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Abstract—Distributed Autoepistemic Logic with Inductive Def-
initions (dAAEL(ID)) is a recently proposed non-monotonic logic
for says-based access control. We define a query-driven decision
procedure for dAEL(ID) that is implemented in the knowledge-
base system IDP. The decision procedure is designed in such
a way that it allows one to determine access rights while
avoiding redundant information flow between principals in order
to enhance security and reduce privacy concerns. Given that the
decision procedure has in the worst case an exponential runtime,
it is to be regarded as a proof of concept that increases our
understanding of dAEL(ID), rather than being deployed for an
access control system.

Index Terms—access control, says-based logic, decision pro-
cedure, non-monotonic logic, autoepistemic logic, well-founded
semantics, inductive definitions, IDP

I. INTRODUCTION

Multiple logics have been proposed for distributed access
control [1], [2], [3], [4], [5], most of which use a modality
k says indexed by a principal (i.e. user or process) k. These
says-based access control logics are designed for systems in
which different principals can issue statements that become
part of the access control policy. k says ¢ is usually rendered
as “k supports ¢”, which can be interpreted to mean that k
has issued statements that — together with some additional
information present in the system — imply . Different access
control logics vary in their account of which additional in-
formation may be assumed in deriving the statements that &
supports.

Van Hertum et al. [6] have recently proposed a multi-agent
variant of autoepistemic logic, called Distributed Autoepis-
temic Logic with Inductive Definitions (AAEL(ID)), to be used
as a says-based access control logic. Autoepistemic logic
is a non-monotonic logic originally designed for reasoning
about knowledge bases and motivated by the principle that
an agent’s knowledge base completely characterizes what the
agent knows [7]. By applying the semantic principles of au-
toepistemic logic to characterize the says-modality, dAEL(ID)
allows us to derive a statement of the form —k says on
the basis of the observation that k£ has not issued statements
implying (. As explained in Section II-C, supporting reason-
ing about such negated says-statements allows dAEL(ID) to
model access denials straightforwardly.
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Van Hertum et al. have extended multiple semantics of
autoepistemic logic to dAEL(ID), but have argued that the
well-founded semantics is to be prefered in the application of
dAEL(ID) to access control. In this paper we therefore restrict
ourselves to the well-founded semantics of dAEL(ID).

When applying dAEL(ID) to access control, the access
control policy consists of a separate set of dAEL(ID) formulas
for each principal in the system, where the set of formulas
of each principal consists of the statements issued by that
principal. A principal k£ has access right to a resource r if
and only if the owner j of that resource supports the formula
access(k,r), i.e. iff the dAEL(ID) formula j says access(k, )
is true in the well-founded model of the access control policy.

We define a query-driven decision procedure for dJAEL(ID),
which — under the assumption of a finite domain — allows
one to determine the truth value of a formula in the well-
founded model of a dAEL(ID) access control policy, i.e. to
determine access rights. This decision procedure is designed in
such a way that it avoids redundant information flow between
principals, which ensures that the need-to-know principle of
computer security [8] is not violated, and which additionally
reduces privacy concerns. This decision procedure is imple-
mented with the help of the IDP system [9], a knowledge
base system for the language of first-order logic with inductive
definitions.

The decision procedure that we define has in the worst case
an exponential runtime. This means that it is not practicable to
build an access control system that implements this decision
procedure without including heuristics to optimize response
time and a principled approach for dealing with situations
when access cannot be determined within a reasonable amount
of time (see Section VII of Cramer et al. [10] for an example
of such an approach in a somewhat different access-control
setting). For this reason, we regard the contribution of this
paper to be mainly conceptual: The defined decision procedure
is a proof of concept that increases our understanding of
dAEL(ID) by providing an algorithmic characterization of
the well-founded semantics of dAEL(ID). This algorithmic
characterization complements in a conceptually fruitful way
the semantic definition from Van Hertum et al. [6] which is
based on a fixpoint construction on abstract structures.



The rest of the paper is organized as follows. In Section
II, we define dAEL(ID) and motivate its application to access
control. In Section III, we introduce the IDP system and its
language FO(ID). In Section IV, we present a query mecha-
nism for determining access rights while avoiding redundant
information flow between principals. Section V discusses
related work. Section VI concludes the paper and presents
possible future work.

II. DISTRIBUTED AUTOEPISTEMIC LOGIC WITH
INDUCTIVE DEFINITIONS

Van Hertum et al. [6] have used two notational variants of
dAEL(ID): In the first one, the modality of the logic is written
as K4, following the standard notation in autoepistemic
logic. In the second one, it is written as A says ¢, following
the standard notation in access control logic. In this paper, we
only use the notation A says .

A. dAEL(ID) Syntax

We assume that a set .4 of principals and a first-order
vocabulary 3 consisting of function and predicate symbol
with fixed arity is fixed throughout this paper. As usual, 0-
ary function symbols play the role of constants, and 0O-ary
predicate symbols play the role of propositional variables.
Terms are built from function symbols and variables in the
usual manner.

Definition 1. dAEL(ID) formulas are defined by the following
EBNF rule, where P denotes a predicate symbol, t a term and
x a variable:

pu=Pt,....t) | t=t]| o | (Ap)|Yr |t says ¢

The symbols V, =, < and 3 are treated as abbreviations
in the standard way. We follow the standard conventions for
dropping brackets when this does not cause unclarity.

The intuitive reading of ¢ says ¢ is “t is a principal and
t supports ¢”. So if the term ¢ does not denote a principal,
t says ¢ will be interpreted to be false.

Definition 2. A says-atom or modal atom is a formula of the
form tsays . A says-literal is a says-atom t says p or its
negation —t says .

As motivated in Section II-C below, dAEL(ID) contains a
construct for inductive definitions:

Definition 3. We define a dAEL(ID) inductive definition A to
be a finite set of rules of the form VT : P(T) < ¢(y), where
Y C T and p(Y) is a dAEL(ID) formula. P(T) is called the
head and () the body of the rule VT : P(T) < ©(7).

Definition 4. A dJAEL(ID) theory T is a set that consists of
dAEL(ID) formulas and dAEL(ID) inductive definitions.

In a distributed setting, different principals can issue state-
ments that become part of the access control policy. A
dAEL(ID) theory as defined above only represent the set of
statements of the access control policy issued by a single

principal. In order to represent the full access control policy,
we use the notion of a distributed theory:

Definition 5. A distributed theory T is an indexed family
(Ta)aca, where each T 4 is a dAEL(ID) theory.

B. Semantics

Van Hertum et al. [6] have defined various semantics for
dAEL(ID) using Approximation Fixpoint Theory [11], but
have argued for the use of the well-founded semantics in the
application of dAEL(ID) to access control. In this paper, we
define a decision procedure for dAEL(ID) with respect to the
well-founded semantics, so we only define this semantics. The
definition of the semantics involves a lot of technical machin-
ery, but for a reader familiar with autoepistemic logic, it is
enough to know that the well-founded semantics of dAEL(ID)
is an extension of the well-founded semantics of autoepistemic
logic [12] to the multi-agent case under the assumption of
mutual positive and negative introspection between the agents.
We motivate this mutual introspection below in Section II-C.
Note that the well-founded semantics of dAEL(ID) is defined
over a fixed domain D, which can be either finite or infinite
(but for the decision procedure in Section IV, D is assumed
to be finite).

