pair (a, x) forwards, i.e. with a as
body and x as head; and they call the corresponding truth-functional
formula a → x its materialization, echoing the old name material
implication for the connective involved.

Suppose that we are also given a set A of formulae. The problem
studied in input/output logic is: how may we reasonably define the set
of propositions x making up the output of A under G, or one might
also say, of G given A, which we write out(G, A)? Makinson and
van der Torre emphasize that the task of logic is seen as a modest
one. It is not to create or determine a distinguished set of norms,
but rather to prepare information before it goes in as input to such a
set G, to unpack output as it emerges and, if needed, coordinate the
two in certain ways. A set G of conditional norms is thus seen as a
transformation device, and the task of logic is to act as its ‘secretarial
assistant’.

1 Obligations
The basic intuition is that input and output are both under the sway
of the operation Cn of classical consequence. Makinson and van der
Torre’s simplest response to their problem is to put

out(G, A) = Cn(G(Cn(A)))

where the function G(.) is defined as on the pre-logical level above,
and Cn alias ` is classical consequence. In other words, given a
set A of formulae as input, they first collect all of its consequences,
then apply G to them, and finally consider all of the consequences
of what is thus obtained. They also define various variants to deal

with disjunctive inputs intelligently, and making outputs available
for recycling as inputs.

Definition 1 (Obligations) [2] Let L be a propositional logic with
> a tautology, and let G be a set of ordered pairs of L (called the
generators). A generator (a, x) is read as ‘if input a then output x’.
The following logical systems have been defined, where v ranges over
boolean valuations or the function that puts v(b) = 1 for all formu-
lae b, and V = {b | v(b) = 1}.

out1(G, A) = Cn(G(Cn(A))),
out2(G, A) = ∩{Cn(G(V )) | v(A) = 1},
out3(G, A) = ∩{Cn(G(B)) | A ⊆ B = Cn(B) ⊇ G(B)},
out4(G, A) = ∩{Cn(G(V )) : v(A) = 1 and G(V ) ⊆ V }.

The following example illustrates and compares the four in-
put/output logics. The most characteristic property is that inputs are
not in general outputs; that is, we do not have A ⊆ out1(G, A).

Example 1 [2] Put generators G = {(a, x), (b, x), (x, y)}, where
a, b, x and y are distinct elementary letters, and put A = {a}.
Inputs are not in general outputs, since G(Cn(a)) = {x}
so a 6∈ out1(G, a) = Cn(G(Cn(a))) = Cn(x). Con-
traposition also fails, for although x ∈ out1(G, a) we have
¬a 6∈ out1(G,¬x): since a ∈ Cn(¬x) we have G(Cn(¬x)) = ∅
so that ¬a 6∈ out1(G,¬x) = Cn(G(Cn(¬x))) = Cn(∅).

We do not have y ∈ out1(G, A). However, in certain situations,
it may be appropriate for outputs to be available for recycling as
inputs. For example, the elements (a, x) of G may be conditional
norms of a kind that say that any configuration in which a is true
is one in which x is desirable. In some contexts, we may wish to
entertain hypothetically the items already seen as desirable, in order
to determine what is in turn so. We do have y ∈ out3(G, A) and
y ∈ out4(G, A).

Finally, put A = {a ∨ b}. Then Cn(A) ∩ b(G) = ∅ where
we write b(G) for the set of all bodies of elements of G, i.e. in
this example the set {a, b}. Hence also G(Cn(A)) = ∅ so that
out1(G, A) = Cn(G(Cn(A))) = Cn(∅). However, in many con-
texts we would want to put x in the output, as it can be obtained from
each of the two disjuncts of the input. We do have x ∈ out2(G, A)
and x ∈ out4(G, A).

Input/output logic is axiomatized as a kind of conditional logic,
where one is used to ask the following question. Suppose we are
given only the generating set G: how may we define the set of in-
put/output pairs (A, x) arising from G, written as out(G)? Makin-
son and van der Torre suggest that this is the same question as ask-
ing what is out(G, A), because they define (A, x) ∈ out(G) iff



x ∈ out(G, A) or conversely. They also suggest that the two for-
mulations give a rather different gestalt, and one is sometimes more
convenient rather than the other. Whereas the latter tends to be clearer
in semantic contexts, the former is easier to work with when consid-
ering derivations in a syntactic context. They move freely from one
to the other, just as one moves between Cn and ` for classical con-
sequence.

Theorem 1 [2] Let L be a base logic with > a tautology, and let G
be a set of ordered pairs of L (called the generators). Input/output
logic out1 (out2 / out3 / out4) is a closure operation on G∪{(>,>)}
under replacement of logical equivalents and the rules SI , WO and
AND (and OR / CT / OR and CT ).

SI (a,x)
(a∧b,x)

WO (a,x)
(a,x∨y)

AND (a,x),(a,y)
(a,x∧y)

OR (a,x),(b,x)
(a∨b,x)

CT (a,x),(a∧x,y)
(a,y)

ID
(a,a)

Example 2 Given G = {(a, x), (a, y), (x, z)} the output of G con-
tains (a ∧ b, x), (a ∧ x, z), (a, x ∨ y), (a, a ∨ x), and (a, x ∧ y)
using rules SI, WO and AND. Using also the CT rule, the output
contains (a, z).

