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Abstract

The research conducted for this thesis has been guided by the vision of a com-
puter program that could check the correctness of mathematical proofs written
in the language found in mathematical textbooks. Given that reliable processing
of unrestricted natural language input is out of the reach of current technology,
we focused on the attainable goal of using a controlled natural language (a sub-
set of a natural language defined through a formal grammar) as input language
to such a program. We have developed a prototype of such a computer pro-
gram, the Naproche system. This thesis is centered around the novel logical
and linguistic theory needed for defining and motivating the controlled natu-
ral language and the proof checking algorithm of the Naproche system. This
theory provides means for bridging the wide gap between natural and formal
mathematical proofs.

We explain how our system makes use of and extends existing linguistic for-
malisms in order to analyse the peculiarities of the language of mathematics. In
this regard, we describe a phenomenon of this language previously not described
by other logicians or linguists, the implicit dynamic function introduction, ex-
emplified by constructs of the form “for every x there is an f(z) such that ...”.
We show how this function introduction can lead to a paradox analogous to
Russell’s paradox. To tackle this problem, we developed a novel foundational
theory of functions called Ackermann-like Function Theory, which is equicon-
sistent to ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) and can
be used for imposing limitations to implicit dynamic function introduction in
order to avoid this paradox.

We give a formal account of implicit dynamic function introduction by ex-
tending Dynamic Predicate Logic, a formalism developed by linguists to account
for the dynamic nature of natural language quantification, to a novel formal-
ism called Higher-Order Dynamic Predicate Logic, whose semantics is based
on Ackermann-like Function Theory. Higher-Order Dynamic Predicate Logic
also includes a formal account of the linguistic theory of presuppositions, which
we use for clarifying and formally modelling the usage of potentially undefined
terms (e.g. -, which is undefined for # = 0) and of definite descriptions (e.g.
“the even prime number”) in the language of mathematics. The semantics of
the controlled natural language is defined through a translation from the con-
trolled natural language into an extension of Higher-Order Dynamic Predicate
Logic called Proof Text Logic. Proof Text Logic extends Higher-Order Dynamic
Predicate Logic in two respects, which make it suitable for representing the
content of mathematical texts: It contains features for representing complete
texts rather than single assertions, and instead of being based on Ackermann-
like Function Theory, it is based on a richer foundational theory called Class-
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Map-Tuple-Number Theory, which does not only have maps/functions, but also
classes/sets, tuples, numbers and Booleans as primitives.

The proof checking algorithm checks the deductive correctness of proof texts
written in the controlled natural language of the Naproche system. Since the
semantics of the controlled natural language is defined through a translation
into the Proof Text Logic formalism, the proof checking algorithm is defined
on Proof Text Logic input. The algorithm makes use of automated theorem
provers for checking the correctness of single proof steps. In this way, the
proof steps in the input text do not need to be as fine-grained as in formal
proof calculi, but may contain several reasoning steps at once, just as is usual
in natural mathematical texts. The proof checking algorithm has to recognize
implicit dynamic function introductions in the input text and has to take care
of presuppositions of mathematical statements according to the principles of the
formal account of presuppositions mentioned above. We prove two soundness
and two completeness theorems for the proof checking algorithm: In each case
one theorem compares the algorithm to the semantics of Proof Text Logic and
one theorem compares it to the semantics of standard first-order predicate logic.

As a case study for the theory developed in the thesis, we illustrate the
working of the Naproche system on a controlled natural language adaptation of
the beginning of Edmund Landau’s Grundlagen der Analysis.



Preface

This doctoral thesis presents interdisciplinary work about the language of math-
ematics that closely interlinks methods from mathematical logic and linguistics,
and to a lesser extend from computer science. Since the work is likely to be of
interest to readers with different backgrounds, we need to say some words about
what prerequisites are needed in order to understand it fully, and which parts
can still be read by people who lack some of these prerequisites.

A reader willing to read the complete thesis is assumed to be familiar with
the basics of mathematical logic and set theory, i.e. with the material that
is usually taught in two semesters worth of undergraduate lectures on these
topics. Additionally, familiarity with formal semantics, especially with Dynamic
Predicate Logic (Groenendijk & Stokhof, [1991)), is helpful but not presupposed.
A reader who lacks the mathematical prerequisites or who is primarily interested
in the linguistic aspects of our work may read the thesis by dropping chapter [4]
and sections [6.3] and In order to still understand chapters [5] and [§] as well
as possible, such a reader should know that in chapter [d we define the following
three mathematically consistent theories:

e AFTB, a theory for talking about maps/functions and Booleans

e CMT, a theory for talking about classes/sets, maps/functions, tuples and
Booleans

e CMTN, a theory for talking about classes/sets, maps/functions, tuples,
natural numbers and Booleans
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Chapter 1

Introduction

Many mathematicians use computer programs to support their work: Com-
puter algebra systems facilitate the algebraic manipulation of involved symbolic
mathematics. Numerical analysis software provides efficient algorithms for find-
ing numerical solutions to mathematical problems. And TEX is widely used by
mathematicians for typesetting mathematical formulae and complete texts. But
one of the central parts of mathematical work is that of providing mathematical
proofs for establishing the truth of mathematical theorems, and for this work
ordinary mathematicians hardly use the support of computer programs.

There do exist computer systems for checking the correctness of mathemat-
ical proofs, but these systems require the user to use a formal input language,
close in nature to programming languages and not to the language mathemati-
cians usually use for producing mathematical proofs. For this reason, these
computer systems are used only by a comparatively small community of math-
ematicians, the formal mathematics community, but not by the mathematical
community at large.

The research conducted for this doctoral thesis was guided by the vision of
a future computer program which could support mathematicians as they write
their mathematical proofs in the usual language employed by mathematicians
for this purpose. More concretely, in the course of this research we have already
developed a prototypical computer system, called the Naproche system, which
can check the logical correctness of simple mathematical proofs written in a
controlled natural language, i.e. in a strictly defined but expressively rich part
of the natural language of mathematical proofs.

The development of such a computer system required novel theoretical work
on the border between mathematical logic and formal linguistics. As a pre-
requisite to this work, a thorough understanding of the natural language of
mathematical proofs was needed, including the parts which seem counter-logical
to someone trained in mathematical logic. One phenomenon of this language
previously not described by other logicians or linguists, which we termed the
implicit dynamic function introduction, has motivated some interesting work
in the foundations of mathematics. We have studied extensions of Dynamic
Predicate Logic, a system used in formal linguistics, which formalize implicit
dynamic function introduction and other linguistic and logical phenomena of
the language of mathematics.

This thesis presents the multifaceted theoretical work that we developed in
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the course of developing the Naproche system: The application of linguistic
theory to the language of mathematics, the relation between implicit dynamic
function introduction and the foundations of mathematics, and the soundness
and completeness of the proof checking algorithm implemented in the Naproche
system. Furthermore, it provides a detailed exposition of the controlled natural
language that serves as the input language of the Naproche system, and illus-
trates the working of the Naproche system on an example text, an adaptation
of the beginning of Edmund Landau’s Grundlagen der Analysis.

For the rest of this introduction, we present different threads from the scien-
tific endeavour which get intertwined to form the topic of this interdisciplinary
thesis. Furthermore, we discuss related work by other researchers in this field,
explain the institutional context of the research done for this thesis, motivate
the choice of treated problems and provide an outline of the rest of the thesis.

1.1 The language of mathematics

Just as other sciences, mathematics has developed its own specialized language.
This specialized language has a number of registers, i.e. varieties used in dif-
ferent social settings: There are purely written registers like the language of
undergraduate textbooks, the language of graduate textbooks and the language
of research journals. There are registers of spoken language accompanied by
handwriting on a board or piece of paper, like the language of undergraduate
lectures, the language of talks at scientific conferences and the language of infor-
mal communication between research mathematicians at a whiteboard or with
pen and paper. Finally, there are purely spoken registers of informal commu-
nication without a whiteboard or pen and paper. Of course, the boundaries
between these registers are fluid. In this thesis we will focus on the written
registers of mathematical language, especially on the registers of undergraduate
and graduate textbooks. So for the rest of this thesis, the term the language
of mathematics will always refer to these written registers of the specialized
language of mathematics.

There are of course separate languages of mathematics based on different
natural languages: The English language of mathematics, the Russian language
of mathematics, the French language of mathematics etc. In this thesis we
concentrate on the English language of mathematics, even though much of what
we will say about it applies equally or with small adaptations to the other
languages.

As an example of the language of mathematics, we cite a text fragment from
Wolfenstein, (1969).

Definition 5.8. A linearly independent set (resp. sequence) whose
elements generate a given vector space is called a basis (resp. ordered
basis) of that space.

FEzxzamples

1. The empty set is a basis of the zero-space.

2. (E4,..., Ey)is an ordered basis of F™. We call it the canonical
basis.
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3. The polynomials: 1, X, X2, ...form a basis (or an ordered
basis) of the space of polynomials.

In our three-dimensional geometric representation, any three non-
coplanar vectors form a basis.

The following theorem gives a more useful characterization of bases.

Theorem 5.6. Let V be a nontrivial vector space, X a subset of
V. Then X is a basis if, and only if, each vector of V has a unique
representation as a linear combination of elements of X.

Proof. What we have to prove is that the linear independence of
a set of generators X' is equivalent to the uniqueness of the repre-
sentation. If X' is not linearly independent, the representation is, in
general, surely not unique, since we have a1x; + -+ + apx, = 0 =
0x; + - - + 0x,, where the x’s are distinct elements of X and the
a’s are not all zero. Conversely, suppose that some vector v has two
distinct representations as a linear combination of elements of X.
Then we have v = a1x7 + -+ 4+ anxy = b1x3 + -+ 4+ bpxy,, Where
the x’s are distinct elements of X and a; # b; for at least one i.
Consequently (a; — b1)x1 + -+ + (an, — by)x, = 0, and the x’s are
linearly dependent.

As the example illustrates, the language of mathematics incorporates the

syntax and semantics of the general natural language. Hence it takes over
its complexity and some of its ambiguities. However, mathematical texts are
distinguished from common language texts by several characteristics. Below
we give a list of some of the most perspicuous characteristics of mathematical
textsE| Some of the features mentioned are also found in general language,
but are much more prevalent in the language of mathematics than in general
language.

e Mathematical texts combine natural language expressions with mathe-

matical symbols and formulae, which can syntactically function as noun
phrases or sub-propositions.

Constructions which are hard to disambiguate are generally avoided.

Mathematical symbols can be used for disambiguation, e.g. by use of vari-
ables instead of anaphoric pronouns.

Assumptions can be introduced and retracted. In the proof to theorem
5.6 in the above text fragment, the sentence beginning with “Conversely,
suppose” introduces the assumption that some vector v has two distinct
representations as a linear combination of elements of X. The claims
that follow are understood to be relativized to this assumption. When
the assumption gets retracted at the end of the proof, it allows one to
conclude one of the two implications needed for the bi-implicational claim
of the theorem.

IThis list of characteristics of the language of mathematics is an adapted and extended

version of a similar list mentioned in |Cramer, Fisseni, et al.| (2010).



4 CHAPTER 1. INTRODUCTION

e Mathematical texts are highly structured, and their structure is often
made explicit. At a global level, they are commonly divided into build-
ing blocks like definitions, lemmas, theorems and proofs. Inside a proof,
assumptions can be nested into other assumptions, so that the scopes of
assumptions define a hierarchical proof structure.

e The language is adaptive: Definitions add new symbols and expressions
to the vocabulary and fix their meaning.

e On the pragmatic level, the expectation on assertions is reversed: Asser-
tions have to be implied by the context rather than adding new information
to it.

e Proof steps are commonly justified by referring to results in other texts,
or previous passages in the same text. So there is a large amount of
intertextual and intratextual references (often in a standardized form).

e Furthermore, mathematical texts often contain commentaries and hints
which guide the reader through the process of the proof, e.g. by indicat-
ing the method of proof (“by contradiction”, “by induction”) or giving
analogies.

A thorough linguistic analysis of the language of mathematics can be found
in (Ganesalingam| (2009, pp. 25-48). Below we will discuss some of the above
mentioned features of the language of mathematics in more detail. Some of the
theoretically interesting features that the language of mathematics shares with
natural language in general will be discussed in chapter [3]

1.1.1 Mathematical vs. metamathematical content
One can distinguish two kinds of content in a mathematical text:

e The mathematical content, which deals with mathematical objects (e.g.
numbers, functions, vestors, sets, fields, groups, topological spaces) and
their mathematical properties and relationships (e.g. being even/odd, be-
ing a derivative of, being a subset of).

e The metamathematical content, which consists of motivating, historical,
meta-theoretical or didactic comments, for example explanations about
the purpose of a definition or theorem, information about who first proved
a theorem and clarifications about why a certain proof method is used in
a certain situation.

In this thesis, we will only be concerned with the mathematical content of
mathematical texts.

1.1.2 Symbolic mathematics?|

One of the conspicuous features of the language of mathematics is the way it in-
tegrates mathematical symbols into natural language material. The mathemat-
ical symbols are combined to mathematical expressions, which are often referred

2This section is partly taken over from |Cramer, Koepke, and Schroder| (2011)).
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to as mathematical formulae or mathematical terms depending on whether they
express propositions or whether they refer to mathematical objects. We will fol-
low the terminology proposed by |Ganesalingam)| (2009) and call the non-symbolic
parts of mathematical texts that resemble natural language textual parts.

As pointed out by Ganesalingam, the use of symbolic material makes it
possible to state mathematical facts more concisely: For example, the statement
“The square root of 2 is irrational” can be abbreviated to “y/2 is irrational”,
which can be further abbreviated to “v/2 ¢ Q”. Most mathematical statements
could be rephrased without the use of symbolic mathematics. But a special
problem arises with variables: If the number of entities that we talk about
is small, these can be replaced by anaphoric expressions common in natural
language, for example anaphoric pronouns and anaphoric definite noun phrases
(noun phrases starting with “the” and referring back to a previously mentioned
entity). For example, the assertion of Theorem 5.6. from the above example
text could be rephrased without variables as follows:

Given a nontrivial vector space, a subset of this vector space is a
basis if, and only if, each vector of this vector space has a unique
representation as a linear combination of elements of the subset.

However, in mathematical texts we often need to talk about a larger number
of entities, and doing so unambiguously without the usage of variables is often
not viable. Thus variables do not only allow for a more concise formulation of
mathematical statements, but also help avoiding ambiguities.

We will now have a look at the syntax of symbolic mathematics. Already
at first sight, a whole variety of syntactic rules are encountered for forming
complex terms and formulae out of simpler ones; a basic classification of these
was provided by [Ranta) (1997b):

e There are infix operators that are used to combine two terms to one com-

plex term, e.g. the 4+ symbol in m 4+ n or L + THa-

x

e There are suffix operators that are added after a term to form another
term, e.g. the ! symbol in n!.

e There are prefix operators that are added in front of a term to form another
term, e.g. sin in sin x.

e There are infix relation symbols used to construct a formula out of two
terms, e.g. the < symbol in x < 2.

As noted by |Ganesalingam| (2009), “this simple classification is adequate for the
fragment Ranta is considering, but does not come close to capturing the breadth
of symbolic material in mathematics as a whole.” It does not include notations
like [K : k] for the degree of a field extension, it does not allow infix operators
to have an internal structure, like the ¢ in a *g b for denoting multiplication in
a group G, nor does it account for the common way of expressing multiplication
by concatenation, as in a(b+ ¢).

Another kind of prefix operator not mentioned by Ranta is the one that
requires its argument(s) to be bracketed, e.g. f in f(z). (Of course, the argument
of a prefix operator like sin might also be bracketed, but generally this is done
only if the argument is complex and the brackets are needed for making sure the



6 CHAPTER 1. INTRODUCTION

term is disambiguated correctly.) This is even the standard syntax for applying
functions to their arguments, in the sense that a newly defined function would
be used in this way unless its definition already specifies that it should be used
in another way.

The expression a(x +y) can be understood in two completely different ways,
depending on what kind of meaning is given to a: If a is a function symbol and
x+y denotes a legitimate argument for it, then a(x +y) would be understood to
be the result of applying the function a to x +y. If on the other hand a,  and y
are — for example — all real numbers, then a(x + y) would be understood as the
product of @ and x+y. Now whether a is a function or a real number should have
been specified (whether explicitly or implicitly) in the preceding text. So we can
conclude that the disambiguation of symbolic expressions requires information
from the preceding text, and this information might have been provided in
natural language rather than in a symbolic way.

In section [7.4] we give a more detailed and more accurate syntactic de-
scription of symbolic mathematics and describe how we solve the problem of
disambiguating symbolic expressions in the Naproche system.

1.1.3 Adaptivity through definitions

Another very conspicuous feature of the language of mathematics is its adaptiv-
it;yﬁ through definitions: The language is constantly expanded through the use
of definitions, which introduce new textual or symbolic expressions and fully
specify their meaning. This expansion of the language should not be confused
with the change of language over time: What we mean is an expansion of the
language used for one particular text and — related to this — an expansion of
the language in the mind of a mathematician reading such a text. Of course,
some definitionally introduced expressions become commonplace for the math-
ematicians of a given field, and in this case one can say that the language of
mathematics itself has been expanded by that expression. But in this thesis we
will focus on the local expansion of language for the purpose of a text, which
might or might not become commonplace for the mathematicians of that field.

The introduction of new technical terms through definitions does, of course,
also exist in other specialized languages. But, as |Ganesalingam| (2009) has
pointed out, there are two important differences between definitions in mathe-
matics and in other fields: Firstly, mathematical definitions contain no vague-
ness and hence perfectly specify the semantics of the defined expression. Sec-
ondly, in advanced mathematics all newly introduced terms are introduced
through definitions, and mathematicians even go back to less advanced mathe-
matics and rigorously define all terms used there.

We can distinguish expansions of the lexicon of the textual part of the lan-
guage and extensions of the symbolic part. is an example of a definition
expanding only the textual lexicon:

(1) Definition 1.1.5 A set D is dense in the reals if every open interval (a, b)
contains a member of D. (Trench| 2003, p. 6)

expands both the textual lexicon (by the word “sum”) and the symbolic
part of the language (by a construct of the form “e + e+ ... 4 ”):

3The use of the term adaptivity for this feature of the language of mathematics is due to
Ganesalingam| (2009).
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(2) Definition Suppose R is a ring and Ay, Ag, ..., A, are ideals of R.
Then the sum A; + Ay +---+ A, is the set of all a; +as + - - -+ a,, with
a; € A;. (Connell, {1999, p. 108)

Ganesalingam| (2009) considers the expansion of the symbolic part of the
language as an expansion of the syntaz of this symbolic part. This is certainly a
very sensible interpretation at a certain level of abstraction in the understanding
of the term “syntax”. We, however, prefer to take a more abstract view of
syntax, under which this expansion of the symbolic part of the language can
be viewed as an expansion of the lexicon, just as in the case of the expansion
of the lexicon of the textual part of the language. For example, under this
interpretation, the definition in ([2|) adds a lexical item of the form “e+e+---4e”
to the lexicon of the symbolic part of the language. The syntax of the language
under this interpretation must contain rules that specify what form definitions
can take, what properties the symbolic lexical items have depending on the
form of the definition, and in what way these properties influence how different
items of the symbolic lexicon can be combined to symbolic expressions. In
this way this abstract syntax indirectly specifies how definitions change what
form symbolic expressions following the definition can take. Thus this abstract
syntax specifies a more concrete syntax (i.e. a syntaz in the way Ganesalingam
used the term) for every position in a mathematical text, depending on which
previously stated definitions are accessible, i.e. may be made use of.

1.1.4 Terminological conventions

We fix the following terminology for talking about certain elements of a math-
ematical text:

e We use the term sentence for any text unit delimited using typographic
means like full stops or colons (dots and colons in mathematical formulae
do not count as delimiters of sentences), capitalization and font. For ex-
ample, the first sentence in the text fragment quoted above is “Definition
5.8.”, and the second sentence is “Let V be a nontrivial vector space, X a
subset of V.”.

e The term statement is used for content-full sentences. So the first sentence
in the above quotation is not a statement, but the second one is.

o We use the term assertion to refer to any statement that is neither an as-
sumption nor a definition. For example, in the text fragment quoted above,
the sentence starting with “Conversely, suppose” is not an assertion, but
the following sentence starting with “Then we have” is an assertion.

e We use the term proof text for a mathematical text that is directed towards
proving various mathematical results. We assume proof texts to consist
merely of mathematical (as opposed to metamathematical) content. Be-
sides the actual proofs, proof texts may also contain axioms, definitions
and statements of the results to be proven.
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1.2 Formal linguistics and formal semantics

The linguistic aspects of this thesis can be considered to be a contribution to
formal linguistics. Formal linguistics is a branch of linguistics that uses formal
methods to explain aspects of the human language capacity and of particular
languages. For example, it studies formal grammars that define formal lan-
guages, with the aim of modelling natural languages using such grammars. A
sub-branch of formal linguistics is formal semantics, which makes use of mathe-
matical models that are intended to describe how humans determine the mean-
ing of complex expressions based on the meanings of their parts.
Applications of formal semantics often face the following two problems:

1. The meanings of lexical items are often vague or hard to determine pre-
cisely. So even if formal semantics has very precise tools for determining
the meaning of complex expressions based on the meanings of their parts,
the vagueness and indeterminateness of the meanings of lexical items usu-
ally gets inherited to the complex expressions that contain them.

2. Pragmatic aspects often influence the way people interpret a given utter-
ance in a given context. However, from a theoretical perspective it is often
difficult to determine which aspects of interpretation are due to pragmatic
factors and which are purely semantic, i.e. parts of the literal meaning of
the utterance. Furthermore, pragmatic influences on interpretation are
usually much harder to model formally than purely semantic aspects of
meaning composition.

In this thesis, we apply formal semantics to the language of mathematics, and
in this application of formal semantics these two problems do not arise: The
meaning of the lexical items of the language of mathematics is fixed precisely
through definitions in the text or through axiomatic characterization (in case of
the fundamental concepts of a mathematical theory), which leave no room for
vagueness or semantic indeterminateness. Additionally, as Ganesalingam has
noted, mathematical texts in general do not exhibit pragmatic phenomena that
lead to interpretations of expressions that deviate from their literal meanings
(Ganesalingam| |2009, p. 32—33)E| Because of this, the application of formal
linguistics to the language of mathematics is on the one hand a more promising
undertaking than other applications of formal linguistics, and on the other hand
an interesting test-bed for testing the models of formal linguistics.

Since the work presented in this thesis has been developed in parallel with
a computer system implementing the ideas (see section below), one can
view the linguistic aspects of this thesis as a contribution to computational lin-
guistics, too. Computational linguistics can make use of statistical methods,
of rule-based methods, or of a combination thereof. A separate methodologi-
cal division of computational linguistic is that between deep natural language
processing and shallow natural language processing. Deep natural language pro-
cessing aims at understanding texts in a human-like way, and is hence closely
linked to the linguistic endeavour to model human language capacities. For

4The only exception that Ganesalingam acknowledges is conditional perfection of “if” in
definitions to “if and only if”. This isolated example can be treated separately in a purely
formal way and thus does not cause any of the more serious problems that pragmatic reinter-
pretations can cause in applications of formal semantics.



1.3. A HISTORY OF MODELLING MATHEMATICAL REASONING 9

this it uses rule-based methods or a combination of rule-based and statistical
methods. Shallow natural language processing processes natural language texts
mainly with statistical methods and without deep analysis.

The work presented in this thesis uses rule-based methods for deep natu-
ral language processing. Given the nature of the problem we want to tackle,
namely to verify the deductive correctness of mathematical proofs, the usage of
statistical methods would be highly problematic: In the case of mathematical
proofs, one does not want a 99% verification of their correctness, but a 100%
verification. In the outlook in chapter [0} we will discuss how statistical meth-
ods could be made use of in a limited way without departing from the goal of
100% verification; but the completed work that we present in this thesis lacks
statistical methods altogether.

1.2.1 Controlled Natural Languages

Even the language of mathematics with its high precision and tendency to avoid
ambiguities is still full of expressions that are very hard — if not impossible —
to disambiguate in an automatic way. If, for the reasons just mentioned, one
aims at a completely error-less disambiguation, this endeavour will be impossi-
ble. But there exists an approach which harmonizes with the goals of checking
mathematical proofs, namely the approach of machine-oriented controlled nat-
ural language.

The term controlled natural language (CNL) is used for two rather distinct
categories of languages (see|Schwitter, [2010): Human-oriented CNLs, which aim
at improving readability for humans, and machine-oriented CNLs, which enable
reliable automatic semantic analysis. For the rest of this thesis, we will always
mean machine-oriented CNL when we write “CNL”.

A CNL is a subset of a natural language defined through a formal grammar
and with a unique formal semantics fixed for each grammatical sentence. The
existing fully developed general purpose CNLs are all based on English. Promi-
nent examples are Attempto Controlled English (ACE) by [Fuchs, Hofler, Kalju-
rand, Rinaldi, and Schneider| (2005), Processable English (PENG) by |White
and Schwitter| (2009) and Computer Processable Language (CPL) developed at
Boeing Research and Technology (see [Clark, Harrison, Murray, & Thomson,
2010). Furthermore, there are specialised CNLs for specific purposes, for exam-
ple for legal contracts (see Pace & Rosner}, 2010) and for querying ontologies
(see [Damljanovi¢, 2010). In this vein, it makes sense to develop a specialized
CNL for mathematical texts, and a reasonable application for such a CNL is to
check the mathematical proofs written in it for deductive correctness.

1.3 Modelling mathematical reasoning — a his-
toric overview

In this section we give a historic overview of accounts that aim at explaining
and modelling mathematical reasoning, from developments in the 19th century
to contemporary work closely related to the topic of this thesis. This historic
overview aims to motivate the research conducted for this thesis, to put this
research in the context of a general scientific endeavour, and to introduce some
ideas needed for understanding this thesis.
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We use the term “to model mathematical reasoning” in a rather broad way:
It includes accounts that had a more prescriptive than descriptive goal, i.e. were
aimed more at prescribing what mathematical reasoning should be like than at
describing what mathematical reasoning is like. There is, at any rate, a con-
tinuum between prescriptive and descriptive attitudes; and since historically
early prescriptive accounts have, to some extent, actually influenced mathe-
matical practice, they may describe current mathematical practice better than
they described the mathematical practice of their time. Furthermore, the idea
of “modelling” something always includes some degree of idealization, which
makes the model deviate from a purely descriptive account, and which allows
for a prescriptive use of the model.

1.3.1 19th-century axiomatics

For more than 2000 years, Fuclid’s Elements was the prototype of rigorous
mathematical reasoning based on a small set of postulates or axioms. Dur-
ing the early and mid-19th century, geometry made significant advances that
reshaped the subject and changed its content: Non-euclidean geometries (i.e.
hyperbolic and elliptic geometry) were developed and projective geometry ad-
vanced in importance up to the point that it came to be synonymous with
modern geometry (see Torretti, [2010). These developments led to a reconsid-
eration of the role of axiomatics in geometry, first by Moritz Pasch, who made
explicit that deductive reasoning must be independent of the meaning of the
terms involved:

Es muss in der That, wenn anders die Geometrie wirklich deduc-
tiv sein soll, der Process des Folgerns iiberall unabhéngig sein vom
Sinn der geometrischen Begriffe, wie er unabhangig sein muss von
den Figuren; nur die in den benutzten Sétzen, beziehungsweise Def-
initionen niedergelegten Beziehungen zwischen den geometrischen
Begriffen diirfen in Betracht kommen. Wé&hrend der Deduction ist
es zwar statthaft und niitzlich, aber keineswegs nothig, an die Be-
deutung der auftretenden geometrischen Begriffe zu denken; so dass
geradezu, wenn dies nothig wird, daraus die Liickenhaftigkeit der
Deduction und (wenn sich die Liicke nicht durch Abé&nderung des
Raisonnements beseitigen ldsst) die Unzulénglichkeit der als Beweis-
mittel vorausgeschickten Sétze hervorgeht. (Paschl |1882] p. 98)E|

Pasch realized that Euclid’s text does not actually conform with this strict
understanding of the axiomatic method: He noted hidden assumptions in Eu-
clid’s reasoning and formulated axioms aimed at filling these gaps, for example
the axiom now termed Pasch’s axiom, which — informally speaking — asserts
that any line that meets one side of a given triangle and does not pass through

54If geometry is to be truly deductive, the process of inference must be independent in all
its parts from the meaning of the geometric concepts, just as it must be independent from
the diagrams. All that need be considered are the relations between the geometric concepts,
recorded in the statements and definitions. In the course of deduction it is both permitted
and useful to bear in mind the meaning of the geometric concepts that occur in it, but it is
not at all necessary. Indeed, when it actually becomes necessary, this shows that there is a
gap in the proof, and — if the gap cannot be eliminated by modifying the argument — that the
premises are too weak to support it.” (Translation from [Torretti (2010)))
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any vertex of the triangle meets another side of the triangle. He did not actu-
ally provide a complete axiomatization of Euclidean geometry, but only one for
projective geometry (published in |Pasch) |1882)), and it was left to David Hilbert
to provide the first complete axiomatization of Euclidean geometry (published
in [Hilbert), [1899)).

This rigorous understanding of the axiomatic method allowed for a mathe-
matically precise notion of what constitutes correct geometric reasoning. Hence
one can say that it constitutes a mathematical model of geometric reasoning:
This model is certainly an idealization of how humans in general or mathemati-
cians in particular reason about geometry, but it can be understood as a first
approximation at understanding this reasoning with mathematical precision.

A development similar to that in geometry occurred around the same time
in the fields of analysis and arithmetic: After the independent inception of the
infinitesimal calculus by Gottfried Leibniz and Isaac Newton in the late 17th
century, this new branch of mathematics on the one hand led to very fruitful
developments and applications, but on the other hand led to serious inconsis-
tencies resulting from working with infinitely small quantities. These inconsis-
tencies motivated a more rigorous approach to the infinitesimal calculus, which
led to the development of modern analysis: This approach — first conceived by
Augustin-Louis Cauchy in the 1820s and perfected by Karl Weierstrass in the
1870s — eliminated the talk about infinitely small quantities in favour of the
¢/0-method, which only required reference to real numbers (see [Volkert, 1988,
pp- 206, 218). This move towards a more rigorous foundation of analysis — later
coined the arithmetization of analysis by Felix Klein — naturally led to a critical
examination of the concept of a real number: In 1872, four independent works by
Georg Cantor, Richard Dedekind, Charles Méray and Weierstrassﬁ expounded
constructions of the real numbers from the rational numbers (see [Volkert}, |1988,
p. 214). For example, |Dedekind| (1872)) defined certain sets of rational numbers
to be cuts (nowadays termed Dedekind cuts), and for every cut not specified by
a rational number he created an irrational number, thus extending the system
of rational numbers to the system of real numbers, which he could now prove to
have the desired completeness property lacking in the system of rational num-
bers. From the modern point of view, these constructions involve set theory,
but the practitioners of the time considered set theory to be part of logic (see
Ferreirds, 2001, pp. 443-444), and could hence announce to have constructed
the real numbers from the rational numbers on purely logical grounds.

Similar constructions of the integers and rational numbers from the natu-
ral numbers were already known at that time (see [Reck, 2011)), but Dedekind
aimed to give an ultimately logical foundation to all of analysis and arithmetic
by providing a similar construction of the natural numbers on purely “logical”
grounds. This construction was published in 1888 in his renowned monograph
Was sind und was sollen die Zahlen?ﬂ (Dedekind}, |1888]). Four years earlier, but
until then not known to Dedekind, Gottlob Frege had published an alternative
construction of the natural numbers on purely “logical” grounds (Frege, |1884).
Also in Frege’s work, “logic” includes what would now be termed set theory.
Unlike Dedekind, Frege made the logic he used precise: In his Begriffsschrift
(Fregel [1879)), he had devised a formal language and a formal calculus that con-

6Weierstrass’ construction was published by his pupil Ernst Kossak.
7“What are numbers and what should they be?”
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stituted the first formalism meeting the standards of rigour of modern logic and
the first theory of quantiﬁersﬁ In [Frege| (1893), he extended this formalism by
a notation for sets (called extensions (German “Umfang”) by him), and added
a “logical” law, Basic Law V, corresponding to the Axiom of Extensionality
in modern set-theoretic terminology. As first noted by Bertrand Russell, this
extension of his formalism resulted in a contradiction, now widely known as
Russell’s paradoz.

1.3.2 Type theory, first-order logic and axiomatic set the-
ory

In order to rescue parts of Frege’s and Dedekind’s logicism from his paradox,
Russell devised a theory of types. This was a higher-order logical formalism,
still with set-theory regarded as part of logic, in which every set is typed, i.e.
contains only elements of a fixed type. In his co-authored monumental work
Principia Mathematica (Whitehead & Russell, [1910, 1912, 1913), he used this
type theory to give a detailed formal account of the foundations of mathemat-
ics, more precisely of set theory including the theories of ordinal and cardinal
numbers on the one hand and the theory of real numbers on the other hand.
An originally planned fourth volume of Principia Mathematica on geometry was
never completed (see [Russell, [1959).

The type-theoretic logic of the Principia Mathematica still enabled the con-
struction of the integers, rational numbers and real numbers from the natural
numbers; but the natural numbers could no longer be constructed using purely
logical means, as in Dedekind’s and Frege’s accounts. In order to construct
them, Russell had to make the extra-logical assumption that there are infinitely
many objects of the base type.

The Principia Mathematica for the first time showed a serious drawback of
the young field of formal mathematics: A colossal amount of work was necessary
to formally develop only the basics of two mathematical theories. To develop
more advanced mathematical theories in such a formalism was thus outside the
reach of the humanly possible.

For more than two decades after the publication of the Principia Mathe-
matica, type theory (first as ramified type theory as presented in the Principia
Mathematica, but after a simplification proposed by Frank Ramsey in 1925 usu-
ally in the form of simple type theory) dominated as the formal system studied
by logicians and used for describing the foundations of mathematics (see |Fer-
reirds), 2001} p. 445). In the 1930s, a combination of different factors contributed
to a shift in logic and the foundations of mathematics (see|[Ferreirds, 2001)): Now
first-order logic got to be viewed as the paradigmatic formal system to be stud-
ied by logicians, and axiomatic set theory formalized over first-over logic became
the paradigmatic system for describing the foundations of mathematics. Since
this account of the foundations of mathematics is still the prevailing account
today, both in mathematical logic and in the philosophy of mathematics, we
will say a bit more about it.

In first-order logicﬂ there is a single domain of discourse, and all quantifi-
cation is quantification over this domain: There is no quantification over sets

8Using modern terminology, his formalism was a higher-order propositional calculus.
9We discuss the standard one-sorted first-order logic here. For many-sorted first-order logic
some assertions would have to be rephrased, but the relevant points would stay unchanged.
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of elements of the discourse domain, nor is there quantification over properties,
relations or functions on the discourse domain. One can define the semantics
of first-order formulae model-theoretically: First one defines what it means for
a formula to be true in a given structure (a set together with some relations
and functions on that set); next one defines that a set T' of formulae logically
implies a formula  if all structures that make all formulae in I true also make ¢
true. There are sound and complete formal calculi for proving logical inference
in first-order logic: This means that such a calculus defines a notion of formal
proof in such a way that there exists a formal proof for ¢ from the premises I'
if and only if I" logically implies .

The first proof systems were developed by Frege and Hilbert. These systems
are axiomatic systems (also called Hilbert systems), i.e. they are characterized by
a set of axioms and a very minimal set of inference rules. In 1934, two indepen-
dent works by Gerhard Gentzen (Gentzen, 1934/35)) and Stanistaw Jaskowski
(Jaskowskil [1934) presented a new kind of proof system, natural deduction. Nat-
ural deduction is characterized by a complete lack of axioms and a rich set of
inference rules: Usually, for every logical connective and quantifier there is a set
of inference rules consisting of one or more introduction rules for introducing
the connective or quantifier and one or more elimination rules for eliminating
it. Additionally there is a special rule for proofs by contradiction or for double
negation eliminationm As the name suggests, natural deduction systems come
closer to modelling our natural reasoning than axiomatic systems.

The standard system for axiomatic set theory over first-order logic is called
ZFC (Zermelo-Fraenkel set theory with the Axziom of Choice). This is an ax-
iomatization of pure set theory, i.e. all the objects in the domain of discourse
are presupposed to be sets, all elements of these sets are also presupposed to
be sets, etc. One can view the intended domain of discourse as constructed
hierarchically: At the first step, one constructs the empty set (). Next one can
construct the set {(}} that contains the empty set and nothing else. Next one
can construct the sets {{0}} and {@,{0}}. This construction can be continued
ad infinitum. But with the usual meaning of ad infinitum, this would just give
us finite sets. We have to go further: In the first step of going further this
means that we consider the infinite construction described so far as completed,
and now construct all sets consisting of sets constructed so far. This can again
be continued ad infinitum. For every infinite construction from a given start-
point, we can repeat this procedure of transcending the infinite construction.
The steps in the overall construction can be described using ordinal numbers, an
extension of the natural numbers into the realm of the infinite, first introduced
by Georg Cantor in 1883. The axioms of ZFC are intended to capture this view
of the cumulative hierarchy of sets. Using these axioms, one can formalize ordi-
nal numbers, formalize the construction we just sketched and show that every
set appears in some step of this construction.

Ordinary mathematicians do not consider all objects they are talking about
to be sets. For example, an ordinary mathematician would not consider the
number 2 to be a set. But when ZFC is used as a foundation of mathematics,
all mathematical objects have to be modelled by some sets. The usual modelling
of the natural numbers are the so-called finite von-Neumann ordinals 0, {0},

10Without this special additional rule, the resulting system is not a proof system for classical
first-order logic, but one for intuitionistic logic (see |[Moschovakis| (2010)) instead.
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{0,{0}},{0,{0},{0,{0}}}, etc. All the standard machinery of pure mathematics
is similarly modelled using only sets. For example, the ordered pair (a,b) of
two mathematical objects is modelled by {{a,b},{a}}. One can prove this
construction to have the desired properties of the ordered pair, namely that
(a1,b1) = (ag,b2) if and only if a; = as and by = by. n-tuples for n > 2 are
modelled by iterating ordered pairs, n-ary relations are modelled as sets of n-
ary tuples and n-ary functions as n+1-ary relations satisfying a certain property
that makes them functional.

First-order logic together with ZFC can be viewed as a model of what is
considered correct mathematical reasoning. First-order logic covers the purely
logical parts of mathematical reasoning that do not need the recourse to set-
theoretic constructions. Standard set-theoretic constructions like the construc-
tion of a set of equivalence classes of a Cartesian product of two sets are easily
implemented on the basis of the axioms of ZF(C. Mathematicians often use basic
mathematical structures to argue about other mathematical entities: For exam-
ple, in arguments in the algebraic field of group theory, the natural numbers
and their properties may be used without qualms. This is modelled without
problems by ZFC: Since the natural numbers can be shown to exist (in their
modelled form of finite von-Neumann ordinals) and to have the properties usu-
ally needed in such arguments, they can be used in such a way in any argument
modelled within ZFC. ZFC'is also good at modelling ordinary mathematical
arguments aimed at showing that a mathematical structure with certain prop-
erties exists or cannot exist.

There are also aspects of mathematical reasoning that are not satisfactorily
modelled by first-order logic together with ZFC:

e Since an ordinary mathematician would not identify the number 2 with the
set {0, {0}}, the ordinary reasoning about the identity and non-identity
of arbitrary mathematical objects is not correctly modelled.

e In ZFC, every mathematical statement has to be phrased in the language
of ZF(C, i.e. using only the symbol € for membership in a set and the logi-
cal symbols of first-order logic. Even basic set-theoretic notations like the
) and {0} used above have to be translated into this form: For example,
=0 and y = {#} become =3z z € z and Vw (w € y <> =3z z € w) re-
spectively. This contrasts massively with the usage of language in ordinary
mathematics, where definitions can be used to specify concise notation for
more complex expressions. If one actually formalises mathematics in pure
ZFC, there is a massive blow-up in the length of formulae needed to ex-
press simple mathematical statements. So first-order logic with ZFC' does
not model the language of mathematics very well.

e As we will see in chapter [3] the language of mathematics also exhibits
many traits of natural language that linguists have only begun to describe
in the second half of the 20th century, like dynamic quantifiers and presup-
positions, which — as we try to show in this thesis — intimately influence
ordinary mathematical reasoning, but which are completely ignored in
first-order logic and ZFC.

e Furthermore, there is also a massive blow-up in the number of proof steps
needed: Standard calculi for first-order logic are very fine-grained, i.e.
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require very small logical steps to be made explicit. This contrasts with
the very flexible size of reasoning steps found in textbooks proofs, which
depends inter alia on the mathematical sophistication that the author
assumes on the side of the targeted readership. First-order logic with ZFC
thus cannot serve to model the size of reasoning steps usually employed
by mathematicians.

1.3.3 Computer-assisted formal mathematics

Formal mathematics is a branch of mathematics that aims at developing sub-
stantive parts of mathematics in a purely formal way. Principia Mathematica
can be considered the first comprehensive work in formal mathematics. As
mentioned above, it also showed that formal mathematics is a too extensive
programme to be completed by humans without the assistance of computers.
For this reason this programme was not pursued seriously by the scientific com-
munity before the advent of computers. The issues with this manual formal
mathematics can be divided in two parts:

e Manual formalization: To formalize an existing piece of mathematics
involves a huge amount of straining and largely monotonous intellectual
work: All details of the proofs have to be filled in, and everything has to be
expressed in a severely limited formal language which is highly dissimilar
to the natural language that we usually use to think and communicate
about mathematics.

e Manual checking: In order to be checked for correctness, the prepared
texts have to be read by humans, who find it difficult to follow the rea-
soning of overly detailed proofs written in an unnatural formal language.
Thus the goal of making mathematical results more secure through for-
malizing them was of a more theoretical than practical nature: In practice,
errors could be overlooked more easily in these formal texts that humans
find hard to read than in usual mathematical texts.

The advent of computers drastically changed the landscape for formal math-
ematics. The second one of these two problems faced by manual formal mathe-
matics can easily be seen to be solvable using computers: After all, in a formal
logical system, the checking of proofs is a purely syntactical procedure that can
be described algorithmically and hence implemented on a computer. In this
way, the motivation for formal mathematics that it could make mathematical
results more secure actually became a practical motivation rather than a purely
theoretical one.