For defining the well-founded semantics of dAEL(ID), we
use the methodology of Approximation Fixpoint Theory that
Denecker et al. [11] used to define the well-founded semantics
of autoepistemic logic. This methodology is based on the idea
of approximating the knowledge of an agent using a three-
valued valuation, in which formulas, inductive definitions and
theories may not only be true or false but also undefined. The
logical connectives combine these three truth values based on
Kleene’s truth tables [13].

We use truth values t for truth, f for falsity, and u for
undefined. The truth order <; on truth values is induced by
f <; u <; t. The precision order <,, on truth values is induced
by u <, t,u<,f Wedefinet!=ff"'=tandu™!=u.

A structure is defined as usual in first-order logic:

Definition 6. A structure [ consists of a set D, called the
domain of I, an assignment that maps every n-ary predicate
symbol of ¥ to a subset of D" and an assignment that maps
every n-ary function symbol of ¥ to a function D" — D.

A structure formally represents a potential state of affairs of
the world. The interpretation of a term in a structure is defined
as usual.

We assume a domain D, shared by all structures, to be fixed
throughout the paper. Furthermore, we assume D to contain
the set A of principals.

The semantics of dAEL(ID) is based on the truth assignment
of S5 modal logic, extended to the multi-agent case in such a
way that mutual positive and negative introspection between
agents is satisfied. While S5 modal logic is often used for
formalizing the knowledge modality, we make indirect usage
of it for formalizing the says-modality. But for convenience,
we will sometimes use knowledge terminology when infor-



mally explaining the formal definitions needed for defining
dAEL(ID) semantics.

The following notion is used to model a single agent’s
knowledge:

Definition 7. A possible world structure Q) is a set of struc-
tures.

Note that a possible world structure can be seen as a Kripke
structure with the total accessibility relation. It contains all
structures that are consistent with an agent’s knowledge.

Possible world structures are ordered with respect to the
amount of knowledge they contain. In this sense, possible
world structures that contain less structures possess more
knowledge:

Definition 8. Given two possible world structures Q1 and Qo,
we define Q1 <y Q2 to hold if and only if Q1 O Q-.

In order to model the interaction of the knowledge of
multiple agents, we extend the notion of a possible world
structure to the multi-agent case as follows:

Definition 9. A distributed possible world structure (DPWS)
Q = (Qa)aca is a family consisting of a possible world
structure Q 4 for each principal A € A.

The knowledge order on possible world structures can be
extended pointwise to DPWS’s. One DPWS contains more
knowledge than another if each principal has more knowledge:

Definition 10. Given two DPWS’s Q' and Q2 we define
Q' <k Q% iff QY <k Q% for each A € A.

Definition 11. We inductively define a two-valued valuation of
dAEL(ID) formulas with respect to a DPWS Q and a structure
I as follows:

(P()*! = iff te P!

(h=1)d" =t iff t{ =15

(1 A2 =t iff (p1)2] =tand (p2)27 =1t

(mp) ! =t iff ()" =f

(Vo SO)Q’I =t iff for each d € D, (go[:c/d])QJ —t
(tsays ©)2T =t iff t' € Aand p'%7) =t forall J € Qu

Inductive definitions generally define only some of the
predicates of a language, while the remaining predicates of
the language function as parameters:

Definition 12. Ler A = {Pi(t1) + ¢1,..., Pu(tn) < ©n}
be an inductive definition. Then Def(A) is defined to be
{P1,...,P,} and is called the set of defined predicates of A.
The set of predicates in ¥ that are not in Def(A) is denoted
Par(A) and is called the set of parameters of A.

In order to approximate the agents’ knowledge in a three-
valued setting, we use distributed belief pairs that consist of a
conservative bound B¢ and a liberal bound B of each agent’s
knowledge, i.e. it specifies what each agent knows for certain
and what each agent possibly knows:

Definition 13. A distributed belief pair B is a pair (B¢, B)
of two DPWS’s B¢ and Bt such that B¢ <y B

The knowledge order <x on DPWS’s induces a precision
order <,, on distributed belief pairs:

Definition 14. Given two distributed belief pairs B1 and Bo,
we define By <, By to hold iff B < BS and Bb < Bi.

Intuitively, By <, Bz means that By characterizes the

knowledge of the principals more precisely than Bj.

Definition 15. We inductively define a three-valued valuation
of dAEL(ID) formulas with respect to a distributed belief pair
B and a structure I as follows:

B, I _ t if tH e P!
GO A
()Pt = (D71
(pA)BT = glb_ (57, 0P7)
(Vo )>! = glbe {plz/d>" | d € D}
t if t! € Aand
OB =t forall I' € B
(t says )BT = t if ti¢ Aor
ch’I/ =f for some I' € Bi;
u otherwise

As explained in Section II-C below, inductive definitions
in dAEL(ID) are interpreted according to the well-founded
semantics for inductive definitions, as defined for example
in [14]. The well-founded model of an inductive definition
A is always defined relative to a context (O, which is an
interpretation of the predicate symbols in Par(A). We denote
the well-founded model of A relative to O by wfin, (O).

Inductive definitions in dAEL(ID) may contain the says-
modality in the body. Since the definition of the well-founded
model in [14] is only defined for inductive definition over
a first-order language without any modality, we need to say
something about how to interpret the says-modality in the
body. Just like formulas, we evaluate inductive definitions with
respect to a DPWS Q and a structure /. The DPWS Q assigns
a truth-value to every formula of the form k says . When
evaluating an inductive definition A with respect to Q and
I, it should get evaluated in the same way as the inductive
definition A<, which is defined to be A with all instances of
formulas of the form £ says ¢ replaced by t or f according to
their interpretation in Q.

This motivates the following definition of a three-valued
valuation of dAEL(ID) inductive definitions with respect to a
DPWS Q and a structure [:

Definition 16. We define a three-valued valuation of dAEL(ID)
inductive definitions with respect to a distributed belief pair
B and a structure I as follows:

. t lfI = meAB (I|Par(A))
ABT — £ if I %, winas(Ipara))
u otherwise



where AB is the definition A with all formulas tsays ¢
replaced by t, £ or u, according to their interpretation in B.

To understand this three-valued valuation of dAEL(ID)
inductive definitions informally, remark that in a partial context
(B is three-valued), we cannot yet evaluate the exact value
of the defined predicates in the definition. We can, however,
using a three-valued valuation of the definition, obtain an
approximation wfinas(I|par(a)) of their value. We return t
if this approximation is actually two-valued and equal to I, u
if I is still consistent with (but not equal to) this approximation
and f otherwise.

We can combine the three-valued valuations for formulas
and inductive definitions into a three-valued valuation of a
single agent’s theory as follows:

Definition 17. We define a three-valued valuation of dJAEL(ID)
theories with respect to a distributed belief pair B and a
structure I as follows:

T8 = glb. ({¢®'|p € TYU{APT|A € T})

Using this three-valued valuation of dAEL(ID) theories, we
can define an operator D7 on distributed belief pairs:

Definition 18. D;(B) := (D$(B), DL(B)), where

DE(B) := ({I | (Ta)®" # £}) aca
Di(B) := ({I | (Ta)®' =t})aea

In order to formally define the well-founded model, we first
need to define the stable operator St that maps a DPWS to
a DPWS:

Definition 19. St(Q) is defined to be the least fixpoint of the
operator O that maps a DPWS Q' to the DPWS O(Q) =
Di(Q', Q)1, i.e. to the first element of the distributed belief
pair D3(Q', Q).