2 Permissions
Permissions are more ambiguous than obligations, and various no-
tions have been defined. Makinson and van der Torre [4] distinguish
three notions of permission. First, negperm is the negation of an pro-
hibition, it corresponds to what is called weak permission. Second,
statperm guides the citizen in the deontic assessment of specific ac-
tions, and behaves like a weakened obligation: given what is oblig-
atory and what is strongly permitted the actual permissions of an
agent are computed. If P is the set of permissive norms, then we have
statperm(P, G) ⊆ out(P ∪ G), see [4] for details. Third, dynperm
guides the legislator by describing the limits on what may be pro-
hibited without violating static permissions, which is called prohibi-
tion immunity: “on the other hand, dynamic permission corresponds
to the needs of the legislator, who needs to anticipate the effect of
adding a prohibition to an existing corpus of norms. If prohibiting x
in condition a would commit us to forbid something that has been
positively permitted in a certain realizable situation, then adding the
prohibition is inadmissible under pain of a certain kind of incoher-
ence, and the pair (a, x) is to that extent immune from prohibition.
For this reason, dynamic permission could also be called prohibition
immunity” [4].

Definition 2 (Permissions) Let G and P be two sets of generators,
where P stands for permissive norms, and let out be an input/output
logic.

• (a, x) ∈ negperm(G) iff (a,¬x) 6∈ out(G);
• (a, x) ∈ statperm(P, G) iff (a, x) ∈ out(G∪Q) for some single-

ton or empty Q ⊆ P ;
• (a, x) ∈ dynperm(P, G) iff (c,¬z) ∈ out(G ∪ {(a,¬x)}) for

some pair (c, z) ∈ statperm(P, G) with c consistent.

Example 3 It is obligatory to make homework, but if one does
homework he is permitted to watch the television, G = {(>, h)}
and P = {(h, w)}. Then (>, h) ∈ negperm(G), since
what is obligatory is permitted and (a, b) ∈ negperm(G)
since given a there is no restriction about b. Moreover,
(h, w) ∈ statperm(P, G) since this is explicitly permitted and
(a, w) ∈ dynperm(P, G): (a ∧ h,¬w) ∈ out(G ∪ {(a,¬w)}) for
some pair (a ∧ h, w) ∈ statperm(P, G).

3 Constraints
The main problem of reasoning with obligations and permissions is
the question how to deal with violations and obligations resulting
from violations, known as contrary-to-duty reasoning. It has been
discussed in the context of the notorious contrary-to-duty paradoxes
such as Chisholm’s and Forrester’s paradox. It has led to the use of
constraints in input/output logics [3].

The strategy is to adapt a technique that is well known in the logic
of belief change - cut back the set of norms to just below the thresh-
old of making the current situation contrary-to-duty. In effect, in-
put/output logic carries out a contraction on the set G of generators.
In case of contrary-to-duty obligations, the input represents some-
thing which is inalterably true, and an agent has to ask himself which
obligations (output) this input gives rise to: even if the input should
have not come true, an agent has to “make the best out of the sad
circumstances” [1].

In input/output logics under constraints, a set of generators and an
input does not have a set of propositions as output, but a set of sets
of propositions. We can infer a set of propositions by for example
taking the join (credulous) or meet (sceptical), or something more
complicated. Besides, we can adopt an output constraint (the output
has to be consistent) or an input/output constraint (the output has to
be consistent with the input). In this handout we consider only the
input/output constraints.

Definition 3 (Constraints) Let G be a set of generators and out be
an input/output logic. Moreover, we write x ∈ out(G, a) iff (a, x) ∈
out(G). We define:

• maxfamily(G, a) is the set of ⊆-maximal subsets G′ of G such
that out(G′, a) ∪ {a} is consistent.

• outfamily(G, a) is the output under the elements of maxfamily,
i.e., {out(G′, a) | G′ ∈ maxfamily(G, a)}.

• (a, x) ∈ out∪(G) iff x ∈ ∪outfamily(G, a)
(a, x) ∈ out∩(G) iff x ∈ ∩outfamily(G, a)

Makinson and van der Torre [3] consider the following example.

Example 4 Multiple level of violation may be analyzed. For ex-
ample, put G = {(>,¬a), (a, x), (a ∧ ¬x, y)} where a is read
as ‘you break your promise’, x as ‘you apologize’ and y as ‘you
are ashamed’. Consider the input a ∧ ¬x. On the one hand,
out(G, a ∧ ¬x) = Cn(¬a, x, y), which is consistent. On the other
hand, out(G, a ∧ ¬x) is inconsistent with input a ∧ ¬x, so that
maxfamily(G, a∧¬x) = {(a∧¬x, y)} and outfamily(G, a∧¬x) =
{Cn(y)}.

Permissions under constraints can be formalized by replacing in
Definition 2 each occurrence of out by out∪ or out∩.

REFERENCES
[1] B. Hansson, ‘An analysis of some deontic logics’, Nôus, 3, 373–398,

(1969).
[2] D. Makinson and L. van der Torre, ‘Input-output logics’, Journal of

Philosophical Logic, 29(4), 383–408, (2000).
[3] D. Makinson and L. van der Torre, ‘Constraints for input-output logics’,

Journal of Philosophical Logic, 30(2), 155–185, (2001).
[4] D. Makinson and L. van der Torre, ‘Permissions from an input-output

perspective’, Journal of Philosophical Logic, 32(4), 391–416, (2003).
[5] D. Makinson and L. van der Torre, ‘What is input/output logic?’, in

Foundations of the Formal Sciences II: Applications of Mathematical
Logic in Philosophy and Linguistics, volume 17 of Trends in Logic,
Kluwer, (2003).

2