Automath

The Automath system by Nicolas Govert de Bruijn (first described in |de Bruijn,
1968) was the first computer system for formal mathematics with automated
proof checking (see Kamareddine, Laan, & Nederpelt} 2004, p. 179). De Bruijn
analysed the way mathematicians reason and use their specialized language.
Based on this analysis, he developed the formal language and formal system of
Automath, whose goal it was to represent the usual reasoning in mathematical
texts:
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The way mathematical material is to be presented to the system
should correspond to the usual way we write mathematics. The
only thing to be added should be details that are usually omitted in
standard mathematics. (de Bruijnl {1994, p. 210).

Automath had a very type-theoretic approach and thus differed substantially
from the by then common usage of axiomatic set theory over first-order logic
as a foundation of mathematics. The Automath formalism introduced new
approaches and notions that have led to significant advances in type theory and
that have been taken over by later type-theoretically based systems for formal
mathematics:

e The usage of dependent types in the Automath formalism was the first sys-
tematic development of dependent type theory (see |Abramsky, Artemov,
Shore, & Troelstral, 1999, p. 582).

e De Bruijn discovered the Curry-Howard correspondence (also known as
the propositions-as-types interpretation, or — as de Bruijn preferred — the
proof-classes-as-types interpretation) independently of Haskell Curry and
William Alvin Howard (see |[Kamareddine et al.| |2004]), and Automath was
the first implemented system to employ this correspondence.

e At the core of the Automath formalism is a definition system, so that
Automath captures much of the natural usage of definitions in mathemat-
ical texts. This contributes to the attainment of the goal mentioned in
the above quotation of de Bruijn, and contrasts with the absence of any
treatment of definitions within the standard formalisms for axiomatic set
theory: There definitions usually have to be treated as something meta-
theoretical, and within the theory all defined terms have to be considered
as replaced by their respective definienses.

According to the philosophy of the Automath project, the system was “tied
as little as possible to any particular set of rules for logic and foundation of
mathematics” (de Bruijn, (1994, pp. 209-210): Even the logical connectives and
their introduction and elimination rules had to be introduced axiomatically by
the user of the system.

As a proof of concept, the book Grundlagen der Analysis by Edmund Landau
(Landaul, [1930) was completely formalized and proof checked in the Automath
system. This book is characterized by a very pure mathematical style (clearly
structured axioms, definitions, theorems and proofs and an almost complete
lack of motivating, historical, meta-theoretical or didactic comments) and a
high degree of logical self-containment. We also use it as a test-bed for our
system (see chapter .

While the Automath formalism certainly captured many aspects of mathe-
matical reasoning better than any previous formalism, its language was quite
detached both from the usual language employed by mathematicians as well as
from standard formal languages studied by logicians. As an example of the Au-
tomath language, we present a very simple Automath book in figure This
unusual language certainly contributed to Automath’s very limited practical
use.

Automath only solved the problem of manual checking mentioned above.
De Bruijn certainly made an effort to define the Automath formalism in such a
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%] prop PN type
%] X - prop
X ¥ - prop
X,y and PN prop
x | proof | PN type

X,y px - proof (x)

X,¥,PX | Py | - proof (y)
X,y¥,pX,py | and-I | PN proof (and)

X,y PXy - proof (and)
X,y,pxy | and-01 | PN proof (x)
X,y,pxy | and-02 | PN proof (y)

X prx - proof (x)
x,prx | and-R | and-I(x,x,prx,prx) proof (and(x,x))
X,y,pxy | and-S | and-I(y,x,and-02,and-01) | proof (and(x,y))

Figure 1.1: Example (taken over from|Kamareddine et al., [2004}, p. 187) of a very
simple Automath book, in which logical conjunction (and(x,y)) is introduced
and the logical entailments from x to and (x,x) and from and(x,y) to and(y,x)
are proved.

way as to not make the problem of manual formalization bigger than necessary,
but his system did not implement any computer assistance for alleviating this
problem.

Mizar

The Mizar project is a project for computer-assisted formal mathematics ini-
tiated by Andrzej Trybulec in 1973 (see Matuszewski & Rudnicki, 2005, p. 3).
Until 1989 the project was characterized by a perpetual development of new sys-
tems improving on previous ones based on practical experience with attempts
at formalizations. Since 1989, the Mizar system has been a more or less stable
system with occasional extensions and improvements, and the Mizar project has
mainly advanced through the creation of the Mizar Mathematical Library, the
largest library of formal mathematics of any single system (see [Wiedijkl 2009,
p. 194). Tt is this more or less stable version of the Mizar system that we will
describe in this section.

The Mizar language is much closer to the language of informal mathematics
than the Automath language: It uses a set of English words and phrases which
frequently appear in informal mathematics as keywords, but its syntax is defined
by a relatively small set of rules, in a similar vein as in modern programming
languages. Here is an example (taken over from Wiedijk, [2008)) of a Mizar text
presenting a proof of the irrationality of v/2:

theorem
sqrt 2 is irratiomal
proof
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
Wil: n<>0 and
W2: sqrt 2=i/n and
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W3: for il being Integer, nl being Nat st ni<>0
& sqrt 2=i1/nl holds n<=nl by RAT_1:25;

A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;

C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
then i>=0 by A5,REAL_2:121;

then reconsider m = i as Nat by INT_1:16;
A6: m*m = nxn*(sqrt 2*sqrt 2) by A5

.= n*n*(sqrt 2)°2 by SQUARE_1l:def 3
.= 2x(n*n) by SQUARE_1:def 4;

then 2 divides m*m by NAT_1:def 3;

then 2 divides m by INT_2:44,NEWTON:98;

then consider ml being Nat such that
W4: m=2*ml by NAT_1l:def 3;

mixm1*2%2 = ml*x(m1x*2)*2

.= 2x(n*n) by W4,A6,XCMPLX_1:4;imp

then 2*(mil*ml) = n*n by XCMPLX_1:5;

then 2 divides n*n by NAT_1:def 3;

then 2 divides n by INT_2:44,NEWTON:98;
then consider nl being Nat such that
W5: n=2*nl by NAT_1:def 3;

A10: ml1/n1 = sqrt 2 by W4,W5,XCMPLX_1:92,W2;
A11: n1>0 by W5,C,REAL_2:123;

then 2*n1>1*nl by REAL_2:199;

hence contradiction by A10,W5,A11,W3;

end;

Apart from the usage of English keywords, another important aspect to make
the Mizar language more similar to the language of informal mathematics than
standard formal languages is the possibility of operators to be used in prefix,
postfix, infix and circumfix notation. But as the above example shows, despite
significant improvements on Automath, the Mizar language is still much more
similar to a programming language than to the language of informal mathemat-
ics. As a comparison, here is a natural language proof of the same theorem,
taken from Hardy and Wright| (1960, p. 40):

If /2 is rational, then the equation a? = 2b% is soluble in integers
a, b with (a,b) = 1. Hence a? is even, and therefore a is even. If
a = 2c¢, then 4¢? = 2b2, 2¢2 = b2, and b is also even, contrary to the
hypothesis that (a,b) = 1.

Mizar lacks the usual notation for square roots and exponentiation, and does
not allow multiplication to be expressed in the usual way by concatenation. If
one reads a Mizar text with its English keywords as if it were a natural language
text, one finds that it is full of ungrammatical constructs.

The Mizar system has an integrated proof-checker that can check simple
multi-step logical inferences. This alleviates the problem of manual formaliza-
tion to some extent, since some intermediate reasoning steps may be dropped.
However, the granularity of reasoning steps required by Mizar is still much more
detailed than that usually found in mathematical textbooks.

The extensive Mizar Mathematical Library contains material from vari-
ous branches of mathematics based on a single system of axioms, the Tarski-
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Grothendieck axiomatization of set theory. This set theory is basically the stan-
dard ZFC set theory extended with Tarski’s axiom, which ensures that there are
arbitrarily large strongly inaccessible cardinals (see Naumowicz & Kornilowicz,
2009, p. 70)E As of August 2012 (version 4.181.1147), the library contains
1150 articles by 244 authors, containing 51,762 theorems and 10,158 definitions
(see Bancerek], 2012)). As pointed out by Naumowicz and Kornitowicz (2009}
p. 70), most of these theorems are — from a point of view of a mathematician —
actually simple lemmas. Nevertheless, they cover not only the basics of many
branches of pure mathematics, but also some advanced theorems, especially in
topology (see Naumowicz & Kornitowicz, 2009, p. 70). Results from the Mizar
Mathematical Library can be cited and reused in other Mizar texts, so that au-
thors of Mizar texts don’t have to start their formalization from first principles.

HOL

HOL is an interactive proof assistant both for checking the correctness of hard-
ware and software and for checking the correctness of mathematical proofs,
developed in the 1980s by Mike Gordon (see|Wiedijk, 2009} p. 194). Interactive
means that the user and the system co-construct the proof incrementally. For
example, the user may present a certain goal (a result to be proved) to the
system, and specify some tactics to be used by the system to simplify that goal
into simpler goals. The system then performs this simplification and shows the
user which simplified goals he still needs to establish to establish his original
goal. This is a form of backward reasoning; HOL can combine such backward
reasoning with the classical forward reasoning found in the already described
systems.

This interactive approach helps to alleviate the problem of manual formal-
ization mentioned above: The formalization process is no longer completely
manual, but supported by a computer system.

HOL stands for Higher-Order Logic: The logical foundation on which it
is based are those of simply typed higher-order logic, i.e. basically the logic
that evolved out of Principia Mathematica’s logic through the de-ramification
proposed by Frank Ramsey in 1925 (see section above).

There are various implementations of HOL. The one with the largest library
of formalized mathematics among the HOL implementations is called HOL Light
(see (Wiedijkl, 2009 p. 195). There is currently an ongoing project to formalize
Thomas Hales’s proof of Kepler’s conjecture in HOL Light (see [Hales| [2005)).
This shows that modern proof assistants are mature enough to tackle the for-
malization of current research mathematics.

HOL is used widely for proving the correctness of hardware and software.
In this vein, the system is adapted to the expertise and needs of computer
scientists, and does not intend to imitate the reasoning and language of informal
mathematics closely.

1 This strengthening of ZFC was motivated by certain constructions done in category theory
(see Matuszewski & Rudnicki, 2005, p. 22).
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Isabelle

Isabelle is an interactive proof assistant developed by Larry Paulson, Tobias
Nipkow and Makarius Wenzel as a successor of HOL. The two main differences
between Isabelle and HOL are succinctly stated by Wiedijk| (2009):

An important difference between Isabelle and HOL is that Isabelle
did not hardwire the mathematical foundations into the system, but
keeps it as a parameter of the system. (However, the HOL imple-
mentation on top of Isabelle, called Isabelle/HOL, is the only variant
of the system that is significantly used.) Another difference between
Isabelle and HOL is that Isabelle has a readable proof language in-
spired by the Mizar language called Isar.

Just like HOL, Isabelle is developed and used both for checking the correct-
ness of hardware and software and for checking the correctness of mathematical
proofs.

Coq

Similarly to HOL and Isabelle, Coq is an interactive proof assistant for both
software correctness proofs and mathematical proofs. It is based on a rich
type theory called the calculus of inductive constructions. The logic of Coq
is modular: The core logic is intuitionistic, i.e. lacks the principle of excluded
middle, but this principle can be added as an axiom. Another principle that is
often needed when using Coq for mathematical proofs is the Axiom of Choice
(in a functional variant), which can also be added as an axiom.

In 2004, Georges Gonthier completed a formalization of the Four Colour
Theorem in Coq, which [Wiedijk (2009) calls “the most impressive formalization
thus far”. For this formalization, Gonthier developed an extension library for
Coq called SSReflect, which provides for an improved language for tactics and
for effective automation of small proof steps.

The type-theoretic language of Coq is even more removed from the language
of informal mathematics than the languages of HOL and Isabelle.

Automated theorem provers

In this subsection we describe computer programs of a somewhat different na-
ture than the formal mathematics systems described in the previous subsections.
Automated theorem provers (ATPs) are programs aimed at automatically find-
ing proofs, rather than checking proofs provided by humans. Because of their
unguided proof search, the problems they can solve are of a much simpler nature
than the proofs that can be checked by formal mathematics systems. But ATPs
can actually be a support tool for formal mathematics systems in that they can
be used to fill in the logical gaps left by the human author in a proof provided
to a formal mathematics system.

We use the term proof obligation for a problem given to an ATP. It usually
consists of a finite list of axioms and a single conjecture which has to be shown
to follow from the axioms. In this thesis, we will deviate from the standard
terminology and speak of premises instead of axioms in order to avoid termi-
nological clash with the axioms that are found in the mathematical texts that
we study. The premises and the conjecture are all formulae of a fixed logical
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formalism. The most powerful ATPs are those for standard first-order predicate
logic. These are the only ones we will be considering in this thesis.

Many ATPs can not only prove the conjecture from the premises, but also
discover counterexamples in case that the conjecture does not follow from the
premises. Normally, an ATP is given a time limit for solving a given proof
obligation. Hence there are three possible outputs from an ATP: conjecture
proven, counterexample found and time-out.

1.3.4 Modelling the natural language of mathematics

One of the deficits that the systems for computer-assisted formal mathematics
described in the previous section have in common, although to different extents,
is the unnaturality of their input language. Users of such systems are forced to
learn a formal input language that resembles programming languages. Also for
reading the proofs written for such systems one needs a good acquaintance with
this formal language.

One way to put the problem is to say that even though the input languages of
these systems model the expressive power of the language of mathematics fairly
well, they model the structure of this language very badly. We will now discuss
the work of various researchers that have attempted to model the structure of
the language of mathematics. Some of these have analysed the language of
mathematics linguistically, while others have developed systems for checking
proofs in more natural input languages.

Simon’s Nthchecker

The first system for checking mathematical proofs written in a natural input
language was Donald Simon’s Nthchecker, described in Simon’s (1990) Ph.D.
thesis. It was geared towards the text of William LeVeque’s Elementary Theory
of Numbers (LeVeque, 1962). Nthchecker could parse 15 of the 65 proofs in this
book and mechanically check two of them. Given that the input to Nthchecker
was the actual text from LeVeque’s book and not some CNL adaptation thereof,
this might seem like an astonishing success. However, this is only due to the
system’s being geared towards that particular text. Simon did not carry out a
proper linguistic analysis of the language of mathematics that would enable his
system to be capable of parsing other input texts. As Claus Zinn has put it:

From the linguistic point of view, Simon falls short of studying,
first of all, the language of mathematics and second, the linguistic
problems one encounters in textbook proofs. The main critique,
however, is that Simon did not use or develop an adequate theory
for the construction of semantic representations. It remains unclear
how Simon handles anaphoric resolution and ellipsis reconstruction
systematically. (Zinn| 2004, p. 25)

Ranta

The first thorough analysis of the language of mathematics using techniques
from formal linguistics was provided by Aarne Ranta in a number of papers from
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the mid-1990s (Rantal, |1994) (1995, 1996, 19974, |1997b). Ranta analysed syntac-
tic categories of both symbolic and textual mathematics within the framework
of Constructive Type Theory (Martin-Lof, [1984). In the practical application of
his analysis, he put a larger emphasis on the conversion of logical representation
into the natural language of mathematics than on the conversion in the other
direction that is needed in proof-checking mathematical texts.

Ranta was also the first researcher to express the idea that mathematical
language is a rewarding test-bed for linguistics:

Linguistically, the study of mathematical language rather than ev-
eryday language is rewarding because it offers examples that have
complicated grammatical structure but are free from ambiguities.
We always know exactly what a sentence means, and there is a de-
terminate structure to be revealed. The informal language of math-
ematics thus provides a kind of grammatical laboratory. (Ranta,
1994, p. 354)

This idea has also been one of the motivations behind the Naproche project.

Zinn’ Vip

For his doctoral project, Claus Zinn developed the system Vip, a prototypical
proof-checker for natural language mathematics (see |Zinn, [2004). He analysed
the language of mathematics more thoroughly than Simon, and made use of
more advanced linguistic techniques, especially Hans Kamp’s Discourse Repre-
sentation Theory. Just like Simon, he did not define a CNL, but attempted to
parse any input written in the language of mathematics. As a consequence, he
also had to gear his system towards a single text, for which he chose An Intro-
duction to the Theory of Numbers by [Hardy and Wright| (1960). Coincidentally,
the number of proofs that Vip could both parse and check successfully was two,
just as with Simon’s Nthchecker. (Ganesalingam| (2009, p. 20) has argued that
not only Zinn’s system, but also his linguistic analysis is “heavily tailored for
his two proofs”, and that it is “of a comparably shallow kind”.

Zinn’s thesis also provided a detailed analysis of reasoning patterns in math-
ematical proofs. In his system, the proof-checking was heavily reliant on Alan
Bundy’s concept of proof plans (see [Bundy, [1988). The idea is that one anal-
yses families of related proofs in order to identify common reasoning patterns
in them, which are formally represented in proof plan schemata. These guide
future proofs of the same family, and enable an automated system to fill in
the details that the proof author has omitted. The heavy reliance on proof
plans, however, has increased the extent to which the system is tailored towards
particular proofs.

Evidence Algorithm (SAD/ForTheL)

In the early 1960s, the pioneering Soviet computer scientist Victor Glushkov
initiated a research project called Fuvidence Algorithm in Kiev. The goal of
the project was to develop a computer system that could check mathematical
proofs written in a powerful input language that is close to the natural math-
ematical language and easy to use (see Lyaletski & Verchinine, 2010, p. 412).
By 1978 the group had produced a first prototype for such a system, called
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System for Automated Deduction (SAD), with a Russian-based input language.
After improvements to the system in the early 1980s, the project came to a halt
for over a decade, before it was reactivated in 1998 (see [Lyaletski & Verchi-
ninel [2010, p. 412). The SAD system was reimplemented by Andrei Paskevich,
then a master student at Kiev and from 2001 a doctoral student at Kiev and
Paris. In the course of the reimplementation, Paskevich developed an alterna-
tive English-based input language called ForTheL, an acronym for “FORmal
THEory Language”. During the course of his doctoral studies, the system was
constantly improved. Below we describe his final version of the SAD system, as
presented in |Paskevych| (2007)).

We start our discussion of the input language ForThel. with an example
text, namely the simplest example text provided on the web interface of SAD
(Lyaletski, Verchinine, & Paskevichl 2008b]):

[set/-s] [element/-s] [belong/-s] [subset/-s]

Signature SetSort. A set is a notion.
Let S,T denote sets.

Signature ElmSort. An element of S is a notion.
Let x belongs to X stand for x is an element of X.

Definition DefSubset. A subset of S is a set T
such that every element of T belongs to S.

Definition DefEmpty. S is empty iff S has no elements.
Axiom ExEmpty. There exists an empty set.

Proposition.

S is a subset of every set iff S is empty.
Proof.

Case S is empty. Obvious.

Case S is a subset of every set.
Take an empty set E.
Let z be an element of S.
Then z is an element of E.
We have a contradiction.
end.
ged.

It is immediately evident that this input language is much more natural
than the input language of Mizar, which was the most natural input language
for a formal mathematics system discussed so far. In the example text, all
lines but the first read more or less like the natural language of mathemat-
ics. Hence one could be inclined to conclude that ForTheL is basically a CNL,
only with some unnatural elements as in the first line. However, it should be
noted that the system ignores a lot of grammatical features of natural lan-
guage, and hence accepts input that is ungrammatical from a natural language
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point of view. For example, the assertion of the proposition can be replaced
by “S are subset of every sets iff S be empty.”, which the system still
accepts in the same way as the above grammatically sound VariantE Thus,
even ignoring the unnatural parts like the first line, ForTheL is not really a
subset of the natural language of mathematics, but rather a superset of such
a subset. But a human user writing in ForThel. would normally stay inside
the subset of the natural language of mathematics. We think that this kind of
input language should be terminologically distinguished from controlled natural
languages as defined before; for this we propose the term potentially natural
controlled language.

Furthermore, there are expression which — though natural in character —
are very unusual for the language of mathematics: “A set is a notion.” and
“An element of S is a notion.”. These expressions are used to extend the
signature, i.e. to introduce new relation, function and constant symbols to the
language, which are not defined but which can be axiomatically specified. With-
out knowledge of this special role of these expressions in ForThel,, one can
hardly make sense of these sentences based on ones ability to understand the
language of mathematics. So these are expressions which semantically speaking
are not part of the natural language of mathematics, and hence must be counted
amongst the unnatural part of ForTheL.

Having looked at the input language of SAD, let us now turn our attention to
the system as a whole: The SAD system is up to now the most successful system
for producing automatically checkable formal mathematics that can be read by
humans almost like natural mathematical texts. Examples of more advanced
results formalised in SAD include the Chinese Remainder Theorem, the result
that square roots of prime numbers are irrational, the Cauchy-Bouniakowsky-
Schwartz inequality for real vectors and Furstenberg’s topological proof of the
infinitude of primes (see [Lyaletski, Verchinine, & Paskevich| |2008a). Each of
these is proved in a text about eight times as long as the above example text.
One of the drawbacks of the SAD system is that beyond this text length the
system becomes very inefficient due to quadratic runtime complexity.

Given an input text, the SAD system parses the individual sentences in it,
transforming them into first-order formulae. Furthermore, the system keeps
track of the position and function of these first-order formulae in the overall
proof structure, defined by the keywords that structure the proof text, like
“Proposition”, “Proof”, “Case”, “end” and “qed”. Next, a module called
the reasoner works linearly through the proof, trying to verify proof steps and
keeping track of what is still required to finish a proof. For this, the reasoner
combines a number of methods:

o It keeps track of a large list of evidences, which are literals (atomic for-
mulae or their negations) which can be derived from earlier propositions
or proof steps according to certain rules. Simple proof steps can often be
verified using only this list of evidences.

e If this method fails, the reasoner will call an Automated Theorem Prover
to verify the proof step. The ATP attempts to prove that this proof step
follows from previous propositions and proof steps.

12 Actually, the unnatural first line provides rules for identifying morphological variants of
certain words. These words are identified without any further checking of natural-language
grammaticality.
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e When definitions as well as propositions whose logical form are that of an
implication or bi-implication are used for proving subsequent statements, a
special heuristic called definitional expansion is applied: In order to avoid
an increase of the proof search tree, these definitions and implications are
often not given to the ATP as axioms, but instead are used to modify
the problem given to the ATP, in the case of definitions by expanding the
definiendum to the definiens. The ATP is given subsequent reformulations
of a problem which are expanded in this way, until it succeeds in verifying
the proof step (or until it gives up due to time-out).

e Given a proposition followed by its proof, the reasoner attempts to keep
track of a goal-oriented provingthesis, i.e. keep track of what is still needed
in order to finish the proof of the proposition. At the beginning of the
proof, the thesis coincides with the proposition. But the introduction
of assumptions, the opening of case distinctions and the verification of
intermediate proof steps can modify and simplify the thesis up to the
point where it becomes trivial

Using this combination of methods, SAD can handle logical gaps between proof
steps of a similar size as found in textbooks for undergraduate mathematics
students. Note that some of these methods make use of natural patterns of
structuring proof texts. Thus, notwithstanding the lack of proper grammatical
analysis in SAD, the Evidence Algorithm project has certainly contributed sig-
nificantly to a better understanding of the natural reasoning in mathematical
texts.

Ganesalingam

In 2009, Mohan Ganesalingam published a Ph.D. thesis on the language of
mathematics (Ganesalingam, [2009). His thesis contains a very thorough and
detailed analysis of this language, with an emphasis on its formal semantics,
but also with aspects of pragmatics and philosophy of mathematics. In the
introduction to his thesis, he stated that his thesis “is part of a long-term
project to build programs that do mathematics in the same way as humans do”
(Ganesalingaml, 2009, p. 9). The analysis in the thesis can be seen as providing
the theoretical bedrock for one part of this envisioned program, namely the part
that translates the natural language input into a formal semantic representation
language.

One of the aspects of the language of mathematics that Ganesalingam has
studied in detail and has shed light on is the aspect of adaptivity through
definitions discussed in section [1.1.3| above. He has also linked this aspect to
philosophical inquiries about the foundations of mathematics. In his theoretical
description of the language of mathematics he intentionally stretches the adap-
tivity to its extremes. For this purpose, he deviates from a purely descriptive
account of the language of mathematics, and speaks of the projected language,
which can be viewed as an idealised version of the actual language of mathemat-
ics with full adaptivity down to the language used for the foundational building
blocks of mathematics.

The issue that Ganesalingam studies most thoroughly is that of disambiguat-
ing mathematical language, both its textual and its symbolic parts. To handle

13We call this approach goal-oriented proving in later chapters.
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potential ambiguities, he develops an ingenious novel type system for typing the
objects that a given mathematical text refers to. The potential types available
at any point in a text are extracted from preceding definitions. We will come
back to his type system when we compare it to our approach in section [7.4.7]

Ganesalingam has been working on an implementation of the theoretical
developments from his thesis in a computer system, which he finished in late
2012.

Humayoun

In January 2012, Muhammad Humayoun completed a Ph.D. thesis (Humayoun)
2012)) with very similar goals to our thesis: It is part of a project that aims at
creating a computer program that can validate mathematical proof texts written
in a mathematical controlled natural language. However, his thesis leaves out
the validation aspect and concentrates on the specification of the CNL and
its translation into a formal representation language. Humayoun’s linguistic
analysis is linguistically not very sophisticated. For example, he intentionally
refrains from making use of linguistic theories for modelling the dynamic nature
of natural language quantification (see Humayoun| 2012, p. 26). Large parts of
his thesis are on implementationary details of the program he developed.

1.4 The Naproche project

The research for this thesis was conducted as part of the interdisciplinary re-
search project Naproche (Natural language Proof Checking or Natural Proof
Checking), which has previously been described in (Cramer, Fisseni, et al.| (2010)
and |Cramer| (2011)). In this section, we give a chronological overview over the
development of this project.

The project started at the University of Bonn in 2002 as a collaboration
between the mathematical logician Peter Koepke and the linguist Bernhard
Schroder. It aims at combining methods from linguistics and mathematical
logic in order to improve our understanding of natural mathematical texts and
the proofs contained in them. From the beginning, one major driving force for
the research conducted in the Naproche project was the vision of a computer
system that supports the development of formal mathematics in a much more
natural language than current state-of-the-art formal mathematics computer
systems. The Naproche system can be seen as a prototypical version of this
envisioned computer system.

The first version of the Naproche system — retrospectively termed Naproche
0.1 — was developed by Peter Koepke in the years 2002-2006. It implemented a
natural deduction calculus with natural language quantifiers and connectives as
well as natural language keywords for structuring the proof text (see Koepke,
2006). The proof text could be structured by theorem-proof-blocks and by the
introduction and retraction of assumptions, which gives rise to a hierarchical
text structure as described in section Naproche 0.1 could be used as a
plug-in to the WYSIWYG mathematical editor TeXmacs (see van der Hoeven,
2011). The core of Naproche 0.1, like that of all later versions of the Naproche
system, was programmed in Prolog, a declarative programming language for
logic programming (see Blackburn, Bos, & Striegnitz, 2006).
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A further focus in the early days of the Naproche project was the develop-
ment of an annotation language for mathematical texts, called ProofML. The
Magister thesis of Bernhard Fisseni, a student of linguistics, describes this an-
notation language (Fisseni, [2003).

In 2007, Peter Koepke, his Ph.D. students Merlin Carl and Jip Veldman,
Bernhard Schroder, his Magister student Nickolay Kolev and Bernhard Fisseni
developed Proof Representation Structures (PRSs), a semantic representation
for mathematical proof textsE The PRS format is based on Discourse Rep-
resentation Theory, a theory developed by Hans Kamp in order to model the
dynamic nature of natural language quantiﬁcatiorﬂ in formal semantics (see
Kamp & Reyle, [1993)). The structures that Discourse Representation Theory
uses as semantic representation of multi-sentence natural language discourses
are called Discourse Representation Structures (DRSs). PRSs are DRSs which
are enriched in such a way as to represent the distinguishing characteristics of
the language of mathematics discussed in Section [I.1}

Nickolay Kolev implemented an algorithm to generate PRSs from input texts
written in a rudimentary mathematical CNL, which was basically the input
language of Naproche 0.1 extended by a construct for definitions (see Kolev,
2008)).

In 2008, the first version of the Naproche system that implemented Proof
Representation Structures (Naproche 0.2) was developed by two diploma stu-
dents of Peter Koepke, Daniel Kiithlwein and Doerthe Arndt, with the technical
support of two internees, Bhoomija Ranjan and Shruti Gupta. The generation
of PRSs from input text was a modified version of Kolev’s algorithm. The
proof-checking was now performed on the PRSs. Naproche 0.2 was also the first
version of Naproche to make use of an automated theorem prover (ATP) in the
proof checking: The ATP helps to fill in gaps between subsequent reasoning
steps in a proof (see section. Naproche 0.2 did not have a GUI (graphical
user interface), i.e. could only be run on the command line. Kiihlwein’s diploma
thesis (Kithlwein) 2009) describes the proof checking implemented in Naproche
0.2. Arndt’s diploma thesis (Arndt} [2009) describes software verification meth-
ods suitable for software implemented in Prolog and their applicability to the
code of Naproche 0.2.

In September 2008, this thesis’s author joined the Naproche project as a
doctoral student. After finishing his diploma, Daniel Kiihlwein also became a
doctoral student of the Naproche project in January 2009. Starting in March
2009, Kiithlwein and ]Eimplemented Naproche 0.3, with the technical support of
the internees Mona Rahn and John Schmid. Naproche 0.3 was the first version
of Naproche to implement sophisticated portions of textual mathematics, i.e.
of natural language in mathematical texts, into the Naproche CNL. Attempto
Controlled English served as a model for choosing principles of natural language
disambiguation, and to some extent also as a model for implementing the module
that parses Naproche CNL input and builds a semantic representation from it.

4Even though the terms “Proof Representation Structure” and “PRS” were already used
by |Zinn| (2004), his definition of “PRS” is substantially different from the one developed within
the Naproche project.

15We will describe this dynamic nature of natural language quantification in section

161n this section I avoid the pluralis auctoris used in the rest of the thesis, in order to make
clear which contributions were my own and which ones were the collective work of several
members of the Naproche group.
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After the first significant improvements to Naproche 0.3, we changed the
version number to 0.4 in October 2009. Further improvements were made con-
stantly until June 2010, raising the version number to 0.47. The theoretically
most interesting and technically most involved improvement during that time
was the introduction of definite descriptions starting with “the”, which trigger
existence and uniqueness presuppositions (see section , which in the proof
checking have to be treated in a different way than existence and uniqueness
assertions (see section [6.1.3)).

Since the TeXmacs interface of Naproche 0.1 was hard to maintain with
advances in the core of the system, we decided to develop a new interface for
Naproche 0.3, namely a web interface that could be run in a web browser. In this
way, we could also make Naproche available as a web application, sparing users
the need to install it on their own computers. The web interface was originally
developed by Daniel Kiihlwein for Naproche 0.3, and significantly improved by
Sebastian Zittermann, a computer science master student of Gregor Biichel from
the Cologne University of Applied Sciences, in Naproche 0.4 up to 0.45.

In the development of Naproche 0.3 and 0.4x, Kiihlwein and I had the fol-
lowing division of labour: I developed the Naproche CNL and implemented
the linguistic module that built PRSs from input CNL text, and Kiihlwein im-
plemented the logic module that checked whether a PRS represents a logically
sound proof text.

The main text on which the Naproche system has been tested since version
number 0.3 is the beginning of Landau’s Grundlagen der Analysis. More on
this test-bed for the Naproche system can be found in chapter 8] Starting in
January 2009, Richard Schiiller, a diploma student of Peter Koepke, started to
work on a Naproche CNL version of Euclid’s Elements, with an axiomatization
of Euclidean geometry based on the system E by |[Avigad, Dean, and Mumma,
(2009). This second test-bed for the Naproche system contained much more
varied usage of textual mathematics, which motivated two improved semantic
interpretation principles for the textual part of the Naproche CNL:

e [ introduced a disambiguation between distributive and collective readings
of plurals based on the common usage of plurals in mathematical texts;
see (Cramer and Schroder| (2012) or section of this thesis for further
details.

e I improved the treatment of quantifiers in bi-implications and reversed
implications; see section for further details.

In August 2010, we considered three partly interdependent possible improve-
ments of the Naproche systems:

e I planned to make the formula grammar, i.e. the grammar of the symbolic
part of the Naproche CNL, more flexible. Before then, the system pre-
defined for each symbol whether it should be parsed as a variable, as a
constant symbol, as a function symbol or as a relation symbol. In mathe-
matical texts, however, the author can decide in which of these syntactical
roles to use a symbol by introducing the symbol — for example through a
definition — in a way which explains the syntactical role of the symbol to
the reader.
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e Related to this, I planned to implement in the Naproche CNL the phe-
nomenon of implicit dynamic introduction of function symbols prevalent
in the language of mathematics and described in section [3.3

e Furthermore, motivated by our work with longer texts, especially with
the Euclid text mentioned above, we planned to implement the macro-
grammatical parser, i.e. the module that parses the text structure above
the sentence level, as an incremental parser, so that an already parsed
text that gets extended or modified does no need to be parsed and checked
again from the beginning, but only from the sentence containing the first
modification.

We realized that each of these possible improvements, especially the first and
the third, involved the development of a significant amount of new code and
significant modifications to existing code. Hence it made sense to tackle these
problems at once, and we started to use the version number 0.5 for the envisioned
system implementing these improvements. We further realized that it would
be hard to combine the incremental macro-grammatical parser with the web
interface, and hence decided to implement a new GUI for Naproche in Java.
The development of the GUI was carried out by Sebastian Zittermann as part
of his master thesis project (Zittermann, [2011)).

In December 2010, Daniel Kiihlwein left the Naproche project in order to
pursue a Ph.D. on automated reasoning in Nijmegen. This meant that in the
development of Naproche 0.5, I had to take over the logic module previously
developed by Kiihlwein. Apart from Zittermann’s support for the GUI, I had
the technical support of Julian Schléder and Johannes Seela for the development
of Naproche 0.5. Naproche 0.5 got released in January 2012. In March 2012
we implemented some further improvements, especially improving the runtime,
released as Naproche 0.51. In January 2013 I fixed a few bugs, giving rise to
Naproche 0.52, the current version of the Naproche system.

In April 2011, Torsten Nahm became an external doctoral student of Peter
Koepke in the Naproche project. He has been investigating the SAD system by
Paskevich with the goal of combining achievements of Naproche and SAD in a
single system.

1.5 Modularity of the developed theory

In this thesis, we will develop and intertwine several independent ideas. For
example, we will develop a certain foundational theory and certain techniques for
treating phenomena of the natural language of mathematics. When presenting
these ideas in this thesis, we will give a special focus to the way they can
be linked. On the other hand, the reader should be aware of the fact that
nevertheless the theory is modular in the sense that most ideas could work just
as well if completely different solutions for other discussed problems are chosen.
For example, the linguistic techniques developed could be built on a different
foundation theory than the one developed in this thesis, and the foundation
theory could be used for other purposes as well.
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1.6 Thesis outline

In this thesis, we define a CNL for mathematics and a proof checking algorithm
for checking the deductive correctness of proof texts written in this CNL. The
CNL and proof checking algorithm defined agree largely with what is imple-
mented in Naproche 0.52, with some significant differences which are discussed
in appendix [C] The most significant difference should already be mentioned at
this point: In our theoretical description in this thesis we do not refer to the
PRSs (Proof Representation Structures) used in the implementation. Instead of
PRSs, which are an extended versions of DRSs from Discourse Representation
Theory, our theoretical description will employ an extended version of Dynamic
Predicate Logic (DPL). Just like Discourse Representation Theory, Dynamic
Predicate Logic is a formal system aimed at capturing the dynamic nature of
natural language quantification. But unlike Discourse Representation Theory, it
has a close syntactical resemblence to standard systems of first-order predicate
logic.

The focus of the thesis is on the interaction between natural language phe-
nomena and proof-checking. A special emphasis is put on one particular logico-
linguistic phenomenon peculiar to the language of mathematics but, to our
knowledge, previously not described by other logicians or linguists, which we
termed implicit dynamic function introduction. In the outline that follows, we
say a bit more about how this phenomenon connects to the different themes
discussed in this thesis.

In chapter [2| we fix some notational and terminological conventions used
in this thesis. Chapter |3| presents methods from formal semantics that are re-
quired in this thesis, with a special focus of their application to the language
of mathematics. In the final section of chapter [3] section [3.3] we discuss im-
plicit dynamic function introduction. We show how this function introduction
can lead to a paradox analogous to Russell’s paradox. Chapter [4] describes a
foundational theory of functions equiconsistent to ZFC, which can be used for
imposing limitations to implicit dynamic function introduction in order to avoid
this paradox. Furthermore, section describes a related but richer founda-
tional theory, which does not only have functions, but also sets, tuples, numbers
and Booleans as primitives.

In chapter [5} we define two formalisms, Higher-Order Dynamic Predicate
Logic (HODPL) and Proof Text Logic (PTL), that extend DPL in order to cap-
ture implicit dynamic function introduction and to serve as a formal counterpart
to the CNL to be defined in chapter []] The definitions of their semantics re-
quire the foundational theories from chapter [dl In chapter [f] we motivate and
define the proof checking algorithm as an algorithm for checking the correct-
ness of PTL texts, and prove soundness and completeness theorems for this
proof checking algorithm. In chapter [7] we finally define the Naproche CNL
and specify its semantics by defining a translation from the CNL to PTL. This
translation together with the proof checking algorithm from chapter [f] defines a
proof checking algorithm for CNL texts.

Chapter [8 presents a case study, namely the application of the theory de-
veloped in the previous chapters to the beginnings of Landau’s Grundlagen der
Analysis. Chapter [9] concludes the thesis and provides an outlook to further
research that could extend the research conducted for this thesis.

There are four appendices: Appendix A provides a complete formal grammar
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of the Naproche CNL. Appendix B contains the Naproche CNL adaptation of
the first chapter of Landau’s Grundlagen der Analysis. In appendix C, we
discuss the differences between the theory presented in this thesis and what is
implemented in Naproche 0.52. Appendix D is a concise manual for Naproche
0.52.
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Chapter 2

Notation and terminology

In this short chapter we fix some notational and terminological conventions used
in this thesis. These are mainly needed for the most mathematical parts of the
thesis, i.e. for chapter [4 and sections and

We assume that the reader is familiar with the standard notation used in
basic mathematical logic and set theory, as found for example in [Ebbinghaus,
Flum, and Thomas| (2007) and Hrbacek and Jech| (1999).

Following the convention from the literature on Dynamic Predicate Logic
(DPL), we use PL (for Predicate Logic) as an abbreviation for the standard
system of classical first-order predicate logic with equality. PL is assumed to
have the connectives =, A, V, — and <>, the logical constants T and | and
the quantifiers 3 and V. We follow the usual convention of operator priorities in
order to drop superfluous brackets: A and V bind stronger than — and <. For
example, p1 A g2 — 1 V 1) is shorthand for ((p1 A p2) = (¥1 V4ba)). Also in
the logics that we define in the thesis we follow these conventions for dropping
superfluous brackets and enhance readability.

Both in PL and in the logics we define in the thesis, we — for the sake of
readability — sometimes write relation symbols in infix notation (e.g. = € y
instead of € (z,y)), even when this notation has not been formally defined.

As usual in logic texts, we use t as an abbreviation for ¢, ..., ¢, when
the length n of this term list is either clear from the context or not relevant.
Additionally, ¢ can also be an abbreviation for the tuple (¢1,...,¢,). We use
the symbol ™ for the adjoinment of an element to a tuple: (t1,...,t,) tpt1 :=
(t1, .ty tng1)-

We assume familiarity with the standard definition of goi, the result of sub-
stituting the term ¢ for all free occurrences of the variable z in ¢, with renaming
of bound variables to avoid binding of variables in t. We need an extension of
this definition: Substitution has to be defined so as to allow term substitution
too: @% means that all occurrences of ty are replaced by t;.

In chapter[6 we extensively talk about finite sequences, also called lists. We
use the notation (z,...,z,) for the finite sequence of elements xy,...,2, in
this order. Finite sequences could be identified with tuples, but for clarity we
prefer to use a separate notation for finite sequences. The idea is that we use
tuples in contexts where the length of the tuple is fixed in advance, whereas
finite sequences are used in contexts where their length can vary. In order
to conveniently talk about finite sequences, we use some set-like notation for
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them: For example, given an element x and a finite sequence I', we write x € T"
to mean that there is at least one occurrence of x in I'. We use notations like
(x €T | p(x)) and (f(z) | f € T) to build new finite sequences from given ones.
Noting that the original list I' can be used to define the multiplicity and order
of the elements in the newly built list, this notation explains itself based on
the analogous notations for sets. Additionally, we use the notation I'y & I's for
the concatenation of I'y and I's. If Iy is of the form (z1,...,Zn, y1,...,Ym) and
Iy = (x1,...,2,), then T'; —T'5 denotes (y1,...,ym). Ifeach of 21,...,z, occurs
only once in I, then I'\ (x1,...,x,) is defined to be I' with the occurrences of
T1,...,T, deleted and with its other elements kept in the original order.

In chapters [5] and [6] we also talk about (finite) multisets. These resemble
finite sequences in that elements can occur more than once in them, and they
resemble sets in that the order of the elements does not matter. We freely use
either set or list notation for them.

As is usual in linguistic literature, we prefix example sentences that are
considered ungrammatical with an asterisk (*). In case the grammaticality of
the example sentence is dubious, we use a superscript question mark (*) instead.



Chapter 3

Linguistic foundations of
Naproche

In the first two sections of this chapter, we introduce the linguistic machinery
required in this thesis. In the third and final section, we describe a logico-
linguistic phenomenon peculiar to the language of mathematics, namely the
implicit dymanic function introduction.

3.1 Dynamic Predicate Logic

Our formal treatment of mathematical reasoning and our controlled natural
language for mathematical texts will be based on an extension of Dynamic
Predicate Logic (DPL, see |Groenendijk & Stokhof] 1991). DPL is a logical
system for formalizing some of the dynamic features of natural language. Its
syntax is identical to that of standard first-order predicate logic (PL), but its
semantics is defined in such a way that the dynamic nature of natural language
quantification is captured in the formalism. Consider the following example
sentence and formulae:

(1) If a farmer owns a donkey, he beats it[T]
(2) PL: VaVy (farmer(x) A donkey(y) A owns(x,y) — beats(z,y))
(3) DPL: 3z (farmer(z) A y (donkey(y) A owns(x,y))) — beats(x,y)

The standard way of translating into PL is . In DPL, can also be
translated by the formula , which is more faithful to the structure of .
Note that in PL, is not a sentence, since the final occurrences of x and y are
free. In DPL on the other hand, a variable may be bound by a quantifier even
if it is outside its scope. The semantics of DPL is defined in such a way that
is equivalent to (2) in DPL. Hence we can conclude that in DPL, captures
the meaning of while being more faithful to its syntax than .