Now we are ready to define the well-founded model of a
distributed theory, the central notion of dAEL(ID) semantics:

Definition 20. Let T be a distributed theory. The well-founded
model of T, denoted wfm(T), is the least precise (i.e. <p,-
minimal) distributed belief pair B such that St(B¢) = B' and
Sr(B') = B-.

We say that a distributed theory logically implies a formula
@ iff @M1 — ¢ for every structure .

Note that for a formula ¢ of the form k says 1 or =k says 1,
the value of "I does not depend on I. We therefore
sometimes write ¢"(T) instead of *(T)-I for such ¢.

C. Motivation for dAEL(ID)

Van Hertum et al. [6] have motivated the applicability of
dAEL(ID) as an access control logic by discussing possible
use cases, i.e. by illustrating how dAEL(ID) can be applied
in certain access control scenarios. In this section we add to
this motivation by use cases a more principled motivation that
clarifies the advantages of dAEL(ID) over other says-based
access control logics.

An access control policy is a set of norms defining which
principal is to be granted access to which resource under which
circumstances. Specialized logics called access control logics
were developed for representing policies and access requests
and reasoning about them. A general principle adopted by
most logic-based approaches to access control is that access
is granted iff it is logically entailed by the policy.

There is a large variety of access control logics, but most
of them use a modality k says indexed by a principal & [5].
says-based access control logics are designed for systems in
which different principals can issue statements that become
part of the access control policy. k says ¢ is usually explained
informally to mean that & supports ¢ [3], [4], [5]. This means
that k£ has issued statements that — together with additional
information present in the system — imply ¢. Different access
control logics vary in their account of which rules of inference
and which additional information may be used in deriving
statements that k£ supports from the statements that k has
explicitly issued.

Many state-of-the-art says-based access control logics, e.g.
Garg’s BL [4], do not provide the means for deriving state-
ments of the form —k says o or j says (—k says p). However,
being able to derive statements of the form —k says ¢ and
j says (—k says ¢) makes it possible to model access denials
naturally in a says-based access control logic: Suppose A
is a professor with control over a resource r, B is a PhD
student of A who needs access to r, and C is a postdoc
of A supervising B. A wants to grant B access to r, but
wants to grant C the right to deny B’s access to r, for
example in case B misuses her rights. A natural way for A
to do this using the says-modality is to issue the statement
(=C says —~access(B,r)) = access(B,r). This should have
the effect that B has access to r unless C' denies him access.
However, this effect can only be achieved if our logic allows
A to derive —C says —access(B,r) from the fact that C' has
not issued any statements implying —access(B, r).

The derivation of —~C says —access(B,r) from the fact that
C has not issued any statements implying —access(B,r)
is non-monotonic: If C issues a statement implying
—access(B,r), the formula —C says —access(B,r) can no
longer be derived. In other words, adding a formula to the
access control policy causes that something previously implied
by the policy is no longer implied. Existing says-based access
control logics are monotonic, so they cannot support the
reasoning described above for modelling denial with the says-
modality.

In order to derive statements of the form —k says ¢, we have
to assume the statements issued by a principal to be a complete
characterization of what the principal supports. This is similar
to the motivation behind Moore’s autoepistemic logic (AEL)
to consider an agent’s theory to be a complete characterization
of what the agent knows [7], [15], [16], [17]. This motivates
an application of AEL to access control.

However, AEL cannot model more than one agent. In order
to extend it to the multi-agent case, one needs to specify how
the knowledge of the agents interacts. Most state-of-the-art



access control logics allow j says (k says @) to be derived
from k says, as this is required for standard delegation
to be naturally modelled using the says-modality. In the
knowledge terminology of AEL, this can be called mutual
positive introspection between agents. In order to also model
denial as described above, we also need mutual negative
introspection, i.e. that j says (—k says ¢) to be derived from
-k says . Van Hertum et al. [6] have defined the semantics
of dAEL(ID) in such a way that mutual positive and negative
introspection between the agents is ensured.

dAEL(ID) also incorporates inductive definitions, thus al-
lowing principals to define access rights and other properties
relevant for access control in an inductive way. Inductive
(recursive) definitions are a common concept in all branches of
mathematics. Inductive definitions in dAEL(ID) are intended
to be understood in the same way as in the general purpose
specification language FO(-) of the IDP system [9]. Denecker
[18] showed that in classical logics, adding definitions leads
to a strictly more expressive language.

Because of their rule-based nature, formal inductive def-
initions also bear strong similarities in syntax and formal
semantics with logic programs. A formal inductive definition
could also be understood intuitively as a logic program which
has arbitrary formulas in the body and which defines only a
subset of the predicates in terms of parameter predicates not
defined in the definition.

Most of the semantics that have been proposed for logic
programs can be adapted to inductive definitions. Denecker
and Venneckens [14] have argued that the well-founded se-
mantics correctly formalizes our intuitive understanding of
inductive definitions, and hence that it is actually the right
semantics. Following them, we use the well-founded semantics
for inductive definitions.

III. FO(/D) AND THE IDP-SYSTEM

The decision procedure defined in the next section is based
on the IDP system, so we briefly describe this system and its
language FO(ID).

A. Why IDP?

IDP [9] is a Knowledge Base System which combines
a declarative specification (knowledge base), written in an
extension of first-order logic, with an imperative management
of the specification via the Lua [19] scripting language. The
extension of first-order logic supported by IDP allows for
inductive definitions. As explained and motivated in Section
II-C, dAEL(ID) also supports inductive definitions. This makes
the usage of IDP as a basis for the decision procedure a natural
choice.

IDP supports multiple inferences that can be used to per-
form a range of reasoning tasks on a given specification.
We make use of two of IDP’s inferences, defined in Section
III-B below, in order to perform the meta-reasoning about a
principal’s dAEL(ID) theory that is necessary to determine
which queries to other principals are really necessary in order
to resolve a query asked to the principal.

B. FO(ID) and some IDP inferences

The specification language supported by IDP is an ex-
tension of first-order logic (FO) with types, inductive defi-
nitions, aggregates, arithmetic and partial functions, denoted
FO(T,ID,Agg,Arit,PF) [20]. We only make use of the subset of
FO(T,ID,Agg,Arit,PF) called FO(I D), which extends FO only
with inductive definitions. The formal definition of FO(ID)
syntax is the standard definition of FO syntax extended by
the following definition of inductive definitions: An inductive
definition A is a set of rules of the form VZ : P(T) < ¢(7),
where § C T and () is an FO formula. Just as in dAEL(ID),
inductive definitions are given the well-founded semantics of
inductive definitions [14]. An FO(ID) theory is a set of
inductive definitions and FO formulas.