1This example sentence is one of a number of standard examples from the linguistic lit-
erature about dynamic quantification, which are usually called donkey sentences. Donkey
sentences were originally introduced by |Geach) (1962).
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The natural language quantification used in mathematical texts also exhibits
these dynamic features, as can be seen in the following quotation from [Hatcher
(2002} p. 36):

If a space X retracts onto a subspace A, then the homomorphism
iv : M (A, 29) = m (X, 20) induced by the inclusion i : A — X is
injective.

Since much of this thesis is about extensions of DPL, readers without any
acquaintance of DPL are advised to read at least the first two sections of
Groenendijk and Stokhof’s paper. Below we will give a complete formal def-
inition of the syntax and semantics of the variant of DPL used in this thesis.
We will also say some words to motivate this formal definition; but these brief
motivative comments cannot replace the much more detailed motivation pre-
sented in |Groenendijk and Stokhof/s paper.

DPL is based on the tenet that the meaning of a sentence is not determined
by its truth conditions, but by its information change potential, i.e. by the
way the sentence changes the information available to a person interpreting
it (Groenendijk & Stokhof, (1991 p. 43). This is what makes it a dynamic
rather than a static theory of meaning. However, in DPL only one aspect
of information is treated dynamically, namely the information that determines
which antecedents are available for subsequent anaphors.

PL can be considered a static theory of meaning: The meaning of a formula
in PL is characterized by a set of variable assignments, namely the set of assign-
ments that make the formula true. In DPL, on the other hand, the meaning of a
formula determines how that formula can change variable assignments. Hence,
the meaning of a formula does not just determine which assignments make that
formula true, but also how these assignments are changed into other assignments
by the formula. So in DPL, the meaning of a formula is its assignment change
potential.

After these motivative comments, let us now define DPL formally. We define
DPL syntax as follows: We fix a signature consisting of constant symbols, func-
tion symbols of fixed arity and relation symbols of fixed arity. As variables we
may use any small Latin letters not reserved by the signature, possibly with a
numerical subscript. DPL terms and formulae are defined recursively as follows:

A DPL term is either a variable, a constant symbol or of the form f(¢1, ..., )
for DPL terms tq,...,t, and an n-ary function symbol f.

A DPL formula is of one of the following forms, where t1,...,t, are DPL
terms, R is an n-ary relation symbol and ¢ and v are DPL formulae:

o T

o 11 =1

R(ty,...,ty)
* —p

(P AY)

(P V)

* (p 1)
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e Jx

o O]

We present DPL semantics in a way slightly different but logically equivalent
to its definition in |Groenendijk and Stokhof| (1991)). Structures and assignments
are defined as for PL:

Definition 3.1.1. A structure S is a pair (D, F'), where D is a non-empty set
of individuals, called the domain of S, and F is a map such that

e for every constant symbol ¢, F(c) € D,
e for every n-ary function symbol f, F(f) is a function from D™ to D,
e for every n-ary relation symbol R, F(R) C D".

Definition 3.1.2. Given a structure S = (D, F), an S-assignment is a function
from the set of variables to D. Gg is the set of S-assignments.

Remark. We usually use g, h, k and j to refer to assignments.

Definition 3.1.3. Given a DPL term ¢, a structure S = (D, F) and an S-
assignment g, we recursively define

g(t) if ¢ is a variable
§(t) =< F(t) if t is a constant symbol
g
F(f)(E(t1),-., 2(ta)) if t is of the form f(t1,...,t,)
Definition 3.1.4. Given two assignments g, h, we define g[z1, ..., x,]h to mean
that ¢ differs from h at most in what it assigns to the variables x1, ..., z,.

Groenendijk and Stokhof] (1991)) define an interpretation function [e]s from
DPL formulae to subsets of Gg x Gg. We instead define for every g € Gg an
interpretation function [e]Z from DPL formulae to subsets of Gg. E|

Definition 3.1.5. Given a structure S = (D, F) and an S-assignment g, we
define the interpretation function [e]% C G recursively as follows:

L [T]§ = {g}

{g} if %(tl) = §(t2)

0 otherwise

2. [[tl = tg]]% = {

3. [R(tr, ... t,)]% =

] = {{9} it (2(t1), .., 2(tn)) € F(R)

0 otherwise

{g} if there is no h such that h € [¢]%

4. [l = {

0 otherwise

2The formula O¢ captures the truth-conditions of ¢ while blocking the binding power of
existential quantifiers in ¢ for variables outside ¢ (see|Groenendijk & Stokhof} [1991} p. 22).
It is equivalent to ——p.

3This can be viewed as a different currying of the uncurried version of |Groenendijk and
Stokhoffs interpretation function.
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5. [ A% := {h | there is a k such that k € [¢]% and h € []%}
6. [Vl = {g} if there is there is an h such that h € [¢]% or h € [¢]%
0 otherwise

(g} if for all k such that k € [p]%, there is a j such that
7. [p = ¥]% = j € [¥l%

0 otherwise
8. [3z )% := {h | there is a k such that k[z]g and h € [¢]%}

if there is an h such that h € [p]%

o forlt {{g} ol

0 otherwise

The idea of Definition is that the meaning of a formula ¢ is modelled
as an assignment change potential: [¢]% is the set of all assignments that can
be the result of applying the assignment change potential of ¢ to g. We consider
¢ to be true if and only if [¢]% is non-empty.

Let us now see how this definition of DPL semantics works in the case of
formula (3]) from the beginning of this section. Fix a structure S = (D, F).
By item f Definition [Bz (farmer(x) A Jy (donkey(y) A owns(z,y))) —
beats(z,y)]% can only be {g} or 0. Let us see under which conditions it is {g},
i.e. under which conditions is true. This is precisely if for all k£ such that
k € [3z (farmer(z) A 3y (donkey(y) A owns(z,y)))]%, there is a j such that
j € [beats(z,y)]%. Now by item [3[ of Definition j € [beats(z,y)]% iff
(k(x),k(y)) € F(beats). Furthermore,

k € [3z (farmer(x) A Jy (donkey(y) A owns(z,y)))]%

iff there is an h such that h[z]g and k € [farmer(x) A Jy (donkey(y) A
owns(x,y))]

iff there are h, h/ such that h[z]g, ' € [farmer(x)]% and k € [Jy (donkey(y) A
owns(z,y))I§

iff there is an h such that h[z]g, h(x) € F(farmer) and k € [Jy (donkey(y) A
owns(x,y))]

iff there are h, h"’ such that h[x]g, h” [y|h, h(z) € F(farmer) and k € [donkey(y)A
owns(z, y)]%"

iff there is an h such that h[z]g, k[y]h, h(x) € F(farmer), k(y) € F(donkey) and
(k(x), k(y)) € F(owns)

iff klx,ylg, k(x) € F(farmer), k(y) € F(donkey) and (k(z), k(y)) € F(owns).

So according to DPL semantics, is true if and only if for all & such that
klx,ylg, k(z) € F(farmer), k(y) € F(donkey) and (k(x),k(y)) € F(owns), we
have (k(z),k(y)) € F(beats). These are precisely the intended truth conditions
for .

We use Vx ¢ as shorthand for (3x T — ¢). Given this definition, the
semantics of V turns out to be exactly the semantics that it has by definition in
Groenendijk and Stokhof (1991)E|

4The reason for not having V as primitive is that when we extend DPL to Higher-Order
Dynamic Predicate Logic in chapter [5] the semantics of — is rather involved, and with a
primitive V we would have this involved definition repeated twice over.
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We need two more definitions related to DPL semantics:

Definition 3.1.6. For DPL formulae @1, ..., ¢,, ¥, we define o1,...,¢0, E ¥
iff for all structures S and S-assignments gy, ..., g, such that g; € [p;]% " for
1 < i < n, there is an S-assignment h such that h € [¢]%.

Definition 3.1.7. A DPL formula ¢ is called a tautology iff |= ¢.

3.1.1 Scope and binding

A distinctive feature of DPL is that it allows existential quantifiers to bind vari-
ables outside their scope. |Groenendijk and Stokhof| (1991, pp. 58-59) give a
syntactic characterization of when an occurrence of a variable is bound by an
occurrence of a quantifier. They do this by simultaneously defining three syn-
tactical notions. We take over their definitions with only some minor notational
modifications.

First we informally explain the three notions to be defined: The first one is
that of the set of binding pairs in ¢, denoted bp(y). A binding pair consists of
a quantifier occurrence and a variable occurrence such that the first binds the
second. The second notion is that of the set of active quantifier occurrences in
©, denoted aq(y). An occurrence of a quantifier is active if it has the potential
to bind occurrences of the corresponding variable further on. The third notion
is that of the set of free occurrences of variables in ¢, denoted fv(p). A variable
occurrence is free if it not bound by any quantifier. Just as |Groenendijk and
Stokhof! (1991)), we refrain from explicitly introducing a notation for occurrences,
which makes the formal definition a bit sloppy.

Definition 3.1.8. We define bp, aq and fv by simultaneous recursion as fol-

lows:
1. bp(R(t1,...,tn)) =0
aq(R(t1,...,tn)) =10
fv(R(t1,...,tn)) := {x | = is a variable occuring in ¢; for some 1 <14 <n}

3. bp(p A ) :=bp(p) Ubp(¥) U{(3z,z) | 3z € aq(p) and = € fv(¥)}
aq(pNY) == aq(y) U {3z € aq(p) | 3z ¢ aq(y)}
tvipny) =tv(p)U{z € fv(¥) | 3z ¢ aq(p)}

4. bp(p V ) :=bp(p) Ubp(®)

aq(e V) =0
fv(p V) = fv(p) Utv(y)

5. bp(p — ¥) ::é)p(w) Ubp(¥) U{(3z,z) | 3z € aq(p) and = € fv ()}
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6. bp(3z ¢) := bp(p) U{(Fz,z) | = € fv(p)}
aq(p) U {3z} if 3z ¢ aq(y)
aq(3z ¢) := _
aq(y) otherwise
fv(3z p) :=1fv

) minus the occurrences of z in ¢

The aq function defined above only formalizes which quantifiers are active
at the end of a given DPL formula. But it also makes sense to ask which
quantifiers are active at a given position inside a formula. For this, we first need
to formalize what we mean by a position in a formula:

Definition 3.1.9. Given a DPL formula ¢, we call an occurrence of an atomic
formula in ¢ a position in .

Definition 3.1.10. Given a DPL formula ¢, an occurrence 3z of a quantifier
in o and a position p in ¢, we say that Jz is an active quantifier at position p iff
the formula ¢’ resulting from ¢ by placing  in an argument position at p has
the binding pair (3z, x), where the first element in this pair is the occurrence of
Jx in question and the second element in this pair is the occurrence of = that
we have added at position p.

3.2 Presuppositions

Loosely speaking, a presupposition of some utterance is an implicit assump-
tion that is taken for granted when making the utterance. In the literature,
presuppositions are generally accepted to be triggered by certain lexical items
called presupposition triggers. Among them are definite noun phrases (in English
marked by the definite article “the”, possessive pronouns or genitives), factive
verbs (like “regret”, “realize” and “know”), change of state verbs (“stop” and
“begin”), iteratives (“again”) and some others.

In mathematical texts, most of the presupposition triggers discussed in the
linguistic literature, e.g. factive verbs, change of state verbs and iteratives, are
not very common or even completely absent. Definite noun phrases, however,
do appear in mathematical texts as presupposition triggers (e.g. “the smallest
natural number n such that n? — 1 is prime”). And there is another kind of
presupposition trigger, which does not exist outside mathematical texts: Func-
tion symbols. For example, the division symbol “/” presupposes that its second
(right hand) argument is non-zero; and in a context where one is working only
with real and not with complex numbers, the square root symbol “\[ ” presup-
poses that its argument is non-negative.

Presupposition projection is the way in which presuppositions triggered by
expressions within the scope of some operator have to be evaluated outside this
scope. Consider for example the following three sentences:

(4) The king has a son.

(5) The king’s son is bald.
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(6) If the king has a son, the king’s son is bald.

If we restrict our attention to existential presuppositions triggered by definite
noun phrases, we see that (4) and (6 presuppose that there is a king and
presupposes that there is a king and that the king has a son. So @ inherits the
existential presupposition of , which is identical to one of the two existential
presuppositions of , but does not inherit the other existential presupposi-
tion of . The precise way in which presuppositions project under various
operators has been disputed at great length in the literature (see for example
Levinson| (1983)) and [Kadmon| (2001) for overviews of this dispute). Our formal
treatment of presuppositions in mathematical texts turns out to have equivalent
predictions about presupposition projection to Irene Heim’s (1983)) approach to
presuppositions, which we briefly describe in section below.

Presupposition accommodation is what we do if we find ourselves faced with
a presupposition the truth of which we cannot establish in the given context:
We add the presupposition to the context, in order to be able to process the
sentence that presupposes it. For example, if I say “My wife is a philosopher” to
someone who does not know that I have a wife, that person will accommodate
the fact that I have a wife, i.e. add this presupposition to the context in which
he interprets the sentence.

3.2.1 Definite descriptiong’]

Although terminology is not used in a fully uniform fashion among linguists, we
will make the following distinctions suitable for our purposes. We analyse noun
phrases syntactically into a determiner (here: “the”) and a restricting property.
We call definite noun phrases referring to a single object by a restricting property
whose extension contains exactly one object definite descriptions. Definite noun
phrases in the singular with restricting properties whose extension contains more
than one object get their referential uniqueness usually by anaphoric reference to
an object mentioned previously; they are called anaphoric definite noun phrases.
A mathematical example of an anaphoric definite noun phrase is “the group”
used to refer to a group mentioned recently in the text. The example above
(“the smallest natural number n such that n? — 1 is prime”) was an example of
a definite description.

The presupposition of a singular definite description with the restricting
property F is that there is a unique object with property F. This presupposition
can be divided into two separate presuppositions: One existential presupposi-
tion, claiming that there is at least one F, and one uniqueness presupposition,
claiming that there is at most one F.

3.2.2 Presuppositional information in definitions

As mentioned in section definitions can be used to introduce new textual
or symbolic lexical items and fix their meaning. Implicitly, definitions also
fix which presuppositions are triggered by the newly introduced lexical items.
Reconsider the following definition already cited in section [1.1.

Definition 1.1.5 A set D is dense in the reals if every open interval (a, b)
contains a member of D. (Trenchl 2003, p. 6)

5This section is largely taken over from |Cramer, Kiithlwein, and Schréder| (2010).
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Based on this definition, the lexical item “dense in the reals” triggers the pre-
supposition that its subject must be a set. The fact that the setness of the
subject is a presupposition and not part of what “dense in the reals” asserts can
be seen from the fact that one cannot legitimately write “D is not dense in the
real” when D is not even a set.

In the same vein, we find definitions of symbolic lexical items which make
the newly introduced symbolic lexical item trigger presuppositions:

(7) Definition 2.1.10 Suppose that f is bounded on [a,z(), where 2y may
be finite or co. For a < x < xp, define

Sp(x;x0) = sup  f(t)

rz<t<xzo

and
If(ww) = _inf f(0)

(Trenchl [2003], p. 47)

Based on this definition, the symbolic expressions Sy (z; zo) and If(z; x) trigger
the presuppositions that f is bounded on [a, x¢) and that a < z < xg.

In general, definitions which define relations or functions introduce some
variables which function as arguments of the defined relation or function. The
conditions imposed on these variables before the actual definition is stated be-
come presuppositions that can be triggered by the lexical item introduced for
the defined relation or function.

3.2.3 Heim’s approach to presuppositions

For the purpose of explaining the observable presupposition projection features
of various operators in a unified way, [Heim| (1983) gives an account of the
meanings of sentences in terms of their context change potential (CCP). More
formally, the CCP of a sentence s is a function that maps a context ¢ to a context
¢+ s. As a first approximation to what contexts are, Heim identifies them with
propositions, i.e. with sets of possible worlds, but later refines her account of
contexts, identifying them with sets of pairs (g,w), where g is a sequence of
individuals and w is a possible world. We can still extract a proposition from
such a set of pairs: Given a set of sequence-world pairs ¢, the corresponding
proposition is {w | for some g, (g,w) € c}.

For comparing this account of contexts with our DPL-based approach to
natural-language semantics, one can identify contexts with sets of pairs (g, 5),
where S is a structure and g is an S-assignment. The CCPs that Heim gives
to sentences with operators like “if” and “every” correspond naturally to our
above definition of the semantics of the corresponding DPL operators (— and
V): Given a context ¢ (in the sense of a set of pairs (g, S), where S is a structure
and ¢ is an S-assignment) and a DPL formula ¢, ¢ + ¢ can be defined to be
{(¢',8) | for some (g, 5) € ¢, g’ € []&}-

Heim reduces presupposition to a related notion, namely that of a given
context admitting a given sentence. A sentence s presupposes a proposition p
iff all contexts that admit s entail p. Heim characterizes admittance formally
as follows: A context ¢ admits a sentence s iff ¢ + s is defined. So the function
¢+ ¢+ s must be viewed as a partial function not defined on all contexts.
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Given our above characterization of ¢ — ¢+ s in terms of [e]%, we can
give the following equivalent characterization of presuppositionﬂ A formula ¢
presupposes a formula v iff for every structure S and every S-assignment g, if
[l is defined, then [¢]% # 0. Of course [o]% now also has to be viewed as a
partial function.

Given this formal apparatus, let us see how it helps to clarify the existential
presuppositions of @ By the definition of [¢ — ¥]%,

I ) g (g} if for all k such that k € [“The king has a
I tl}e king hgs a son,| = _ J9 son.”]%, [“The king’s son is bald” % # 0
the king’s son is bald.” .
s 0 otherwise.

So [“If the king has a son, the king’s son is bald.”]% is defined iff [ “The king has
a son.”]% is defined and for all k& € [“The king has a son.”]Z, [“The king’s son is
bald”]]’gv is defined. Restricting our attention to existential presuppositions, this
means that [“If the king has a son, the king’s son is bald.”]% is defined iff there
is a king and if the king has a son, the king has a son. The second conjunct is
trivial, so that we can say that [“If the king has a son, the king’s son is bald.”]%
is defined iff there is a king. This way we have explained why @ inherits one of
the existential presuppositions of its immediate constituents but not the other.

Heim’s approach to presuppositions allows for two different kinds of pre-
supposition accommodation, global and local accommodation (see [Heim), [1983,
p. 401). Global accommodation is the process of altering the global context in
such a way that the presupposition in question can be justified; local accommo-
dation on the other hand involves only altering some local context, leaving the
global context untouched. Consider for example the following sentence, uttered
in a context compatible with France not having a king:

(8) Mary did not see the king of France.

The definite description here is within the scope of the negation. So if we add the
existence to the local context within the scope of the negation, it gets negated
too, resulting in the interpretation that either there is no king of France or Mary
did not see the king of France. Alternatively, we can add the presupposition
to the global context, i.e. assume that there is a king of France. |Heim| (1983|
p. 401) postulates that ceteris paribus global accommodation is preferred over
local accommodation.

In section of chapter [5| we present a formalism that extends DPL and
formalizes presuppositions in the way described here, but without accommo-
dation. In section below we describe the particularities of presupposition
accommodation in mathematical texts, and in section of chapter [7] we
sketch a possible treatment of accommodation in our CNL.

3.2.4 Accommodation in mathematical textd]

For the sake of simplicity, we identify contexts with propositions, i.e. with sets
of possible worlds, in this section. In section [I.1] we mentioned the pragmatic

SNote that the difference between talking about natural-language sentences and talking
about formulae that represent the content of natural-language sentences is not relevant for
the points being made here.

"This section is largely taken over from [Cramer, Kithlwein, and Schréder| (2010).
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principle in mathematical texts that new assertions do not add new information
(in the sense of logically not inferable information) to the context. When math-
ematicians state axioms, they limit the context, i.e. the set of possible worlds
they consider, to the set where the axioms hold. Similarly, when they make local
assumptions, they temporarily limit the context. But when making assertions,
these assertions are thought be logically implied by what has been assumed and
proved so far, so they do not further limit the context.

The modification of the context in the case of local assumptions is certainly
a modification of the local context. For the sake of giving a unified treatment, it
is useful to view the modification of the context in the case of axioms also as a
modification of the local context, only that the mathemtician is planning to stay
in this locally modified context for the rest of the text. With this understading
of local as opposed to global contexts, one may succinctly state the pragmatic
principle mentioned above in terms of contexts as follows: In a mathematical
text, the global context may not be altered.

This pragmatic principle implies that global accommodation is not possible
in mathematical texts, since global accommodation implies adding something
new to the global context. Local accommodation, on the other hand, is allowed,
and does occur in real mathematical texts:

Suppose that f has n derivatives at xy and n is the smallest positive
integer such that £ (z) # 0.

(Trench) 2003} p. 102)

This is a local assumption. The projected existential presupposition of the
definite description “the smallest positive integer such that f(™)(zq) # 07 is that
for any function f with some derivatives at some point xg, there is a smallest
positive integer n such that f(™) (zo) # 0. Now this is not valid in real analysis,
and we cannot just assume that it holds using global accommodation. Instead,
we make use of local accommodation, thus adding the accommodated fact that
there is a smallest such integer for f to the assumptions that we make about f
with this sentence.

The fact that one has to accommodate locally rather than globally does not,
however, always fix which context we alter when accommodating. Consider for
example sentence @, used in a context where we have already defined a set A,
of real numbers for every real number x.

(9) For all z € R, if A, does not contain 1, then A, is finite.

The question is whether we need to check the finiteness of Ag in order to establish
the truth of @, or whether the finiteness of Ay is irrelevant. Since the use of
% presupposes that = # 0, which does not hold for any arbitrary x € R, we
have to locally accommodate that z # 0. But we can either accommodate this
within the scope of the negation or outside the scope of the negation, but still
locally within the conditional. In the first case, we have to establish that Ag is
finite, whereas in the second case we don’t.
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3.3 Implicit dynamic function introductionfJ

Functions are often dynamically introduced in an implicit way in mathematical
texts. For example, [Trench) (2003, p. 1) introduces the additive inverse function
on the reals as follows:

(10) For each a there is a real number —a such that a + (—a) = 0.

Here the natural language quantification “there is a real number —a” locally (i.e.
inside the scope of “For each a”) introduces a new real number to the discourse.
But since the choice of this real number depends on a and we are universally
quantifying over a, it globally (i.e. outside the scope of “For each a”) introduces
a function “—” to the discourse.

The most common form of implicitly introduced functions are functions
whose argument is written as a subscript, as in the following example:

(11) Since f is continuous at ¢, there is an open interval I; containing ¢ such
that |f(x) — f(¢)| < 1 if € I; N [a,b]. (Trench, 2003, p. 62)

If one wants to later explicitly call the implicitly introduced function a function
(or a map), the standard notation with a bracketed argument is preferred:

(12) Hence for each u € R™ there is a number f(u) € C with f(u) # 0 such
that
(o(a(w))?, o(a(u) E(a(u)),T(e(u)) = f(u)(z1(u), z2(u), z3(u)).
The function f is locally a quotient of continuous functions, so it is itself
continuous. (Bonk, (1992 p. 489)

(13) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stx(v)) C str(g(v)). Then g is a simplicial map V(K) — V (L), and
lg| = f. (Lackenby, 2008, p. 19)

(14) Since the multi-map ®~! is surjective, for every z € X there is a point
f(z) € Y with z € ®~!(f(x)), which is equivalent to f(z) € ®(z). It
follows from the bornologity of ® that the map f : X — Y is bornologous.
(Banakh & Zarichnyy, [2008, p. 5)

When no uniqueness claims are made about the object locally introduced
to the discourse, implicit function introduction presupposes the existence of a
choice function, i.e. presupposes the Axiom of Choice. We hypothesize that
the naturalness of such implicit function introduction in mathematical texts
contributes to the wide-spread feeling that the Axiom of Choice must be true.

Implicitly introduced functions are generally partial functions, i.e. they have
a restricted domain and are not defined on the whole universe of the discourse.
For example in , g is only defined on vertices of K and not on vertices of L.

If the implicit introduction of functions is allowed without limitations, one
can derive a contradiction:

(15) For every function f, there is a natural number g(f) such that

( ):{0 if f € dom(f) and f(f) #0,
1 if f & dom(f) or f(f)=0.

8This section is partly taken over from |Cramer| (2012)
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Then g is defined on every function, i.e. g(g) is defined. But from the
definition of g, g(g) = 0 iff g(g) # 0.

This contradiction is due to the unrestricted function comprehension that is
implicitly assumed when allowing implicit introductions of functions without
limitations. Unrestricted function comprehension can be formalized as an axiom
schema as follows:

Unrestricted function comprehension

For every formula ¢(z,y), the following is an axiom:
Va 3y p(x,y) = 3f Vo o(z, f(2))

The inconsistency of unrestricted function comprehension is analogous to the
inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension
in set theory. Two radically different approaches have been undertaken for
restricting set comprehension: Russell himself restricted it through his Ramified
Theory of Types, which was later simplified to Simple Type Theory (STT),
mainly known via Church’s formalisation in his simply typed lambda calculus
(Churchl [1940). On the other hand, the risk of paradoxes like Russell’s paradox
also contributed to the development of ZFC (Zermelo-Fraenkel set theory with
the Axiom of Choice), which allows for a much richer set theoretic universe than
the universe of simply typed sets. Since all the axioms of ZF(C apart from the
Axiom of Extensionality, the Axiom of Foundation and the Axiom of Choice
are special cases of comprehension, one can view ZF(C as an alternative way to
restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted
function comprehension. The type-theoretic approach can easily adapted to
functions; see |Cramer| (2012)) for the details. But the type restrictions that
such a type-theoretic approach imposes may be too strict for some applications:
Mathematicians sometimes make use of functions that do not fit into the corset
of strict typing, e.g. a function defined on both real numbers and real functions.
To overcome this restriction, we want an untyped theory of functions that avoids
the above paradox, in a similar way in which ZFC'is an untyped theory of sets
that avoids Russell’s paradox.

But there is no clear way to transfer the limitations that ZFC puts onto
set comprehension to the case of function comprehension. However, there is an
axiomatization of set theory called Ackermann set theory that is a conserva-
tive extension of ZFC. It turns out that the limitations that Ackermann set
theory poses on set comprehension can be transferred to the case of function
comprehension. We will show how to do this in the following chapter.



Chapter 4

Mathematical foundations
of Naproche

In this chapter we describe the mathematical foundations needed for the
Naproche system. After describing some variants of Ackermann set theory
and proving facts we need about them later, we introduce a system called
Ackermann-like Function Theory (AFT) by transferring the limitations that
Ackermann set theory poses on set comprehension to the case of function com-
prehension, as announced at the end of the previous chapter. For this, a di-
chotomy similar to that between sets and classes in Ackermann set theory has
to be imposed on functions. We propose the terms function and map respec-
tively for this dichotomy.

Next we describe a rich mathematical background theory that has classes,
maps, tuples, natural numbers and Booleans as primitive objects, and show
that working in a logic enriched by this rich background theory is in a certain
sense conservative over working in a logic without any mathematical background
theory.

4.1 Ackermann set theory

We first present the original version of Ackermann set theory (Ackermann
1956)), which does not allow for urelements (i.e. objects that are not classes)
and is called A in the literature.

All objects that the theory talks about are classes, and some of these classes
are considered sets. Intuitively, one can think of the sets as those classes that are
in some sense limited in size and because of this limitation more easily grasped
as single objects.

The language of A contains two predicates: A binary predicate € and a
unary predicate M (from the German word ”‘Menge”’ for ”‘set”’). The axioms
of A are as follows:

e Extensionality Axiom: Vz,y (Vz (z €Ex > 2z €y) >z =y)

e Class Comprehension Axiom Schema: Given a formula F'(y) (possibly with
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parameter{b that does not have x among its free variables, the following

vy (Fy) — M(y)) > 3z ¥y (y € = ¢ F(y))

e Set Comprehension Axiom Schema: Given a formula F(y) (possibly with
parameters that are sets) that does not have x among its free variables
and does not contain the symbol M, the following is an axiom:

Vy (F(y) = M(y)) = Jz (M(2) AVy (y € z < F(y)))

e Element Axiom: Elements of sets are sets:
Vo,y (M(y) Nz €y — M(x))

e Subset Axiom: Subsets of sets are sets:
Vo, y (M(y) A\Vz (z €z — 2z € y) = M(x))

There are three axioms that we sometimes add to A:

e Axiom of Foundation (for sets): Every non-empty set has an €-minimal el-
ement:
Ve (M(z)ANJyyex—3JycaVzexz¢y)

e Axiom of Choice (for sets): For every set x of pairwise disjoint non-empty
classes, there is a class y containing precisely one element from every ele-
ment of x:
Vo (M(x) AVy,z € * Pw (w € yAw € 2) AVy € 2 32 2z € y —
JyVzexIweyweE 2).

e Axiom of Global Choice: For every class z of pairwise disjoint non-empty
classes, there is a class y containing precisely one element from every ele-
ment of x:
Ve (Vy,z €z dw (weEyAw € 2)AVy €Ex Iz 2 €y = yVz €x
lw e yw e 2).

We add the symbols *, C and G to the name of a theory to indicate addition
of Foundation, Choice or Global Choice respectively. For example, A*G is
Ackermann set theory with Foundation and Global Choice. Additionally, we
use the abbreviations AC and AGC for the Axiom of Choice and the Axiom of
Global Choice respectively.

Later on we will also need to work with a variant of Ackermann set theory
that allows for the existence of urelements. Ackermann himself presented a
version of his theory with urelements, which we call A}y, but we will work with
a variant of it which we call Ay. To motivate Ay, it is useful to conceive the sets
in Ackermann set theory as classes of limited size. Here we just take “limited”
as a primitive concept that is useful in avoiding the paradoxes of set theory and
function theory. In Ay, all urelements are treated as limited objects, whereas
Ay is more relaxed in that it allows for urelements which are not limited. The
motivation for considering the possibility of unlimited urelements will become
clear when we interpret Ackermann set theory within a function theory, in which
there can be unlimited maps which are not classes and hence are urelements from

IThis means that F may actually be of the form F(Z,y), and that these parameters are
universally quantified in the axiom:
vz Vy (F(z,y) = M(y)) = 3z Vy (y € = & F(2,9))
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the point of view of the set theory that we interpret. Ay can be obtained from
Ay by adding an axiom stating that all urelements are limited. The full strength
of A can be obtained from either Ay or Apy by adding an axiom that states
that there are no urelements.

The language of Ay contains three predicates: A binary predicate €, a unary
predicate C for classes and a unary predicate L for limited elements. The axioms
of Ay are as follows:

e Extensionality Axiom: Vz,y (C(z) AC(y) AVz (z€x > z€y) >z =1y)

e Class Comprehension Axiom Schema: Given a formula F'(y) (possibly with
parameters) that does not have x among its free variables, the following
is an axiom:

Yy (F(y) = L(y)) — 3z (C(x) AVy (y € v <> F(y)))

e Set Comprehension Axiom Schema: Given a formula F(y) (possibly with
parameters that are sets) that does not have x among its free variables
and does not contain the symbol L, the following is an axiom:
vy (F(y) = L(y)) = 32 (C(x) A L(x) AVy (y € x < F(y)))

e Element Axiom: Vz,y (L(y) Az € y = L(z))
e Subset Axiom: Vz,y (L(y) AVz (z €z = 2z € y) = L(x))

e Classness Axiom: Vz,y (z € y — C(y))

When presenting arguments in Ay in plain English, we use “set” for limited
classes, i.e. for objects x such that L(z) A C(z).

We will now discuss the relationship between ZF(C') and different versions of
Ackermann set theory. It is a result from the literature (Reinhardt], (1970) that
A* is a conservative extension of ZF, which implies two things: A* interprets
ZF and has the same consistency strength as ZF and ZFC. We will additionally
prove that even the weaker theory A interprets ZF. To make these statements
more precise, we first need some definitions. Definitions [4.1.1] 4.1.2] [4.1.3| and
are taken over from [Koepke and Koerwien| (2008)).

Definition 4.1.1. Let L; and L, be PL languages and T; an Li-theory. Let
A be the signature of Lo together with the identity relation symbol = and
an additional symbol U. A function A from A to L; (considered as a set of
formulae) is called a T} -definable Lo-structure iff

o A(U) has exactly one free variable x and 77 F 3z A(U)(x). We write
x € U instead of A(U)(x).

e For all relation symbols R € A the free variables of A(R) are exactly
v1,...,V, where n is the arity of R.

e For all function symbols f € A the free variables of A(f) are exactly
V1,...,VUnt1 Where n is the arity of f. Moreover,
Ty EYv, .oy vpge € U (A (01, oo, Uny U 1) AAS) (01, -+, Uy Upg2) —
A(=)(vn+1,vn42)) and
T F Yoy, ...,v, €U Jugq € UA(S)(v1,- .-, U, Ung1).
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e For all constant symbols ¢ € A, A(c) has exactly one free variable z and
Ty =3z e U (Ale)(x)) A,y € U (Ac)(z) A Ale)(y) = A(=) (2, y))-

o T proves that A(=) defines a congruence relation for Lo, i.e. it has the
properties of an equivalence relation and respects all functions and rela-
tions defined by the formulas of A.

Definition 4.1.2. Let L; and Lo be PL languages, 17 an Lq-theory and A a
Ti-definable Lo-structure. Then for an Lo-formula v the relativization of ¥ to
A is an L;-formula 1" defined by recursion on the structure of 1:

e If i) = (z = y), where z and y are variables, then " := A(=)(z, ).

e If x is a variable, ¢ is a constant symbol and ¢ = (z = ¢) then ¥4 :=

Ale) ().

e If z is a variable, f is a function symbol, ¢i,...,t, are Lo-terms and
Y= (x = f(t1,...,t,)) then v :=3zy,..., 2, €U ((x21 = t))AA ... A
(£ = t)ANAf) (21, ... 20, ).

e If R is a relation symbol (including the identity), then
R(th...,tn)A = Elxl,...wn e U ((531 = tl)‘A VANRVAN (.’En = tn)A AN
A(R)(21,...,xp)).

e TA=Tand L4 = 1.
o (=t
e For every binary connective *, (11 * ¥)? 1= b7 % 15t
o (Vz o)A :=Vz e U (¢A) and (Fz )* := Jz € U (4).
We also write A = ¢ for oA
Definition 4.1.3. If ® is a set of Ly-formulae we define ®4 := {o* | p € ®}.

Definition 4.1.4. Let L; and Lo be PL languages, T7 an Li-theory and T5
an Lo-theory. Then T4 is interpretable in Ty (or T interprets To) iff there is a
T, -definable Lo-structure A such that T} T2A.

Remark. If Ty is interpretable in 77 and T is consistent then T5 is consistent.

Definition 4.1.5. Let L; and Ly be PL languages, T7 an Li-theory and 75 an
Lo-theory. Then T3 is a conservative extension of Ty iff there is a T;-definable
Lo-structure A such that T F TQA and T2A proves every theorem of 77 that is
of the form p# for some ¢ € Lo.

Definition 4.1.6. For an e-formula ¢, let ¢; denote the formula obtained
from ¢ by restricting all quantifiers by the predicate M.

Definition 4.1.7. For a set ® of e-formulae, define @) := {¢p | p € D}.
Now we can state Reinhardt’s (1970) result that A* interprets ZF as follows:

Theorem 4.1.8. A*+ ZF);.
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Remark. For every axiom ¢ of ZF apart from Replacement, ¢, is easily es-
tablished in A*. Foundation and Extensionality are part of A*, and for every
other ZF axiom ¢ apart from Replacement, we will actually establish ¢,; in
the weaker system Ay in Lemma [{.1.12| below. The interesting part is therefore
Replacement, which was established by |Reinhardt| (1970)).

Corollary. A*Ct ZFCy;.

For the proof that follows we will need the following standard result:

Reflection Theorem Schema (Montague, (1961). For any finite set of €-
formulae (possibly with parameters), ZF proves that there is an ordinal o such
that all the formulae in the set are absolute for V.

Remark. By adding the Powerset Axiom to the finite set of formulae, one can
ensure that o must be a limit ordinal.

Additionally, we need the following definition:

Definition 4.1.9. Given an A™-formula ¢ and a constant symbol ¢, ¢ 17 denotes
the formula resulting from ¢ by replacing all occurrences of M (t) in ¢ by t € c.

Theorem 4.1.10. For any €-formula ¢, ZF+ ¢ iff A*F our.

Proof. The left-to-right implication directly follows from Theorem The
right-to-left implication was proved by |Lévy| (1959). Since his proof uses old-
fashioned notation and is more involved than needed for this result (because
one lemma proves something stronger than needed for this implication), it is
worthwhile for us to present his proof of this central result in modern notation.

Let ¢ be an e-formula such that A* - oa. Let ¢1,..., @, be the formulae
used for Set Comprehension in the proof. Let o be an ordinal such that ¢ as
well as ¢; and 3z Vu (u € z < p;(u)) for 1 < i < n are absolute for V,,. We
define ZF,, to be the theory that is axiomatized by the axioms of ZF and the
statement that V, is absolute for these formulae, where V,, is considered to be
a new constant symbol in this theory.

Then for every axiom 1 used in the proof of ¢y, ¢% is a theorem of ZF,:

Extensionality and Foundation
Trivial.

Element and Subset Axioms
Elements of elements of V,, and subsets of elements of V,, are in V.

Class Comprehension
For any €-formula y(z,y) such that Vo (x(Va,z) = x € V,,), ZF,
implies that {z | x(Va, )} exists.

Set Comprehension
Let ¢; be one of the formulae for which Set Comprehension was used
in the proof of ¢y, and suppose

Va (pi(z) = x € V). (4.1)

ZF,, implies
FzVu (u € z < @;(u)). (4.2)
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By absoluteness of (4.2)) for V,, we have
eV, Vu eV, (u€z e ol (u) (4.3)

Using absoluteness of ¢; for V,, (4.1) and transitivity of V,, (4.3)
simplifies to (4.4)) as required:

Jz € Vo Yu (u € z <> p;i(u)). (4.4)

So ZF, + @M%. Since wM% = V=, the absoluteness of ¢ for V,, implies
that ZF, F ¢. Finally, since ¢ does not contain the constant symbol V,,, and
since ZF proves the existence of a V,, with the required absoluteness property,
we can conclude ZF'+- ¢, as required. O

Remark. Note that this proof can be simplified to a proof that if A* I ¢, then
ZF + ¢: Working on the assumption that A* F ¢ and noting that ¢ does not
contain M, we can — at the place where we concluded ZF, + ¢ M% in the above
proof — conclude that ZF, - ¢. Then ZF F ¢ follows as in the above proof.

Corollary. For any €-formula o, ZFCF ¢ iff A*G + ppr.

Proof. Clearly AC,; follows from A*G, which gives us the additional strength
needed for the left-to-right implication. For the right-to-left implication, we just
need to replace ZF and A* by ZFC and A* G in the above proof of the right-
to-left implication, and add to this proof that AGC% is a theorem of ZFC,,
which is easily seen to be true. O

4.1.1 Ay interprets A* and ZF

Even though Ay is weaker than A*, one can still interpret A* and hence ZF
in Ay. For this we first have to develop some set theory within Ay. This
development is analogous to the development of |Ackermann| (1956)), |Lévy| (1959)
and |[Lévy and Vaught|(1961]) in A, with some minor adaptations in order to make
it work in the weaker theory Ay.

Definition 4.1.11. x Cy iff Vz (z € x — z € y).

Lemma 4.1.12. The azxioms of ZF apart from Extensionality, Replacement and
Foundation, with quantifiers restricted to sets, are theorems of Ay.

Proof. Each of these axioms postulates under certain condition the existence
of a set with a certain property. For each axiom, we construct a class that is
trivially seen to witness the restriction to sets of the existence claim, and show
that it is actually a set.

Empty Set

Apply Set Comprehension to z # x to construct the set {z | © # x} (which we
call () as usual).

Pairing

Given sets a and b, apply Set Comprehension to z =a V x = b.
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Powerset

Let a be a set. Set Comprehension can be applied to z C a, because any =
satisfying this is a subclass of a and hence a set.

Separation

Let a be a set and ¢ be an e-formula. = € a A ppr(x) defines a class, because
all z satisfying this are in a and hence sets. This class is a subclass of a and
hence a set.

Union

3z (x € z Az € a) defines a set, because any x satisfying it is a set by two
applications of Element.

Infinity

Applying Class Comprehension to L(xz) A C(z), one can establish that there is
a class V' containing all sets and nothing else. Now we can apply Set Compre-
hension to p(z) :==VI @ € INVy (y € I - yU{y} € I) — = € I), because
eV AVy(yeV —yU{y} € V), ie. any z satisfying p(x) is in V and hence
a set. O

Remark. The sets that we have shown to exist do not only satisfy their exten-
sionality conditions for sets, but for any objects. For example, the doubleton
{a, b} established by pairing satisfies not only Vz (set(z) — (x € {a,b} & = =
aV x = b)) but also the stronger statement Vz (z € {a,b} <> z =aVa =0b).
This strong characterization of these sets is usually needed when we apply these
axiom in what follows.

We use the following standard definitions:

Definition 4.1.13. The ordered pair (x,y) is defined to be {{z}, {z,y}} if this
class exists.

Remark. Given Pairing and the Extensionality Axiom of Ay, (x,y) always exists
for limited x, y. If z or y is unlimited, it is possible that (z,y) does not exist
(though it might turn out to exist even in that case). An atomic statement
involving (z,y) should be considered false if (x,y) does not exist. The same
convention holds for all other terms we define without proving that they exist
in all cases.

Definition 4.1.14. A relation is a class of ordered pairs. Given a relation R,
we write R(z,y) for (z,y) € R.

Definition 4.1.15. A map is a relation R such that R(x,y1) and R(zx,ys2)
implies y; = y2. Given a map f, we write f(x) for the element y such that
(z,y) € f if such a y exists.

Definition 4.1.16. For a relation R, the domain of R (dom(R)) is the class of
z such that Jy R(zx,y) if such a class exists.

Definition 4.1.17. A class x is transitive (trans(x)) iff for all z € y € z, we
have z € z.
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Definition 4.1.18. A class x is well-ordered by € iff Vy,z (y ¢ yA(y € 2V z €
yVy=2)AVuCax (u£0— It ecunps(sctnscu)))).