The IDP inferences for FO(/D) that we make use of are
defined for finite partial structures. Before we define formally
what a partial structure is, we define the concept of a partial
set, a generalization of a set in a three-valued context:

Definition 21. A partial set on the domain D is a function from
D to {t,f,u}, where t, f and u stand for the three truth-values
true, false and undefined.

A partial set is two-valued (or total) if u does not belong
to its range.

Given a vocabulary ¥, a partial structure gives an interpre-
tation to the elements of X:

Definition 22. A partial structure over our fixed vocabulary
Y is a tuple (D,T), where the domain D is a set, and T
is an assignment function that assigns an interpretation to
each symbol in Y. For a predicate symbol P of arity n, the
interpretation PT is a partial set on the domain D"; for a
function symbol f of arity n, f* is a function from D" to D.

When the predicate symbol P has arity 0, i.e. is a proposi-
tional variable, P is just an element of {t,f, u}.

We call a partial structure S = (D,Z) finite iff its domain
D is finite. We call a partial structure fotal iff P7 is total for
all P € 3.

The interpretation of terms ¢~ and the satisfaction relation
k= for total structures S = ¢ are defined as usual.

A precision order can be defined on partial structures:

Definition 23. Given two partial structures S = (D,T) and
S" = (D,T'), we write S <, S’ (and say S’ is more precise
than S, or S’ expands S) iff for every function symbol f,
fI/ = L, and for every predicate symbol P of arity n and
every tuple d € D™ of domain elements such that P (d) # u,
we have PT (d) = PZ(d).

We now define the two IDP inferences that we make use
of. The first one, which is called sat in the IDP system,
determines whether a given finite partial structure is a partial
model of a given theory:

Definition 24. Let S be a partial structure and T an FO(ID)
theory. We say S is a partial model for T if and only if there
exists a total structure S’ >, S such that 8" = T.



The second IDP inference that we make use of, which is
called unsatstructure in the IDP system, picks a minimal
partial structure inconsistent with a given theory and less
precise than a given finite partial structure:

Definition 25. Let S be a partial structure and T be an
FO(ID) theory. We define min_incons_set(T,S) to be the
set of <p-minimal partial structures S' <, S such that S’ is
not a partial model of T.

If the input structure S is not a  par-
tial model of the input theory 7, then
min_incons_set(T,S) is always non-empty, and

unsatstructure picks an element from it and returns
it. If S is a partial model of 7, unsatstructure throws an
erTor.

IV. DECISION PROCEDURE

In this section, we define a query-driven decision procedure
for dJAEL(ID), which allows to determine access rights while
avoiding redundant information flow between principals in
order to enhance security and reduce privacy concerns. This
decision procedure is implemented with the help of the IDP
system. Given that IDP can only work with finite domains, the
decision procedure also assumes the domain D to be finite.!
For simplicity, we assume that for every principal there is a
constant symbol referring to that principal, and that the ¢ in
every formula of the form ¢ says ¢ is such a constant symbol.
This simplification could be removed, but would make the
description of the decision procedure much more complicated.

The decision procedure is query-driven in the following
sense: A query in the form of a dAEL(ID) formula ¢ is posed
to a principal A. A determines whether her theory contains
enough information in order to verify . It can happen that
A cannot verify ¢ just on the basis of her theory, but can
determine that if a certain other principal supports a certain
formula, her theory implies the query. For example, A’s theory
may contain the formula B saysp = ¢. In this case, A can
forward a remote sub-query to B concerning the status of p in
B’s theory. If B verifies the sub-query p and informs A about
this, A can complete her verification of the original query .

A. Motivation for avoiding redundant information flow

One reason to avoid redundant information flow is to reduce
communication overhead. The rest of this section considers an
additional motivation for avoiding redundant information flow.

Consider the following distributed theory of the two princi-
pals A and B:

TA:{ :/\Bsayss:>p }

!Given that propositional logic has the same expressive power as first-order
logic over a finite domain, the decision procedure could in theory also be
viewed as a decision procedure for the propositional fragment of dAEL(ID).
But since first-order logic over a finite domain can model the same scenarios
more concisely and more naturally than propositional logic, we stick to the
first-order variant of dAEL(ID) with a finite-domain assumption.

7.3
B= —=sAAsaysp=p

In both theories we have a guard, namely, r for theory Ty
and —s for theory Tp. The guards can be checked locally
before performing a remote query to other theories. If A is
queried about p, we can continue with the evaluation and query
Tp about the truth value of s, since the guard r is true. If
B is queried about p, on the other hand, we do not need to
perform any remote query since it will always fail due to the
guard being false in the theory.

If B nevertheless were to send the remote subquery p to
A, this would be an unnecessary sub-query. Since B does not
actually need to know whether A supports p, this would violate
the need-to-know principle [8], which states that a principal
should only be given those accesses and be provided with that
non-public information which the principal requires to carry
out her responsibilities. Additionally, it is reasonable to assume
that for privacy considerations, the principals do not want to
disclose their full access control policies to other principals,
but only the parts that are required to verify a given access
request. So there are both security and privacy reasons for B
not to send the remote subquery p to A.

In general, more complex behaviors rather than guards can
occur in a distributed theory. The decision procedure we define
avoids redundant communication even when more complex
reasoning is required to determine which sub-queries have a
chance of leading to a verification of the primary query and
which subqueries are certainly not useful. As discussed in Sec-
tion I'V-E, this ideal avoidance of redundant communication is
computationally very expensive, so in a practically applicable
system, a trade-off between the security and privacy motivation
for avoiding redundant communication on the one hand and
computational cost on the other hand would need to be found.
Nevertheless, we consider our ideal avoidance of redundant
communication an interesting proof of concept as a foundation
for further research.

The decision procedure that determines whether a query
« is true given a distributed theory T is composed of two
distinct modules. The first module, the Query Minimization
Procedure, 1ooks at the theory of the agent to whom the query
is directed, and determines minimal sets of remote calls to
other theories that could verify the query. The second module,
the Communication Procedure, takes care of communication
between the principals, including the handling of the loops
that may occur.

B. Query Minimization Procedure

1) Translation Mechanism.: In order to implement a query
mechanism for dAEL(ID) in IDP we need to translate
dAEL(ID) theories to FO(ID) theories. The only syntactic
construct of dAEL(ID) that does not exist in FO(ID) is the
says-modality. So when translating a dAEL(ID) theory T to
an FO(ID) theory 7, we need to replace each says-atoms in
T by some first-order formula. For this purpose, we extend the
vocabulary X to an extended vocabulary Y’ by adding to it new



propositional variables of the form p7 A_says_e» Pas
WA_says_y for every modal statement A says o of dXEL(ID)

Before we formally define the translation mechanism, let
us first Inotivate why we have the three different propositional
variables p _says_p» Pa_says_, ad w4 says_, for translating
different occurrences of the same says-atom A says . First,
note that the well-founded semantics of dAEL(ID) evaluates
says-atoms in a three-valued way. The propositional variables
pX_says_<p and pZ_says_g; are used to model the three-valued
valuation of A says ¢ in the two-valued logic FO(/D): On
the precision order <, on the three truth values t (true), f
(false) and u (undefined) induced by u <, t and u <, f, the
propositional variable pj_says_go represents the upper bound
for the truth value of Asays¢ and pz_says_go the lower
bound. For this reason, we replace every positive occurrence
of A says ¢ by pz_says_w and every negative occurrence by
pZ_says_gy Given that occurrences of a formula in an inductive
definition cannot be meaningfully termed only positive or
only negative, we first replace occurrences of A says ¢ in an
inductive definition by w A_says_e and add two implications to
the theories that express the equivalence between w A_says_y
and A says .