As noted by |[Lévy and Vaught| (1961)) (pages 1054-1055), the expected defini-
tion of ordinals as transitive classes well-ordered by € does not suffice to prove
that any two ordinals are comparable. Hence they added the condition that
for any two subclasses z,y of an ordinal, x \ y should exist. Since we are now
working in a theory with urelements, we have to add the additional condition
that all elements of an ordinal are classes:

Definition 4.1.19. z is an ordinal (Ord(z)) iff  is a transitive class well-
ordered by €, Vy,z Cx JuVt (t cu+teyAt ¢ z) and Vy €  C(y).

Definition 4.1.20. z is an ordinal number (ord(zx)) iff z is an ordinal and is
limited.

Definition 4.1.21. For an ordinal z, 2’ denotes x U {z} if this class exists.

Definition 4.1.22. When z and y are ordinals, < y is an alternative notation
for z € y.

Lemma 4.1.23. An element of an ordinal is an ordinal.

Proof. Let x be an ordinal and y € x. The transitivity and €-well-orderedness of
y can be established using standard techniques. y is a class by the last condition
in the definition of Ord(z). Every element of y is an element of = and hence a
class. Finally, let a and b be subclasses of y. These are subclasses of x, so by
Ord(z) a\ b exists as required. O

Lemma 4.1.24. For any Ay-formula ¢(z), the following is a theorem of Ay:
If 3z (p(z) A ord(x)), then there is a least x such that p(x) A ord(x).

Proof. Choose y such that ¢(y) A ord(y). If y is minimal with this property, we
are done, so assume it is not. Since y is a set, {x € y | ¢(x)} defines a set. Since
it is a non-empty subset of y and y is well-ordered, it has a minimal element x.
If there is a z < x such that ¢(z), then z € y by transitivity of y, contradicting
the choice of z. So x is minimal such that o(x) A ord(z). O

Remark. This allows us to give proofs by transfinite induction over the ordinal
numbers (but not over all ordinals).

Lemma 4.1.25. If a and (8 are ordinals, then precisely one of the following
properties holds:

e a<p
e f<
e =0

Proof. The fact that at most one of these properties holds is easily proved.
Now suppose for a contradiction that none of these three properties holds.
a\ B and B\ « exist by the additional condition imposed on ordinals.
Suppose for a contradiction that « \ S is empty, i.e. « C . Since a # 3,
B\ « is non-empty. Let z be the minimal element of 5\ «.
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Suppose y € . Then by the transitivity of 3, y € 8. If y were not in «, it
would be in '\ «, contradicting the minimality of z. So y € a. Thus z C «.

Conversely, suppose y € a. Then y € 5. Furthermore y # z, since = ¢ a.
Additionally x ¢ y, for otherwise we would have z € « by the transitivity of «.
Since x and y are both in 3, which is totally ordered by €, we may conclude
that y € . Thus o C z.

So x = «. But since x € 3, we can now conclude that o € 3, contrary to
our assumption.

Thus we have that « \ 5 is non-empty. Similarly, 8\ « is non-empty. Let a
be the minimal element of a\ 8 and let b be the minimal element of 3\ a.

Let € a. By minimality of a, x € 8. If x = b or b € x, then the transitivity
of a implies that b € «, contrary to the choice of b. Since € totally orders /3,
xz €b. Thus a C b.

Similarly, b C a, i.e. a = b. But then b € a, contradicting the choice of b. [

Lemma 4.1.26. The union of a set of ordinal numbers is an ordinal number.

Proof. The existence of this union follows from the Axiom of Union that we
have proved. Its transitivity and &-well-orderedness can be established using
standard techniques. It clearly contains only classes. And since subclasses of it
are sets, their subtraction certainly exists by Separation. O

Since we have not proved Replacement, we cannot use transfinite recursion.
Nevertheless, the von-Neumann hierarchy of V,,’s can be shown to exist for
ordinal numbers « (but not for any ordinal «, though for some it does exist).
We introduce a notation for speaking about the V,’s and about restrictions of
the map o — V,, without ontological commitment:

Definition 4.1.27. Given an ordinal «, V4|, denotes the map such that
dom(Vela) = a and Vo € a (y € Vila & J2 € 2z y C V,|a), if such a map
exists and is unique. (Here V|, is a convenient notation for Ve | (x).)

Definition 4.1.28. Given an ordinal a, V,, denotes the class V| if this class
exists.

Lemma 4.1.29. For every ordinal number «, V,, exists and is a set.

Proof. 1f for all ordinal numbers 3, V,|g were a set, then the lemma would
clearly hold. So assume for a contradiction that S is the smallest ordinal number
such that V,|g is not a set. Then the formula 3z < § (z = V4|,+) holds only for
sets z, so by Set Comprehension v := {z | Iz < § 2z = V,|-} is a set. So V,|g =
Ju is a set. But then V3 = {z | there is a pair (y, z) € V4|g such that = C z}
is a set by Set Comprehension. Hence Vi|g = Volg U (8, V3) is a set, contrary
to our assumption. O

Definition 4.1.30. x is a pure set (pset(x)) iff Ja (ord(a) Az € V).

Definition 4.1.31. z is a pure class (PC(x)) iff C(z) AVy € = Ja (Ord(ar) A
trans(Vo) ANVz € V,, C(2) Ny € V).

Remark. Even though we can show by transfinite induction that for all ordinal
numbers «, V,, is transitive and contains only classes, this cannot be shown for
ordinals, since we cannot carry out transfinite induction over the ordinals. So
the conditions trans(Vy) and Vz € V,, C(z) do make a difference.
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Definition 4.1.32. For a pure set x, the rank of x (rank(x)) is the smallest
ordinal number « such that x € V.

Remark. By Lemma [4.1.24] rank(z) is well-defined for all pure sets .

Definition 4.1.33. For an A*-formula ¢, we define the translation ¢, to be the
A y-formula obtained by replacing all occurrences of M by pset and restricting
all quantifiers by PC.

Definition 4.1.34. For a set ® of A*-formulae, define @, := {¢, | ¢ € ®}.
Now the following theorem establishes that Ay interprets A™:
Theorem 4.1.35. Ay A,

Proof. We have to prove that for every axiom ¢ of A, ¢, can be proved in Ay:

Extensionality

We have to prove that Va,y (PC(x) A PC(y) AVz (PC(z) = (z €z > z €y)) —
x = y). Since all pure classes are classes, Ay-Extensionality implies that it is
enough to show that any element of a pure class is a pure class. Let = be a pure
class and let y € x. Then there is an ordinal « such that V,, is transitive, all
elements of V, are classes and y € V,,. Then y is a class, and if z € y, then
z € V,, by transitivity of V,,, so y is a pure class as required.

Class Comprehension

Given any A*-formula ¢ such that for all z, ¢, («) implies that z is a pure set, we
have to prove that there is a pure class y such that a pure class z is in y iff ¢, (2).
We apply Ay’s Class Comprehension to ¢,(z). The resulting class is a pure
class, because all of its elements are pure sets, i.e. in a V,, for an ordinal number
a (and as remarked above, for ordinal numbers «, the constraints trans(V,) and
Vz € V,, C(z) certainly hold).

Set Comprehension

Given any e-formula ¢ such that for all =, ¢,(z) implies that = is a pure set,
we have to prove that there is a pure set y such that a pure class z is in y
iff pp(2). Since p,(z) does not contain the symbol L, we may apply Ay’s Set
Comprehension to ¢, (z) to show that y := {z | p,(z)} is a set.

Now “z is the rank of an element of y” holds only for sets. So v :=
{z | # is the rank of an element of y} is a set. But then p := |Jv is an ordi-
nal number by Lemma [£.1.26f Now y C V,,, i.e. y € Vs, i.e. y is a pure set, as
required.

Element Axiom
An element of a pure set is a pure set, since Va (ord(a) — trans(Vy) A
Vz € V,, C(z)) by transfinite induction.

Subset Axiom

We need to show that a subclass of a pure set is a pure set. This directly follows
from the fact that for an ordinal number «, V,, is closed under subclasses.
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Foundation for sets

We need to show that every non-empty pure set contains a pure class disjoint
from it. Let a be a non-empty pure set. Let b be an element of a of minimal
rank. Then b is clearly a pure class and disjoint from a. O

Corollary. Ay interprets ZF. (By Theorem[{.1.8)
Theorem 4.1.36. Ay C interprets A*C.

Proof. Adding Choice for sets to Ay clearly results in Choice for pure sets in
the above interpretation of A*, as required. O

Corollary. AyC interprets ZFC. (By the corollary to Theorem )

4.2 Ackermann-like Function Theory

Now we present Ackermann-like Function Theory (AFT), which adapts the
limitations that Ackermann set theory poses on set comprehension to function
comprehension.

AFT is a theory of partial functions/maps in the sense that the functions/
maps that it can talk about are not defined on the whole universe of discourse
of AFT. But AFT is a theory over PL (standard first-order predicate logic),
where all function symbols are considered to represent total functions on the
domain of discourse. Hence the application function that AFT has for applying
functions/maps from its domain to other objects of the domain must also be
total. So we must assign a value even to the application of a function/map to
an argument at which it is not defined. For this we introduce an undefinedness
object into the domain of AFT, which we designate as u, and which is the value
that we give to the application of any function/map to any argument where it
is not defined.

The language of AFT contains a unary predicate F' for functions, a unary
predicate U for urelementsﬂ for every m > 1 a unary predicate symbol a,,
(“to be an m-ary map”), a constant symbol u for undefinedness, and for every
n > 2 an n+l-ary function symbol app,, for function application. Instead of
app,,(f,t1,...,t,) we usually simply write f(¢1,...,t,). Instead of U(z)V F(z),
we write L(x) and say that x is limited.

The axioms of AFT are as follows:

e Extensionality Axiom Schema: For n > 1 and Z a variable list of length
n: Vf Vg (an(f) Nan(g) AVZ f(2) = g(2) = [ = g)

e Map Comprehension Axiom Schema: Given formulae P(z) and R(Z,x)
with parameters, the following is an axiom:
VzVa (R(Z,z) = L(z1) A+ ANL(zp) AL(2)) A VZ (P(Z) = 3z R(Z,2)) —
3f (an(f) AVZ (P(2) = R(Z, f(2))) AVZ (2P(2) = f(2) = u))
2Now that we are describing a theory of functions/maps rather than a theory of sets/classes,

urelement means an object of the domain that is not a map rather than an object of the domain
that is not a class.
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e Functionality Axiom Schema: Given formulae P(z) and R(Z,x) that have
limited parameters and do not contain the symbol F', the following is an
axiom:

Vz Vx (R(Z,x) = L(z1) A--- A L(zp) A L(x)) = Vf (an(f) AVZ (P(2) —
R(z, f(2))) AVZ (2P(2) = f(2) = u) = F(f))

e Element Axiom Schema (“elements of domain and range of functions are
limited”): For n > 1 and Z a variable list of length n:

VEVE (F(f)AF(Z) #u— L(z1) A ... AL(za) AL(£(2)))

e Subfunction Axiom Schema (“submaps of functions are functions”): For
n > 1 and Z a variable list of length n:

Vf Vg (F(g) Nan(g) Nan(f) AVZ (f(2) # u— f(2) = g(2)) = F(f))
e Undefinedness Axiom Schema: For n,m > 0 with n +m > 1:
Vi, s Ty Yoo s Ym GPPppn (T15 o s Ty Uy Y1y -y Ym) = U
Note that Map Comprehension and Functionality together imply the follow-
ing Function Comprehension Theorem Schema:

e Given formulae P(Z) and R(Z, ) that have limited parameters and do not
contain the symbol F', the following is a theorem of AFT:
VzVr (R(Z,z) = L(z1) A= AL(zp) AL(x)) A VZ (P(Z) = Jz R(Z,x)) —
3f (an(F) NF(f) AVZ ((P(2) = R(Z, f(2))) A (2P(2) = f(2) = u)))
For our application of AF'T in chapter [5] we will need an adapted version of
AFT with two distinguished urelements representing Boolean values, for which

we introduce special constant symbols T and L and an additional axiom T # L.
We call this adaptation of AFT AFTB.

4.2.1 AFT equiconsistent with ZFC

In this subsection we will establish that AFT and ZF(C are equiconsistent, but
will actually prove two stronger results for achieving this: Firstly that AFT
interprets ZFC, which we achieve by interpreting Ay C in AFT. Secondly that
A* G interprets AF'T.

Proposition 4.2.1. There exists a function ) such that for all z, §(z) = u.
Proof. Apply Function Comprehension to the formula ¢(z,y) := = # z. O

Definition 4.2.2. A class is a unary map f such that for all z, f(z) = u or
f(z)=0.

Definition 4.2.3. A set is a class that is a function.

Definition 4.2.4. Define x ¢ y iff y is a class and y(z) = 0.

Definition 4.2.5. For an Ay-formula ¢, we define the translation ppr to
be the AFT-formula obtained by replacing all occurrences of C' by class, all
occurrences of € by € and all occurrences of L by F.

Definition 4.2.6. For a set ® of A y-formulae, define ® qpr := {parr | ¢ € P}.
Now the following theorem establishes that AFT interprets AyC:
Theorem 4.2.7. AFTH AyCarpr.

Proof. We have to prove that for every axiom ¢ of AyC, @ apr can be proved
in AFT:
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Extensionality

Let a and b be classes such that Va (z € a <+ x £ b). Then by map extensionality
a = b, as required.

Class Comprehension

Let ¢(x) be an Ay-formula such that Vz (papr(zr) — F(z)). Applying Map
Comprehension to the formula @ 4pr(z) Ay = 0, we can conclude that there is
a unary map f defined precisely on those x such that ¢4 prr(z) and taking the
value @) at all such z, as required.

Set Comprehension

Let ¢(x) be an A y-formula not containing the symbol L such that Va (¢ apr(z) —
F(x)). Since papr(x) does not contain the symbol F', we may apply Function
Comprehension to the formula ¢ 4 pr(z) Ay = 0. The resulting function clearly
has the required properties.

Element Axiom

This follows directly from the Element Axiom of AFT.

Subset Axiom

This follows directly from the Subfunction Axiom of AFT.

Classness Axiom

This follows directly from the definition of €.

Choice

Here we make use of the fact that AFT assert the existence of choice functions:

Let a be a set of pairwise disjoint non-empty sets. Any x, y satisfying
z € a /Ny e x are limited by the Element Axiom, so we can apply Function
Comprehension to x € a Ay € = to construct a function f such that Vz e a
f(z) e x and Vo £ a f(x) = u. Now we apply Function Comprehension to
dz x = f(2) Az # uAy = 0 to construct a set b that satisfies Ve e a Ay e by e x,
as required. O

Theorem 4.2.8. AFT interprets ZFC.
Proof. By Theorem and the corollary to Theorem O

Now we still need to establish that A* G interprets AFT. We present a proof

that resembles the proof of Theorem [4.1.35| that Ay interprets A*. We first
need some definitions within A™ G-

Definition 4.2.9. A class a of n+1-tuples is called functional iff for all y1, ..., yn,
21, 22 such that (y1,...,yn,21) € x and (y1,...,Yn,22) € T, 21 = 22.
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Now we will define a cumulative hierarchy of functions, in a similar way as
we defined the cumulative hierarchy of sets of V,,’s in Definitions and
The intended definition is the following:

(I)Q = @
D1 :={f | For some n > 2, f is a functional class of n-tuples of elements of ®,}

(I)/\::U(I)O‘

a<A

As in the case of the V,,’s in Ay, we cannot define the ®,’s for all ordinals «,
but the following definitions do ensure that it is defined for all ordinal numbers:

Definition 4.2.10. Given a set A, write f :— A iff for some n > 2, f is a
functional class of n-tuples of elements of A.

Definition 4.2.11. Given an ordinal «, ®,|, denotes the map such that
dom(Pele) = v and Vo € a (y € Pyl|q < Iz € z y :— P,,), if such a
map exists and is unique.

Definition 4.2.12. Given an ordinal a, ®,, denotes the class @, |, if this class
exists.

Lemma 4.2.13. For every ordinal number o, ®, exists and is a set.

Proof. Analogous to the proof of Lemma O

Definition 4.2.14. A class A is ®-transitive iff for every x € A, every element
of a tuple in z is an element of A.

Definition 4.2.15. x is a ®-function iff there is an ordinal number « such that
r € P,.

Definition 4.2.16. z is a ®-map iff x is a functional class and for every element
y of a tuple in x, there is an ordinal « such that ®,, is ®-transitive, every element
of @, is a functional class and y € ®,.

Lemma 4.2.17. Every element of a tuple in a ®-map is a ®-map.
Proof. Let x be a ®-map and y be an element of a tuple in x. Then there is an
ordinal a such that ®, is ®-transitive, every element of ¢, is a functional class

and y € ®,. Then y is a functional class, and if z is an element of a tuple of y,
then z € &, by the ®-transitivity of ®,, so y is a $-map as required. O

Lemma 4.2.18. Every ®-map that is a set is a ®-function.

Proof. For every ordinal number «, let A\, be the smallest limit ordinal greater
than a. Now it is easily seen by transfinite induction that for every ordinal
number a, every ®-map in V, isin ®,_. O

Fix a set @ that is not a ®-map (e.g. @:= {0}).
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Definition 4.2.19. Let F be the A*C-definable L 4 pp-structure defined by

F(U) := “x is a P-map or x = 4’

F(=):=v1 =g

F(F) := “v; is a -function”

f(U) =11 7é V1
F(an) := “v1 is a ®-map consisting only of n+1-tuples” for n > 2

Flapp,) == “(va, .., Vns1,Vnt2) €01V (B (vo, ..., Unt1,%) € V1 AVpyo =1)”
forn>1
Flu) = “vy =a”.

Now by Definition the relativization ¢ of any AFT-formula ¢ to F
and the relativization ®7 of any set ® of AFT-formulae to F are defined. The
following theorem now establishes that A* G interprets AFT:

Theorem 4.2.20. A*G+ AFT”.

Proof. We have to prove that for every axiom ¢ of AFT, ¢ can be proved
in A*G. In the proof we often informally describe the relativization ¢’ of
some AFT-formula ¢. In these informal descriptions, we usually simplify the
restriction on the quantifiers from “x is a ®-map or x = @” to “x is a ®-map”.
In every such case, it can easily be seen that the case “x = 4” does not pose any
problems to the argument (bearing in mind that @ is not a ®-map and hence
not a ®-function nor an element of a tuple of a ®-map).

Extensionality

We have to show that for any n > 1, any two ®-maps of arity n that take the
same values on the same n-tuples of ®-maps are equal. It is easily seen that
this follows from Lemma [£2.17

Map Comprehension

Assume that P(z) and R(z,z) are AFT-formulae such that for all ®-maps z, x
such that R (2, z), = and all z;’s are ®-functions, and such that for any ®-maps
z such that P7 (%), there is a ®-map x such that R”(z,z). Then we have to
show that there is a ®-map f such that f is defined precisely on those z such
that P7(Z) and such that if z are such that P¥(Z), then there is an x such that
z7x € f and R7 (2, z).

For this we first apply A G’s Class Comprehension to the statement “there
are ®-functions z such that x is the set of all tuples of the form z7y where y
is a ®-function of minimal possible rank satisfying P (z) and R (z,y)” and
call the resulting class A (the rank-restriction is necessary, since else one could
not show that every such x must be a set, which is necessary for applying Class
Comprehension). Next we apply Global Choice to A, in order to choose one
tuple from each tuple set in this class, thus forming the desired f. f clearly
has all the properties that we required (it is a ®-map, because all elements of
tuples in it are ®-functions, i.e. in a ®, for some ordinal number «, and for an
ordinal number «, ®, is always ®-transitive and always contains only functional
classes).
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Functionality

Assume that P(Z) and R(z,x) are AFT-formulae with limited parameters, not
containing the symbol F and such that for all ®-maps z, = such that R” (2, z),
x and all z;’s are ®-functions. Furthermore assume that f is a ®-map defined
precisely on those z such that P7(2) and such that if z are such that P7(2),
then there is an x such that z"x € f and R (z,x). We have to show that f is
a ®-function.

We define A as above, only that now we may use Set Comprehension rather
than Class Comprehension for that definition, so that this time A is a set. So
f CJA is also a set and hence a ®-function by

Element Axiom

This directly follows from the fact that an element of a tuple of a ®-function is
a ®-function.

Subfunction Axiom

We need to show that a subclass of a ®-function is a ®-function. This directly
follows from the fact that for an ordinal number «, ®,, is closed under subclasses.

Undefinedness

This directly follows from Lemma and from the fact that @ is not a
$-map. O

Corollary. AFT is equiconsistent with ZFC.

4.3 Class-Map-Tuple-Number Theory

In this section we present two theories, Class-Map-Tuple-Number Theory (CMTN)
and Class-Map-Tuple Theory (CMT), that formalize various kinds of founda-
tional building blocks of mathematics as primitives, namely classes, maps, tu-
ples, Booleans and in the case of CMTN also natural numbers. The restrictions
on class and map comprehension imposed by these theories are taken from Ack-
ermann set theory and AFT.

The language of CMTN consists of

e a unary relation symbol C for classes,
e a binary relation symbol € for membership in a class,

e a binary relation symbol M for maps of a specified arity

a constant symbol u for undefinedness,

for every n > 1, an n+1l-ary function symbol app,, for application of an
n-ary map to its arguments,

e a binary relation symbol T for tuples of a specified length,
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e for every n > 2, an n-ary function symbol 7,, that maps n objects to the
n-tuple consisting of them,

a binary function symbol nth that maps a tuple and a natural number n
to the n-th element of the tuple,

e a unary relation symbol N for natural numbers,
e a constant symbol 0 for the natural number 0,
e a constant symbol s for the successor function on the natural numbers,
e a unary relation symbol B for Booleans,
e a constant symbol T for truth,
e a constant symbol | for falsity,
e a unary relation symbol U for urelementsEl, and
e a unary relation symbol L for limited objects.
We use the following notational conventions when they do not cause problems:
e We write f(Z) instead of app,, (f,Z).
o We write (z1,...,2,) instead of 7, (z1,...,zy).
o We write n’ instead of app,(s,n).

By recursion one can define a L cp;ry-term 71 for every natural number n in
such a way that 0 is the constant symbol 0 and n + 1 is #’. When this does not
cause confusion, we usually simply write n for n.

The axioms of CMTN are as follows:

Class axioms (a variation of the axioms of Ay)

e Class Extensionality Axiom:
Ve, y (C(x) ANCy)AVz(z €z 2z€Yy) D x=1)

e Class Comprehension Axiom Schema: Given a formula F'(y) (possibly with
parameters) that does not have x among its free variables, the following
is an axiom:

Yy (F'(y) = L(y)) — 3z (C(z) AVy (y € x <> F(y)))

e Set Comprehension Axiom Schema: Given a formula F(y) that has limited
parameters, does not have x among its free variables and does not contain
the symbol L, the following is an axiom:

Yy (F(y) = L(y)) = Fz (C(x) A L(x) AVy (y € 2 < F(y)))

e Element Axiom: Vz,y (L(y) Az € y — L(z))
e Subset Axiom: Vz,y (L(y) AVz (z €z — z € y) — L(x))
e Classness Axiom: Va,y (x € y = C(y))

e Element Definedness Axiom: Vz,y (r € y — « # u)

3In CMTN, urelements are elements of the domain that are neither classes, maps, tuples,
natural numbers nor Booleans.
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Map axioms (a variation of the axioms of AFT)

Map Extensionality Axiom Schema: For n > 1 and Z a variable list of
length n: Vf Vg (M(f,n) N M(g,n) ANVZ f(2) = g(2) = f = g)

Map Comprehension Axiom Schema: Given formulae P(Z) and R(Z,x)

with parameters, the following is an axiom:
VZVx (R(Z,z) = L(z1) A--- AL(2p) AL(2)) A V2 (P(Z) = 3z R(Z,x)) —
f (M(f,n) AVZ (P(2) = R(2, f(2))) AVZ (-P(2) = f(2) =u))

Functionality Axiom Schema: Given formulae P(Z) and R(Z,x) that have
limited parameters and do not contain the symbol L, the following is an
axiom:

V2V (R(Z,2) = L(z1) A~ A L(za) A L(z)) — Vf (M(f,n) AVZ (P(2) —
R(z, f(2))) ANVZ (=P(2) — f(2) = u) — L(f))

Element Axiom Schema: For m > 1 and Z a variable list of length n:

VEVZ (L(f)Nf(Z) #u— L(z1) A... AN L(zn) A L(f(2)))

Subfunction Axiom Schema: For n > 1 and Z a variable list of length n:

Vi Vg (L(g) A M(g,n) N M(f,n) ANVZ (f(2) # u— f(2) = g(2)) = L(f))

Mapness Axiom Schema: For m > 1 and z a variable list of length n:

Vf Yz (app,(f,2) # w — M(f,n))
Arity Uniqueness Axiom: VYn,m (M(f,n) A M(f,m) —n=m)

Undefinedness Axiom Schema: For n,m > 0 with n +m > 1:
VL, o Ty Yls s Ym GPPpy g (T1, - s Ty Uy Y1, - Ym) = U

Tuple axioms

Tuple Element Axiom Schema: For 1 <m <n and n > 2:
vxl?'-- y T 7é (% nth(m7 (xl,...,xn)) =I,

Tuple Identity Axiom Schema: For n > 2:
Vo (T(x,n) = x = (nth(1,z), ..., nth(n,z)))

Tupleness Axiom Schema: For n > 2: Vaq,...,z, ZuT((z1,...,25,),n)

Tuple Undefinedness Axiom Schema: For n,m > 0 with n +m > 1:
vxlw"axnayl?"'aym (x17"'7mnau7y17"'7ym) =u

Domain of nth Axiom: Vz,y (nth(z,y) # v — N(x)AIn (T(y,n)AVe (z €
cAVz (z€c—>z’€c)—>n€c)))E|

Limited Tuples Axiom Schema: Forn > 2: Vaq,..., 2, (L((21,...,25)) &
L(z1) A ... A L(zy))

4This axiom really just says that if the z-th element of y is defined, then z is a natural
number and y is a tuple of some length n > x. But since > is not a primitive in the language
of CMTN, n > x has to be expressed in a non-primitive way as V¢ (z € cAVz (z €c— 2’ €
c) = né€Ec).
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Natural number axioms (Peano axioms)
e N(0)
e Vn (N(n) = N(n'))
o Vx (z' #0)
e Vn,m (N(n) AN(m)An' =m’ = n=m)

e Induction Axiom: Vz (C(z) A0 € zAVn (N(n)An €z —n' €x) =
Yn (N(n) = n € x))

e Domain of s Axiom: Vz (' # u — N(x))

e Limitedness of Numbers: Vo (N(z) — L(x))

Boolean axioms
o Vo (B(z) v x=TVze=1)
o T #1

e Limitedness of Booleans: Vz (B(xz) — L(x))

General axioms

e Sort Disjointness Axiom: “For every x, at most one of C'(z), Iy M(z,y),
Jy T'(z,y), N(z), B(z), U(z) and = u holds.”

Arity Axiom: Va,y (M(z,y) VT (z,y) = N(y))

Arity Uniqueness Axiom: Vz,y,z (M(z,y) AM(z,2) =y =z)

Tuple-Length Uniqueness Axiom: Vz,y, z (T(x,y) AT (z,2) =y = z)

Limitedness of Urelements: Va (U(x) — L(x))

Unlimitedness of Undefinedness: —L(u)

We will now show that CMTN is equiconsistent with ZFC. Clearly CMTN
interprets Ay and hence ZFC. For the other direction, we will show that A7,G
interprets CMTN by adapting the proof of Theorem [4.2.20

First we need some disjoint encodings of classes, maps, tuples, numbers and
the undefinedness constant from CMTN in A} G:

Definition 4.3.1. Define u¥ to be (0,0).

Definition 4.3.2. Given a class a, define a ¥-class over a to be a pair of the
form (¢, 1), where ¢ C a.

Definition 4.3.3. Given a class a, define an n-ary ¥-map over a to be a pair
of the form (f,2), where f is a a functional class of n+1-tuples of elements of a.

Definition 4.3.4. Given a class a, define a W-n-tuple over a to be a pair of the
form (t,3), where ¢ is an n-tuple of elements of a.
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Definition 4.3.5. Define a ¥-number to be a pair of the form (n,4), where
n € w.

Definition 4.3.6. Define a W-Boolean to be a pair of the form (b,5), where
b=0orb=1.

Definition 4.3.7. Define a U-urelement to be a pair of the form (x,6), where
z is an urelement.

Now we want to define the closure of a class @ under W-tuples. This can only
be ensured to exist if @ is a set, but we do not make the restriction that a is a
set in the definition, and for some classes it will be defined too.

Definition 4.3.8. Given a class a and ¢ € w, we recursively define T;(a) as
follows:

To(a) :=a
Thi1(A) := {t | for some m, ¢ is a ¥-m-tuple over T, (a)}

Definition 4.3.9. Given a class a, we define the closure of a under W-tuples to

be
T(a) := | Ti(a).
1EW
In A% G, we define a cumulative hierarchy of CMTN-encodings. The intended
definition is the following:

\Ifo S:(b

Uot1:=T{z |  is a Y-number, ¥-Boolean or W-urelement, or a ¥-class or
W-map over ¥, })

%;:U\pa

a<

Just as we did with the hierarchies of V,’s and ®,’s, it can be ensured that
this is defined for all ordinal numbers without using the predicate M in the
definition, which ensures that this hierarchy also extends to some extent into
the proper class ordinals.

Definition 4.3.10. z is a U-element of y iff either y is a ¥-class (¢, 1) and
x € ¢, or yis a U-map (f,2) and = is an element of a tuple in f, or y is a
U-tuple (¢,3) and z is an element of the tuple ¢.

Definition 4.3.11. A class A is V-transitive iff every W-element of an element
of A is an element of A.

Definition 4.3.12. z is W-limited iff there is an ordinal number « such that
r e VY,.

Definition 4.3.13. z is a U-object iff x is a W-class, a V-map, a U-tuple, a
VU-number, a W-Boolean or a U-urelement.

Definition 4.3.14. z is a pure V-object iff x is a W-object, and for every W-
element y of z, there is an ordinal « such that ¥, is U-transitive, every element
of ¥, is a U-object and y € VU,,.



4.3. CLASS-MAP-TUPLE-NUMBER THEORY 67

Lemma 4.3.15. Every V-element of a pure W-object is a pure V-object.
Proof. Let x be a pure W-object and y be a W-element of x. Then there is an
ordinal « such that ¥, is U-transitive, every element of ¥, is a W-object and

y € ®,. Then y is a V-object, and if z is a U-element of y, then z € ¥,, by the
U-transitivity of ¥,, so y is a pure W-object as required. O

Lemma 4.3.16. FEvery pure V-object that is a set is W-limited.

Proof. Analogously to the proof of Lemma [4.2.18 O

Definition 4.3.17. Let G be the A};G-definable L cyrn-structure defined by

G(U) := “z is a pure ¥-object or x = u¥”
G(=) :=v1 =09
G(C) := “vy is a U-class”
G(e):=“ (v2 = (x,1) Avy € )"
G(M) := “vy is a ve-ary W-map”
G(u) == “vy = u"”
Glapp,) = “3f (01 = (£.2) A (var-esvnsr,vsa) € )V @iz (o1 = (£,2) A
(V2y -+, Vnt1, %) € f) Avpaa =u¥)” for n > 1

G(T) := “vy is a W-va-tuple”
G(7n) := “Uny1 = ((v1,...,0,),3)" for n > 2

G(nth) := “there is a tuple ¢ of length at at least vy such that v; = (¢,3) and vg
is the vo-th element of ¢, or there is no such tuple ¢ and vz = u¥”

G(N) := “vq is a ¥-number”

G(0) := “vy = (0,4)”

G(s) == "“v1=({((n,4),(n +1,4)) [ n € w},2)”
G(B) := “v1 = (0,5) or v1 = (1,5)”

G(T) :=*“v; = (1,5)”

G(L) := “v1 =(0,5)”

GU) := “Fz (U(x) Ay = (2,6))”

G(L) := “vy is U-limited”.

Theorem 4.3.18. A},G+ CMTNY.

Proof sketch. We have to prove that for every axiom ¢ of CMTN, ¢9 can be
proved in A};G. For Class Extensionality and Class and Set Comprehension the
proofs are analogous to those for the corresponding axioms in the proof of The-
orem For Map Extensionality, Map Comprehension and Functionality,
the proofs are analogous to those of the corresponding axioms in the proof of
Theorem All other axioms follow trivially from the definition of G. [

Corollary. CMTN is equiconsistent with ZFC.
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4.3.1 Class-Map-Tuple Theory

When removing natural numbers from CMTN, it is not enough to just remove
the Peano axioms from CMTN’s axiom list, since natural numbers are also used
to formalize arity and tuple length in CMTN. So instead of binary predicates
M and T, we now have unary predicates M, T, M, for n > 1, and T,, for
n > 2. The axioms of CMT consist of the axioms of CMTN without the Peano
axioms, with 3In M (z,n), In T(z,n), M(xz,n) and T(z,n) replaced by M (x),
T(x), M, (z) and T,,(x) respectively, and with two axiom schemas added:

e Forn > 1: Vo (M, (x) — M(z))
e For n > 2: Vx (T,,(x) — T(x))

It is easily seen that CMTN interprets CMT and that CMT interprets Ay,
so that CMT is equiconsistent with ZFC.

4.3.2 CMTN-based logic

When using CMTN as a background theory in a Naproche text, there are nor-
mally some mathematical objects that the text is about and that are not con-
sidered classes, maps, tuples or numbers. These objects correspond to the ure-
lements of CMTN. But CMTN has no axioms about its urelements, whereas
mathematical texts often do contain an axiomatization of the properties of the
urelements that the text is about. Using CMTN to derive other properties of the
urelements from these axioms should be conservative over doing this without
CMTN. In other words, anything that can be proven about urelements using
CMTN should also be provable directly from the axioms about the urelements.
For making this precise, we first need some definitions:

Definition 4.3.19. Given two PL languages L1 and Lo, the Lo-expansion of Ly,
also called Lle, is the language whose signature contains all constants, function
symbols and relation symbols of L, and additionally contains a constant symbol
c¢s for every constant, function symbol or relation symbol s of L.

Remark. For simplicity and convenience, we usually write s instead of ¢4, when
this does not lead to unclarity.

Definition 4.3.20. Given two PL languages L; and Lo and an Li-theory T,
we write 17, for the theory T' considered as a theory over the extended language
Lz,

Definition 4.3.21. Let L = (cy,...,¢; fl, . 7f,]f{"';le/1, e ,Rﬁ;) be a PL
language (here the superscripts indicate the arities of the function and relation
symbols). Define I'y, to be the following set of L%,y formulae (which — intu-
itively speaking — formalize the statements that cy,...,¢; are urelements, that
for 1 <i<m, fik" is a k;-ary map on the urelements and that for 1 < i < n,
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be is a kj-ary relation on the urelements):

{(U(es) | 1<i< U

{M(fF k) Ay, (FF (e, ak,) £ u e Ulz) A AU (zx)A
Vo, .o xg (U@) A AU(,) = U (e, 2,)) | 1 <6 <mu
{M(R¥ k) AVz1, ... x5, (RF (21,...,00,) #u o Ulw) A AU(zg,))A
Vi, .. ak, (U@) A AU(zr,) = B(RF (z1,...,21,))) | 1 <i<n}.

Definition 4.3.22. Let L = (c1,...,ci; f¥, ..., fom: R™ . RE") be a PL
language. Let Ap be the CMTNp-definable L-structure defined by
Ap(U) :=U(x)
AL(=) ==v1 =12
Ap(c) = =c¢ for 1 <i<l
Ap(fF) = vp, 41 = afppki(fikivvlv o) for1<i<m
AL(Rfi) = appki(Rfé,vl,...,vki) =Tfor1<i<n

Now we can make precise what we meant in the introduction of this sec-
tion by the conservativity of working with CMTN as a background theory over
working without CMTN:

Conservativity of CMTN: Let L be a PL language. Let ¢ be an
L-formula and I" be a finite set of L-formulae. If CMTN;, UT U
I = oA then T = .

We will need this conservativity result for the proof of Theorem [6.3.24] in
chapter [6] which is one of the two soundness theorems of the proof checking
algorithm.

This conservativity statement implies the consistency of CMTN and hence
the consistency of ZFC, so it certainly cannot be proved without some assump-
tion at least as strong as Con(ZFC) (“ZFC is consistent”). Actually, the as-
sumption we need for our proof of the statement is somewhat stronger than
Con(ZFC) (which by Gdédel’s completeness theorem is equivalent to the exis-
tence of a model of ZFC), namely that ZFC has an w-model:

Definition 4.3.23. A model M of ZFC'is called an w-model iff w™ (i.e. the
collection of natural numbers of M) is isomorphic to the actual natural numbers.

The assumption of the existence of an w-model of ZFC is much weaker than
the assumption that there is an inaccessible cardinal. Additionally, just like the
assumption Con(ZFC) and unlike the assumption that there is an inaccessible
cardinal, the assumption of the existence of an w-model of ZFC does not pre-
suppose our metatheory to be ZFC. Indeed, our result can be formulated in
much weaker metatheories, e.g. in second-order arithmetic or sufficiently strong
subsystems thereof.

Before we prove the theorem that the conservativity result follows from the
existence of an w-model of ZF'C, we first need two lemmas and a definition:
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Lemma 4.3.24. Let M be an w-model of ZFC. Let L be a PL language, let
T be a finite set of L-formulae and let ¢ be a PL formula. Then T' |= ¢ iff

METEG

Remark. For any informal mathematical statement P for which there is a canon-
ical formalization in the language of set theory, " P denotes this canonical for-
malization.

Proof. By Godel’s Completeness Theorem, there is a proof calculus p such that
I' &= ¢ is equivalent to I' F, ¢. Viewing L-formulae and p-proofs as their
Godelizations, i.e. as natural numbers, I' -, ¢ can be considered a statement
about natural numbers (of the form “there exists a natural number that is
the Godelization of the proof of ¢ from I'”). Since the natural numbers are
isomorphic to w™, T’ Fp @ is equivalent to M =T F, ¢7. But since Godel’s
Completeness Theorem can be proved within M, M |= T F, ¢ is equivalent
toMETEe. O

Definition 4.3.25. Define ZFCU to be “ZFC with urelements”, i.e. the theory
whose language contains a binary predicate € and a unary predicate U, and
whose axioms are as follows:

e The axioms of ZFC with some quantifiers restricted by —U:

— Extensionality:
Va,y (~U(x)A-U(y) = (x =y + Va (a €x < acy)))
— Empty set: 3z (-U(z) AVa —a € )

— Separation and Replacement: These axiom schemes have to be ex-
tended to apply to all Lzpcp-formulae and not just to €-formulae.
The quantifiers in these axioms do not get restricted by —U.

— All other ZFC axioms are taken over to ZFCU without any changes.

e An axiom stating that the urelements do not have any elements:
Va (U(a) — —3bb € a)

Remark. Note that with this definition of ZFCU, the Powerset Axiom states
that given a set x, there is a set y containing all subsets of x and all urelements.
One can use Separation on y to construct the usual powerset. Additionally, one
can use Separation on y to establish that there is a set that contains precisely
all the urelements.

The following lemma establishes that working with ZFCU as a background
theory is conservative over working without ZFCU:

Lemma 4.3.26. Suppose that ZFC has an w-model. Let L be a PL language,
let T be a finite set of L-formulae and let ¢ be an L-formula. If ZFCUp, U F% U

(D44)9 | (pA4)9, then T = .

Remark. Note that the formulae in I'z, the formulae in T*4* and ¢** do not
contain the symbol L, and that hence the formulae in 'Y, the formulae in (I'4+)9
and (¢*%)9 do not contain the symbol M, i.e. are actually LZ"“U-formulae.



4.3. CLASS-MAP-TUPLE-NUMBER THEORY 71

Proof. Let M be an w-model of ZFC. Suppose ZFCULUTY U(TA+)9 |= (pAr)9.
By compactness we may assume that there is a finite set ZFCU; C ZFCUp, of
LZFCU_formulae such that ZFCU, UTY U (T4£)9 = (p*#)9. Note that by
Lemma this means that M |= "ZFCU, UTY U (TA2)Y |= (pA2)97,

We need to show that I' = ¢. By Lemma it is enough to show that
M E T | ¢7. For the rest of the proof, we argue within M; so the goal is to
show T' =

Suppose that S = T'. We need to show that S = ¢. Let B be the ZFC-
definable L zpcy-structure defined as follows:

BU) :=z=
B(=) = vi =
B(€) :=v1 € vy
B(U) =v1 €8

Note that given any L zpcy-formula ), % is a parametrized e-formula, with S
as parameter. Now by the reflection principle, there is an ordinal « such that the
formulae in (ZFCU,)® are absolute for V,,. We want to additionally ensure that
S C V,, which can be attained by adding a formula with a second parameter z,
namely the formula x € S, to the finite set of formulae that we apply reflection
to. Then x € S, with both z and S considered as parameters, is absolute for
V., which means that Vo ((z € S)V < 2 € S), ie. Vo (x € SNV, & x € 9),
which implies that S C V,,, as intended.

Note that for any ¢ € ZFCUz, V = ¢B. Since the formulae in (ZFCU})B
are absolute for V,,, it follows that V,, = (ZFCU})B.

We now build from S a larger LZFCU_gtructure S’ that models ZFCU; U
I'Y U (TA2)9. The domain of S" is V,. The signature of L#¥CV is interpreted
as follows in S’

Us =8
¥ = {(z,y) € Va(9)? | z € y}
5 =5 for every constant symbol ¢ of L

fS/ := (f%,2) for every function symbol f of L

RS = ({(z1,. 20, (1,5)) | (21, 20) € RS} U{(21, ..., @0, (0,5)) |
(z1,...,2,) € 8™\ R}) for every n-ary relation symbol R of L.

Since V,, = (ZFCU})B and since S’ and B agree about their interpretation
of U, it follows that S" = ZFCU.

. From the definition of ¢5', f5', RS, 'y and G, it directly follows that S’ E
Y.

One can easily see that S’ = (I'£)9 is just a more complicated way of
formalizing S =T in ZFC (complicated for example by the fact that functions
are not formalized simply as sets of tuples, but instead as tuples of the form
(f,2), where f is a set of tuples; this kind of complication results from the use
of G in this reinterpretation of T'). Hence we can conclude that S’ = (I'4)9.
Together with the previously established facts, this means that S’ = ZFCU; U
T U (0A)9.
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Since ZFCU, UTY U (DA2)9 |= (p25)9, it now follows that S’ |= (p¢)9.
But " = (¢72)9 is just a more complicated formalization of S |= ¢, so we may
conclude S = ¢ as required. O

Remark. By doing the main work of this proof inside the w-model M of ZFC,
we did not only avoid committing ourselves to having ZFC as our metatheory,
but also made it possible that this lemma does not take the form of a theorem
schema (because of the application of the reflection theorem schema), but can
actually be stated as a single theorem.

Theorem 4.3.27. Suppose that ZFC has an w-model. Let L be a PL language.
Let ¢ be an L-formula and T be a finite set of L-formulae. If CMTN, UT'p U
DAL = AL then T = .

Proof. First we need an adaptation of the proof of Theorem and its
corollary to theories with urelements. For this, one needs to define a hierarchy
of VU’ in ZFCU, analogous to the hierarchy of V,’s in ZFC, but with V.Y
containing not only the subsets of previous steps in the hierarchy, but also all
urelements. Now one can formulate a reflection principle for ZFCU using this
hierarchy. Adapting the proof of Theorem (actually the simplified version
mentioned in the remark to the theorem) and the proof of its corollary, one can
prove that for any formula ¢ of ZFCU,

AL G E ¢ implies ZFCU [ . (4.5)

Now suppose CMTNy UTp UTA: = A2, By compactness, there is a
finite T"A% C TA- such that CMTN, UT, UT"A: |= A2, Let 4 be the formula

ATLAATAL — . Then CMTNy, |= 1. Now by Theorem [4.3.18) A%,Gp, = 9.
Then by (@5), ZFCU;, | 49, i.e. ZFCUL, UTY U (T42)9 = ¢9. Now Lemma

4.3.26| implies that T' |= . O



Chapter 5

Dynamic formalisms for
mathematics

In this chapter we describe two extensions of DPL, Higher-Order Dynamic Pred-
icate Logic (HODPL) and Proof Text Logic (PTL). Both add to DPL features
that make the formalisms more expedient at representing the content, the dy-
namic properties and the hierarchical structure of mathematical texts.

5.0.1 Currying and uncurrying

In order to explain the semantics of these extensions of DPL, we need the
syntactic technique of currying. This is a technique of transforming a multi-
argument function into a function of lower arity, returning a function as its
value. To explain the details, we first need to fix some notation:

Given two sets A and B, we let A — B denote the set of functions from A
to B. The usual notation f: A — B for a function f from A to B can now be
considered an alternative notation for f € A — B.

Now given a binary function f : A; x As — B, we can define a function
cur(f): Ay = (A2 — B), called the curried form of f, as follows:

cur(f)(a1)(az) := f(a1, az).

In the case of a function f : A; x --- x A, — B of a higher arity than 2,
the usual definition of the curried form of f is the iteratively curried function
of type 41 — (A2 — -+ = (4,, — B)...). In this thesis, however, we will
need a different notion of currying of higher-arity functions: Given n,m > 1
and an n 4+ m-ary function f : Ay X -+ X Ay, — B, we define cury, »(f) :
Ay X oo x Ay = (Apg1 X -+ X Apym — B) as follows:

curmn(f)(at, ..., an)(@nt1s -y Gnam) == f(a1,. .., Gntm)-

Given this definition, cur ; is the same as the cur defined above.
The converse of currying is uncurrying: Given a function f: A; x---x A4, —
(Aps1 X -+ X Appm — B), we define uncp, n(f) : A1 X -+ X Ay, — B by

uncmn (a1, ..., anpm) = flar, ..., an)(@nt1, -, ngm)-

73
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5.1 Higher-Order Dynamic Predicate Logic

Higher-Order Dynamic Predicate Logic (HODPL) extends DPL to a higher-
order system that formalizes the implicit dynamic introduction of functions
discussed in section of chapter To our knowledge it is the first system
that formalizes implicit dynamic function introduction.

Many systems for higher-order logic make use of types in order to syntacti-
cally restrict the possible arguments for a given function term. In HODPL we
do not realize this restriction in a syntactic way using types, but by integrating
a formal account of presuppositions into the systemﬂ Presuppositions are also
used to account for the difference between functions and relations. Additionally,
HODPL contains an ¢ operator that formalizes definite descriptions, and whose
semantics essentially depends on the treatment of presuppositions in HODPL.

HODPL has three logical relation symbols: the binary = for equality, the
unary U for urelements and the unary B for Booleans. HODPL syntax does not
depend on a signature, as we do not allow for constant, function and relation
symbols other than =, U and B. We will show in section below how vari-
ables in HODPL can be used to mimic constant, function and relation symbols.
We define HODPL syntax by defining HODPL terms and HODPL formulae via
a simultaneous recursion:

Definition 5.1.1. An HODPL term is of the form x, to(t1,...,t,) or wx ¢ for
a variable , HODPL terms tg, ..., t, and an HODPL formula ¢. Terms not
containing ¢ are called ¢-free terms. We write Tyoppr, for the set of (-free terms.

An HODPL formula is of one of the following forms, where ¢y, to are HODPL
terms, t is an «-free HODPL term and ¢ and i are HODPL formulae:

lHowever, one can also develop Typed Higher-Order Dynamic Predicate Logic, which
realizes this restrictions by adopting a type-theoretic approach (see |Cramer} [2012]).
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o Op
° def(tl)ﬂ

Note that HODPL terms can be HODPL formulae. Since terms cannot be
formulae in PL or DPL, this needs some clarification: The functions that are
used to form complex terms may take Booleans as values, in which case they
may be considered relations. The application of such a function to an argument
is still considered a term, but given this explanation, it is no longer surprising
that it can also be considered a formula.

5.1.1 HODPL semantics

The most distinctive feature of HODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So (1)) is an HODPL
formula, and can be considered the HODPL formalization of ([2)

(1) 3z U(z) = 3f(x) R(=, f(x))
(2) For every urelement z, there is an f(z) such that R(z, f(z)).

But what is the intended semantics of ? The truth conditions of should
turn out to be essentially equivalent to those of , but given what we have said
about implicit dynamic function introduction in the language of mathematics
in section unlike , dynamically introduces the function symbol f to
the context, and should hence be essentially equivalent to .

(3) 3z U(z) — Jy R(z,vy)
(4) 3f (2 U(x) = R(x, f(z)))

We will come back to this example when clarifying the semantics of HODPL
after its formal definition.

Since HODPL syntax does not depend on a signature, we will not need
structures that give meaning to the constant, function and relation symbols of
the signature. We only need a domain. But now a domain is no longer any
set, but a model of AFTB (i.e. AFT with Booleans)ﬂ As in the case of DPL
semantics, the interpretation of an HODPL formula will be a set of pairs of
assignments. But the definition of assignment has to be modified:

2The intended meaning of def(t1) is that the term t; is defined.

3For those readers who read this chapter without having read chapter we give some
explanations about the theory AFTB that we make use of here:

Informally speaking, AFTB is a theory of functions or — in other words — maps. In order
to avoid the inconsistency of unrestricted function comprehension mentioned in section [3.3] it
makes use of a distinction between limited and unlimited objects. We use the term function
only for limited maps, so map is the more general term in the terminology of this theory. We
use the symbol L for the property of being limited.

The theory talks about four kinds of objects:

e Maps: These can be of different arities and are usually not defined on the whole universe
of discourse.

e The undefinedness object, designated u: This is the value of a map at arguments where
it is not defined.

e The two Booleans T (truth) and L (falsity). The Booleans are considered limited
objects.

e Urelements: AFTB is used to model mathematicians talk about maps, which involves
not only maps, but also objects which are not maps, but which can be the arguments or
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Definition 5.1.2. Given an AFTB model M, an M -assignment g is a partial
function from Tgoppr to M \ {uM}. Gy is the set of M-assignments.

Definition 5.1.3. Given two assignments g and h, we define g[t1,...,t,]h to
mean that dom(g) = dom(h)U{t1,...,t,} and for all s € dom(h)\ {t1,...,tn},

9(s) = h(s).

Definition 5.1.4. Given elements xg,...,z, of an AFTB-model M, we write
zo(x1,..., 1) for appM(zg,z1,...,2,), and say that zo(z1,...,2,) is defined
iff appM(wo,21,...,2,) # uM. (This notation is only used when it is clear

which AFTB-model we are talking about.)

For the rest of this section, we refer to the notation introduced in the previous
three definitions together with the usual mathematical notation that we employ
in order to talk about HODPL terms and formulae, AFTB-models and their
elements as the metalanguage, in order to distinguish it from the language of
HODPL defined previously.

The most involved part of the definition of HODPL semantics is the definition
of the semantics of ¢ — 1. This definition has to account for the fact that
functions implicitly introduced in ¥ have to be dynamically introduced to the
context outside the scope of —. The definition is significantly complicated
by the fact that functions with dependencies on more than one variable can
be introduced with an arbitrary ordering of the arguments and even with an
optional currying over some arguments. We clarify what we mean by this by
considering an example:

(5) If ,y € R, then there are real numbers f,(y) and g(y,x) such that
R(z,y, f+(y), 9(y, x)).

After this sentence one can use g as a binary function symbol. Additionally, fe
is now a unary function symbol, whose only argument is written in subscript
notation. This f, is a function from R to RE, i.e. to unary functions from the
reals to the reals. One can view f, as the curried version of the function h that
one would have introduced if one had written h(z,y) instead of f,(y) in ().

In HODPL we do not distinguish the different notations used in the language
of mathematics for linking an argument to a function term. Hence we formalize
(b)) as follows:

(6) 3z 3y (z e RAy € R) = 3f(2)(y) Fg(y,2) (f(z)(y) ERAg(y,z) € RA
R(z,y, f(2)(y), 9(y,2)))

value of a map under consideration. The basic mathematical objects that are neither
maps nor Booleans or the undefinedness object u are called urelements. We use the
symbol U for the property of being a urelement. All urelements are considered limited
objects.
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The definition of the semantics of ¢ — 9 has to account for the introduction of
functions f and g with the right argument structure: The two variables x and
y are linked to these function symbols in different ways in the right hand side
of @ We need to introduce some notation that facilitates talking about the
ways a fixed list of variables can be linked to a function symbol:

Definition 5.1.5. Let n > 1. Ann-place argument filler o is a pair (p, (m;)1<i<1),
where p is a permutation on {1,...,n} and my, ..., m; are natural numbers
such that 0 =m1 <mo < -+ < m; = n.

Remark. We write idyy, . ,) for the identity permutation on {1,...,n}. Addi-
tionally, we sometimes use the standard cycle notation for permutations, with
optional subscripts for indicating the domain. For example, (2 3)¢1,2,3} is the
permutation that maps 1 to 1, 2 to 3 and 3 to 2.

Definition 5.1.6. For an n-place argument filler o = (p, (m;)1<i<1), n terms

t1,...,t, and a function term f, we write f7(t1,...,t,) for
Ftpmit1)s tptmit2)s - -5 tp(ma)) (Ep(mat1)s Toma42)s -+ 5 Ep(ma) ) - -
(tp(ml—1+1)’ Ep(mi_1+2)5 - - vtp(mz))~
(Here the terms f,t1,...,t, can be either HODPL terms or terms of our meta-
language.)
Definition 5.1.7. For an n-place argument filler o = (p, (m;)1<i<;) and a
function term f of our metalanguage, we say that f is o-defined at ay,...,am,

iff there is an 7 < [ such that m = m; and

f(amlJrla am1+27 ceey amz)(am2+17 am2+27 ceey amg) .o (a’mi,1+17 ami,1+27 .o 7ami)
is defined.

Definition 5.1.8. For an n-place argument filler 0 = (p, (m;)1<i<;) and an
element m € {1,...,n}, we define o(m) := p(m).

The possibility of presupposition failure is implemented in HODPL semantics
by making the formula interpretation function partial rather than total. For
conveniently talking about partial functions, we use the notation def(f(z)) to
abbreviate that f is defined on 37E|

We are now ready to present the definition of HODPL semantics. Note
that the complicated definition of the semantics of ¢ — ¥ (item |§| in the two
lists below) will be motivated and clarified after the formal presentation of the
definition.

Definition 5.1.9. Given an AFTB model M and an M-assignment g, we define
the term interpretation function %(0) : Thoppr, — M and the domain and
values of the partial formula interpretation function [e]4, C G x G by a

simultaneous recursion:

4Note that we distinguish typographically between the notation def(t) as part of the
HODPL syntax and the notation def(t) which is part of our metalanguage.
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if g is defined on t

if g is undefined on ¢ and t is of the

M/ M M M
PPy (?(to)vj(tl)“'”?(t”)) form o (t1,...,tn)

if ¢ is of the form tx ¢ and either there
is a ¢'[z]g such that [¢]%, is unde-

uM fined or it is not the case that there
is precisely one h such that h[z]g and
Ll # 0
if ¢t is of the form tx ¢, for every
h(z) g'[x]g, [¢]3, is defined, and h is the

unique assignment such that hlz]g

and []}, # 0

e Domain of [e],:

10.
11.
12.

@@N@@PWN!‘

def(
def(
def(
def(
def(
def(
def(
def(

defi
def(

[¢14,) ift —( )y=TM or %(t) =1M,

[T150)-

[t = t2]9,) iff %(tl) #uM and %(tg) #uM,

[UO,) it 2(2) #

(B, iff 2 (t) £ u

[=elir) it def([]5,)-

Lo A v13,) iff def(le]},) and for all h € []4,, def([¥]5))-

[ v 13,) if def([]},) and def([¥]5,)-

le — ¥1%,) iff def([¢]%,) and for all h € [¢]9%,, we have that
[v]%,) and that for every k € [¢]%,, if there is a t € dom(k) \

dom(h) of the form f7(¢y,...,t,), where {t1,...,t,} = dom(h) \
dom(g), f is an HODPL term and o is an n-place argument filler,
then k(t) € LM and h(t;) € LM for 1 <i < n.

def(
def(
def

3t ¢]%,) iff for all h such that hlt]g, def([¢]%,)-
[Oeld,) iff deflle]},)-
[def()]3,)-

e Values of [e]9;:
if () =TM
Mg:{w} ()

—_

[\

@

M

0t M) =1M
= {g}

[t1 = t2]% = {{9} if 5 (1) = 4 (t2)

] otherwise

[ =

g _{{g} if%(t)eUM

1] otherwise
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{g} if %(t) =TM or %(t) — | M

1] otherwise

5. [B()]Y, == {

{g} if there is no h such that h € [¢]4,

6. [~l% = {

7. [ A9, := {h | there is a k such that k € [¢]3, and h € [¢]%,}

(g} if there is there is an h such that h € o]}, or
8. [pVald, = he [¥]%

0 otherwise

9. [¢ — ]9, := {h | there are variables fi,..., f, (where n > 0 and the
choice of n is maximal) such that h[fi,..., fn]g and such that there
are variables 1, ..., T, (where m > 0) and m-place argument fillers
O1,...,0p such that for all k € [¢]4,, k[z1,...,2m]g and there is an
assignment j € []%, such that for 1 <i <mn, j(f7 (z1,...,2m)) =
h(f:) (k(x1),...,k(zm)), and for any I > 0 in the sequence that
constitutes the second element of o; and any ay,...,a; € M, h(f;) is
oi-defined at ay, ..., q; iff there is a k" € [p]4, such that for all s <1,

k/(xoi(S)) = as}
10. [3t @]9, := {h | there is a k such that k[t]g and h € [¢]%,}

0 otherwise

{g} if there is an h such that h € [¢]%,

11. [Ce]% ::{

0 otherwise

{g} i 5H(t) #uM

12. [def(t)]%; ==
M 0 otherwise
In order to make case [J] of the definition more comprehensible, let us first
consider its role in determining the semantics of (T)), i.e. of 3z U(z) — 3f(z)

R(z, f(2)):

e [3f(x) R(z, f(x))]%, is the set of assignments j satisfying R(x, f(x)) (i.e.
for which [R(z, f(z))]%, is non-empty) such that j[f(z)]k .

e [3z U(x)]Y, is the set of assignments k such that k[z]g and k(z) € UM.

For the sake of simplicity, we first ignore the last part of the definition of
le — ¥]%,, namely the part starting with “and for any [ > 0”. Under this
simplification, the definition yields the following (with n = m =1 and the only
possible 1-place argument filler for oq):

[Bz U(x) — 3f(x) R(z, f(z))]%; = {h | h[f]g and there is a variable z1 such that
for all k such that k[z]g and k(z) € UM,
k[x1]g and there is an assignment j satis-
fying R(z1, f(x1)) such that j[f(x1)]k and
3(f(x1)) = h(f)(k(z1))}

={h | h[f]g and for all k such that k[z]g
and k(z) € UM, there is an assignment j
satisfying R(z, f(z)) such that j[f(z)]k and
3(f () = h(f)(k(x))}
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= {h | h]f]g and for all k such that k[z]h and
k(z) € UM, k satisfies R(z, f(x))}

=[3f Gz U(x) = Rz, f(2))]}

The last part of the definition of [¢ — ]9, imposes an additional restriction
on the dynamically introduced function f, namely that f is only defined on
arguments that are urelements. An additional difference between the semantics
of (1) and of is that [3z U(z) — 3f(x) R(z, f(x))]9,; can be undefined,
namely if M = 3z,y (U(x) A appy(9(R),x,y) A =L(y)). This possibility of
[3z U(x) — 3f(x) R(z, f(z))]%,; being undefined is due to the third (and last)
condition in the definition of def([¢ — ¥]3,) (starting from “for every k €
[4]%,7). This condition has been added to the definition of def([¢ — ]%,) in
order to ensure that if such an implication is defined and has the syntactic form
of an implicit dynamic function introduction, then the Map Comprehension
Axiom Schema of AFTB actually implies the existence of a map satisfying the
properties that the implicitly introduced map must satisfy.

The truth condition of a formula ¢ under (M,g) is determined by [¢]%,
being empty or non-empty (with emptiness corresponding to falsehood). The
claim that the truth conditions of and of are essentially equal can now
be made precise: If [z U(z) — 3f(z) R(x, f(x))]9, is defined, then it is empty
iff [3z U(z) — 3y R(x,y)]%, is empty. This will actually follow from Lemma
below7 which characterizes the truth conditions of [¢ — ¢]9,, but it helps
understanding to see this example case proven directly from the definitions:

Suppose [Fz U(z) — 3f(z) R(z, f(x))]9, is defined. This im-
plies two facts:
(i) For any z,y € M with x € UM, appd (g(R),z,y) equals TM
or 1M,
(ii) For any x,y € M with 2 € UM and app}! (g(R),z,y) = TM,
ye LM,
(i) implies that [z U(z) — Jy R(z,y)]}, is defined too. Now

[z U(z) = 3f () Rz, f(2))]3 # 0

iff {h | h[f]g and for all k such that k[z]g and k(z) € UM, there is an
assignment j satisfying R(z, f(z)) such that j[f(z)]k and j(f(x)) =
h(f)(k(z)), and for a € M, h(f) is defined at a iff there is a k’ such
that k'[x]g, k' (z) € UM and K'(z) = a} #0

iff {h | h[flg and for all k such that k[z]g and k(z) € UM,
appd (RM  k(x), h(f)(k(z))) = TM, and h(f) is defined at a € M iff
ac UM} £

iff there is an f € M defined precisely on the urelements of M
such that for all k& such that k[z]g and k(z) € UM appd (RM
k(@), f(k(x))) =T

iff for all k such that k[z]g and k(z) € UM, there is a § € M such
that appd (RM  k(x),y) = T™ (the right-to-left implication follows
from fact (ii) above and Function Comprehension of AFTB)

iff [3z U(z) — 3y R(z,y)]%, # 0.
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In order to clarify the usage of argument fillers in the definition of [ — ¥]%,,
we will consider their role in determining the semantics of the following simpli-

fication of @:

(7) 3z 3y (U(x) NU(y)) — 3f(2)(y) 39(y, x) (R(x,y, f(2)(v), 9(y,x)))

In determining the semantics of this HODPL formula, the definition of [¢ — 9]9,
is used with m = n = 2, with f, g corresponding to f1, fs, with =,y correspond-
ing to x1, 2o and with (idg; 2y, (0,1,2)) and ((1 2)¢1,23,(0,2)) corresponding to
01 and oy. These two 2-place argument fillers encode the way x and y are fed as
arguments to f and g respectively: g accepts them in the form g(y, x), i.e. with
their order interchanged; hence the permutation (1 2)¢;2y. f accepts them in
the form f(z)(y); here their order is not interchanged, i.e. we use the permu-
tation idgy 2y, but f is curried, i.e. the arguments are split to different levels of
function application. This is encoded by the tuple (0, 1,2), whereas the tuple
(0,2) of o9 encodes that the arguments are not split.

We now present the already mentioned lemma that characterizes the truth
conditions of [y — ¢]%,:

Lemma 5.1.10. Let M be an AFTB model, g an M -assignment and ¢ and
HODPL formulae such that [ — )%, is defined. Then [ — ], # 0 iff for

every k €[]}, W13, # 0.

The proof of this lemma is analogous to the proof of a corresponding lemma
for Proof Text Logic (Lemma(5.2.21)), which we will present in section below
and prove in chapter [f]

5.1.2 Mimicking constants, function symbols and relation
symbols in HODPL

As already explained above, HODPL syntax does not allow for constant, func-
tion and relation symbols other than =, U and B. We will now show by means
of an example how variables in HODPL can be used to mimic the usage of
constant, function and relation symbols in PL or DPL.

One common application of PL is to formally axiomatize some theory and
then develop the theory from the axioms. The axioms may involve constants
as well as function and relation symbols that get characterized through the
axioms. For example, the following axioms of partially ordered groups involve
the constant 1, the binary function symbol - (for readability written in infix
notation) and the binary relation symbol < (also written in infix notation):

pr:=Vr(z-1l=azAl-z=2x)

wo i =Va,y,zx-(y-2)=(x-y)- 2

p3:=Vx Iy (z-y=1Ay-z=1)
og:=Vr,y,z,w (e <y—z-(z-w)<z-(y-w))

If we prove that some formula v follows from these axioms, we can say that we
have shown that ¢1 A wa A w3 A g — 9 is a valid PL formula.

Now in case we want to formalize the axioms in HODPL, we cannot use the
constant 1, the function symbol - and the relation symbol <. Instead, we can
make use of the dynamic character of existential quantification and the fact that
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we can implicitly dynamically introduce functions, which can also be declared
as relations by asserting their value to be always a Boolean. The domain of
quantification of the above PL formulae would be identified with the urelements
in HODPL. The axiom conjunction @1 A @2 A w3 A @4 can now be mimicked by
the following HODPL formula ¢':

=Gz Iy U@@)ANU(y) = 3x-yU(z-y)) A
JLUI) A
(B2 Iy U(z) AU(y) = Jz <y Bz <y)) A
e U(x) s z-1l=xzAl-z=1x))A

(

G, y, 2 (U) NUY) AU (2) »a-(y-2) = (z-y) - 2) A

FzU(x) >y (z-y=1Ay-z=1)) A

Bz, y, z,w (U) ANUY) AUR)ANU(w)Ax <y)—z-(x-w) <z-(y-w))
Here the first three lines dynamically introduce the symbols -, 1 and < re-
spectively. Note, however, that these are HODPL variables and not a function
symbol, a constant and a relation symbol as in the PL variant. The remaining
four lines correspond to the four axioms @1, @2, w3 and @, above.

A PL formula 1 that follows from the PL variant of the axioms can be
transformed in a similar way into an HODPL formula 1, in which -, 1 and <
are free variables. Then the valid PL formula 1 Aws A ps Ay — 1 corresponds
to the valid HODPL formula ¢’ — 1’. In this HODPL text, the occurrences of
-, 1 and < in ¢’ are bound by the dynamic existential quantifiers in ¢’. (The
notion of binding in HODPL is similar to that in DPL described in section [3.1.1
and completely analogous to that in the HODPL extension PTL defined below,
described in section The notion of validness of an HODPL formula is also
completely analogous to the corresponding notion for PTL defined in Definition

5.2.12| below.)

5.2 Proof Text Logic

In this section we present a formalism called Proof Text Logic (PTL), which has
the same expressive power as the Naproche CNL, but is of a completely formal
character, i.e. does not contain any natural language elements, but has a syntax
resembling that of standard predicate logic. It can be viewed as an extension of
HODPL with two distinguishing characteristics:

e The largest syntactic category of HODPL — just as of DPL and PL —
are formulae. These correspond roughly to natural language sentences.
In PTL, on the other hand, the largest syntactic category is that of a
PTL text, corresponding to a mathematical proof text including axioms,
definitions, theorems and lemmas with their proofs and the possibility of
references to previous theorems or lemmas.

e HODPL is based on a pure function theory, whereas PTL is based on a
theory of sets, functions, tuples and natural numbers, namely CMTN.

For the concatenation of assertions above the sentence level, we introduce a
second conjunctional connective & besides the A already present in HODPL.
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For theorems (and lemmas, propositions and corollaries), we introduce the
construct thm(e,e e): Its first argument marks the theorem type (“theorem”,
“lemma”, “proposition” or “corollary”), its second argument contains the the-
orem assertion, and its third argument contains the proof of the theorem. For
references we introduce two constructs:

e label(e, o), whose first argument is an ID attached as a label to the second
argument.

o ref(e, @), whose first argument contains a list of reference IDs and whose
second argument contains an assertion, whose proof is claimed to depend
on the premises that are being referenced.

PTL does not have a special construct for definitions. Definitions can be
modelled in PTL using the dynamic existential quantifier and implicit dynamic
function introduction. More on this in section [[.5.4]

5.2.1 PTL syntax

The symbols in the language of CMTN apart from u and a become logical
symbols in PTL. More precisely, we have logical constant symbols 0, s, T and
L, we have unary logical relation symbols C'; N, B and L, we have binary
logical relation symbols =, €, M and T, and we have a binary logical function
nth and for every n > 2, an n-ary logical function symbol Tn.ﬂ Additionally to
the countably infinite supply of variables, we also need to assume a countably
infinite supply of IDs for our definition of PTL syntax. Furthermore, we have
four theorem type symbols thm, lem, prop and cor.

In PTL syntax we distinguish between PTL texts and PTL formulae: The
first correspond to possibly multi-sentential mathematical texts, whereas the
second correspond to single sentences in a mathematical texts. By this charac-
terization, PTL formulae are always also PTL texts.

As in the case of HODPL syntax, we define PTL syntax by defining a number
of syntactic concepts via a simultaneous recursion:

Definition 5.2.1.

e A PTL term is a variable, a logical constant symbol or of the form
fnlto, - tn), to(t1,...,tn) or tx @ for an n-ary logical function sym-
bol f, PTL terms t, ..., t,, a variable x and a PTL formula ¢. We write
Tpry, for the set of quantifiable PTL terms, i.e. PTL terms that do not
contain ¢ and do not contain logical function symbols or logical constant
symbols.

e A PTL text is of one of the following forms, where tq, ..., t, are PTL
terms, t is a PTL term in Tpyyr, to is an «-free PTL term, ¢ and v are
PTL formulae, 6 and £ are PTL texts, ¥ is a theorem type symbol, « is
an ID and S is a finite non-empty sequence of IDs:

-t
— Ru(t1,...,tn)

5In order to avoid unnecessary case distinctions, we sometimes treat the logical constant
symbols as 0-ary logical function symbols.
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2
- (pAY)

= (p V)

- (p—0)

- (0&0)
—dty

— O
label(a, 6)
ref(S, )

— thm(9, ¢, 0)
def(to)

We usually write t; = t5 instead of =(t1,t2).
o A PTL formula is a PTL text not containing &, ref(e, e) and thm(e, e, o).

We sometimes use Vt ¢ and (¢ <> 1) as an abbreviations for (3t T — ¢)
and (C(p = ¥) A O — ) respectively.

5.2.2 PTL semantics

In this section we present a formal semantics for PTL that closely resembles
HODPL semantics. However, this semantics does not really capture the role of
labels, references (ref(e, ®)) and the theorem-proof blocks (thm(e, e, e)). This is
because references and the theorem-proof-blocks have a procedural role: They
give hints on how the PTL text can be checked for logical validity. This pro-
cedural role is captured by the proof checking algorithm for PTL presented in
the next chapter. The semantics presented in this section only captures the
non-procedural aspects of the meaning of PTL texts.

The difference between ¢ A ¢ and ¢ & 1 is also purely procedural, so that
in this section they will be given the same semantics. The intended difference
between the two is that when proof-checking Jx ¢ & 1), one can check Iz ¢ first
and then check ¥ under the assumption that ¢, whereas when proof-checking
3z ¢ A1 one has to check 3z (¢ A ¢). The natural language “and” will al-
ways be translated by A, whereas & will in general be used for translating the
concatenation of assertions above the sentence level.

PTL semantics is defined in a similar way to HODPL semantics. The pre-
liminary notions, like assignments and n-place argument fillers, are defined just
as for HODPL semantics, only replacing A FTB models by CMTN models in the
definitions.

Definition 5.2.2. Given a CMTN model M and an M-assignment g, we define

the term interpretation function %(o) : Tprr, — M and the domain and values

of the partial text interpretation function [[o]]ﬁd C Gy X Gy by a simultaneous
recursion:
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h(z)

e Domain of [e]9,:

1.

S e N

10.
11.
12.
13.

0%,) iff () € BM.
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if t is a logical constant symbol ¢ (in
cM, ¢ refers to the CMTN constant
symbol corresponding to the logical
constant symbol c)

if g is defined on ¢

if g is undefined on ¢ an t is of the
form to(t1,...,tn)

if ¢ is of the form f(t1,...,t,) for a
logical function symbol f (in fM, f
refers to the CMTN function symbol
corresponding to the logical function
symbol f)

if t is of the form tx ¢ and either there
is a ¢'[z]g such that [[cp]]?\; is unde-
fined or it is not the case that there
is precisely one h such that h[z]g and

[l #0

if ¢t is of the form tx ¢, for every
q'[zlg, [¢]4, is defined, and h is the
unique assignment such that hlz]g

and o]}, # 0

defl
def([R(t1, . tn)]5) 2 (81) £ uM, ., M(t,,) # uM.

def([~¢l3,) iff def(le]3,)-

def([p A]4,) iff defi[p]f,) and for all b € [o], def([¥]};)-

def(l v ¥]3,) it def([]3,) and def([v]3,)-
def(le — 0]4,) it def([¢]4,) and for all h € [¢]%,, we have that
def([0]%,) and that for every k € [0]%,, if there is a t € dom(k) \
dom(h) of the form f7(t1,...,t,), where {t1,...,t,} = dom(h) \
dom(g), f is a PTL term and o is an n-place argument filler, then
k(t) € LM and h(t;) € LM for 1 <i < n.

7. def([0 & €]9,) iff def([0]9,) and for all h € [0]%,, def([€]",).

1
def{[Oely,) i defilpl4)-
def([label(cr, )14 iff def([615,).

def([ref(S, ©)14,) iff def([l?,)-

def([3t ¢]%,) iff for all h such that h[t]g, def([¢]%,)-

def([thm(9, , 0)]3,) iff def([¢],)-

def([def(1)]4, ).
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e Values of [e]9;:

1.

. gy &) =T
[ = {@ if M () = 1M

g {{9} if (%(t1)7...,%(t1)) c RM

(Rt t)], =

0 otherwise

{g} if there is no h such that h € [p]4,

[=elis = {

0 otherwise

. [e A9]4, == {h | there is a k such that k € [p]3, and h € []%,}

(g} if there is there is an h such that h € [¢]9, or
LoV ]y, = h e [¥]4,

0 otherwise

lo — 019, := {h | there are PTL terms fi,..., f, (where n > 0 and
the choice of n is maximal) such that h[f1,..., fn]g and such that
there are PTL terms t1,. .., t,, (where m > 0) and m-place argument
fillers o1, . .., 0y, such that for all k € [¢]4,, k[t1, - .., tm]g and there is
an assignment j € [0]%, such that for 1 <i <n, j(f7 (t1,...,tm)) =
h(fi)?% (k(t1),...,k(tm)), and for any [ > 0 in the sequence that
constitutes the second element of o; and any aq,...,a; € M, h(f;) is
o;-defined at aq, ..., q iff there is a k" € [¢]3, such that for all s <,

k/(tai(s)) = as}

7. [0 & €], := {h | there is a k such that k € [0]%, and h € [¢]%,}
8. [3t ¢]%, := {h | there is a k such that k[t]g and h € [¢]%,}

10.
11.
12.

13.

[Celiy = {{g b there. is an h such that h € []4,
0 otherwise
llabel(cr, 0)]5; := (015,
[ref(S, )l = el
[thm(9, 0, 0)]%, = [¢]%,
Y .
B

0 otherwise

The following definitions give us a three-valued classification of PTL texts
into meaningless, true and false ones:

Definition 5.2.3. We define a ternary walidity function v as follows: Given a
PTL text 6, a CMTN model M and an M-assignment g, define

u if [0]9; is undefined

v(0, M, g) = T if [0]9, is defined and non-empty

1 if [0]9, is defined and empty
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5.2.3 Scope and binding

Just as DPL allows for existential quantifiers to bind variables which are outside
their syntactic scope, PTL allows for existential quantifiers to bind quantifiable
terms which are outside their syntactic scope. We now give a syntactic definition
of when an occurrence of a quantifiable term is bound by an occurrence of a
quantifier, which is an adaptation of the definition by |Groenendijk and Stokhof]
(1991) presented in section of chapter

Compared to the definition of |(Groenendijk and Stokhof| (1991)), we have to
capture one additional difficulty: |Groenendijk and Stokhof] (1991)) could assume
that an occurrence of 3¢ can only bind occurrences of ¢ and not occurrence of
other terms. In PTL however, because of the phenomenon of implicit dynamic
function introduction, an occurrence of Ity(ty,...,t,) in the right hand side of
an implication may bind ¢y outside the scope of the implication. In order to
capture this, we will have to keep track of which term an active occurrence of a
quantifier can currently bind.

We will define three functions on PTL texts by simultaneous recursion:

e bp(h), the set of binding pairs in 6.

e aq(0), the set of active quantifier pairs in 6.

e ft(0), the set of free occurrences of terms in 6.

An active quantifier pair consists of a quantifier occurrence and a term such
that the quantifier occurence has the potential to bind occurrences of the term

further on. The notions of a binding pair and of a free term correspond directly
to the notions of a binding pair and of a free variable from section [3.1.1

Definition 5.2.4. We define the functions bp, aq and ft on PTL terms and
PTL texts by simultaneous recursion as follows:

1. bp(z):=0
aq(z) =10
ft(x) := {z}
bp(f(tla 7tn)) = bp(tl) U U bp(tn)
aq(f(th atn)) = @
fe(f(t1,. .., tn)) :=Tt(t1) U--- U Tt(L,)
bp(to(t1,.--,tn)) :=bp(to) U--- Ubp(t,)
aq(to(ty,....tn)) =0

B(to(t1, .- bn)) = B6(t0) U+ U Bt(n) U {to(t, -, tn)}

bp(uz ¢) := bp(p) U {(wz, 2) | © € ft(p)}
aq(ur @) =10
ft(1x ¢) := ft(y) minus the occurrences of z in ¢
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10.

11.

12.

13.
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bp(p A1) := bp(p)Ubp(¥)U{(3t1,t2) | (3t1,t2) € aq(p) and ¢ € ft(¢)}

aq(pAY) := aq(y)U{(3t1,t2) € aq(yp) | there is no ¢} such that (3], t2) €
aq(y

ft(p AN Y) = t((l())j{t € ft(¢) | there is no ' such that (3t',t) € aq(p)}

bp(p Vv ¢) := bp(p) Ubp()

aq(p V¢) =0

B (o v 1) = () U ft(9)

bp(p — 0) := bp(p)Ubp(0)U{(3t1, t2) | (3t1,12) € aq(yp) and t5 € f6(0)}

aq(p — 0) :={(3t.t0) | aa(y) = {(Ft1.t1),.... (3}, tn)} for n > 1,
(3t,t') € aq(f) and there is an n-place argument filler o
such that ¢/ = tg(t1,...,tn)}

ft(p — 0) := ft(¢) U {t € ft(0) | there is no ' such that (3t',t) € aq(¢)}

bp(@ & 5) = bp(@) U bp(f) U {(Htl,tg) | (Ehfl,tz) S aq(G) and ty € ft(g)}
aq(f & ¢) = aq(§) U{(3t1,t2) € aq(f) | there is no t} such that (3t],t2) €

aq(é)}
ft(0 & &) := ft(6) U {t € ft(&) | there is no ¢’ such that (3t',t) € aq(f)}

bp(Jt ) :=bp(p) U{(3t,1) | t € ft(p)}
aq(e) U{(3t,t)} if there is no t' such that (3t',t) € aq(p)

aq(3t ¢) ==
{aq(cp) otherwise

ft(3t ) := ft(p) minus the occurrences of ¢ in ¢
. bp(Cp) :=bp(yp)

aq(Cp) =0

ft(Op) = ft(p)

bp(label(c, 0)) := bp(0)

aq(label(a, 0)) := aq(6)

ft(label(a, 0)) := ft(0)

bp(ref(S, ¢)) := bp(p)

aq(ref(S, p)) == aqyp)

ft(ref(S ,sO)) = ft(p)

bp(thm(¥,¢,0)) := bp(p) Ubp(0)

aq(thm(ﬁ7 @, 9)) = aq(‘P)
ft(thm(9, ¢, 0)) := ft(p) U £t(0)

bp(def(t)) := bp(?)
aq(def(t)) :=0
ft(def(t)) := ft(¢)

Just as in the case of DPL, we can define a notion of active quantifier at any
position in a PTL text. Again, we first need to formalize the notion of position:
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Definition 5.2.5. Given a PTL text 6, we call an occurrence of an atomic
formula in € a position in 6.

Definition 5.2.6. Given a PTL text 0, an occurrence dt; of a quantifier in 6,
a PTL term to and a position p in 6, we say that the pair (3t; ,t2) is an active
quantifier pair at position p iff the PTL text 6 resulting from replacing position
p by to has the binding pair (3¢; ,t2), where the second element in this pair is
now considered to be the occurrence of t5 that has replaced position p.

5.2.4 Further PTL notions

We now define some further syntactic notions dependent on those defined above:

Definition 5.2.7. Given a PTL text 0, we define the set of terms with binding
capability after 6 by

tbc(0) := {t | there is a term ¢’ such that (3t',¢) € aq(0)}.

Definition 5.2.8. Given a PTL text 0, a hereditarily free term in 6 is a term
t € ft(0) such that for all subterms ¢’ of ¢, ¢’ € ft(0).

Definition 5.2.9. Given a PTL text 6, a mazimal hereditarily free term in 6,
usually abbreviated to MHF term in 60, is a hereditarily free term in 6 that is
not a proper subterm of a hereditarily free term in 6.

Definition 5.2.10. A PTL text 6 is called ground if it contains no hereditarily
free terms.

Additionally to the ternary validity function whose values depend not only
on a PTL text but also on a CMTN model M and an M-assignment g, we
can now also define an absolute validity function on ground PTL terms whose
value is independent of any particular model and assignment. For this we first
introduce a convenient notation for empty assignments:

Definition 5.2.11. Given a CMTN model M, we call the empty M-assignment
(i.e. the M-assignment that is undefined on all terms in Tprryr) €.

Definition 5.2.12. We define a unary absolute validity function v on ground
PTL texts by

w  if there is a CMTN model M such that [6]) is undefined
o(6) = T if for all CMTN models M, [0]%} is defined and non-empty

otherwise, i.e. if [0]}} is defined for all CMTN models M, and
is empty for some M

When v(0) = u, we also say by abuse of language that v is undefined at §. When
v(f) = T, we say that 6 is a valid PTL text.

In chapter 7} we will specify a translation from Naproche CNL texts to PTL
texts. This translation actually always results in PTL texts with certain nice
syntactic properties, and these properties are presupposed by the proof check-
ing algorithm described in chapter [f] Roughly speaking, these nice properties
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amount to the avoidance of variable clashes and the avoidance of variables that
were not dynamically introduced through an existential quantifier. We will
formally define these properties in Definition but first we need some
auxiliary definitions:

Definition 5.2.13. Two PTL terms t and t' are called independent iff there
are no PTL terms t1,...,tm, t},...,t), such that for some m-place argument
filler o1 and some n-place argument filler og, t71 (t1, ..., tm) = /22(t], ..., ).

Definition 5.2.14. A multiset of PTL terms is called pairwise independent
iff no term occurs more than once in it and any two distinct terms in it are
independent.

Definition 5.2.15. A PTL text 6 is called semi-nice iff the multiset of occur-
rences of terms after an ¢ or 3 in 0 is pairwise independent.

Definition 5.2.16. A PTL text 6 is called nice iff it is semi-nice and ground.

Lemma 5.2.17. For semi-nice PTL texts p AN, 0 & & and 3t o, the following
simplified characterization of aq is correct:

aq(p A1) = aq(p) Uaq(y)
aq(f & &) = aq(f) Uaq(¢)
aq(3t ) = aq(p) U{(3t, 1)}

Proof. Trivial. O

Lemma 5.2.18. Let 0 be a PTL text and t € tbe(f). Then for some n, there
is an n-place argument filler o and terms t1,...,t, such that 3t (t1,... t,)
appears in 6.

Proof sketch. This follows by an easy inductive proof from the definition of
aq. O

Lemma 5.2.19. If & and & are subtexts of a semi-nice PTL text 6, then
tbc(&y) @ tbe(&e) is pairwise independentﬂ

Proof. Trivial by Lemma[5.2.18] O

The following lemma characterizes the relationship between the syntactic
definition of tbc and the definition of PTL semantics:

Lemma 5.2.20. Let 0 be a semi-nice PTL text, and let M be a CMTN model.
If g and h are M-assignments such that h € [0]%, and such that the union

of dom(g) and the set of occurrences of terms after an ¢ or 3 in 0 is pairwise
independent, then tbe(0) = dom(h) \ dom(g).

We do not yet have the machinery required for proving this lemma: The proof
of the lemma goes by induction over the complexity of 6, with an eleven-case
case distinction covering the possible forms 6 can have according to Definition

6Here the sets tbe(€1) and tbe(€z) are considered as multisets with each element appearing
once in each of them. This allows us to apply @ to them, and in the multiset tbe(&1) ©tbe(&2)
some elements may appear twice.
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All cases apart from 6 being of the form ¢ — 6’ are trivial, but this non-
trivial case requires us to make use of the Map Extensionality Axiom Schema of
CMTN to prove the existence of certain functions in M under certain conditions,
which are expressed in terms of [¢]4, and [¢']%,. In order to make use of this
first-order axiom schema, we first need to translate these conditions into first-
order statements. For this we need a translation from PTL texts to first-order
that conserves truth conditions. Since we develop such a translation as part of
the proof checking algorithm treated in chapter [ we postpone the proof of this
lemma to section [6.3.11
The following lemma characterizes the truth conditions of [y — ]9,

Lemma 5.2.21. Let M be a CMTN model, g an M -assignment, ¢ a PTL
formula and 6 a PTL text such that [ — 0]%, is defined. Then [ — 6]%, # 0

iff for every k € [¢]%,, [01%, # 0.