The translation function ¢ only performs this first step of
the translation mechanism:

Definition 26. Let T be a dAEL(ID) theory. We define t(T') to
be a dAEL(ID) theory equivalent to T', constructed as follows:

For every modal atom A says ¢ occurring in the body of
an inductive definition in theory T':

e Replace Asaysyp by the propositional variable
WA_says_e
e Add to t(T) the two formulae wa_says_, = Asays e

and A says ¢ = wa_says_e-

We next introduce the notion of polarity necessary to further
translate dAEL(ID) theories into FO(Z D) theories.

Definition 27. Let ¢ be a dAEL(ID) formula. The polarity of
an occurrence of a subformula of o is defined recursively as
follows:

o The occurrence of ¢ in @ is a positive occurrence.

o Given a positive (resp. negative) occurrence of the sub-
formula —) of , the occurence of 1 in this occurrence
of ) is negative (resp. positive) in .

o Given a positive (resp. negative) occurrence of the sub-
formula b N\ x of ¢, the occurrences of 1 and x in this
occurrence of ¥ N\ x are both positive (resp. negative) in
.

Definition 28. Let T be a dAEL(ID) theory, let ¢ € T. We
call a positive (resp. negative) occurrence of a subformula 1
of ¢ a positive (resp. negative) occurrence of ¢ in T.

Now we can define the translation function 7 from
dAEL(ID) theories to FO(ID) theories:

Definition 29. Let T be a dAEL(ID) theory. T(T) is con-
structed from t(T') by performing the following replacements

Sor every says-atom A says @ occurring in t(T') that is not a
subformula of another says-atom:

. Replace every positive occurrence of A saysp in T by

pA _says_e
e Replace every negative occurrence of A saysp in T by

PA_says_e-

We will illustrate the translation procedure with a simple
example, which we will use as a running example to be
extended throughout the section.

Example 1. Ler A = {A, B, C}, and let the distributed theory
T consist of the folowing three dAEL(ID) theories:

{p« B says p,
per}

pAsSNAB says z =z
rV-or=s
B says rV

Ta
—(B says r) = z

p
C says z=z

C says r=r

—(B says z) =z
B says r=r

Tp =

7o~ {

We translate these theories as follows:

{ p — wB_says_pa
per}
+

WB_says_p = pB_sa,ys_p
pB_says_p = wB_says_p
PAS /\pB_SEyS_Z =z
rV-or=s

— +
pB_sa,ys_T v _‘pB_sn.ys_r =z

p
pC_says_z =z
pC_says_T' =7

+
_‘pB_says_z =z }
pB_sa,ys_r =T

(Tg) =

() = {

2) Query Minimization Procedure.: The query minimiza-
tion procedure works as follows: given a theory 7" and a query
«, the procedure returns a set I of sets of modal atoms. The
intended meaning of L is as follows: When all modal atoms
in a set L € I can be determined to be true, the query «
succeeds, and L is the set of all sets L with this property.
This means that if L = {}, the query necessarily fails, whereas
if L = {{}} (contains the empty set), the query necessarily
succeeds.

A partial structure S over the extended vocabulary X'
contains information about the truth values of the propositional
variables of the form p, gays , and pz_says_gp- Taking into
account that pz_says_go and pg_says_w are used to represent
the three-valued valuation of A says @, this information can



also be represented by a set of says-literals, which we denote
L3

Definition 30. For a partial structure S = (D,T), we define
L? to be

entails the query «. Furthermore, note that for such a structure
S, min_incons_set(T,S) is non-empty. So next (line 5),
we pick a structure Sy, from min_incons_set(T,S); by
definition S,,;, is a minimal structure such that Sp,;, <, S
and S,,;, is not a partial model of 7; this means that S,,;,

{A says ¢ | (pZ_says_gp)I =t}U{=A says ¢ | (pif_says_go)z = fFontains a minimal amount of information from S that together

We say that a says-atom A says @ occurs directly in a
dAEL(ID) theory, if some occurrence of Asayse in T is
not a subformula of another says-atom. In the Query Min-
imization Procedure, we need to take into account all possible
three-valued valuations of the says-atoms directly occurring
in the input dAEL(ID) theory 7. Such a valuation can be
represented by a partial structure that contains information
only about propositional variables of the form pjg_says_w and
S E p;l_says_w, and for which this information is coherent
in the sense that the truth values assigned to pj_says_w and
SE DA_says_ Al€ compatible. This is made formally precise
in the following definition of the set Sp that contains all
structures that represent three-valued valuations of says-atoms
directly occurring in 7"

Definition 31. Let T be a dAEL(ID) theory. We define St to
be the set containing every partial structure S = (D,T) over
vocabulary ¥ satisfying the following properties:

« P’ =u for every symbol in ¥ that is not of the form
pj_mys_sp OF D4 gays_p JOT some says-atom A says ¢
occurring in 7(T).

o For every says-atom A says p, (p;_says_w)I #t

o For every says-atom A says o, (p;l_says_@)z #f

o For no says-atom A says ¢, (pX_says_w)I =f and
(pZ_says_Lp)I =t

We are now ready to define the Query Minimization Proce-
dure. Its pseudo-code is as follows (Algorithm 1). Please note
that lines 4 and 5 are implemented using the IDP inferences
sat and unsatstructure that we defined in Section III-B.

Algorithm 1 Query Minimization Procedure
Input: theory 7', dAEL(ID) query «
Output: set I of sets of modal atoms

1: L= @

22 T :=7(TU{~a})

3: for each S € S do

4: if S is not a partial model of 7 then

5: pick a partial structure Sinin from
min_incons_set(T,S)

6: L := LU {L%mn}

7: return L

The algorithm is to be read as follows. A query « asked to
theory T is given as input. First (line 2) we translate theory T’
and the negation of the query « into an augmented FO(/ D)
theory 7. Next we iterate over the structures S € St (lines 3-
6). Line 4 ensures that we limit ourselves to structures S € S
that are not a partial models of 7; note that the information
in such a structure S together with the information in 7T

with the information in 7" ensures the query « to be true. So
the set LSmin which represents the same information as a set
of says-literals, is a minimal set of says-literals that together
with the information in 7" ensure the query « to be true.” Line
6 adds L to the set of sets of says-literals that we output
at the end (line 7), after the iteration over the elements of S
is completed.

We continue Example 1 to illustrate the query minimization
procedure.

Example 2. We apply the Query Minimization Procedure to
the theory Ty and the query z. First we translate the theory
T4 and the negation of the query into T = 7(TaU{—z}), as
shown in Example 1 with the addition of the formula —z, since
the query does not contain any says-atoms. Then we iterate
over the structures S € St,.