Just as the proof of the previous lemma, the proof of this lemma depends
on the machinery from the next chapter and will be proven in section [6.3.1
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Chapter 6

A proof checking algorithm
for Proof Text Logic

In this chapter, we present the proof checking algorithm of the Naproche sys-
tem in a formal way. The goal of the proof checking algorithm is to determine
validity of a PTL text as defined by the absolute validity function v from Def-
inition Since the proof checking algorithm for PTL is rather involved,
we first present an analogous proof checking algorithm for DPL, which is signif-
icantly simpler than the algorithm for PTL, and which helps to clarify its basic
functioning.

In order to simplify the definition of the proof checking algorithm, we will
assume that it works on a nice PTL text (as defined in Deﬁnition roughly
speaking, the niceness of a PTL text amounts to the avoidance of variable clashes
and the avoidance of variables that were not dynamically introduced through
an existential quantifier). Since all PTL texts that result from Naproche CNL
texts are nice, this is not a significant limitation.

6.1 From DPL to PTL proof checking

6.1.1 A proof checking algorithm for DPL

In order to understand the purpose of this algorithm, one has to view the DPL
formula that is given to the algorithm as representing the content of a math-
ematical proof: Assumptions and their consequences are represented by DPL
formulae of the form (¢ — ), and the simple linear concatenation of reasoning
steps is represented by DPL conjunction with A. We will assume that the algo-
rithm works on a nice DPL formula, where the definition of niceness for DPL
formulae is analogous to that for PTL texts in

The checking algorithm keeps track of a list of PL formulae considered to
be true, called premises, which gets continuously updated during the checking
process. Each assertion is checked by an automated theorem prover (ATP) based
on the currently active premises. In practice, the ATP has to be given a time
limit. Our formalization of provers presented below corresponds to an actual
ATP with a fixed time limit (and, of course, with other possible parameters of
the ATP fixed as well).

93
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In order to make clear the distinction between DPL or PTL formulae/texts
on the one hand and PL formulae used as a translation of these for the proof
checking algorithm on the other hand, we will use small Greek letters (like ¢,
¥, X, 0, &) for the first and capital Greek letters (like ®, ¥, X, O, E) for the
second. We will always use the corresponding small and capital Greek letters for
the original formula and its translation. The distinction between ¢, ¥ and x on
the one hand and # and £ on the other hand is used, just as already practised in
the previous chapter, for the distinction between PTL formulae and PTL texts.
For clearly distinguishing PTL terms from PL terms we analogously use a small
t and a capital T

Definition 6.1.1. A proof obligation is of the form I' - ®, where T is a finite
sequence of premises and @ is a PL formula.

Definition 6.1.2. A prover P is a function from proof obligations to {—1,0, 1}
such that if P(I' -7 ®) = —1 then I' i/ ®, and if P(I' -7 ®) = 1 then T' - ®.

The intended meaning of this function is that given an ATP P and an
obligation o of the form I' -* ®, P(0) = 1 means that P can prove that I' - ®,
P(0) = —1 means that P can prove that I' I/ ®, and P(0) = 0 means that P
cannot determine whether I' = @ in the time it was given for the task.

Based on these three possible outputs of single calls of ATPs, there are also
three possible outputs for the proof checking algorithm: The proof checking
algorithm can determine that its input DPL formula is a tautology (i.e. repre-
sents a proof without erroneous proof steps), it can determine that it is not a
tautology (i.e. represents a poof with erroneous proof steps), or it may fail to
determine which of these two cases holds. The most important distinction for
practical purposes is that between the first and the other two cases. For the
sake of simplicity, we will present our formal definitions of the proof checking
algorithms for DPL and PTL only with this distinction. In section we will
sketch how the proof checking algorithm can provide for the distinction between
the latter two cases.

The final output of the proof checking algorithm is defined by keeping track
of a proof status value, whose possible values are 1 and T, and which is set
to T at the beginning and updated at every call of the prover with the update
function update defined below. update takes two arguments: the previous proof
status value, and the output of the prover. The output of update is considered
the new proof status value.

Definition 6.1.3. We define an update function update from { L, T} x{-1,0,1}
to {L, T} by
T ifpu=Tandi=1

1 otherwise.

update(u, i) = {

We present the proof checking algorithms in pseudo-Prolog-code. This
pseudo-code is based on Prolog syntax and standard indentation conventions
for Prolog, as used for example in Blackburn et al.| (2006), enriched by some
self-explanatory natural language descriptions of the algorithm. In order to
make the distinction between input and output values of a function defined using
Prolog predicates more visible, we usually write p(X1,...,X,,) = (Y1,...,Y,,) in
pseudo-code, where the actual Prolog code would read p(X1, ..., X, Y1,...,Yn),
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and where p is a Prolog predicate representing a function that takes Xi,..., X,
as input and Y7,...,Y,, as output values.

Now we are ready for defining the function check that formalizes the proof
checking algorithm:

Definition 6.1.4.
check(p) = (v) :«E|
check_tezt(p, (), (), T) = (- - V)‘H

check_text(T,T',V, u) = (T, ,u)E|
check_text(R(t1, ..., tn), I, V,u) = (L ® (R(t1,...,tn)), V,v) -
v = update(p, P(T" - (tl,...7t )))E
check_text(—p, T,V u) = (T @ (-3Vy &),V v) :-
read_text(p, V) = (Vq, ®),
v = update(p, P(T F* =3V, @)).
check_text((p A ), T, V, u) = (T2, Vo, v) -
check_text(o, T, V, 1) = (T'1, Vi, p1),
check_text(1p, T, V1, u1) = (T2, Vo, v).
check_text((¢ V), T, V,u) = (T @ ((3FVy &V IV, ¥)),V,v) -
read_text(p, V) = (Vq, ®),
read_text(y, V) = (Va, U),
v = update(p, P(T' F* (3Vy @ v IV, 1))).
check_text((p — ), T, V,u) = T @ (VV; (& — 0)),V,v) -
read_text(p, V) = (Vq, ®),
check_text(y), T @ (@), V@ Vi, 1) = (I'1, Vo, v),
V’ =V, - (Va V),
— 3V AT - (T & (@),
check text(3z o, T, V,u) = (T @ (P), V& Vo P (x),v) -
read_text(p, V@ (x)) = (Vo, D),
v = update(p, P(T' - 3z 3V, @)).
check_text(Cp, T,V ) = (T @ (IVy @), V,v) :-
check_text(o, T, V, u) = (T, V', v),
V, =V -V,
o =AI"-T).

read_text(p, V) = (V =V, AT) :~E|

IThe check function has one input argument and one output argument: its input is a
DPL formula, and its output is a truth value that indicates whether the proof checking was
successful or not.

2Since we use this algorithm to clarify the PTL proof checking algorithm, we already use
PTL-like terminology for naming the functions: Hence check_text rather than check_formula.

3The check-text function has four input and three output arguments. The first input
argument specifies the DPL formula to be checked. The remaining three input arguments as
well and the three output arguments respectively keep track of the currently active premise
list, the currently active list of accessible variables and the current proof status value. Since
the value of these three items may change during the proof checking of the input DPL formula,
we have an input and an output argument for each of these three values.

4This case also covers DPL formulae of the form ¢; = to.

5The read_text function reads in a DPL formula and translates it to PL. It has two input
arguments and two output arguments: The first input argument is the DPL formula to be
read in, and the second argument is the list of accessible variables that is active when the
function is called. The first output argument lists all variables that the active quantifiers of
the input DPL formula quantify over (see Definition in chapter ; the second output
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check_text(p, (), V, T) = (I, V', ).

If one keeps in mind that DPL formulae of the form ¢ A 1 represent con-
catenated parts of a proof, that DPL formulae of the form ¢ — 1 represent
assumptions and their consequences and that all other DPL formulae represent
single statements in a proof, one can easily see that the above defined proof
checking algorithm formalizes the basic idea that the algorithm sequentially
works through a proof, keeping track of a list of premises that represent the
mathematical information gathered so far, adding information whenever a new
assumption or assertion is made, and checking all new assertions for correctness
based on the currently active premise list.

The read_text function serves the purpose of translating a DPL formula into a
PL formula without checking the translated DPL formula for proof correctness.
This is achieved by calling check_text but ignoring its third output value, which
indicates the proof correctness of the checked formula. This means that all proof
obligations sent to an ATP within a check_text procedure called by read_text can
actually be ignored: In practice, one does not need to call the ATP at all in
these cases.

Note how the dynamic character of the existential quantifier is realized in the
proof checking algorithm: When an existential statement appears as an asser-
tion, what has to be checked by the ATP is actually an existentially quantified
PL formula. But what is added to the premise list does not have the existential
quantifier, so that the previously existentially quantified variables are now free
variables. If a later assertion in the proof mentions the dynamically introduced
variable again, its translation to PL will also contain that variable as a free
variable. We then have a proof obligation of the form ..., ¢(z), - F7 ¥(z),
where z occurs freely on both sides of 7. Such a free variable behaves ex-
actly like a constant symbol: ..., ¢(x),... E ¢¥(x) iff ..., ¢(c),... E ¥(c) for
a new constant symbol ¢ (i.e. a constant symbol that appears nowhere in
“oe(x),. .. = (x)”). So what is added to the premise list can be considered
the Skolemz'zeaﬂ form of the checked existentially quantified PL formula. With-
out this Skolemization of existential statements, a later reuse of a dynamically
introduced variable could not be modelled: If we had 3z ¢(x) instead of ¢(x)
in our premise list, the x in ¥ () after the =’ could not be made to refer to the
same object of our domain as the z in ().

6.1.2 Soundness of the DPL proof checking algorithm

One can prove the following soundness theorem for this proof checking algo-
rithm:

Theorem 6.1.5 (Soundness of the DPL proof checking algorithm). If ¢ is a
nice DPL formula and check(p) = T, then ¢ is a tautology.

Since we are really interested in the PTL proof checking algorithm, and use
the DPL proof checking algorithm only as a simplified case in order to explain
its basic functioning, we will not prove this theorem in detail, but only sketch

argument is the PL translation of the input DPL formula (without existential quantification
over the active quantifiers of the input DPL formula).

6For a general introduction to the technique of Skolemization, see for example |Brachman
and Levesque| (2004} p. 64).
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a proof plan. The basic idea is to prove it by induction on the length of . But
the recursive part of the definition of the proof checking algorithm does not lie
in the function check, but in the function check_text. Hence the inductive hy-
pothesis has to say something about the implications of check_tezt(p,T',V, u) =
(T, V', v), not just about the implications of check(p) = v. Since these impli-
cations are somewhat involved, we write down a separate lemma for them, the
DPL Detailed Soundness Lemma below.

This lemma does not only need to ensure the correctness of the output
value v, as the above soundness theorem, but also the correctness of the other
two output values, IV and V’. Additionally, the lemma needs to ensure that
certain technical properties about the relation between V, V’ and the variables
that are quantified in ¢ are conserved. To understand the purpose of these
technical properties, note that the niceness of the input formula ¢ amounts to
the avoidance of variable clashes and the avoidance of variables that were not
dynamically introduced through an existential quantifier. In order to ensure that
these two avoidances have their desired effect in the proof checking algorithm,
we need to ensure that corresponding avoidances are conserved at the inductive
step of the proof.

Lemma 6.1.6 (DPL Detailed Soundness Lemma). Let ¢ be a semi-nice DPL
formula. Further assume the following properties:

(i) V is a set of variables that do not occur in ¢ after an 3.
(i1) All free variables of ¢ are in V.
(i) T is a premise list such that all free variables in T are in V.
(i) check_text(p, TV, u) = (T, V', v).
(v) M is a structure and g an M -assignment such that M, g =T.
(vi) dom(g) = V.
Then the following four properties hold:
1. aq(p) =V — VE]
2. All free variables in T' — T are in V'.

3. For all M -assignments k, the following two properties are equivalent:

(a) k € [ely-
(b) k[V' —V]g and M,k =T’ —T.

4. If v =1, then [¢]9, # 0 and p = 1.

The proof of this lemma now mainly consists of checking these four proper-
ties for all of the eight cases in the above definition of check_text. We refrain
from presenting the proof here, but will present the proof for the corresponding
Detailed Soundness Lemma for the PTL proof checking algorithm.

7We should actually say that the set whose elements are the elements of the sequence V/ —V
is equal to aq(p). For the sake of simplicity and since it does not cause problems, we use the
simplified expression aq(¢) = V' — V instead.
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6.1.3 Proof checking with presuppositionsﬁ

We will now describe what features have to be added to the above proof checking
algorithm for DPL in order to transform it to a proof checking algorithm for
PTL. First we consider how presuppositions have to be treated in such a proof
checking algorithm.

In section of chapter [3] we described the behaviour of presuppositions
using the concept of the context in which an utterance is interpreted. We gave
different accounts of what contexts could be. When working with PTL seman-
tics, it is natural to identify contexts with pairs (g, M) consisting of a CMTN
model M and an M-assignment g. When working with a proof checking algo-
rithm like the one described above, on the other hand, it is natural to identify
contexts with the premise lists that the proof checking algorithm keeps track of.

As noted in section [1.1] assertions in mathematical texts are expected to
be logically implied by the available knowledge rather than adding something
logically new to it. Because of this pragmatic peculiarity of mathematical texts,
both presuppositions and assertions in proof texts have to follow logically from
the context. For a sentence like “The largest element of M is finite” to be
legitimately used in a mathematical text, both the unique existence of a largest
element of M and its finiteness must be inferable from the context.

The remaining distinctive feature between assertions and presuppositions is
that the failure of the latter ones makes the containing sentences meaningless,
not only false. We have already accounted for the distinction between false and
meaningless sentences in the definition the validity function v for PTL texts
(Definition . So we will now work with three possible proof status values
u, T and L, which are also the three elements of the codomain of v.

A proof is only considered correct if its proof status value is T, so the dis-
tinction between T and the other two proof status values is more important
than that between u and L. If we ignore the difference between v and L, what
we said about the example sentence above results in treating presuppositions
and assertions in the same way. This parallel treatment of presuppositions and
assertions, however, does not necessarily hold for presupposition triggers that
are subordinated by a logical operation like negation or implication. For ex-
ample, in the sentence “A does not contain the empty set”, the existence and
uniqueness presuppositions do not get negated, whereas the containment asser-
tion does. This is explained in the following way: In order to make sense of
the negated sentence, we first need to make sense of what is inside the scope of
the negation. In order to make sense of some expression, all presuppositions of
that expression have to follow from the current context. The presuppositions
triggered by “the empty set” are inside the scope of the negation, so they have
to follow from the current context. The containment assertion, however, does
not have to follow from the current context, since it is not a presupposition, and
since it is negated rather than being asserted affirmatively.

In the proof checking algorithm, making sense of a PTL text corresponds to
processing it in some way, whether using read_texrt or whether using check_text
directly without it being called by read_text. In the DPL proof checking algo-
rithm, all calls of ATPs within a call of read_text could be ignored. But according
to the above explanation, ATP calls that check presuppositions also have to be
checked when they are inside a call of read_text.

8This section is largely taken over from [Cramer, Kiithlwein, and Schréder| (2010).
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For example, the PTL text representing the sentence is .

(1) A does not contain the empty set.
(2) —contains(A, wx(empty(z) A set(x)))

When the checking algorithm encounters the negated PTL text, it needs to find
the PL translation of the PTL text in the scope of the negation, for which it will
call read_text. Now the ¢ triggers two presuppositions, which have to be checked
despite being within a call of read_text. So we send the proof obligations ([3)
and (for a new constant symbol ¢) to the ATP. Finally, the proof obligation
that we want for the assertion of the sentence is .

(3) T F* 3z(empty(x) A set(x))
(4) T U {empty(c) A set(c)} F7 Vy(empty(y) A set(y) — y = ¢)
(5) T U {empty(c) A set(c), Vy(empty(y) A set(y) — y = c)} F* —contain(A, c)

In order to get this, we need to have contain(A,c) as our PL translation of
the PTL text in the scope of the negation. In the DPL proof checking algo-
rithm, we conjuncted all premises that had been added to the premise list in
the course of processing a DPL formula in order to define the translation of that
DPL formula to PL. This will no longer work, since we add empty(c) A set(c),
Yy(empty(y) A set(y) — y = ¢) and contain(A, c) to the premise list while pro-
cessing contains(A, tx(empty(x) A set(z))), but we only want contain(A4,c) to
be the PL translation. The solution is to conjunct only those premises that
had been added to the premise list without originating from a presupposition.
The premises originating from presuppositions have to be added to the list of
premises that were active before calling read_text. This means that the new
proof checking algorithm has to keep track of which premises originate from
presuppositions and which do not.

This pulling out of presuppositional premises is not always as simple as in the
above example. Consider for example sentence @, whose (somewhat simplified)
representation in PTL is .

(6) There is a finite non-empty set M of natural numbers such that the largest
element of M is even[’]

(7) 3IM (finite( M) Anon-empty(M)Aset_of-nats(M)Aeven(vx largest_elt(x, M)))

The Skolemized premise from the existential presupposition is largest_elt(c, M).
According to the above account, it should be added to the set I' of premises
available before encountering this sentence, and this extended premise list should

9 The definite noun phrase “The largest element of M” can be read like a function de-
pending on M. When, like in our example, such functional definite descriptions are used as
functions on a variable that we are quantifying over, the presuppositions of the functional
definite description can restrict the domain of the quantifier to entities for which the presup-
position is satisfied. Such a restriction of a quantifier is an instance of accommodation (local
accommodation in our account), which will be treated in section In this section we
are interested in presupposition handling without accommodation, i.e. without restricting the
domain of the quantifier in this example. So the presuppositions of “the largest element of
M?” have to be fulfilled for any finite non-empty set M of natural numbers.
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be used for proving the existential statement asserting the existence of M. But
largest_elt(c, M) contains a free occurrence of the variable M, so that this would
result in this occurrence of M being pulled out of the scope of the quantifier
introducing M, which makes the pulled out premise meaningless. Hence we
need a more sophisticated approach to pulling out presuppositional premises:

According to the above account, we will check the existential presupposition
in question using the proof obligation . Given that M does not appear in
I' (as it is a newly introduced variable), this is logically equivalent to having
checked (9), whose Skolemized form will be added to ' (where sk, is the new
function symbol introduced for = when Skolemizing). This extended premise set
is used to check the existential claim of the sentence in .

(8) T'U {finite(M), non-empty(M), set_of- nats(M)} * Iz largest_elt(x, M)

(10

)

(9) T F? VM (finite(M)Anon-empty(M)Aset_of nats(M) — Jx largest_elt(z, M))
) VM (finite(M)Anon-empty(M)Aset_ of-nats(M) — largest_elt(sk, (M), M))
)

(11 FU{} F? AM (finite( M) Anon-empty (M) Aset_of-nats(M)Aeven(sk,(M)))

This Skolemization of presuppositional premises that are pulled out when
calling read_text will be realized through a separate predicate pull_out_pres in
the definition of the PTL proof checking algorithm below (Definition .

For formalizing this Skolemization, we need for every n > 0 an infinite supply
{sk}" | i € N} of skolem function symbols of arity n (the 0-ary skolem function
symbols could be considered constant symbols, but for avoiding unnecessary
case distinctions, it is useful to consider them function symbols too). We usually
omit the superscript indicating the arity of a skolem function symbol. In the
definition of the PTL proof checking algorithm, we often have to ensure that
we use a new skolem function symbol. In such cases, we use the notation sk™**;
the intended meaning is sk; for an ¢ € N that has not been used for any skolem
function symbol used so far in the algorithm. If sk,,.., appears more than once in
a clause of pseudo-Prolog-code, the intended meaning is that these occurrences
refer to the same sk;.

Since we now have a third proof status value, namely u, we need to adapt our
definition of the update function. The update function now takes an additional
argument that specifies whether the prover is called for a presupposition check
(0) or for an assertion check (1). (This additional argument is in the second
position, and the originally second argument is now the third argument.)

Definition 6.1.7. We define an update function update from { L, T,u}x{0,1}x
{-1,0,1} to {L, T,u} by
po o ifj=1
update(p,i,j) =4 L ifj#1,i=1and p#u
u  otherwise (i.e. if j # 1 and either ¢ = 0 or u = u).
Just as the premises added to a premise list while processing a DPL formula
¢ also served the purpose of characterizing [¢]$, in statement [3| of the DPL

Detailed Soundness Lemma, so the presuppositionally marked premises added
to a premise list while processing a PTL text 6 will also serve the purpose of
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characterizing conditions for def([¢]9,) in the Detailed Soundness Lemma for
the PTL proof checking algorithm below.

If we have partial functions that trigger presuppositions, we have a separate
problem: No matter whether we translate the functions into PL directly using a
separate function symbol for every function or whether we translate them using
a separate function symbol app for function application, we have terms in the
PL language we translate into that correspond to applications of functions to
objects not in their domain. For this not to cause problems, we have to assume
that the structure described by the PL formulae that we use as translations
contains a separate object for undefinedness. As usual, we use the constant
symbol u to refer to this object.

Quantifiers in formalisms like HODPL or PTL of course do not range over
this undefinedness object. So when translating these quantifiers into PL, we now
have to ensure that we do not quantify over the undefinedness object. So the
translation of 3z ¢ has to be 3z (v # u A tr(p)), where tr(yp) is the translation
of .

6.1.4 Proof checking with implicit dynamic function
introduction

In order to include implicit dynamic function introduction into the proof check-
ing algorithm, the algorithm has to work on formulae from some formalism that
formalizes implicit dynamic function introduction, e.g. on HODPL formulae or
PTL texts. Since we are working towards a proof checking algorithm for PTL,
we will use PTL terminology in this section, but analogous statements could be
made if one were to adapt the DPL proof checking algorithm to HODPL.

PTL has quantification over arbitrary terms from Tpry, not just quantifi-
cation over variables. But in the translation to PL we can only allow quantifi-
cation over variables, so that we have to get rid of quantification over complex
terms in the translation process. We solve this problem together with the above
mentioned problem of avoiding quantification over the undefinedness object by
translating PTL quantifiers using a special operation on PL formulae defined as
follows:

Definition 6.1.8. Given alist T = (t1,...,t,) of PL terms and a PL formula ¢,

we define 3t ¢ to be the formula 3z; ... 3z, (x1 #uA.. Az, # u/\gof—ll - f—:),

where x1,...,x, are variables not occurring in ‘PE Similarly, V1 ¢ is defined
to be the formula Vz; ...V, (x1 ZuA... Az, # u — gof—llf—:), where
Z1,..., &, are variables not occurring in o 10

Instead of keeping track of a list of variables that have been dynamically
introduced up to a given point, the PTL proof checking algorithm keeps track
of a list of terms that have been dynamically introduced.

Remember how we checked DPL formulae of the form ¢ — v in the DPL
proof checking algorithm: First we translated ¢ to a PL formula ¢ using
read_text (keep in mind that ® does not contain existential quantifiers for the
variables that are introduced through dynamic existential quantification in ¢).
Having added ® to our premise list, we checked . To calculate a translation

10 For this formula to be uniquely defined, one would have to specify a way of choosing n
variables not appearing in a given formula .
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U of ¢, we took the conjunction of all premises added while checking v, and
existentially quantified the result using all variables dynamically introduced in
1. Finally we added YV, (® — ¥) to the original premise list, where V; is the
list of variables dynamically introduced in (.

For checking a PTL text of the form ¢ — 6, we do precisely the same thing up
to the point of checking 6. But before we go on to calculate the translation © of
0, we look out for implicitly introduced functions: Suppose that T; is the list of
terms dynamically introduced in ¢. Then we check for every term dynamically
introduced in @ whether it is of the form 77(T;) for some term 7' and some
length(T1)-place argument filler OE If it is, then T is an implicitly introduced
function. Let T’ be the list of terms introduced in 6 that are not of this form,
i.e. are not used for implicitly introducing functions. Now the translation ©
of 6 is the conjunction of all non-presuppositionally marked premises that were
added while checking 6, existentially quantified with 31.. The formula that we
add to the original premise list to represent the content of the implication now is
V1, (® — ©). In this way the terms referring to implicitly introduced functions
remain unquantified in the premise list, as should be the case for dynamically
introduced entities.

Additionally we need to add to our premise list information about the domain
of implicitly introduced functions. According to our definition of the semantics
of ¢ — 6, the domain of a function implicitly introduced in 6 is the set of n-
tuples satisfying ¢, where n is the number of variables dynamically introduced
by . This can be formalized in our PL translation as Vg, (® <> T7(Ty) # u).
But remember that because of our definition of n-place argument fillers, 79 (T)
could accept some arguments first, becoming a function that accepts the remain-
ing arguments. For example, it could be of the form f(z)(y), where f accepts x
first to become a function f(x) that can further be evaluated at y. In this case,
we do not only need to store information about the domain of f, but also about
the domain of f(z). For being able to talk about all functions extractable in
this way from 79(T;), we need the following definition:

Definition 6.1.9. We recursively define a PL term T; to be a function-head
subterm of a PL term T5 iff Ty = Ty or T5 is of the form app,, (T, T) (for some
term 7" and term list T of length n) and T} is a function-head subterm of T'.

Now the domain information that the definition of the semantics of ¢ — 6
allows us to add to the premise list is the following: For every function-head
subterm F' of T9(Ty) with F' # T, we add VY (31, ® < F; # u) to the
premise list, where T" = (T € Ty | Ty occurs in F).

The Functionality Axiom Schema of CMTN gives a criterion for ensuring
that maps proved to exist using Map Comprehension are actually limited (i.e.
functions). In the proof checking algorithm, we need an analogous criterion
that ensures that an implicitly introduced function is limited. The criterion in
the Functionality Axiom Schema consists of two parts: The first is that the
parametrized formulae P(Z) and R(Z,z) used for Map Comprehension do not
contain the symbol L; the second is that their parameters are limited.

1 This use of the superscript o notation is a slight abuse of notation: 79(T1) really is of
the form appy,, (... app, (T, T1,15- s Ti gy )5+ Tm1s -« o T gy, )5 Dut our convention about
writing terms with app,, allows us to write T7(T1) as T(T1,1,-- - T1,ky) -« Tmy15- o Ton oy )
which according to Definition is a possible value of T7(T1). We will use this abuse of
notation from now on without further comment.
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Before we explain how we adapt these criteria to the proof checking al-
gorithm, we want to discuss a special case, where the second criterion is not
fulfilled, but can be made to be fulfilled: Suppose that P(z) and R(z, ) do not
contain the symbol L, but do contain instances of a single unlimited parame-
ter p, which appears in P(Z) and R(Z,x) ounly in terms of the form app,(p,t),
where ¢ is some term. Suppose furthermore that for some formula ¢(x) with-
out unlimited parameters and not containing the symbol L, we can prove
Vo (app;(p,z) < @(z)). In that case we can replace every occurrence of
app; (p,t) in P(Z) and R(Z, z) by ¢(t). The resulting formulae P’(z) and R'(z, x)
are equivalent to P(Z) and R(Z,z) respectively, still do not contain the symbol
L, and no longer contain any unlimited parameters. Hence Functionality may
be applied with P'(Z) and R'(z, z) instead of P(Z) and R(Z, ) in order to prove
the map in question to be limited.

Now we discuss how to adapt the criteria imposed by the Functionality
Axiom Schema of CMTN to the proof checking algorithm. The first criterion
is easily adapted to the proof checking algorithm: The premises added to the
premise list while processing ¢ and # may not contain the symbol L.

The adaptation of the second criterion requires calling the ATP: For every
term T that is either a skolem function symbol or from the list of terms that
had been dynamically introduced before processing ¢ and that occurs in some
premise added to the premise list while processing ¢ or 6, we have to let the
ATP check a proof obligation of the form IV 7 L(T), where I is the active
list of premises after processing #. The special case discussed above can be
captured as follows in the proof checking algorithm: Suppose T is a term for
which the above adaptation of the second criterion was not successful. Suppose
furthermore that T" appears in the added premises only within terms of the form
app, (T, T") and that there is a formula of the form Vz (app,(T,z) < ¢(z)) in
I, where p(z) does not contain L. Then for every term T™* in ¢ that is either
a skolem function symbol or from the list of terms that had been dynamically
introduced before processing ¢, we check whether 7™ is limited in the same way
in which we have checked it above for T'. In other words, we let the ATP check
a proof obligation of the form IV F* L(T*), and if that fails, we recursively try
out the special case for T* again. This recursive check for limitedness of a term
is formalized using the function check_limitedness in the formal definition of the
proof checking algorithm presented in section below.

If both of these adapted criteria for applying Functionality are fulfilled, we
may add to the premise list that the dynamically introduced function is limited.
Actually, just as with the domain information above, we may add a bit more,
namely that all function-head-subterms of T77(T;) are limited, whenever the
terms T; take a value satisfying ®.

In the definition of the PTL proof checking algorithm below (Definition
, we use the notation Iz, for the list of all premises that encode domain
information and information about the limitedness of dynamically introduced
maps.

The treatment of presuppositional premises described in the previous section
ensures that presuppositional premises corresponding to the first two conditions
in the definition of def([¢ — 6]4,) are added to the premise list. For the third
condition of def([¢ — 60]9;) (which, as described in section of chapter
ensures that whenever [ — 6], is defined and has the syntactic form of an im-
plicit function introduction, the Map Comprehension Axiom Schema of CMTN
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actually allows for this function introduction), we need to add additional pre-
suppositional premises. These additional presuppositional premises are denoted

I'pres in Definition below.

6.1.5 References and theorem-proof blocks

One of the features distinguishing PTL from HODPL are the constructs of labels
(label(e,®)), references (ref(e,®)) and the theorem-proof blocks (thm(e, e, e)).
As already mentioned there, the PTL semantics of the previous chapter did
not capture the procedural role of these constructs, but the proof-checking does
capture their procedural role.

To improve the performance of the proof checking algorithm, it is useful to
restrict the number of premises given to the ATP. This is done by a premise
selection algorithm, which takes into account explicit references (represented by
the label and ref constructs in a PTL text) as well as other logical and text-
structural criteria (for example information about the theorem types (“theo-
rem”, “lemma”, “proposition” or “corollary”) of the individual premises). An
example of such a premise selection algorithm is described in |Cramer, Koepke,
Kiithlwein, and Schroder| (2010). For the purpose of this thesis, we will consider
the ATP together with the premise selection algorithm as a black-box. We
will adapt our above definition of prover (Definition so that it will now
formalize this combination of an ATP and a premise selection algorithm.

In the DPL proof checking algorithm, premises were just PL formulae. In
section we already mentioned that we have to mark whether a premise
comes from a presupposition or not. For the sake of the premise selection
algorithm, we now additionally have to mark the labelling of a premise with an
ID, which makes it referenceable, as well as the theorem type of a premise. So
our formal definition of a premise now is as follows:

Definition 6.1.10. A premise is a quadruple o : ®P — ¢, where ® is a PL
formula, « is either 0 or an ID, 1 is either 0 or a theorem type and p is 0 or P.

Remark. If any of «, 6 or p is 0, we may omit it. In the case of o and 6, we then
also omit the linking : or — respectively. For example, we may write 0 : ®° — 0
as ®.

Here are the adaptations of the above definition of proof obligation and
prover to the PTL proof checking algorithm:

Definition 6.1.11. A proof obligation is of the form I' F?g o, where T is a finite
sequence of premises, S is a finite sequence of IDs and ¢ is a PL formula. When
we omit S in this notation, S is understood to be the empty sequence.

Definition 6.1.12. A prover P is a function from proof obligations to {—1,0, 1}
such that if P(I'F5 ¢) = —1 then T' I/ ¢, and if P(I'F5 ¢) = 1 then T' - ¢.

The proof in a theorem-proof block in a mathematical text serves the purpose
of making the derivation of the theorem easier to find for a human reader.
Similarly, the proof in a theorem-proof block in a PTL text can be viewed to
serve the purpose of making the derivation of the theorem easier to find for
the proof checking algorithm. This is achieved by letting the proof checking
algorithm work on the proof first, and use the premise list that is active at the
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end of the processing of the proof for checking the theorem. After the theorem
is checked, the premises coming from the proof are no longer needed, and are
hence removed from the premise list. The premises coming from the theorem
are marked with the theorem type of the theorem.

6.1.6 CMTN axioms in the proof checking algorithm

We want our proof checking algorithm to account for the fact that PTL se-
mantics is defined over CMTN models. We actually want the proof checking
algorithm to be in a certain sense complete with respect to CMTN: Given a
prover P with some minimal assumptions about its proving capacities and a
theorem ® of CMTN, there should be a PTL text that proves ® and that can
be successfully checked for correctness using the prover P (see Theorem in
section below). For this we need to be able to use the axioms of CMTN in
the proof checking process. Map Comprehension and Functionality are already
implicitly included in the proof checking through the implicit dynamic function
introduction as described in section [6.1.4] Class and Set Comprehension will
also be treated implicitly: Whenever the algorithm has to prove the existence
of a class or set, it first checks the conditions for an application of Class or Set
Comprehension. (This is done in the erist_check function in Definition
below.) All other axioms (let us call them non-comprehension axioms) have to
be added explicitly to the premise list.

But there is a problem with this: Given that some of the remaining axioms
are actually infinite axiom schemata, we cannot add them all to the premise
list. However, note that the remaining axiom schemata are actually all of the
form

“For all n > N, ®,, is an axiom.”

for some natural number N and some recursively definable function n — @,
from N to PL formulae, or of the form

“For all n,m € N such that R(n,m), ®,, ,, is an axiom.”

for some simple arithmetical property R(n,m) and some recursively definable
function n,m — ®,, ,, from N2 to PL formulae. The different values of n and
m represent different arities of maps or lengths of tuples. For example, the
Element Axiom schema is as follows:

e For n > 1 and Z a variable list of length n:
VIVZ (L(f)A f(Z) #u— L(z1) A... AN L(zn) A L(f(2)))

In practice, we only need an instance of an axiom schema for a given arity
or tuple length if we have to prove a formula containing a function application
of that arity or a tuple of that length. Using this principle, we can always limit
the set of axioms to be added to the premise list to a finite set.

As we will see when considering the application of the proof checking algo-
rithm to Landau’s Grundlagen der Analysis in chapter [§] it is useful to have
— additionally to the non-comprehension axioms — certain axioms about curry-
ing and uncurrying functions. Some of these axioms are Skolemized versions of
consequences from Map Comprehension, and others are consequences of these
Skolemized axioms and map extensionality. As will be seen in section [8.3.2] in
actual mathematical texts, the implicit introduction of functions may yield a
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curried version of the multi-argument function that is actually intended. Since
the implicit introduction of functions is the only way to apply Map Compre-
hension in the PTL proof checking algorithm, these currying and uncurrying
axioms are needed to yield the intended form of the implicitly introduced func-
tion. The currying and uncurrying axioms also come in separate versions for
separate arities:

(i) Currying Axiom Schema: For m,n > 1, the following is an axiom:
Vf (M(fan—’_m)/\vxla'~-7mn7y17"'7ym (f(mlw"axnvyh"'aym) #u_>
L(x) Ao ANL(xn) AL(y1) A ooo A L(ym)) = Y10 Tny Y1y ey Ym
f(xlv' -y Ty Y1, .- 7Z/m) = Curm,n(f)(xlv' - axn)(yla . aym))

(ii) Uncurrying Axiom Schema: For m,n > 1, the following is an axiom:

Vi (M(f,n) AVey, ... xn M(f(21,...,20),m) AVZ1, .0, Zn, Y1y - -y YUm
(f@1,. - zn)Wis- - Ym) # uw = L(z) A ... A L(zn) A L(y1) A

A L(ym)) — Vfl»--~,$myl»--~aym f(x17---7$n)(y17«-~»ym> =
UnCrn () (@1, T Y1s - Ym))

(iii) cur-unc Axiom Schema: For m,n > 1, the following is an axiom:

Vi (M(f,n+m)AVey, . oy Y1y -5 Ym (F(@1y e Ty Yty ooy Ym) U —
L(z1) Ao .AL(zp) AL(y1) A ..o A L(ym)) = cury p(uncm o (f)) = f).

(iv) wnc-cur Axiom Schema: For m,n > 1, the following is an axiom:

Vi (M(f,n) AVey, ...,z M(f(21,...,20),m) AVZ1, ..o, Tny Y1y - YUm
(f(z1,- s zn) W1y sYm) # u — L(z1) Aooo A L(xy) A Llyr) A ..o A
L(ym>) - uncm,n<curm,n<f)) = f)

Note that as in section the function application notation here is actually
shorthand for function application with app,,.

and are Skolemized forms of the following consequences of CMTN’s
Map Comprehension Axiom Schema:

e For m,n > 1, the following holds:

Vf 3g (M(f’n+m)Avx1a'--7xn,y1a"'7ym (f(xla"'7xn7y1a"'7ym) 75’1,6
= L(x1) AN ... ANL(xy) AL(y1) A oo o AL(Ym)) = V21, oo, Zn, Y1y - -5 YUm

f(xla"'axnvyla"'aym) :g(xh.-.,In)(y17~-.,ym))

e For m,n > 1, the following holds:

Vi 3g (M(f,n) A Var,...,z, M(f(z1,...,2,),m) A Vq,...,
Y, -y Ym (f(‘rlwﬂyx’ﬂ)(yh"wym) # u — L(xl) /\/\L(.’Bn
L(yi) Ao .AL(Ym)) = V21, ooy Ty Yty o o5 Ym f(T15 -y 2n) (Y1, -+, YU
g(x1, - T, Y1y Ym))

and follow from (fi) and and CMTN’s map extensionality.

Just as with the infinite non-comprehension axiom schemas of CMTN, we
will always limit the above axiom schemas to a finite list of axioms by using just
those arities that occur in the consequence of the proof obligation in question.

For the sake of simplicity, when writing down the proof checking algorithm
for PTL we will use the notation P(T l—g ¢) for what should actually read
PTeaA F?g ) for an appropriate finite list A of non-comprehension CMTN
axioms and currying-uncurrying axioms.

)

)

>3

)
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6.2 The proof checking algorithm for PTL

The differences between the proof checking algorithms for DPL and for PTL
have already been described in sections [6.1.3] [6.1.4] [6.1.5] and [6.1.6]

Note that despite the higher-order nature of PTL, we still use first-order
ATPs in the proof checking algorithm for PTL. The main reason for this is a very
practical reason: The state-of-the-art automatic theorem provers for first-order
logic are much stronger than any automatic theorem provers for higher-order
logic.

Before we can present the formal definition of the proof checking algorithm
for PTL, we will need some more definitions:

Definition 6.2.1. For a premise sequence I, |I'| is the sequence of all premises
in I' that are not marked as presuppositional premises, in the same order as
they appear in I'.

Definition 6.2.2. For a premise sequence I" and an occurrence p of a premise
in I, T, is the subsequence of I' preceding p, and I',y is I, & (p) (i.e. the
subsequence of " up to and including p)

For the sake of readability, we do not always make it explicit whether we are
talking about occurrences of premises from a premise sequence or just about the
premises by themselves. The difference is important when it comes to equality
claims: The same premise can occur more than once in a premise sequence. But
when we have premise occurrences rather than premises in mind, an equality
claim amounts to equality of premise occurrences, not just equality of premises.
In most cases where we do talk about premise equality, we actually mean equal-
ity of premise occurrences. Only if there is a risk of misunderstanding, do we
make explicit that we mean premise occurrences rather than premises.

Definition 6.2.3. Given t € Tpry, we recursively define a PL term PL(t) by

x if ¢ is the variable x
PL(t) :=
app,,(PL(to), PL(t1), ..., PL(t,)) if t is of the form to(t1,...,tn).

Remark. We treat PL as a normal function symbol, i.e. also use the notation
PL™! for its inverse and PL™'(T) for the list (t € Tpry, | PL(t) € T).

Definition 6.2.4. A PL term is called a PTL-PL term iff it is of the form PL(t)
for some t € Tpry,.

Definition 6.2.5. Given a CMTN-model M, M-assignments g and h and a list
T of PTL-PL terms, we write g[T]h for g[PL™*(T)]h.

Definition 6.2.6. A substitution list is a list of pairs of PL terms.

Definition 6.2.7. Given a substitution list S = ((T1,T}),...,(Ty,T))) and a

PL formula ®, we define S(®) to be <I>T1 . T—n.

Now we are ready for defining the function check_text that formalizes the
proof checking algorithm:

12Note that as variables referring to premise lists we use besides I' complex variables like
I, Ty, 'y, 't and I'~. Applying the I', notation to the complex variable I't, we get F;’,
which should not be confused with I'p4.
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Deﬁnltlon 6.2.8.

check( -IE

check tewt(@, 0,0, T)=(,,v).

check_text(t,T, T, i) = (I" @ (B(T)*,T = T),T,v) {7
tis a PTL term,
read_term(t,T, T, u) = (I, T, po),
p1 = update(po, 0, P(I" H* B(T))),
v = update(py, 1, P(I'" @ (B(T)) F* T = T)).
check_text(R(t1,...,t,), I, T, p) = IV ® (R(TY,...,Ty)), T, v) -
I =T,

H1 = H,
for all 1 < i < n, read_term(t;,T;, Ts, i) = Tig1, Ty, fhit1),
I'"= Fn-‘rla

v = update(pin+1, 1, P(T' F! R(T, ..., T,))).
check_text(—o, T, T, u) = (I @ (=3, @), T,v) :-
read_text(p, (), T, T ,u) (T, Ty, ®, 1),
v = update(p/, 1, F? =3, @)).
check_text((p AN ), I, T,u) = (I'" & (P, ¥), TH Ty & Ta,v) :-
read_text(p, (), T, T, u) = (T, T1, D, po),
read_text(y, (), Ty @ (P), T @ Ty, po) = (T4, Ta, ¥, 1),
=T\ (B,
v = update(py, 1, P(T" 7 3p, (® A I, ¥))).
check_text((o V), T, T,u) = I & ((3r, @V 3, ), T,v) -
read_text(p, (), T, T, pu) = (1"07'11‘1, D, 119),
read_text(¢, (), Ty, ']I‘ spo) = (T, T, ¥, py),
v = update(py, 1, P(T' ¥ (3, ® V 31, ¥))).
check_text((p — 0),I, T, 1) = (IV BT pres ® (V1, (2 — O)) & Tpyne, TEF,v) -
read_text(p, (), T, T, u) = (Co, T1, @, po),
check_text(6, T 69 (@), T® Ty, uo) = (I'1,To, p1),
if the symbol L does not occur in I'y — I'y and for every term T
occurring in 'y — I'y that is either in T or a skolem function
symbol, check_limitedness(I'y, Ty — Ty, T,T)E

P(I
,T
T
®
P

a=1,
else:
a=0,

make._functions(Ty, To—(T®T1), Co@(®), T'1, @, v, p11) = (F, T, T punc, Lpres, V),
pull_out_pres({), T — T,To,T'1) = (I, {_) & Ty, _),
© =3p ATy,

13The check function has one input argument and one output argument: its input is a PTL
text, and its output is a proof status value that indicates whether the proof checking has
shown the input text to be valid or at least defined.