Let, for example, S be the element of Sr, that makes
PB_says.p AN Pp_says , true and everything else undefined.
Then S is a not partial model of T, because PB_says.p
is inconsistent with PB_saysr V ﬂpg_mys_r = z and z.
Now min_incons_set(T,S) is the set consisting only of the
structure S’ that makes PB_says_p [TU€ and everyting else
undefined. So in line 5, we necessarily pick Sy, to be this
structure S'. In line 6 we calculate LS to be {B saysr} and
add {B saysr} to L.

When we iterate over all structures
S € Sr,, the value of L finally becomes
{{Bsaysr},{B says p, B says z},{—B saysr}}.

C. Communication and loop handling

In this subsection we describe the Communication Proce-
dure, which also takes care of the loop-handling. The Com-
munication Procedure calls the Query Minimization Procedure
and thereby constitutes our decision procedure for dAEL(ID).

When a query is asked to a principal, the Query Mini-
mization Procedure determines minimal sets of says-literals
that need to be satisfied in order to verify the query. The
Communication Procedure then produces remote sub-queries
to other principals that can determine the status of the says-
literals.

The Communication Procedure works by dynamically pro-
ducing a query graph and attaching three-valued truth values
to the query vertices in it:

Definition 32. A query graph is a labelled directed graph with
two kinds of vertices and two kinds of edges:

e The first kind of vertices are the query vertices. Each

query vertex is labelled by a directed query of the form

(k : @), where k is the principal whose theory is being

’Lemma 1 in Appendix B makes this claim more precise.



queried and  is the formula representing the query.
Additionally, a query vertex is potentially labelled by
a truth value in {t,f,u}, which represents the currently
active valuation of the query at any moment during the
execution of the decision procedure.

o The second kind of vertices are the says-literal set
vertices. Each says-literal set vertex is labelled by a
set of says-literals, i.e. formulas of the form k says
or =k says p.

o The first kind of edges are unlabelled edges going from
a query vertex to a says-literal set vertex. The intended
meaning of such an unlabelled edge from (k : &) to the
says-literal set L is that one way of making o true in k’s
theory is to make all says-literals in L true.

o The second kind of edged are edges labelled by t or f,
going from a says-literal set vertex to a query vertex.
The intended meaning of such an edge labelled by t or
f and going from the says-literal set L to the query (k :
) is that L contains the literal k says « or the literal
-k says « respectively.

The query graphs are actually always trees, with the query
vertex corresponding to the original query as their root.

The Communication Procedure starts with a query graph
consisting just of the query vertex (A : «), where A is
the principal to whom the primary query « is asked. Next
the Communication Procedure calls the Query Minimization
Procedure to add sub-queries to the query graph and attach
truth values to them. This procedure is iteratively continued
until a truth-value has been attached to the root vertex (A4 : a).

The Communication Procedure is defined via an initializa-
tion procedure defined under Algorithm 2, which calls the
main recursive procedure defined under Algorithm 3.

Algorithm 2 Communication Procedure Initialization
Input: distributed theory T, principal A, dAEL(ID) formula
o

Output: truth-value V' € {t,f,u}
1: G := the labelled graph consisting only of a single vertex
v labelled (A : ) and no edges

: G := Communication_Procedure(T,G,v)

3: V := the label on the query vertex (A: «) in G

return V

(3]

»

Informally, the Communication Procedure can be explained
as follows: The Query Minimization Procedure is called for
T4 and a. It returns a set of sets of says-literals. For each
such says-literal set, we add a says-literal set vertex connected
to the root query vertex (A : a) (lines 6-7). For each says-
literal in this set, we add a query vertex and an edge from the
set vertex to this query vertex labelled by t or f depending
on the sign of the says-literal (8-15). We then apply Query
Minimization Procedure and the rest of the procedure just
explained to each new query vertex (line 22). At the same
time, we label query vertices with truth values as follows:
When all query vertices emerging from a says-literal set vertex

are labelled with the same truth value as the edge through
which they are connected to the says-literal set vertex, the
query that produced that says-literal set vertex is labelled t
(lines 23-24). There is a dual procedure for labelling query
vertices with f (lines 25-26). When a loop is detected, the
query vertex causing the loop (by having the same label as a
query vertex that is an ancestor of it) is labelled either with f or
u, depending on whether the loop is over a negation (i.e. there
is an f-labelled edge in the path connecting the two vertices
with the same label) or not (lines 16-20). u-labels can also
propagate towards the root of the graph (line 28).

We continue Example 1 to illustrate the Communication
Procedure.

Example 3. Given the distributed theory T = {Tx,Tp,Tc},
we query the principal A about the truth value of z. We
show the final graph in Figure 1 and now explain its
construction. We start by calling the Communication Ini-
tialization Procedure; this generates a graph G with the
vertex v = (A : z) (with no associated truth value la-
bel). Then we call the Communication Procedure with ar-
guments T, G and v, chich means that we must call the
Query Minimization Procedure, which returns the set . =
{{B saysp, B says z},{B saysr},{—B saysr}} as shown in
Example 2. Since the input vertex v has no truth-value
associated to it, we next iterate over the sets L € L. The says-
literal set vertex {B saysp, B says z} is added to G with its
corresponding edge. Now we consider each says-literal in the
vertex.

(i) For literal B saysp generate a new query vertex v' =
(B : p) with an edge labelled t (since the literal is not negated)
and recursively call the Communication Procedure with the
updated graph as argument and vertex v'. v' has no truth-
value associated, the Query Minimization Procedure returns
the set I = {{}}; so after adding the says-literal set vertex
{} connected to V', the truth-value t is assigned to v’ by lines
21-22 of the Communication Procedure (this corresponds to
the intuitive idea that I = {{}} means that p is true in Tp).

(ii) For literal B saysz generate a new query vertex
v = (B : z) with an edge labelled t and recursively call
the Communication Procedure with the updated graph as
argument and vertex v'. The Query Minimization Procedure
is called returning the set L. = {{C says z}}; for this literal
we generate a new query vertex v = (C : z) with an edge
labelled t. In turn, the Query Minimization Procedure is called
returning the set I = {{—B says z}}; for this literal we
generate a new query vertex v = (B : z) with an edge
labelled f. At this point we detect a loop, as the query vertex
v’ that is an ancestor of v'"" is also labelled by (B : z).
Since the loop contains an edge with label f, the truth-value
assignment for v"" is u. This truth-value u is propagated up
to label the query vertices v" and v', since u does not match
with neither t nor f.

Finally, the truth-values for (i) matches the labeled edge, but
not for the case of (ii). Thus we cannot yet label the root vertex
with t, and continue with the next says-literal { B saysr} € L.



Algorithm 3 Communication Procedure
Input: distributed theory T, query graph G, query vertex v
of G,
Output: updated query graph G
1: k := the principal mentioned in the label of v
2: ¢ := the formula mentioned in the label of v
3: L := Query_Minimization_Procedure(Ty,y)
4: while the input query vertex v does not have a truth-value
attached to it do

5: for L €L do
6: add a new says-literal set vertex L to G
7: add to G a new edge from vertex v to vertex L
8: for l € L do
9: k' := the principal such that [ is of the form
k' says 1 or =k’ says
10: 1 = the formula such that [ is of the form
k' says 1 or —k’ says
11 add a query vertex v’ labelled by (k' : ¢) to G
12: if [ is k' says ) then
13: add to G a new edge labelled t from vertex L
to vertex (k' : )
14: if [ is =k says 1) then
15: add to G' a new edge labelled f from vertex L
to vertex (k' : 1))
16: if a query vertex v” that is an ancestor of v’ is also
labelled (k' : ¢)) then
17: if all labelled edges between v and v’ are
labelled by t then
18: add f-label to v’
19: else
20: add u-label to v’
21: else
22: Communication_Procedure(T,G,v")
23: if every query vertex v’ such that there is an edge

from L to v’ is labelled with the same truth value as
this edge then
24: label v with t
25 if for every says literal set vertex L such that there is
an edge from v to L, there is a query vertex v’ such that
there is an edge from L to v’ labelled with the opposite
truth value as v’ then

26: label v with f
27:  else
28: label v with u

29: return G

For vertex { B says r}, we repeat the procedure as described
above until we (again) detect a loop. This loop does not
contain edges with label f, so the truth-value assignment for
the vertex at which the loop is detected is f. Again this truth-
value is propagated to label the two query vertices above this
vertex, as the labelled edges are labelled by t. Since the truth-
value f assigned to the query vertex (B : r) does not match
the truth value of the labelled edge above it, the root vertex
can still not be labelled with t.

The subgraph produced below the final says-literal set
vertex {—B says r} is the same as below says-literal set vertex
{B saysr}, only that the labelled edge directly below this
says-literal set vertex is now labelled f instead of t. So this
time the label on the query vertex (B : r) matches the label
on the labelled edge, to that the root vertex is labelled t. This
ends the main while loop and therefore the Communication
Procedure. Finally, the Communication Procedure Initializa-
tion returns the output t.

(A:2z),t
SN TN

{B says p; B says z} {B saysr}  {-B saysr}

AN It F;

(B:p),t (B:z),u (B:r),f (B:r),f

} | | ’

{} A{C says z} {C says r} {C says r}
It It It
(C:2),u (C:r), f (C:r),f
| | ’
{-B says z}  {B says r} {B says r}
It lt lt
(B:2),u 100p!<B :ry,f loop! (B :r),f loop!

(over negation)

Fig. 1. Query Graph

D. Correctness of decision procedure

The following theorem states that the result of the decision
procedure is always in line with the well-founded semantics
of dAEL(ID):

Theorem 1. Let T be a distributed theory, let A be an
agent, and let o be a dAEL(ID) formula. When A’s the-
ory T4 is queried about o, the decision procedure returns
(A says a)™M), .. the truth value of A says a in the well-
founded model of T.

The proof of Theorem 1 can be found in the Appendix.

E. Complexity of the decision procedure

The Query Minimization Procedure has a worst-case run-
time that is exponential in the maximum of the number of
different says-atoms in 7', the size of the vocabulary X and the
size of the domain D: Its for-loop has 3" iterations, where n
is the number of different says-atoms in 7', and as min_incons
has a worst-case runtime exponential in the maximum of the
size of the vocabulary X and the size of the domain D. On the
other hand, if we count each call to the Query Minimization
Procedure as one step, the communication and loop-handling
has runtime quasilinear in the number of subqueries called.

To make the decision procedure practically applicable,
heuristics would have to employed to reduce the runtime for
determining an access right, and a principled approach for



dealing with situations when access cannot be determined
within a reasonable amount of time would be required (see
Section VII of Cramer et al. [10] for an example of such
an approach in a somewhat different access-control setting).
One modification of the decision procedure that reduces the
expected runtime, even though it does not reduce the worst-
case runtime, is to not calculate the whole of . immediately
in the Query Minimization Procedure, but to instead first
calculate just one L € L, then do the communication necessary
for determining whether this L actually makes the query true,
and continue with the step-wise calculation of L only if the
query has not yet been determined true.

V. RELATED WORK

Most access control logics proposed in the literature have
been defined in a proof-theoretical way, i.e. by specifying
which axioms and inference rules they satisfy. This contrasts
with Van Hertum et al.’s [6] approach of defining dAEL(ID)
semantically rather than proof-theoretically. This difference
means that the tasks of defining decision procedures for
these access control logics involve very different technical
machinery.

Garg and Abadi [21], [22] and Genovese [5] have defined
Kripke semantics for many of the access control logics that
were previously defined proof-theoretically in the literature.
They introduced these Kripke semantics as a tool for defining
decision procedures for those access control logics. Genovese
[5] follows the methodology of Negri and von Plato [23],
[24] of using a Kripke semantics of a modal logic to define
Labelled Sequent Calculus, which forms the basis of a decision
procedure for the logic.

Denecker et al. [12] have defined a procedure for computing
the well-founded model of an autoepistemic theory. This
procedure might be extendable to a procedure for computing
the well-founded model of dAEL(ID). However, such an
extension of their procedure would not have the feature of
minimizing the communication between principals, and thus
violate the need-to-know principle and cause privacy concerns
(see Section IV-A).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have defined a query-based decision
procedure for the well-founded semantics of dAEL(ID). When
applying dAEL(ID) to access control, this decision procedure
allows one to determine access rights while avoiding redun-
dant information flow between principals in order to enhance
security and reduce privacy concerns.

Given that our decision procedure has in the worst case
an exponential runtime (see Section IV-E), a more efficient
decision procedure will have to be developed for dAEL(ID)
or an expressively rich subset of it in order to apply it in
practice. For this reason, the contribution of this paper is
mainly of a conceptual nature: The defined decision procedure
is a proof of concept that increases our understanding of
dAEL(ID) by providing an algorithmic characterization of
the well-founded semantics of dAEL(ID). This algorithmic

characterization complements in a conceptually fruitful way
the semantic definition from Van Hertum et al. [6] which is
based on a fixpoint construction on abstract structures.

Our decision procedure aims at proving a query in terms
of queries to other principals. In this process, it cautiously
handles possible loops between such queries. This is highly
reminiscent of the way justifications are defined, for instance
for logic programs [25]. Hence it may be interesting to define
justification semantics for dAEL(ID).
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APPENDIX

The following lemma states that the Query Minimization
Procedure (Algorithm 1) really does what it is supposed to
do:

Lemma 1. Letr T be a dAEL(ID) theory and let
a be a dAEL(ID) formula. The set 1. returned by
Query_Minimization_Procedure(T «) is

{L | L is minimal (under set inclusion) among the sets L' of

says-literals that make « true with respect to T'}

Let L denote the DPWS in which every agent’s possible
world structure is the set of all structures over domain D and
vocabulary 3. Let T denote the DPWS in which every agent’s
possible world structure is the empty set.

The well-founded model of T is the <,-least fixpoint of St.
When the domain is finite, as we are assuming when applying
the decision procedure, there is a natural number n such that
wfm(T) = (St)"(L, T). In other words, the well-founded
model can be computed by a finite number of application of
St to (L, T), until a fixpoint is reached.