14The check-text function has four input and three output arguments, similarly to the
check_text function in the DPL proof checking algorithm: The first input argument specifies
the PTL text to be checked. The remaining three input arguments as well and the three
output arguments keep track of the currently active premise list, the currently active list of
accessible terms and the current proof status value.

15Here the proof checking algorithm checks whether it may apply the CM TN Functionality
Axiom Schema to the maps which it will introduce in make_functions below based on the
CMTN Map Comprehension Axiom Schema. « = 1 indicates that Functionality may be ap-
plied, whereas a = 0 indicates that Functionality may not be applied. Compare the discussion

in section above.
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Cpres = Dpros ® (V1,—1 (PAO = L(T))F | T € Ty, — (T®Ty) — T).
check_text((0 & £),T', T, u) = (T'g, Ta,v) -
check_text(6,T, T, ) = (T'y, Ty, 1),
check_text(§,T1, Ty, p1) = (T, Ta, v).
check_text(3t o, T, T, p) = (I @ (PL(t) # u¥,®), T ® Ty & (PL(t)),v) :-
read*text(@a <PL(t)>a L, Ta M) = (F/, TOa P, ﬂ,)v
exist_check(1,T", T, 3(pr()) 31, ®, 1) = (V).
check_text(Cp, T, T, u) = (I" & (3, @), T,v) -
read_text(p, (), T, T, u) = (TV,®, Ty, ),
v = update(p, 1, P(T' +* 31, ®)).
check_text(label(a, 0),T, T, u) = (I, T, v) :-
check_text(6,T, T, u) = (T'y, T, v),
I'=T@(a:® 9| _:d -9l —T).
check_text(ref(S, ), T, T, u) = TV, T, v) :-
call check_text(p, T, T,u) = (I',T’,v), but for any proof obligation 'y -* ®
called within this call of check_text, use I'g }—?S ® instead.
check_text(thm(d, p,0), T, T,u) = (I, T/, v) =-
check_text(6,T, T, ) = (T'y, Tq, 1),
check_text(o,T'1, Ty, u1) = (Lo, Ta, v),
I'=T®(a: PP -9 |a: PP -0e Ty —Ty),
T =T& (Ts — Ty).
check_text(def(t),T, T, u) = (I, T, v) :-
read_term(t, T, T, u) = (T'y, -, '),
I'=T®{a: 0" -9 |a:d" —9ely -T),

if p=mu:
v =u,
else:
if ! = u:
v=.1,
else:
V= .

read_text(0, To, T, T, n) = (I', Ty, 0,v) :-|E|
check_text(0,T, T @ Ty, ) = (T, T/, po),
Ty =T — (T & To),
pull_out_pres(To, Ty, T, TF) = (I, Ty, ),
0= /\F07
if po = w:

16The read_text function reads in a PTL text, translates it to PL, and at the same time
already checks the presuppositions of this PTL text. The function has five input arguments
and four output arguments: The first input argument is the PTL text to be read in. The third
and fifth input arguments and the first and fourth output arguments respectively keep track
of the active premise list and the proof status value. Unlike in the read_text function of the
DPL proof checking algorithm, we need to keep track of these values, since we need to check
the presuppositions of the input PTL text and add the information of the presuppositions
to the currently active premise list. The second input argument lists terms that appear in a
quantifier whose scope contains the input PTL text. The fourth input argument is the list
of the remaining terms that are accessible when the function is called. The second output
argument lists the terms with binding capability after the input PTL text (see Definition
in chapter [5)). The third output argument is the PL translation of the input PTL text
(without existential quantification over the terms with binding capability after the input PTL
text).
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v =u,
else:
V=

pull_out_pres(_, ., T',T') = (T, (), ()) [
pull out_pres(To, Ty, I, T+ @ (8%)) = (I & ((Vayoma (A To — S'(8)))7), To, §') -
pull_out_pres(Ty, T1,T,TF) = (I',T0,S),
Te = (t €Ty | ¢t occurs in I'" & (D)),
S =S & ((ski(T), skiy(T & To © Teg)) | ski(T) is introduced in D).
pull_out_pres(To, T1,T, T+ @ (®°)) = (I, Ty @ (S(®)), S) :-
pull_out_pres(Ty, T1,T,TF) = (I', T, S).

read_term(t, T, T, u) = (T, PL(t), u) :«IE
teTprp,
PL(t) € T.
read_term(f(ti,...,tn), 0, T, un) = (I, f(T1, ..., Tp),v) =-
f(tl, . ,tn) ¢ TPTL or PL(f(tl, e ,tn)) ¢ T,
f is a logical function symbol,
r, =T,
H1 = [,
for all 1 <i < n, read_term(t;, T;, T, i) = (Tit1, tit1),
"= I ® <(f(T1’ cee 7Tn) # U)P>7
v = update(ini1,0, P(Tpia 7 f(Th, ..., Tn) # w)).
read_term(to(t1, ... tn), I, T, p) = (I, app, (To, Th, ..., Th), V) -
to(tl, “ee ,tn) ¢ TpTL or PL(to(tl, ce ,tn)) ¢ T,
I'y=T,
Ho = [,
for all 0 < i <n, read_term(t;,T;, Ty, ;) = (Cit1, thix1),
I'= 1_\n-‘,-l S <(appn(T05T17 s 7Tn) 7é u)P>a
v = update(piny1,0, P(Tpi1 F° app,(To, Tu, ..., Tp) # u)).
read_-term(vx @, T, T, u) = (T'q, k™, v) :-
read_text(p, (x), I, T, u) = (To, To, @, 1),

7The pull_out_pres function pulls out presuppositions in the way explained in section
It has four input and three output arguments. The third and fourth input argument are two
premise lists, of which the second one is an extension of the first. The function pulls out the
presuppositional premises from the difference between these two premise lists. The second
input argument lists terms that are quantificationally introduced in the PTL text represented
by the difference between the two input premise lists. The first input argument lists terms
that appear in a quantifier whose scope contains this PTL text. The first output argument
lists the first input premise list together with premises that represent the projected version of
the presuppositional premises pulled out from the difference between the two input premise
lists. The second output argument lists the non-presuppositional premises of the difference
between the two input premise lists, only with some modifications in the arguments of skolem
functions. The third output argument is a substitution list that specifies the way arguments
have to be added to skolem functions in the premises from the difference between the two
input premise lists.

18The read_term function reads in a PTL term , translates it to a PL term, and at the same
time already checks the presuppositions of this PTL term. The function has four input and
three output arguments. The first input argument is the PT'L term to be read in. The second
and fourth input argument and the first and third output arguments keep track of the active
premise list and the active proof status value respectively. The third input argument lists the
terms that are accessible when the function is called. The second output argument is the PL
translation of the input PTL term.
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exist_check(0,To, 3z I, ®, u1) = (p2),
v = update(pa, 0, P(To @ (3p, ®LZY ' Vo (3, @ — x = sk™Y))),

[y =To® {3, ®L£—)F, (Vo 3, ® — x = sk™"))F).

fnew

T

check_limitedness(T, _, ., T) :-E
PITF L(T)) =1.
check_limitedness(T', TV, T, T) :-
T appears in I only in terms of the form T'(T"),
for some variable z, I" contains V, (T'(z) < @(x))ﬂ
®(x) does not contain L,
for every term T™* occurring in ®(z) that is either in T or a skolem function
symbol, check_limitedness(T', T, T, T*).

make_functions(T, (T, ..., T,), T, TT, ® a,pu) = (F,T",T func, Lpres, V) :-E
Ho = K, )
for 1 < i < n, make_function(T, T/, T+, ®, a, p;) = (F;, Ti,F}unc,ui+1),
Ffunc = @?:1 }unc’
F= @,’:1 Fia
T = @?:1 T,
V= /’Lna
if Fﬂmc = <>
V= fn,
Fp'res = <>a
else:
T =(T1,...,Tw),

9The check_limitedness predicate checks whether a given PL term may be treated as a lim-
ited term for the purpose of the CM TN Functionality Axiom Schema; compare the discussion
in sectionabove. The fourth argument is the PL term in question. The first argument is
the list of premises that may be used for directly proving that this term is limited. The second
argument is a further list of premises that needs to fulfil certain syntactic criteria in order for
the special case discussed in section above to be applicable. The third argument is a list
of terms that needs to fulfil certain conditions for this special case to be applicable.

20Here, just as in the definition of ezist_check below, ® < ¥ should be considered an
abbreviation for (& — ¥) A (¥ — ®).

21The make_functions function looks for dynamically implicitly introduced maps in the data
received from checking an implication ¢ — 6. It has seven input and five output arguments.

The first input argument lists the terms that are dynamically existentially introduced in ¢,
and the second input argument lists the terms that are dynamically existentially introduced
in 6. The third input argument lists the premise list that is active before checking 0, and
the fourth input argument is the premise list that is active after checking 6. The fifth input
argument is the PL translation of ¢, and the sixth input argument specifies with a value 0 or 1
whether the CM TN Functionality Axiom Schema may be applied to the implicitly introduced
maps.

For the dynamic implicit function introduction to be applicable, certain terms have to be
shown to be limited. This involves sending proof obligation to the prover, which may change
the proof status value. The seventh input argument and the fifth output argument keep track
of the currently active proof status value.

The first output argument lists the terms that represent the implicitly introduced maps
found by make_functions. The second output argument lists those terms that were dynam-
ically existentially introduced in 6 but that did not give rise to an implicitly introduced
map. The third output argument lists premises that encode domain information and infor-
mation about the limitedness of implicitly introduced maps. The forth output argument lists
presuppositional premises that encode special presuppositions that need to be fulfilled in im-
plications because of dynamic implicit function introduction (see the last paragraph of section

above).
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for 1 <i <m, pnys = update(pinyi—1,0, P(T'F L(T}))),
V = Un+m, m
Fpres = <VT(© - /\i:l L(Tz))P>

make_function(T, T,TF, &, o, i) = ((T"), (), (®1, ..., Pp, U1,..., V)@, v) 22
there is an n-place argument filler o such that T = T"7(T),

Fy, ..., F} are the function-head subterms of T that contain 1" as a
proper subterm,
ni,...,nk are the arities of Fy, ..., Fy in T respectively,

for 1 <i<k, T,=(ToeT|Tpoccurs in F;),
for 1 < ) < k, (I)i = V'JI} M(Fi,ni),

for 1 < ) < k, \Ifl :VTi (311‘—'& P Fi 7& u),
v = update(u,0, P(DF 7 L(T))),

if @« =1:

L'y = (L(T")) & (vn(® — L(F})) | 1 <i < k),
else:

Iy =).

make._function(T, T, &, _ u) = ((,{T), (), (o 12) -
there is no n-place argument filler o such that T is of the form 777 (T).

)=

exist_check(,T', , 3¢y @, 1
( )A
) =

® is of the form (

P& (¥U(x)) - L(x)
exist_check(.,T', T, 3y ®, ) = (,u)

® is of the form (C(T) A L(T) AV, (x € T + U(x))),

P(T & (¥(z)) ¥ L(z)) = 1,

(1) :
(€T + U(x))),

22The make_function function analyses a single term dynamically existentially introduced in
the 6 of an implication ¢ — 6 for determining whether it gives rise to an implicitly introduced
map. It has six input and four output arguments.

The first input argument lists the terms that are dynamically existentially introduced in ¢,
and the second input argument lists the term from the list of terms dynamically existentially
introduced in 6 that is to be analysed now. The third input argument is the premise list that
is active after checking 6. The fourth input argument is the PL translation of ¢, and the fifth
input argument specifies with a value 0 or 1 whether the CM TN Functionality Axiom Schema
may be applied if there is an implicitly introduced map. The sixth input argument and the
fourth output argument keep track of the currently active proof status value.

The first output argument lists the terms that represent the implicitly introduced maps
found by make_function; it is either a list with a single term or the empty list. The second
output argument is also either a list with a single term or the empty list: It contains the
second input argument in case it did non give rise to an implicitly introduced map. The third
output argument lists premises that encode domain information and information about the
limitedness of the implicitly introduced map (if there is one; else it is the empty list).

23The exist_check function checks whether a certain existential statement can be established
under certain conditions. Apart from letting the prover try to prove the existential statement
from the currently active premise list, it also determines whether the CMTN Class or Set
Comprehension Axiom Schemas may be applied in order to establish the existence of a class or
set. The function has five input and one output argument. The first input argument specifies
using the numbers 0 and 1 respectively whether the existential check is to be treated as a
presupposition check or as an assertion check. The second input argument lists the currently
active premises. The third input argument lists the terms that were accessible just before the
existential PTL formula whose correctness is checked by exist_check; these terms may function
as parameters to the formula to which we may need to apply the Set Comprehension Axiom
Schema, in which case their limitedness has to be established. The fourth input argument is
the existential formula to be checked. The fifth input argument and the sole output argument
keep track of the currently active proof status value.
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the symbol L does not occur in ¥(x),
for every term Ty occurring in ¥(x) that is either in T or a skolem function
symbol, check_limitedness(T', (®(x)), T, Tp).
exist_check(o, T', ., 31y @, 1) = (v) :-
none of the previous two clauses of exist_check is satisfied,
v = update(p, o, P(T' F* 37y @)).

6.3 Soundness of the proof checking algorithm

The soundness theorem that we want to prove takes a similar form as in the
case of the DPL proof checking algorithm:

Theorem 6.3.1 (Soundness of the PTL proof checking algorithm). If 6 is a
nice PTL text and check(0) = T, then v(0) = T.

Again we will need a Detailed Soundness Lemma that tells us something
about the implication of check_text(6, T, T, ) = (I, T/,v). For the proof of
this Detailed Soundness Lemma, we will need to semantically interpret the
premises that the algorithm keeps track of. In the DPL Detailed Soundness
Lemma, we used a pair of a structure M and an M-assignment g for semantically
interpreting the premises. The natural analogue for the PTL proof checking
algorithm would be a pair of a CMTN model M and an M-assignment g. But
this would not give any interpretation to the skolem function symbols. Hence
we additionally use a skolem-assignment, which interprets the skolem function
symbols.

Definition 6.3.2. Let I" be a premise list and M be a CMTN model. A T'-
skolem-assignment over M is a function S whose domain is the set of all skolem
function symbols appearing in I" and such that for every ski € dom(S), S(sk;")
is a function from M™ to M \ {uM}.

Remark. When it is clear which M is intended, we usually omit the qualification
“over M”.

Definition 6.3.3. Let M be a CMTNmodel and let S be a I'-skolem-assignment
over M. Then M + S is defined to be the structure over the language L oy U
{sk}" | skl occurs in I'} that coincides with M on its interpretation of the sym-
bols in L cpra and coincides with S on its interpretation of the skolem function
symbols occurring in T.

Before we can state the Detailed Soundness Lemma for the PTL proof check-
ing algorithm, we still need some more definitions:

Definition 6.3.4. For a CMTN model M, a skolem-assignment S over M, an
M-assignment g and a PL term T over the language of M + S, we recursively
define %(T) as follows:

g(T) if g(PL™(T)) is defined
M+ S M+ S(T) if T is a constant symbol
g ()= if g(PL™Y(T)) is unde-

M+ S(f)(*EE(T1), ..., M*5(T,))  fined and T is of the form
f(Ty,...,Ty).
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Remark. MT'H;(T) is undefined if 7" contains an occurrence of a variable x such

that g(z) is undefined and g(PL™'(T")) is undefined for every subterm 7" of T
containing this occurrence of x.

Definition 6.3.5. For a CMTN model M, a skolem-assignment S over M, an
M-assignment g and a PL formula ® over the language of M + S, we define
M+ S g E ® in a way analogous to the usual definition of A, g = ® for a
structure A and an A-assignment g, but using MT*S(T) instead of %(T) for
interpreting terms in .

Remark. M + S, g = ® is undefined under similar circumstances as %(T).

Definition 6.3.6. For a CMTN model M, a skolem-assignment S over M, an
M-assignment g and a premise list ', we write M + S,g =T it M + S,g = ®
for every premise o : ®P — 6§ in T'.

Definition 6.3.7. Given two skolem-assignments S and S’ over M, we say that
S extends S and write S’ = S iff dom(S) C dom(S’) and S = 5’| gom(s)-

Definition 6.3.8. A PTL,. symbol is a symbol that is either a logical constant,
function symbol or relation symbol of PTL or a skolem function symbol.

Definition 6.3.9. Given a PL formula ®, a free term in ® is a term occurring
in ® that is not a bound variable.

Remark. In this chapter, we use the expression free term both for free terms
of PL formulae in the sense of this definition and for free terms of PTL texts
in the sense of Definition [5.2:4] The same holds for the expressions hereditarily
free term and MHF term (mazimal hereditarily free term) defined in the next
two definitions with respect to PL formulae, and already defined in Definitions

and with respect to PTL texts.

Definition 6.3.10. Given a PL formula ®, a hereditarily free term in ® is a
term T occurring in ® such that all subterms of T" are free terms in ®.

Definition 6.3.11. Given a PL formula ®, a maximal hereditarily free term in
®, usually abbreviated to MHF term in ®, is a hereditarily free term in ® that
is not a proper subterm of a hereditarily free term in ®.

Definition 6.3.12. Given proof status values p, v (i.e. p,v € {T,L,u}), we
define o > v to mean that either y =v or 4 =T or v = u. (In other words, the
ordering on {T, L,u}is T > L > u.)

Definition 6.3.13. Given proof status values u, v, we define u + v to be the
minimum of  and v according to the above ordering.

Definition 6.3.14. Given a PTL text 6, qt(6) is the multiset of all occurrences
of terms in @ after an 3 or after an ¢.

For concisely expressing the criteria for def([0]9,) and for k € [0]%, in the
Detailed Soundness Lemma, we need the following two definitions:

Definition 6.3.15. Given premise lists I" and I such that I'V extends T, a term
list T, a CMTN model M, a I'-skolem-assignment .S, an M-assignment g and a
PL formula ® € IV — T', we write pres(IV,T", T, M, S, g, ®) iff for all I'};-skolem-
assignments S” extending S and all k[T]g such that M + 5",k |= (I —T")s, there
is a Iy, | -skolem-assignment S” extending S’ such that M + S” k = .
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Definition 6.3.16. Given premise lists IV and T, a CMTN model M, a I'-
skolem-assignment S and an M-assignment g, we say that g verifies T’ —T" over
M + S iff for every ® € [I" —T'| and every I';-skolem-assignment S” extending
S such that M + 5", g = (I" = T')g, we have M + 5, g E ©.

We are now ready to state the Detailed Soundness Lemma for the PTL proof
checking algorithm. Its assumptions and assertions are almost perfectly anal-
ogous to those of the DPL Detailed Soundness Lemma. We only had to add
one assumption, namely , and two assertions, namely [3| and @ All these
additions are related to the treatment of presuppositions and undefinedness: As-
sertion 3| gives a criterion for def([0]9,), just as assertion [3[of the DPL Detailed
Soundness Lemma and the analogous assertion [4 of this Detailed Soundness
Lemma give a criterion for k € [0]%,. Assumption and assertion |§| accom-
modate for the fact that the terms in the term list that the PTL proof checking
algorithm keeps track of are meant to be defined terms.

Lemma 6.3.17 (Detailed Soundness Lemma). Let 0 be a semi-nice PTL text.
Further assume the following properties:

(i) T is a list of PTL-PL terms such that PL™*(T) @ qt(0) is pairwise inde-
pendent.

(i) All MHF terms of 0 are composed of terms in PL™'(T).

(i) T is a premise list such that all MHF terms in T' are composed of PTLg
symbols and terms in T.

() check_text(6,T,T,u) = (I, T',v).

(v) M is a CMTN model, S a T'-skolem-assignment and g an M -assignment
such that M + S,g =T

(vi) dom(g) = PL™*(T).
(vii) For allT €T, MTJFS(T) # u.
Then the following six properties hold:
1. tbc() = PL™H(T' - T)
2. All MHF terms in TV =T are composed of PTLg;, symbols and terms in T'.

3. def([01%,) iff for all presuppositionally marked premises ® in I'" — T,
pres(I’", T, T, M, S, g, ®).

4. If def([0]%,), then for all M-assignments k, the following three properties
are equivalent:

(a) k € [0]%-
(b) k[T' — T)g and k verifies T —T over M + S.

24 Analogously to what we said in footnote E on page we should actually say that the
set whose elements are the elements of the sequence PL™* (T’ — T) is equal to tbc(f). For
the sake of simplicity and since it does not cause problems, we use the simplified expression
tbe() = PL™1(T’ — T) instead.
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(c) k[T — T)g and there is a I'-skolem-assignment S’ = S such that
M+ S kET.

5 p+v(@,M,g)>v.

6. If def([0]%,) and k € [0],. then for every I -skolem-assignment S’ extend-
ing S such that M + 5",k =T and for every T € T, M%S/(T) # uM.

We will postpone the proof of this lemma to section [6.3.1] in order to first
present some lemmas needed in the proof. In particular, we need soundness
lemmas for some of the other predicates of the PTL proof checking algorithm,
namely for pull_out_pres, read_text, read_term and exist_check.

The following pull_out_pres Soundness Lemma has two syntactic assertions
that ensure that the way the active premise list is composed of terms from the ac-
tive term list is not destroyed by the transformations preformed by pull_out_pres,
and a semantic assertion that ensures that the conditions for the criterion for
def([0]9;) are conserved by this transformation. The proof for the semantic
assertion is rather involved, but it contains a useful method for transforming
skolem-assignments that will be needed in later proofs too, but that is only
spelled out in detail at this point.

Lemma 6.3.18 (pull_out_pres Soundness Lemma). Assume the following prop-
erties:

(i) T, Ty and Ty are lists of PTL-PL terms.

(i) T is a premise list that does not contain free terms from the term lists Ty
and T1.

(11i) BEvery MHF term in T'T — T is composed of PTLg, symbols and terms in
ToTydT.

(iv) M is a CMTN model, S a T'-skolem-assignment and g an M -assignment
such that M + 5,9 ET.

(v) pull_out_pres(Ty, Ty, T, TF) = (I", T, S).
Then the following three statements hold:

1. Every MHF term in I'g is composed of PTLg symbols and terms in
TeTydT;.

2. Every MHF term in T" —T is composed of PTLg, symbols and terms in T.
3. The following two properties are equivalent:

(a) For all presuppositionally marked premises ® in It — T, we have
pres(TT T, Tq ® Ty, M, S, g,®).

(b) For every premise ® inI"—T and every 'y -skolem-assignment S’ = S
such that M + 5, g = Ty, there is a I'-skolem-assignment Sy > S’
such that M + Sy, g ET".
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Proof.

1. It is easily seen from the definition of pull_out_pres that I'y is of the form
S(|T*t —T'|) for some substitution list S consisting of substitutions of the
form (sk;(T), sk;(T & T*)), where T* C Ty @ T;. This directly implies the
desired result.

2. Every formula in IV — T' is of the form Vy,gr,(AT2 — S(®)), where ®
is a formula in I'T — T', T consists of those terms in T; that appear in
I't — T before or in ®, S is of the same form as the S in case 1, and
'y is characterized by pullout_pres(To, Ty, T,T'}) = (., T2, ). Clearly
pull_out_pres(To, Te, T',I'%) = pull_out_pres(Ty, T1,T,I'}). Now by apply-
ing case 1 of this lemma to pull_out_pres(Ty, To, T, I‘;ﬁ), every MHF term
in 'y is composed of PTLg, symbols and terms in T & Ty @ Tg. By an
argument analogous to that in case 1, the MHF terms in S(®) are also
composed of PTLg; symbols and terms in T® Ty @ Tg. So the MHF terms
in Yr,e1, (A2 = S(®)) are composed of PTLg, symbols and terms in T,
as required.

3. We prove this by induction over the length of 't — I'.  (Note that
pull_out_pres(Tq, T1,T,TF) is only defined if I'" extends T'.)
In the base case, ' =T. Then both (a) and (b) are trivially true.

Now suppose that the lemma holds for I't. We need to show that is also
holds for Tt @ (®) in place of I't. If & is not presuppositionally marked,
this is trivial, so we now assume ® to be presuppositionally marked. Then
pull_out_pres(To, T1,T, T+ @ (®F)) is of the form

(F/ @ <X>7 Lo, S/)’
where

(I",To,S) = pull_out_pres(Tq, T1,T,T'"),
Ty = (t € Ty | t occurs in I't @ (D)),
S" =S @ ((sk;(T), ski(T & Ty & Ts)) | ski(T) occurs in ®), and

X = Va1, (/\To = S'(®)).

(a) = (b)

Assume that M + S, g E T, and that for all presuppositionally marked
premises ¥ in (I'" & (®P)) — T,

pres(U't @ (®P), T, Ty ® Ty, M, S, g, ¥). (6.1)

Now fix a premise ¥y in (I' @ (X)) — T’ and a (I' ® (X))g,-skolem-
assignment S’ > S such that M + 5", g = (I" ® (X))g,. We need to
show that there is a (IV @ (X))-skolem-assignment S; = S’ such that
M+ S,gET & (X).

Note that from the definition of pull_out_pres, it follows that every re-
placement pair in S is of the form (sk;(T?), sk; (T +T})), where T} is some
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initial segment of Ty + T4, and that

Lo =S(T'" —T|) and
I''=T& (Vr,ery (/\ S((TF = T)g|) — S(¥)) | ¥ is a presuppositionally

marked formula in It — T).

We now need to choose a I'-skolem-assignment Sy >= S’ such that
M+ Sp,g E TV, If Uy # X (as an inequality of premise occurrences),
then such a Sy exists by the inductive hypothesis. If ¥y = X (as an
equality of premise occurrences), then we can set Sy to be S'.

For every k[To & Tslg, we define a I'"-skolem-assignment Sy = S’ as
follows: For every sk; introduced in I'" —F$0 and every tuple & of elements
from M of the same length as T¢, we set

Now it follows from applied to ® that for every k[To & Te|g such
that M + Si,k | ('t —I)g, there is a (I'" @& (P))-skolem-assignment
S}, = Sk such that M + S}, k = ®. This gives rise to a partial function
k + S, mapping M-assignments k with k[T @ Telg to (I'" @ (®))-
skolem-assignment with S;, > Sy, defined on all such % that additionally
satisfy M + S,k = (I'" —T')g. We make this function total, i.e. extend
it to a total function k +— S}, from M-assignments k with k[T, & Ts)g
to (I'" @ (®))-skolem-assignment with S}, = Si: The additional values
for S}, needed to make this function total may be chosen arbitrarily from
the codomain (i.e. from the set of (I't @ (®))-skolem-assignments with
Sk = Sk)-

We now define the required (I'V @ (X))-skolem-assignment S; by extending
Sy as follows: For every sk; introduced in X, every tuple & of elements
from M of the same length as T? and every tuple i of elements from M
of the same length as T}, we set

S1(sk)(F D ) = S (sk)(@),

where g% is the M-assignment that coincides with g outside T} and maps

the n-th element of T to the n-th element of §. Since S; coincides with
Sy on all skolem function symbols in IV, M + 51,9 ET. So we now only
have to show that M + S1,¢ E X, i.e. that

M + 81,9 = Vryams (\To = §'(®)).

Let k[To & Telg. Suppose M + S1,k | T'g. We have to show that
M + 81,k = S'(®). Since IV does not contain free terms from Ty @ Ty,
M + S1,k =T, Now it follows from the characterizations of T'y and T
presented above that M + S,k = S(I' —T'). From this and the definition
of Sk, it follows that M + Sy, k = T'" —T". By the choice of S}, this implies
M+ S, K = ®, ie. M+ 5,k =S (®), as required.
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(b) = (a)
Assume that M + S, ¢ T, and that the following property holds:

For every premise ¥ in (I' @ (X)) — I' and every (I" &
(X)) w-skolem-assignment S’ > S such that M + S, g &
(I"® (X)) w, there is a IV @ (X)-skolem-assignment Sy = S’
such that M + Sp,g =TV & (X).

(6.2)

Now for a presuppositionally marked ¥ in I't — T, (a) follows from the
inductive hypothesis. So we only need to show (a) for X. So suppose that
S’ = Sis a 't -skolem-assignment and that k[To®T;]g is an M-assignment
such that M +8' k = T'". Without loss of generality, we may assume that
k[To & Telg. We need to show that there is a I't @ (®)-skolem-assignment
S"” = 8" such that M + 8" k =T & (D).

In order to be able to apply for ¥ = X, we need to extend S to
a I''-skolem-assignment S* > S such that M + S* g = I". For this we
recursively define for every ¥ in IV — I" a I',-skolem-assignment Sry, =S
such that M + Sr;,g = I'y, and finally set S* := Sr/. The base case
of the recursive definition is Sr := S. Now suppose that Sr; has been
defined in such a way that Sp; = S and

M+ Spy g =T (6.3)

We need to define Sr,,, = S such that M + SF(H,g ETy,.

By the above characterization of I, ¥ is of the form Vr,gr,, (AS(|(I'" —
My/|) — S(¥')) for some presuppositionally marked ¥’ in I'". Let
h[To ® Ty]g. Define a I'},-skolem-assignment S, as follows: For ev-
ery sk; introduced in I'Y, —T" and every tuple Z of elements from M of the
same length as T?, we set

Sl (she) (®) = St (ki) (& & (TH)).

Now suppose M + Sy, h = S((I'" —=T)g/|). Then M +Sp, ,h = S((T'" —
I)g/) by (6.3) and the characterization of I. This implies that M +
S{i&,,h E (I'" —T)g . So by assertion (a) from the inductive hypothesis,

there is a I‘$/+—skolem—assignment S, = Sk, such that M + S, h =
v

Just as we made the partial function k — S}, total in the (a) = (b) part of
the proof, we now extend the partial function h +— S%, to a total function,
i.e. we assume that some I'y, -skolem-assignment S, = Sl, has been
chosen for every h[To@® Ty ]g. Now we complete the recursive definition by
defining the Ty, -skolem-assignment Sp:yur = SFQ, , as follows: For every

sk; introduced in ¥’, every tuple Z of elements from M of the same length
as T;, and every tuple ¥/ of elements from M of the same length as To® Ty,

we set
T k@) it g™t g
Sry,,, (ski)(Z @ §) := + .
S (sk;)(7) if gToler = .
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We now need to check that our definition of Sl“:P,+ actually ensures that
M—i—SF(H,g =Ty, Since Sp(p,+ = Sp:p,, certainly M—i—SF(H,g ET%. So
what remains to be shown is that M +5t, , g = U. Recall that ¥ is of the
form Vr,er,, (AS((TT —T)w/|) = S(¥’)). So assume that h[To & Ty]g
is such that M + Spy ,h |= S((T* — T')yr]). Then by the choice of
S4,., M+ Sk, h =¥, Additionally, note that since M + S',k |= T'Y,
M+ k |= 0. These two facts together with the definition of Sp(wr now
imply that M + Sp; b = S(¥').

Now we can finally apply with the ¥ and S’ in instantiated to
X and S*. This allows us to conclude that there is a IV @ (X)-skolem-
assignment Sy = S* such that M + Sp,g = I" @ (X). Now we define

S = S’ as follows: For every sk; introduced in ® and every tuple Z of
elements from M of length T;, we set

S”(Skl)(f) = SQ(SICZ)(J?@ k(TO D Tl))

In order to conclude the proof, we now only need to show that M+S5", k =
't @ (®). Since S” = S', M+ 5"k |=T", so it is enough to show that
M + 5"k |= ®. For this we first conclude from M +S”,k |= [I'T —T'| and
the definition of S” that M+ S, k = S(|]Tt —T|), i.e. that M+ S, k = Ty.
Now k[To ® Telg, M + So,g = X and X is Vr,e1. (Ao — S'(®)), so
M + 8o,k = S'(®). Now the definition of S” implies M + S”,k = @, as
required. O

The following read_text Soundness Lemma will be needed in the inductive
proof of the Detailed Soundness Lemma. It has a structure very analogous to
that of the Detailed Soundness Lemma. The only structural differences are that
it needs an additional assumption, namely that the Detailed Soundness Lemma
holds for the PTL text 6 to which we want to apply this lemma, and that the
assertion [2] of the Detailed Soundness Lemma is split into two assertions, [2[ and

Bl

Lemma 6.3.19 (read_text Soundness Lemma). Assume the following properties:

(i) 0 is a semi-nice PTL text such that the Detailed Soundness Lemma holds
for 0.

(ii) T and Ty are PTL-PL term lists such that PL™" (T@®To)®qt(6) is pairwise
independent.

(iii) All MHF terms of 6 are composed of terms in PL™*(T @& Ty).

(iv) T is a premise list such that all MHF terms in ' are composed of PTLyg
symbols and terms in T.

(v) read_text(6, Ty, I, T, u) = (I',T1,0,v).

(vi) M is a CMTN model, S a I'-skolem-assignment and g an M -assignment
such that M + 5,9 ET.

(vii) dom(g) = PL™*(T).
(viii) For all T € T, *5(T) # u™M.
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Then the following six properties hold:
1. tbc() = PL™Y(Ty).

2. All MHF terms of © are composed of PTLg; symbols and terms in T U
ToUT;.

3. All MHF terms in I" —T" are composed of PTL; symbols and terms in T.
4. Fither v =wu or v = p and for every ¢'[Tolg, def([[ﬂ]]%//[).
5. The following two properties are equivalent:

(a) For every ¢'[Tolg, def([[ﬂ]]%//[).

(b) For every ® in IV — T and every I'y-skolem-assignment S’ = S such

that M + S’,g |= Ty, there is a I'-skolem-assignment Sy »= S’ such
that M + Sp,g =T".

6. Suppose that for every g'[Tolg, def(ﬂ@]]?\;). Fiz an M -assignment ¢'[Tg)g.
Then the following three properties are equivalent:

(a) k€ [0]%-
(b) k[T1]g" and for every I'-skolem-assignment S" extending S such that
M+S,¢dET, M+ 5,k EO.

(c) k[T1]g" and there is a T'-skolem-assignment S’ extending S such that
M+ S kET @(0).

7. If ¢'[Tolg, def([0]3,) and k € [[9]]%;[, then for every I'-skolem-assignment
S’ extending S such that M + 8',¢' = IV @ (O) and for every T € Ty,
MES(T) # .

Proof. Since read_text(0, Ty, T, pu) = (I, Ty, O, v), there are I'", T’, pg such that
I. check_text(0,T, T & To,p) = (I'7, T, po),
IL 7, =T — (T @ Ty),

I11. pull_out_pres(Ty, T1,T,TF) = (I",Ty,S),

IV. © = ATy, and
V. v = update(p, 0,71 (o))-

Now we prove each of the assertions of the lemma separately:

1. This follows directly from [T and from assertion [I] of the Detailed Sound-
ness Lemma.

2. By assertion [2] of the Detailed Soundness Lemma applied to I, '™ — I is
composed of PTLg, symbols and terms in T’. © = A Ty. So an MHF term
of © is an MHF term of I'y, and hence by assertion [1| of the pull_out_pres
Soundness Lemma composed of PTLg, symbols and terms in T’.

3. This directly follows from assertion[2]of the pull_out_pres Soundness Lemma.
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4. There are two cases:
Case A: pg = u. Then v = u by [V}

Case B: pg # u. Then by [Vl v = u. By assertion [§] of the Detailed
Soundness Lemma applied to w+v(0,M,g) > o, so u+v(6, M, g) # u,
ie. def([0]%,)-

5. () = ()
Assume that for every ¢'[Tolg, def( [[9]]57\;1)

Let ¢’ be an M-assignment such that ¢'[Tglg. Then def(ﬂ@]]?\;). Note
that by 7 no term in Ty is composed of terms in T. This together
with ([vi), and implies that M, ¢’ = T'. Now we can apply the
Detailed Soundness Lemma to 6 using ¢’ instead of g. Assertion [3|of this
application of the Detailed Soundness Lemma then implies that for all

presuppositionally marked ® from I't — T, for all F$—skolem—assignments
S" »= S and for all k[T]¢" such that M,k = (I'" —T)e, M,k = ®.

From this it follows that for all presuppositionally marked ® from I'™ —T',
for all Fg—skolem—assignments S’ »= S and for all k[Ty @ Ty]g such that
M,k = (I't =T, M,k = ®. Now it follows from assertion [3| of the
pull_out_pres Soundness Lemma that for every ® in IV — T" and every
I'},-skolem-assignment S’ > S such that M + 5, g = T'y, there is a I''-
skolem-assignment Sj extending S’ such that M + Sy, g = ®.

(b) = (a):

Assume that for every ® in IV —T" and every I'j-skolem-assignment S’ = S
such that M + 5, g = T'}, there is a I'-skolem-assignment Sy extending

S’ such that M + Sy, g = ®. Fix ¢'[To]g. We have to show that def([[ﬁ]]%//[).

By assertion [3] of the pull_out_pres Soundness Lemma, our assumption
implies that for all presuppositionally marked premises ® in I't — T,
pres(T'T T, To @ Ty, M, S, g, ®). In particular, this means that for all pre-
suppositionally marked premises ® in I't —T', pres(I'", T, Tg, M, S, ¢, ®).
Now by assertion [3| of the Detailed Soundness Lemma applied to 6,

def([61%,)-

6. (b) = (c) follows from [} By the definition of pull_out_pres, we have I'y =
S(IT* = T)), i.e. © = AS(JT't — I'|). Using transformations between I"-
skolem-assignments and I'T-skolem-assignments analogous to those used
in the proof of assertion 3| of the pull_out_pres Soundness Lemma, (a) =
(b) and (c) = (a) can now be derived from the corresponding implications
in assertion [4] of the Detailed Soundness Lemma applied to [[}

7. Suppose that ¢'[Tolg, def( [[9]]%;[) and k € [[0]]%;[. Let S" = S be a I'V-skolem-
assignment such that M + S’ ¢’ = IV @ (©), and suppose T € T;. By
the already proven assertion |§| of this lemma, k[T;]g’. But since T} = Ty,
T € Ty, ie. T € dom(k), i.e. M‘,’gsl (T) = k(T) # u by the definition of
M -assignment. O

Just as the read_text Soundness Lemma, the following read_term Soundness
Lemma will be needed in the inductive proof of the Detailed Soundness Lemma
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and has a structure very analogous to that of the read_text Detailed Soundness
Lemma. The only structural difference is that there are no analogues to the
assertions [I] and [d of the read_text Detailed Soundness Lemma.

Lemma 6.3.20 (read_term Soundness Lemma). Assume the following proper-
ties:

(i) t is a PTL term such that the Detailed Soundness Lemma holds for all
PTL texts that are subtexts of t.

(i) T is a PTL-PL term list such that PL™"(T)®qt(t) is pairwise independent.
(i) All MHF terms of t are composed of terms in T.

(i) T is a premise list such that all MHF terms in T are composed of PTLg
symbols and terms in T.

(v) read_term(t,T,T,u) = (I, T, v).

(vi) M is a CMTN model, S a T'-skolem-assignment and g an M -assignment
such that M + S, g =T.

(vii) dom(g) = PL™(T).
(viii) For all T € T, ME(T") # u.
Then the following five properties hold:
1. T is composed of PTLg, symbols and terms in T.
2. All MHF terms in TV — T are composed of PTLg, symbols and terms in T.

3. %(t) £ uM iff for every ® in I’ — T and every I'}-skolem-assignment
S" = S such that M + S',g = Ty, there is a I'y  -skolem-assignment
So = 5" such that M + Sy, g = ®.

4. 1f %(t) # uM and Sy is a I'-skolem-assignment extending S such that
M +So,9 =T, then 2 (t) = ME30(T).

5. Either v=u orv =y and %(t) #uM.

Proof. We prove this by induction over the length of . So assume that this
lemma holds for all PTL terms shorter than ¢. We have to distinguish four
different cases:

1. t € Tppg and PL(t) eT

In this case I' = I'v = p and T = PL(¢). Since T € T, MT'*S(T) # uM.
T = PL(t) cannot contain any skolem function symbols, so the definitions of
%(t), MT"’S(T) and PL(t) imply that %(t) = MT'*S(T) # uM. Now the five
assertions of the lemma follow trivially.
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2. Case 1 does not hold and ¢ is of the form f(¢q,...,t,), where f is a
logical function symbol and t;, ..., t, are PTL terms

Then read_term(f(t1,...,tn), 0T, ) = (I, f(T1,...,Ty),v), where for all
1 <i <n, read_term(t;, U';, Ty, pi) = (Dig1, Ti, prig1), with

L] F1:F,

® U1 = M,
[ F/:Fn+1@<(f(T17"'aTn)#U)P%
o v = update(pn+1,0, P(Lrgr B f(Th, ..., Ty) # u)).

Now we prove the five assertions of the lemma for this case:

1. This follows directly from assertion 1 of this lemma applied to

3.

read_term(t;, T';, T;, p;) for 1 <14 < n.

This follows directly from assertion 2 of this lemma applied to
read_term(t;, T;, T;, p;) for 1 < i <mn.

This follows directly from assertions [3] and [4] of this lemma applied to
read_term(t;, T';, T;, p;) for 1 <14 < n.

This follows directly from assertion of this lemma applied to
read_term(t;, T;, T;, ;) for 1 < i <mn.

Assume v # u. Since v = update(pini1,0, P(Tpy1 F7 f(Ty, ..., T,) # u)),
this implies that p,+1 # vwand CMTNUT,,+1 E f(Th,...,T,) # u. Then
for any 1 < i < n, we inductively get from assertion 3 of this lemma applied
to read_term(t;,I';, T;, u;) that p; # u and (t) £ uM. In particular we
have y = p1 # u. Additionally, by assertionsand@of this lemma applied
to read_term(t;, s, Ty, p;) for 1 < i < n, thereis a I, 1 1-skolem-assignment
extending Sp = S such that M + Sp,¢ | I'ny1, and %(ti) = %(Tz)
for 1 <i¢ <mn. Since CMTNUT 41 E f(Th,...,Tn) # u, M + So,9 E
F(Ty e Ty) #ug e BL(f (b)) = MES(f(TY, L T)) # u as
required.