The steps in the decision procedure defined in section IV
do not directly correspond to the steps in the computation of
the well-founded model by a finite number of application of
St to (L, T). In order to prove that the two computations
nevertheless always yield the same result, we first define a de-
cision procedure that resembles the decision procedure defined
in section IV, but whose steps correspond more directly to the
iterative application of St to (L, T). We call this auxiliary
decision procedure the St-based decision procedure. So we
prove Theorem 1 by proving two things:

o The decision procedure defined in section IV is equivalent
to the St-based decision procedure.

e When A’s theory T4 is queried about «, the St-based
decision procedure returns yes iff (A says a)"(T) = t.
In the definition of the St-based decision procedure, we use

a query graph as defined in section IV.
There is a direct correspondence between distributed belief
pairs and certain truth-value labelling of the query vertices in

a query graph:

Definition 33. Ler G be a query graph. Let B be a distributed
belief pair. We say that the truth-value labelling of the query
vertices of G corresponds to B iff for each query vertex k :
@ in G, the truth-value with which this vertex is labelled is

(k says )B.

Note that there are truth-labellings of the query vertices
that do not correspond to any distributed belief pair. We call
a truth-labelling of the query vertices good iff it corresponds
to some distributed belief pair.

The St-based decision procedure works by first producing
a query graph and then iteratively modifying the truth-value
labelling of the query vertices. We need to ensure that after
each iteration of this iterative modification, the truth-value
labelling of the query vertices is good. However, there are
intermediate steps within each iteration which lead to a bad
labelling of the query vertices. In order to get back to a good
labelling, we apply the changes defined by Algorithm 4.

Algorithm 4 Make labelling of query vertices good
Input: query graph G
Output: modified query graph G
1: while there is a u-labelled query vertex k : ¢ in G such
that replacing says-atoms in ¢ corresponding to t- or f-
labelled query vertices by t and f respectively makes ¢ a
tautology do
. change the u-label in each such query vertex in G by t
3: while there is a f-labelled query vertex k£ : ¢ in G such
that replacing says-atoms in ¢ corresponding to u-, t- or
f-labelled query vertices by t or f, t and f respectively
makes ¢ a tautology do
4:  change the f-label in each such query vertex in G by u
5: return G

In order to define the St-based decision procedure, we
furthermore need the following two definitions:

Definition 34. In a query graph, a says-literal set vertex L is
defined to be satisfied if for every t-labelled edge from L to a
query vertex, the query vertex is labelled by t, and for every
f-labelled edge from L to a query vertex, the query vertex is
labelled f.

Definition 35. In a query graph, a says-literal set vertex L
is defined to be dissatisfied if either for some t-labelled edge
from L to a query vertex, the query vertex is labelled by f, or
for some f-labelled edge from L to a query vertex, the query
vertex is labelled t.

The definition of the St-based decision procedure is given
by the pseudo-code under Algorithm 5.



Algorithm 5 St-based decision procedure
Input: distributed theory T, principal A, dAEL(ID) formula
(0%

Output: truth-value V' € {t,f,u}

1: G := the empty graph

2: add a new query vertex A : a to G

3: query_stack := (4 : )

4: while query_stack # () do

5: k@ = first element of query_stack

6: L := Query_Minimization_Procedure(Ty,p)
7. for L € L do
8
9

if G does not contain a says-literal set vertex L then
add a new says-literal set vertex L to G

10: for [ € L do
11: k' := the principal such that [ is of the form
k' says 1 or -k’ says
12: 1 := the formula such that [ is of the form
k' says 1 or =k’ says
13: if G does not contain a query vertex £’ : ¢ then
14: add a query vertex k' : ¢ to G
15: add &’ : 1) to query_stack
16: if [ is &’ says 1) then
17: add to G a new edge labelled t from vertex
L to vertex k' : ¢
18: if [ is =k’ says 1 then
19: add to G' a new edge labelled f from vertex
L to vertex k' : 1
20: add to G a new edge from vertex k : ¢ to vertex L

21: add the label u to all query vertices in G

22: finished := 0

23: while finished = 0 do

24:. G1:=G

25 change every t-label on a query vertex in G to u

26:  while in GG; there is a query vertex labelled by u with
an edge to a satisfied says-literal set vertex do

27: change every u-label on a query vertex with an edge
to a satisfied says-literal set vertex to t

28: G :=Make_labelling_of _query_vertices_good(G)

29: Go =G

30:  change every f-label on a query vertex in G2 to u

31:  while in G4 there is a query vertex labelled by u with
an edge to a dissatisfied says-literal set vertex do

32: change every u-label on a query vertex with an edge

to a dissatisfied says-literal set vertex to f

33: G :=Make_labelling_of_query_vertices_good(G)

34: in G, change the label on all query vertices that are
labelled u in G and labelled t in G4 into t

35: in G, change the label on all query vertices that are
labelled u in G and labelled f in G5 into f

36:  if no changes were made to GG in the previous two lines
then

37: finished := 1

38: V := the label on the query vertex A: « in G

39: return V

We now sketch the proof of the equivalence between the St-
based decision procedure and the decision procedure defined
in section IV: The only fundamental difference between these
two decision procedures is the loop-handling. Step 2) of the
St-based decision procedure takes care of making queries
looping over t-labelled edges false. Queries looping over f-
labelled edges will always be left undecided by the St-
based decision procedure, which corresponds to making them
undecided in the decision procedure defined in section IV.

We now establish that the Sp-based decision procedure
always gives the same result as the well-founded semantics.
Note that the labelling corresponding to the distributed belief
pair (L, T) is the labelling in which all query vertices are
labelled by u. Keeping in mind that the well-founded model
can be computed by a finite number of application of St to
(L, T), it is now easy to see that the following lemma is
sufficient to establish that the St-based decision procedure
always gives the same result as the well-founded semantics:

Lemma 2. Let T be a distributed theory, A be a principal and
« be a dAEL(ID) formula. Let G be the query graph produced
by lines 1-20 of Algorithm 5 applied to T, A and . Let B
be a distributed belief pair. Labelling the query vertices in G
according to B and then applying lines 24 to 34 of Algorithm 5
to G yields a labelling of the queries corresponding to St(B).

Proof. For proving this lemma, it is enough to prove the fol-
lowing four properties, which can be proved straightforwardly:
1) The change in the truth-value labelling of the query
vertices of (1 in line 25 of Algorithm 5 corresponds

to changing the belief pair (Q1, Q2) to L, Qo).

2) The change in the truth-value labelling of the query
vertices of Gp in lines 27-28 of Algorithm 5 cor-
responds to changing the belief pair (Qp, Q) to
(D3(Q1,Q2)1, Q2).

3) The change in the truth-value labelling of the query
vertices of G2 in line 30 of Algorithm 5 corresponds
to changing the belief pair (9, Q) to (91, T).

4) The change in the truth-value labelling of the query
vertices of Gy in lines 32-33 of Algorithm 5 cor-
responds to changing the belief pair (Q;, Q2) to
(91, D5 (91, Q2)2).

5) Let Q1,0Q2,0Q93,94 be DPWS’s such that Q3 <p
Q) <k Q4 <k Q. If the query vertices are labelled
t in correspondence with the distributed belief pair
(Q1, Q2), labelled f in correspondence with the dis-
tributed belief pair (Qs, Q4), and labelled u otherwise,
the resulting labelling corresponds to the distributed
belief pair (Q1, Qa).

O

This completes the proof of Theorem 1.