Case 1 does not hold and t is of the form ty(¢1,...,t,), where
to,t1, ..

.,t, are PTL terms

This case can be treated in a way completely analogous to the previous case.

4. t is of the form (z ¢

Then read_term(tx ¢, T,p) = (I, sk;,v) for a new 0O-ary skolem function
symbol sk;, where

I
II.
III.

Iv.

read_text(p, (x), T, T, u) = (Co, To, ®, 1),
o = update(u1, 0, P(To F¥ 3z I, ®)),

v = update(pa, 0, P(To ® (Ip, L) -7 Vo (g, & — 2 = sk;))),

x

I' =T & ((3r, 2LE)F (Vo (3p, © — 7 = sk;))P).
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@ is a subtext of ¢, so by the first assumption of this lemma, the Detailed
Soundness Lemma holds for . This means that we can apply the read_text
Soundness Lemma to [I] (with the g of lemma the read_test Soundness Lemma
instantiated to any M-assignment ¢'[z]g). Now we prove the five assertions of
the lemma for this case:

1. Trivially, sk; is composed of PTLg symbols.

2. For any MHF term 7" in I'y — T, it follows from assertion |3|of the read_text
Soundness Lemma applied tothat T’ is composed of PTL,, symbols and
terms in T. From assertion [2]of this application of the read_text Soundness
Lemma, it follows that all MHF terms of ® are composed of PTLg; symbols
and terms in T U (z) U Ty. But then all MHF terms of 3, @%ki and of
Vo (31, ® — = = sk;) are composed of PTL, symbols and terms in T, as
required.

3. Left-to-right implication:

Suppose %(wc ¢) # uM. Then by the definition of %(t), [go]]?\;[ is defined
for every ¢'[z]g. So by assertion 5| of the read_text Soundness Lemma, the
required property holds for all ® in 'y — I". Now we only have to show
that it also holds for I, CIDSTIW and Vo (Ip,  — = = sk;).

s

Since <-(wx ¢) # uM | there is a unique h[z]g such that [p]%, # 0, say

k€ [elh-

Let S = S be a I'g-skolem-assignment such that M + S',g E T'g. By
assumptions fiv] and [iil, = does not occur freely in I'. By the definition of
read_text, it also can’t occur freely in I'g — I'. From this we can conclude
that M + S',h |= Ty. Now by assertion [6] of the read_tezt Soundness
Lemma, k[To]h and M + S’,k = ®. Define Sy to be the extension of S’
to sk; that maps sk; to h(x). Then M + Sy, g = 31, @ as required.

x

Now let S’ = S be a Ty + (3g, ®%)-skolem-assignment such that M +

x

S, g t= To+(3r, ©E). We construct Sy as above. By similar reasoning as

above, the uniqueness of h implies that M + .Sy, g =V (Ir,  — x = sk;),
as required.

Right-to-left implication:

Assume the following:

For every ¥ in I' — I" and every I'j-skolem-assignment
S' = S such that M + ', g |= T', there is a T'y,  -skolem- (6.4)
assignment Sy = S’ such that M + Sy, g = V.

From assertion 5] of the read_text Soundness Lemma, we can conclude that

for all g'[zlg, def([],).
By recursive application of (6.4), there is a T + (I, ® % )-skolem-assign-

T
ment S; > S such that M + S1,9 = Ty + (I, @%) By assump-
tions and and by the definition of read_text, the terms in Ty
do not occur freely in I'g. This allows us to conclude that there is a
k[Tolg such that M + Sy, k = To + (@%) Now define h[z]g by h(z) :=
S1(sk;) and K'[z]k by k'(x) := Si(sk;). Define Sy to be the I'p-skolem-
assignment such that S > So (so So = S1|aom(se)\{sk:})- Then E'[To]h
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and M + S, k' |= o+ (®). Now by assertion [0 of the read-tezt Soundness
Lemma, &' € [¢]%,, i.e. [¢]h, # 0.
In order to conclude that %(Lx ¢) # uM it is now enough to show that

h is the only M-assignment such that h[z]g and [p]%, # 0. So suppose
W [z]g and [¢]%; # 0. We have to show that &’ = h.

Choose j' € [¢]?;. Since M + Sy, g = T, assertion |§| of the read_text
Soundness Lemma implies that j'[To]h’ and M + Si, ;' = ®. This means
that M + 51,4 |= 3, ©. But by with ¥ =Vz (3r, ® — o = sk;),
M+S1,9g =EVe (3, © = x = ski), i.e. M+ 51,k =Tp, @ — = = sk, ie.
M+ S1,h |E o = sk;. So by the definition of h, h(z) = Sy (sk;) = h/(x),
i.e. h = R/, as required.

4. Suppose %(wc ©) # u, and let Sp be a I''-skolem-assignment extending S

such that M + Sp,¢g = T”. We have to show that %(LJ} ©) = M'gsl (sk;).

Using the same argument as in the right-to-left part of [3| above, we can
conclude that for the unique h[z]g such that [p]%, # 0, h(x) = S1(sk;).
Now %(w ) = h(x) = S1(sk;) = %(ski), as required.

5. Suppose v # u. Then byand v == #u, Lo @ (3, @%) =
Ve 39 ® — = = skj) and CMTNUTy = 3z 3p, ®. Fix an M-
assignment ¢'[z]g. By assertion [5| of the read_text Soundness Lemma,
there is a T'g-skolem-assignment Sy = S such that M + Sy, ¢’ = T'o. Then
M + So,¢' = Jx Ip, . Additionally, for any extension Sy of Sy to sk;
such that M + S1,¢" | 3, <I>5§i, M+ S1,d EVe (3, © — = = sk;).
These two facts together imply that there is a unique M-assignment h[z]g
such that M + Sp,h |= 31,®. Now it follows from assertion [6] of the
read_text Soundness Lemma that there is a unique M-assignment h[z]g
such that [¢]%, # 0. The definition of %(t) now implies that %(t) #uM,
as required.

Additionally, by assertion [4] of the read_tezt Soundness Lemma, p = py =
v, as required. O

The following ezist_check Soundness Lemma ensures that the predicate
exist_check actually does check the correctness of the existential statement that
is given to it.

Lemma 6.3.21 (exist_check Soundness Lemma). Assume that the following
properties hold:

(i) T is term list, T a PL term and ® a PL formula such that all MHF terms
of ® are composed of PTLg, symbols and terms in T U {T'}.

(ii) T is a premise list, M a CMTN model, S a T-skolem-assignment and g
and M -assignment such that M + S,g =T.

(iii) All skolem functions occurring ® also occur in T.
(iv) p is a proof status value such that exist_check(o, T', T, 31y @, u) = (v).

Ifa=1,thenv=_1Lorv=pu Ifa=0,thenv=wu orv=pu. If eithera=1
andv =T ora =0 and v # u, then M + S, g = Iy .
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Proof. The first two implications trivially follow from the definition of exist_check.
Now suppose that « =1 and v = T or « = 0 and v # u. We have to distinguish
three cases:

Case 1: ® is of the form (C(T)AVY, (z € T <> ¥(z))) and P(T' @ (¥(x)) -’
L(z)) =1

Since P(I @ (¥(z)) F* L(x)) =1, M + S, g = Vo (¥(z) — L(z)). Now by the
Class Extensionality Axiom of CMTN for W(z), M+S, g = 37y (C(T)AV, (v €
T < ¥(x))), i.e. M + 5,9 = i1y , as required.

Case 2: @ is of the form (C(T)AL(T)AY,, (z € T + ¥(x))), P(Ca(¥(x)) F*
L(z)) = 1, the symbol L does not occur in ¥(z), and for every term
To occurring in ¥(z) that is either in T or a skolem function symbol,
P L(Ty)) = 1.

For simplifying the exposition, we first assume that all calls of check_limitedness
in this call of exist_check succeeded in the first of the two possible ways that
a check_limitedness call can succeed. In other words, we assume that for every
To that is either in T or a skolem function symbol and that occurs in ¥(z),
P(T " L(Ty)) = 1. Since all MHF terms of W(z) are composed of PTLg
symbols and terms in T U {T'}, we can view ¥(z) as a parametrized formula all
of whose parameters are limited (for formalizing this, we would have to replace
all terms from T and all skolem function symbols occurring in ¥(z) by new
variables). This allows us to apply Set Comprehension where we applied Class
Comprehension in case 1.

Now in case some calls of check_limitedness succeeded in the second possible
way, we have to proceed in a way analogous to the explanation of the special
case of the second criterion in section [6.1.4] For the sake of simplicity, we make
this explicit only for the case that a single call of check_limitedness succeeded
in this special way (i.e. in the second possible way). In case that multiple
check_limitedness calls succeed in this special way (even when they are nested
because of the recursive definition of check_limitedness), we just need to proceed
inductively with the exposed case as the inductive step.

So suppose check_limitedness(I', T, (¥(x)), Tp) succeeded in the second pos-
sible way. Then T, appears in ¥(z) only in terms of the form T(7"), and
for some formula ¢(y) not containing L, I' contains V¥, (Tp(y) + ¢(y)) and
for every term T* occurring in ¢(y) that is either in T or a skolem function
symbol, P(I' ¥ L(T*)) = 1. Let ¥'(z) be the formula resulting from ¥(z)
by replacing all occurrences of terms of the form T(7") in U(z) by o(T").
Since I' contains V, (To(y) <> ¢(y)), M + S,9 = VY, (Toly) < ¢(y)), ie.
M+ 8,9 =V, (¥(z) + ¥'(z)). Hence we may use ¥'(z) instead of ¥(z) for
applying Set Comprehension.

Case 3: Neither case 1 nor case 2 holds

In this case v = update(p, o, P(I' H* 3y ®)). Sincea =l andv=T or a =0
and v #u, CMTNUT |= 31y @, i.e. M + S, g |= 31y @, as required. O

For the proof of the Detailed Soundness Lemma, we also need Lemma [5.2.20
from chapter [5|to hold for any 6 with the property that the Detailed Soundness
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Lemma holds for all subtexts of §. The proof of Lemma(5.2.20|in its unrestricted
form depends on the Detailed Soundness Lemma, so that we actually have to
use a restricted form of [£.2.20

Lemma 6.3.22. Let 0 be a semi-nice PTL text, and let M be a CMTN model.
Suppose that the Detailed Soundness Lemma holds for all subtexts of 8. If g and
h are M-assignments such that h € [0]%, and such that the union of dom(g)

and the set of occurrences of terms after an v or 3 in 0 is pairwise independent,
then tbc(6) = dom(h) \ dom(g).

Proof. We prove this by induction over the complexity of 8. So assume that the
lemma holds for all subtexts of 6y. To show that it holds for 6y, one needs to
separately check it for all 13 possible forms 6, can have according to Definition
All cases apart from 60y being of the form ¢ — 6 are trivial and do not
even require the additional assumption that the Detailed Soundness Lemma
holds for all subtexts of #, so we only write out the proof for this case.

So suppose that g and h are M-assignments such that h € [ — 0]%, and
such that the union of dom(g) and the set of occurrences of terms after an ¢
or 3 in @ is pairwise independent. First suppose that t € dom(h) \ dom(g).
We have to show that ¢t € tbe(p — 0). From the definition of [ — 6]%,,
there are PTL terms ti,...,t, and an m-place argument filler ¢ such that
for all k € [¢]9;, Elt1,---,tm]g and there is an assignment j € [0]%, such
that j(t7(t1,...,tm)) = h(t)(k(t1),...,k(t;m)). By the inductive hypothesis,
{t1,...,tm} = tbe(p) and t7(t1,...,tm) € dom(j) \ dom(k) = tbc(d). So by
the ¢ — 0 case of the definition of aq, t € tbc(p — ), as required.

For the inverse direction, suppose ¢ € tbe(p — 0). Write tbe(p) as
t1,...,tm. Then there is an m-place argument filler o and a ¢ty € tbe(f) such
that to = t7(t1,...,tm). Since [¢ — O]9, # 0, it follows from the definition of
[ — 6]%, that

for every k € [¢]9,, there is an M-assignment j;, € [0]%,. (6.5)

Now we make use of the fact that read_text gives us a way of translating
PTL texts to PL formulae. Set T := PL(dom(g)), and suppose that

read_text(p, (), (), T, T) = (', Ty, P, u) and
read_text((),I, T & Ty, u) = (I, T2, O, ).

By assertion [B]of the read_text Soundness Lemma applied to both of these uses of
read_text, there is a I”-skolem-assignment S; such that M +S1,¢ ET”. Applying
assertion [0] of the read_tezt Soundness Lemma to both uses of read_text, we can

transform ((6.5)) into , which implies (6.7):

For every k[Ti]g such that M + Sy, k |= @, there is a j[Tz]k
such that M + S1,j = ©.

M + Slag ): VTI ((b — 3'11‘2 @) (67)

(6.6)

Since def([¢ — 6]%,), we have by the definition of the domain of [e]9, that
for every k € [¢]9, and every j € [0]%,, if there is a t' € dom(j) \ dom(k)
of the form fo(t1,...,ty,), then j(¢) € L™ and k(t;) € L™ for 1 < i < m.
Since [¢ — 0]9, is non-empty, [0]%, is non-empty for all k € [¢]9,. Since to
is in dom(j) \ dom(k) by the inductive hypothesis, and since ¢y is of the form
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to(t1,...,tm), we can now conclude that for every k € [¢]%,, k(t;) € LM for
1 < ¢ < m. Define

T, := (T € Ty | T is of the form T"?(T;) for some T",0),
F:=(T" | some T € T is of the form 7"?(T;)), and
T; =T, — T}

Applying again assertion [6] of the read_tezt Soundness Lemma to both uses of
read_text, we can now derive the following two claims:

M+ 81,9V, (®— 7\L(PL(t,»))). (6.8)
M+ 81,9 EVYrer, (@A0 = A\ L(T)). (6.9)
TET,

By recursive application of the Map Extensionality Axiom of CMTN, one can
verify the following:

CMTNF (V1, (® — 3r, ©) AVr, (2 = N L(PL(t;)))
i=1
AVrem (PAO = N\ L(T)))
TET)
=3IV, (@ =3 O)A (@ = A\ T=u).
TET,

This together with (6.7]), and now implies that

M+ 81,9 F 3 (Yo, (2 =3 O)A (=2 = \ T =u).
TET,

From this it follows that there is an h/[F]g such that

M+ 81,0 EVr, (@ =3 O)A (=2 > N\ T=u).
TET,

Again applying assertion [6] of the read_text Soundness Lemma to both uses of

read_text, one can now verify that b’ € [p — 0]9,.
t € PL™Y(F), so t € dom(h'). Tf t ¢ dom(h), then dom(h) \ dom(g) C

=

PL™Y(F), contradicting the maximality of n in the definition of [ — 6],
Thus ¢t € dom(h), as required. O

Similarly, we have to prove a restricted form of Lemma [5.2.21

Lemma 6.3.23. Let M be a CMTN model, g an M-assignment, ¢ a PTL
formula and 0 a PTL text such that [ — 6]%, is defined. Suppose that the
Detailed Soundness Lemma holds for all subtexts of ¢ — 6. Then [p — 0], # 0
iff for every k € [¢]%,, [0]%; # 0.
Proof. Suppose that [¢ — ¥]%, # 0, say h € [ — ]}, # 0, and that k €
[¢]4,- Then the existence of a j € [1]%, # 0 follows directly from the definition
of [ip = v1; # 0.

For the inverse direction, suppose that for every k € [¢]%,, [¢¥]%; # 0. Now
by the same construction as in the second part of the proof of the previous
lemma, we can construct a b’ € [¢ — 0]9,, as required. O
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6.3.1 Proof of the Detailed Soundness Lemma

We are now ready to present the proof of the Detailed Soundness Lemma. We
prove this lemma by induction over the complexity of 0. So we fix a PTL text
fp and assume that the lemma holds for all subtexts of 6y. Additionally, we
assume the following properties:

[

[vi]

[vii]

T is a list of PTL-PL terms such that PL™*(T) @ qt(6p) is pairwise inde-
pendent.

All MHF terms of 6y are composed of terms in PL™*(T).

I" is a premise list such that all MHF terms in I are composed of PT L
symbols and terms in T.

check_text(6, T, T, u) = (I, TV, v).

M is a CMTN model, S a I'-skolem-assignment and g an M-assignment
such that M + S, g =T.

dom(g) = PL™(T).

For all T € T, MTJFS(T) # u.

Now we distinguish 13 different cases depending on the form of 6.

Case 1: 0y is a PTL term ¢

In this case, there is a premise list I'*, a PL term T and a proof status value g
such that the following hold:

(ii

(1) read_term(t,T,T,u) = (T*, T, po)-

p = update(pg, 0, P(T* =7 B(T))).

(iii) v = update(yu1,1, P(T* @ (B(T)) F* T = T)).

(iv) I' =T* & (B(T)?, T = T).

Now we prove each of the six assertions of the Detailed Soundness Lemma

for t:

1. By the definition of read_term, T’ — T contains no D-marked terms, i.e.

PL (T — T) = () = tbe(t), as required.

This directly follows from assertions [I] and [2] of the read_term Soundness
Lemma.

Left-to-right implication:

Suppose that def([t]},). Now by the definition of def([t]3,), B (% (1)),

which by the Sort Disjointness Axiom of CMTN implies that 2£(¢) # uM.
By assertion [3] of the read_term Soundness Lemma and using t}qle fact that
T —T = 0, pres(I",T', T — T, M, S, g, ®) holds for all presuppositionally
marked @ in I — I'. Now we still have to show that pres(I”,T", T —
T,M,S,g,B(T)). So let S = S be a I''-skolem-assignment such that
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M + 5, g =T*. Now by assertion [4| of the read_term Soundness Lemma,

%(t) = M%Sl(T), ie. BM(M%S/(T)), ie. M+ 5", g = B(T), as required.

Right-to-left implication:

Suppose that for all presuppositionally marked premises ® in IV — T,
pres(I", T, T" — T, M, S, g,®). Note that by the definition of read_term,
I'* — T' contains only presuppositionally marked premises. This allows
us to conclude that there is a I'*-skolem-assignment Sy > S such that
M+Sy,g ET*—T. Now since pres(I", T, T'—T, M, S, g, B(T)), M+So, g =
B(T), i.e. BM(M%SO(T)). Note that by assertion [3[ of the read_term

Soundness Lemma, %(t) # uM. Now by assertion 4| of the read_term
Soundness Lemma, %(t) = %(T)7 ie. BM(%(t)), ie. def([t]%,), as

required.

4. Suppose that def([t]3,), and let k be an M-assignment.
(a) = (b):

Suppose k € [t]%;. Then k = g, i.e. k[T — T]g. Now it is enough to
show that ¢ verifies I — T" over M + S. For this suppose that S’ = S is
a I'*-skolem-assignment such that M + S’, g = T* —T'. We have to show
that M+ S, gE=T=T.

Since [t]9, # 0, %(t) = TM. But by assertion 4| of the read_term Sound-
ness Lemma, %(t) = M+S,(T), so M+ S',gET=T, as required.

(b) = (¢):

This implication from (b) to (c) actually does not depend on which of the

13 cases of this proof we are in. So we only present the proof for this
implication once here, and leave it out in all later cases.

Suppose that k[T’ — T]g and that k verifies I” — T" over M + S. We prove
inductively that for every initial segment I'g of I, there is a I'p-skolem-
assignment S’ = S such that M + S’k ET.

For Ty =T, we can deduce M + S,k =T from the fact that M +S,g =T
and the fact that no free term in T' is in T — T (which intuitively follows
from the fact that the proof checking algorithm only keeps track of terms
that have occurred in the already processed parts of a PTL text, and
which can be proved formally from the fact that tbe(fy) = T — T, from
our basic assumptions [i] and and from the definition of tbc).

For the inductive step, suppose that ® is a premise in I" and that S’ = S is
a I'g-skolem-assignment such that M + 5",k = T's. It now suffices to show
that there is a I'g-skolem-assignment S” = S’ such that M + Sk = ®.
If ® is not presuppositionally marked, then M + 5, k | ® follows directly
from the fact that k verifies IV —I" over M +.S. So suppose ® is presuppo-
sitionally marked. Since def([0o]9;), the already proved assertion [3[of the
Detailed Soundness Lemma for 6y implies that pres(I'", T, T'—T, M, S, g, D).
This now implies the required result that there is a I'3 4 -skolem-assignment
S »= S’ such that M + 5"k E ®.

(c) = (a):

Suppose that k[T’ — T]g and that there is a I''-skolem-assignment S’ = S
such that M + S",k =T". Since T =T =0, k = g. Then M + 5",k |
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T=T,ie M%S/(T) = TM. Since def([t]%,), 3£ (t) # u™, so by assertion
of the read_term Soundness Lemma, 2 (t) = M'};S/ (T) = TM. Now by
the definition of [t]%,, k = g € [t]},, as required.

5. It is enough to show that if v # u, then u + v(t, M, g) # u, and that if
v=T,then u+v(t,M,g) =T.

So suppose v # u. By , u1 # u, i.e. by , o # u and CMTN U
' &= B(T), i.e. pres(I",T, T, M, S, g, B(T)). Then by assertion [5| of the
read_term Soundness Lemma, p # v and % (t) # u. So by the above estab-
lished assertionof this lemma, v(t, M, g) # u. Hence pu+v(t, M, g) # u.

Now suppose v = T. Then by (iii), 1 = T and CMTNUT* & (B(T)) |=
T =T. So by , o = T. Now by assertionof the read_term Soundness
Lemma, 4 = T and %(t) # u, ie. def([t]9;). In order to conclude that
w4 v(t,M,g) = T, it is now enough to show that v(t,M,g) = T, ie.
that [t]%, # 0. By the above established assertion [4] of this lemma, it is
therefore enough to show that g verifies I' —T" over M + S. Solet S’ = S
be a I'* @ (B(T))-skolem-assignment such that M + 5, g = T™* @ (B(T)).
Since CMTNUT* & (B(T)) ET =T, M+ 5,g =T =T, as required.

6. Trivial (since TV =T).

Case 2: 6y is of the form R(ty,...,t,)

In this case there are premise lists I'y,...,T'41, term lists Ty,...,T,4+1 and
proof status values pq, ..., tn+1 such that the following properties hold:

(i) 'y =T.

(i) T, = T.

(i) 1 = g

(iv) for all 1 < i <m, read_term(t;, T;, Ti, ;) = (Lip1, Ty prit1)-
(v) I" =T & (R(TY, ..., Th))-

(vi) TV = Tp41.

(vii) v = update(jinsr, 1, P(Cpsr F° R(TY, ..., To))).

Now we prove each of the six assertions of the Detailed Soundness Lemma
for R(t1,...,tn):

1. By the definition of read_term and , PL™YT'=T) = @ = tbc(R(t1, ..., tn)).

2. This follows directly from assertion [2| of the read_term Soundness Lemma
applied to all applications of read_term in .

3. This follows from the fact that def([R(t1,...,tn)]%,) iff for all 1 <7 <n,
%(ti) # uM, and from assertion [3| of the read_term Soundness Lemma
applied to all applications of read_term in .
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4. Assume def([R(t1,...,tn)]%;)- Then for all 1 <i <n, %(ti) #uM.
(a) = (b):
Assume k € [R(t1,...,t,)]%,. Then k = g, i.e. k[T — T]g. It remains to
be shown that k verifies IV — T" over M + S. For this, let S’ = S be a
T, +1-skolem-assignment such that M + S’ g = T';,41. Now we only need
to show that M + 5", g = R(Ty,...,Ty).
Since g € [R(t1,...,tn)]% ( (t1),. 7%(t )) € RM. By assertionof
the read_term Soundness Lemma —( i) = MJrS (T;) for 1 < i < n. Now
e. M +

(AL (T,),.... MES/(T,)) € BV, e, M + S'.g b= R(Ti..... T,

(b) = ()

As in case 1.

(¢) = (a):

Let S’ = S be a I'"-skolem-assignment such that M + S',g E Tyy1 &
(R(T1,...,Ty)). By assertion {4 of the read_term Soundness Lemma,
%(ti) = M%S,(Ti) for 1 < i < m, so (%(tl),...,%(tn)) € RM e
g € [R(t1,...,ts)]4;, as required.

5. Suppose v # wu. Then by , lnt1 # u. So by assertion [| of the

read_term Soundness Lemma, p, = --- = u; # v and for all 1 < i < n,
%(ti) # uM. This implies that y = p1 # u and that def([R(t1, - .., tn)]%),
ie. p+v(R(t1,...,tn), M,g) # u.
Now suppose v = T. Then by (vii), pnt1 = T and CMTNUT 41 E
R(Ty,...,T,). So by assertion f the read_term Soundness Lemma,
fp = -+ = puy = T and for all 1 < ¢ < n, %(ti) = T. Now it
follows that p = p1 = T and def([R(t1,...,t,)]%,). In order to con-
clude that p + v(R(t1,...,tn), M,g) = T, it is now enough to show that
v(R(t1,...,tn), M,g) = T, ie. that [R(t1,...,t,)]%; # 0. By the above
established assertion [ of this lemma, it is therefore enough to show that
g verifies IV — T" over M + S. So let S’ = S be a I',,;1-skolem-assignment
such that M + S',¢g | T'nyq. Since CMTNUT,+1 E R(Th,...,Ty),
M+ 5,9 R(Ty,...,T,), as required.

6. Trivial.

Case 3: 0y is of the form —p

In this case there are I'*, Tg, ® and u’ such that the following hold:
(i) read_text(p, (), T, T, u) = (I'*, Ty, @, 1').

(ii) v = update(y’, 1, P(T* +* =3g, ®)).
) T
v) T

(iii

(i

I @ (~3r, ).

Now by the read_text Soundness Lemma, the following properties hold:

I. All MHF terms of ® are composed of PTLg; symbols and terms in TU Ty.
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All MHF terms in I — I are composed of PTL; symbols and terms in T.
Either 1/ = w or ¢/ = p and def([¢]%,)-

def([¢]9,) iff for every W in I'* —T" and every I'} -skolem-assignment S’ = S
such that M + 5’, g = I'},, there is a I'*-skolem-assignment Sy = S’ such
that M + So,g ': F*

If def([¢]9), then the following three properties are equivalent:

(a) k€ [l
(b) k[To]g and for every I'*-skolem-assignment S’ extending S such that
M+S,gET, M+ 5 kE2.

(c) k[To]g and there is a T'*-skolem-assignment S’ extending S such that
M+ S k=T* @ (D).

Now we prove the six assertions of the Detailed Soundness Lemma for —¢:

1.
2.

tbc(—yp) = = PL*(T — T) as required.

It easily follows from [I| and [II] that all MHF terms in IV — I" are composed
of PTLg, symbols and terms in T, as required.

- def([-¢l}y) iff deflle]3,)

iff for every ¥ in I'* — I" and every I'j,-skolem-assignment S’ > S such
that M + S5', g = T'}, there is a I'*-skolem-assignment Sy = S’ such that
M + Sy, g =T* (by assertion [IV)

iff for every presuppositionally marked premise ¥ in I'' — I, every I'p-
skolem-assignment S’ > S and every k[T — T]g such that M + 5", k =T,
there is a I'*-skolem-assignment Sy > 5" such that M + Sy, g = IT'™* (since
—3Jr ® is not presuppositionally marked in I''), as required.

. Assume def([-¢]%,). Then def([¢]%,)-

(a) & (c):

k € [-¢]3 iff k = g and there is no k' € [¢]4,

iff k = g and there is no k’'[Ty]g such that for every I'*-skolem-assignment
S’ extending S such that M + 5", g =T, M+ 5", k' |E ® (by the equiva-
lence of (a) and (b) in V)

iff K = g and there is a I'*-skolem-assignment S’ extending S such that
M+ 5’ g = I'* and such that there is no £'[To]g such that M + S’ k' = @

iff k = g and there is a I''-skolem-assignment S’ extending S such that
M + S',g = TV (note that a I"-skolem-assignment is just a I'*-skolem-
assignment, since =3y, ® does not introduce skolem functions), as re-
quired.

(@) & (b):
k € [—¢]4, iff k = g and there is no &’ € [¢],

iff k = g and there is no k£'[Ty]g and no I'*-skolem-assignment S’ extending
S such that M + S, k' =T @ (®) (by the equivalence of (a) and (c) in
V)
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iff k = g and for every I'};-skolem-assignment S’ = S such that M+5’, g |=
I'™* — T, there is no k'[To]g such that M + S’ k' |= @ (by [lI] and the fact
that M +5’, g =T for S’ = S)

iff k = g and for every I'} -skolem-assignment S’ > S such that M +5', g =
I'* —T', we have M + S’,g = -3,

iff kK = g and k verifies I'* — T" over M + S, as required.

5. Suppose v # u. Then p' # u, i.e. p # u and def([¢]4,) by But then
def([=¢]4,), i-e. v(=p, M, g) # u, i.e. p+v(=p, M,g) # u.
Now suppose v = T. Then p/ = T and P(I'* * =3, ®) = T. This on
the one hand implies ¢ = T by [[TI} and on the other hand implies that
CMTNUT* |= =3p, ®. But then by the just proved assertion [4] of the
Detailed Soundness Lemma for —p, g € [¢]4,, i.e. v(—p, M, g) = T, ie.
ptv(=p, M, g)=T.

6. Trivial.

Case 4: 6y is of the form 6 A1)

This case can be verified in a way very similar to case 3.

Case 5: 0y is of the form ¢ V¢

This case can be verified in a way very similar to case 3.

Case 6: 0y is of the form ¢ — 0

In this case, there are I'g, I'1, 'z, I'func, To, T1, T2, T*, F, ®, a, p1o and p; such
that the following hold:

(1) read,te:z:t(gp, <>7 Fa Ta :u‘) = (F()a Tlv ®7 NO)
(ii) check_text(0,To @ (®), T ® Ty, uo) = (T'1, To, p1).

if the symbol L does not occur in I'y — I'y and for every term
1 T occurring in I'y — T’y that is either in T or a skolem function
(iil) a = symbol, check_limitedness(T'1, Ty — g, T, T)

0 otherwise.
) make_functions(T1, To—(T®T1), Lo, T'1, @, a, p1) = (F, T, T pune; Tpress V)-
) pull_out_pres({), Ty — T,To,T'1) = (['*, {{) & Ty, ).

(vi) © =3« ATs.
) Tpres = Dpres @ (Vrpo1 (BAO = L(T))* | T € Ty — (T Ty) — T).
) IV =T* DT pres ® (Y1, (P — O)) ® Tfune.

(ix) "=T&F.

Note that the assertions , and closely resemble the definition of
read_text. Using arguments analogous to those in the proof of the read_text
Soundness Lemma, we can derive from them the following assertions:
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All MHF terms of AT’y are composed of PTLg; symbols and terms in Ts.

All MHF terms in I'* — I'y are composed of PTLg; symbols and terms in
T.

Suppose that def([¢]%,).- Then the following two properties are equivalent:

(a) For all h € [¢]%,, def([0]%).

(b) For every ¥ in I'* — Iy and every I'},-skolem-assignment S’ = S such
that M + S’,h |= 'k, there is a I'*-skolem-assignment Sy *= S’ such
that M + So, h ET*.

Suppose that h € [p]9,, that def([0]%,) and that S’ = S is a Tp-skolem-
assignment such that M + S’,h = T'g @ (®). Then the following three
properties are equivalent:

(a) k€ [0]%;-

(b) E[Ty — (T @ Ty)]h and for every I'*-skolem-assignment S” extending
S’ such that M + 8", h =ET*, M + 5",k |=Ts.

(c) k[Ty — (T @ Ty)]h and there is a I'*-skolem-assignment S” extending
S’ such that M + " k =T* @ T's.

Now we prove the six assertions of the Detailed Soundness Lemma for ¢ — 6:

1. By the definition of make_function,

PL™YT' —T) = PL™*(F)

= PL™'({T’" | for some T in Ty — (T @ Ty), there is a
length(T1)-place argument filler o such that
T=1"(T1)})

=tbc(p — 0)

by the definition of aq and tbc and the facts that tbe(p) = PL™(Ty)
(assertion [1| of the read_text Soundness Lemma) and that tbc(f) =
PL™'(Ty — (T @ T;)) (assertion [1] of the Detailed Soundness Lemma).

. Let T be an MHF term in IV — I'. We have to show that T is composed

of PTLg symbols and terms in T @ FF. For this we distinguish four cases:
Case 1: T is an MHF term in I'g — T".

In this case, T is composed of PTLg; symbols and terms in T by assertion
[l of the read_text Soundness Lemma.

Case 2: T is an MHF term in I'* — I'.

In this case, T is composed of PTLg; symbols and terms in T by assertion

[T above.
Case 3: T is an MHF term in I'pyes.

This case is similar to case 4 below.
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Case 4: T is an MHF term in Vg, (® — 3p- AT™).
Note that by Definition Vo, (@ — I AT*) is actualliof the

form VZ (@% — 3y A" g5 7). Further, note that by assertion 2/ of the
read_tert Soundness Lemma, all MHF terms of ® are composed of PTL,
symbols and terms in T@® T;. Additionally, note that by assertion 2] of the
Detailed Soundness Lemma, all MHF' terms of I'* are composed of PT Ly
symbols and terms in Ts.

First assume that T" occurs in @%. Then T is composed of PTLyg, symbols
and terms in T @ #. But if T' contains variables from ¥, then 7' is not
hereditarily free in V&' (®5 — 3§ A4 7,), contrary to our assumption.
So T' is composed of PTLg; symbols and terms in T, as required.

Now assume that T occurs in F*%%. Then there is a term 77 such that
T=T %% and such that T occurs in I'* at a position corresponding to

the position of T in I'* %%. Ty is composed of PTLg, symbols and terms
in TQ.

Let Ty be a term from Ty — (T & Ty) used for composing T;. If Ty is
in T*, then T contains a variable from ¢/, contradicting our assumption
about T'. So Ty is not in T*. Now the definition of T* in the definition of
make_function implies that Tj is of the form 777 (T;) for some length(T)-
place argument filler o, where T” is in F. So Tj is composed of terms of
terms in F @ T;.

We can now conclude that 77 is composed of PTLg; symbols and terms
in T T, &F, i.e. that T is composed of PTLg symbols and terms in
ToF @ 2 But if T contains variables from Z, then T is not hereditarily

free in VZ ((IJTi1 — 3y /\F*%%), contrary to our assumption. So T is
composed of PTLg; symbols and terms in T & FF, as required.

Case 5: T is an MHF term in I'pype.

Then by the definition of make_function, there is a term T* in
Ty — (T @ Ty), a term T” in F, a length(T;)-place argument filler o such
that T* = T'°(T;), a natural number n and a function-head subterm
F of T* such that F' contains 7" as a proper subterm and such that T
is an MHF term in Vp, M(F,n), in Vp,(® — F # w), in L(T') or in
Vr,(® — L(F)). By Definition[6.1.8] the first, second and fourth formulae
are actually of the form VT # u M(F%,n)7 VT # u (@% — F% # u)
and VT # u (@T—fl — L(FT%)) Now there are four subcases:

Case ba: T is an MHF term in @%. Then by assertion [2| of the read_text

Soundness Lemma, T is composed of PTLg; symbols and terms in T & 7.
But if T' contains variables from Z, then T is not hereditarily free in
VZE # u (@% — FT% # u) or V¥ # u (@% — L(FT%)), contrary to
our assumption. So 7' is composed of PTLg; symbols and terms in T, as
required.

Case 5b: T is an MHF term in F%. Then T is composed of T” and terms
in £ By the same argument as above, T' cannot contain terms in &, so
T =T’ ie. T is in F, thus satisfying the required property that it is
composed of PTLg, symbols and terms in T & F.
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Case 5c¢: T is u. Then T is a PTLg, symbol and thus also satisfies the
required property.

Case 5d: T is an MHF term in L(T”). Then T is 7" and thus again satis-
fies the required property.

Left-to-right implication:

Suppose def([¢ — 0]%,).- Then by Definition def([¢]9,) and for all
h € [, we have that def([0]%,) and that for every k € [0]%,,

if there is a t € dom(k) \ dom(h) of the form fo(ty,...,t,),
where {t1,...,t,} = dom(h) \ dom(g), f is a PTL term
and o is an n-place argument filler, then k(t) € L™ and
h(t;) € LM for 1 <i <m.

(6.10)

We have to show that for all presuppositionally marked ¥ in IV,
pres(I’, T, F, M, S,g,¥). For ¥ in 'y — T, this follows from assertion
of the read_text Soundness Lemma. For U in I'* — I'y, it follows from
assertion m I'func does not contain presuppositionally marked premises.
So it is now enough to show pres(I',I',F, M, S, g, ¥) for all ¥ € T'},,s.

So suppose I'pres # 0. Then by the definition of make_functions, there is a
term Ty in To — (T @ Ty) of the form 777 (Ty) for some term 7”7 and some
length(T)-place argument filler o, and

Dpres = (V1, (@ = N\ L(T)F) & (Yo, 1 (2AO — L(T))" | T €
TeT,
Ty — (T @® Ty) and T is of the form 777 (T;) for some term

T’ and some length(T;)-place argument filler o).

Now let S” = S be a I'*-skolem-assignment such that M + S’, g E T'*. Tt
is now enough to show that M + 5", g = T'pres. So let h[T1]g be such that
M+ S5 h = ®, and let k[Ty — (T @ Ty)]h be such that M + S’k = ©.
Now it suffices to show that M + S’ h = L(T) for all T in Ty, and that
M+ Sk = L(T) for all T in Ty — (T @ T1) of the form 777(Ty). Assume
that T is in Ty — (T ¢ T1) and of the form 7'7(T;) (remember that there
is at least one T with this property, namely Tp). It is now enough to show
that M + 5" k = L(T) and that for all T in Ty, M + S’,h = L(T).

Assertion@of the read_text Soundness Lemma now implies that k € [¢]9,,
and assertion |V| implies that k € [0]%,. Since T'is in Ty — (T® Ty), T
is in tbc(#), and hence contains no skolem function symbols. So we can
speak about PL™'(T). If we let t be PL™*(T), then all the assumptions of
(6.10)) are fulfilled, and we can conclude that k(t) € LM and h(t') € LM
for ' € dom(h) \ dom(g), i.e. that M + S’ k = L(T) and that for all T in
T, M+ 5", h = L(T).

Right-to-left implication:

Assume that for all presuppositionally marked premises ¥ in I”,
pres(I",I',F, M, S, g, V). We have to show that def([¢ — 6]%,). By as-
sertion [5| of the read_text Soundness Lemma, def([¢]9,). By assertion
for all h € [¢]4,, def([0]%;). So it is now enough to show that for
all h, k such that h € [¢]%, and k € [0]%;, holds. So suppose
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t € dom(k) \ dom(h) is of the form f7(t1,...,t,), where {t1,...,t,} =
dom(h) \ dom(g), f is a PTL term and o is an n-place argument filler.
By Lemma and assertion [I] of the read_tezt Soundness Lemma,
dom(h) \ dom(g) = PL™'(Ty), and by Lemma and assertion
dom(k) \ dom(h) = PL™*(Ty — (T ® Ty)). Let T be PL(t). Then T is of
the form T77(T,), so by the definition of make_functions, I'p,es has pre-
cisely the same form as in the left-to-right case above. Now by similar
reasoning as above, it easily follows that k(t) € LM and h(t;) € LM for
1 < i < m, as required.

4. Suppose that def([¢ — 0]%,).
(@) = (b):
Assume h € [p — 0]%;. Then h[tbc(¢ — 6)]g by Lemma [6.3.22) so
h[T" — T]g. Now it is enough to show that h verifies IV — T" over M + S.
Solet ¥ € IV —I'| and let S" > s be a I'}-skolem-assignment such that
M+ S h E (I” —T)g. We have to show that M + S h = U. We
distinguish three cases:
Case 1: ¥ is Vr, (® — O).

Suppose k[Tq]h is an M-assignment such that M + S,k = ®. We have
to show that M + S’k = ©. Let k' := k|pgr,. Then k'[Tq]g, and by
assertions [2] and [3] of the read_text Soundness Lemma and assertion [[TI]
M+S' k' =T*®(®). So by assertion[f|of the read_tezt Soundness Lemma,
k' € [¢]4;. Write Ty = (t1,...,ty) and F = (f1,..., fn). Now by the

definition of [¢ — 6]9,, there are m-place argument fillers o1, ..., 0, and
an assignment j € [0]%; such that for 1 <i < n,
FUT (b, tm)) = h(f) (K (1), - K (Em))- (6.11)

Define an M-assignment j'[F]j by

i) = {h(t) ifteF

j(t) otherwise.

Now one can easily verify that j/[T*]k and — using (6.11)) — that j' € [[0]]’]“\;
Then by assertion M+ 5,7 ETy ie. M+ 5k = O, as required.

Case 2: ¥ is in I'pype and of the form Vr, (3r,—1, ® < F # u).

Then there is a T' € Ty — (T & Ty) of the form 777 (T;) such that F is a
function-head subterm of T containing 71" as a proper subterm, and such
that Ty = (To € T | Tp occurs in F;).

First we show that M + S’ h = Vr, (P — F # u), which is equivalent
to M +S5 h E V1. Gr,—1p, ® = F # u). Suppose k[T;]h is an M-
assignment such that M + S’, k = ®. We have to show that M + 5", k |=
F # u. Suppose for a contradiction that M + S" &= F = w. Then by
recursive application of the Undefinedness Axiom Schema of CMTN with
n=0M+S kET=u,ie. M%S/(T) = u. Now define k', o1,...,0,
and j as in case 1 above. Then implies that M%S/(T) = u. This

together with the fact that j € [0]%, contradicts assertion@of the Detailed
Soundness Lemma applied to .
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Now we still have to show that M + S',h = Vr, (F # u — 3r,_1,. D).
Let k[Tg]h be such that M + S’k = F # u. We have to show that
M + Sk = 3p,_1, ®. By the definition of [¢ — 6]9,, there is an
m-place argument filler o such that

foray,...,a; € M, h(T") is o-defined at ay, . . ., a; iff there

is a k" € [¢]4, such that for all s <1, k' (t5(s)) = as. (6.12)

Since M%“C’I(F) # u, h(T") is o-defined at k(Tr). So by (6.12), there is a
k' € [¢]s such that &'(Tr) = k(Tr). Now by assertion E of the read_text
Soundness Lemma, M + S’ k' = ®. Define £”[T; — Tr]k by

e {k(t) iftel

K'(t) otherwise.

Now M + S’ k" |= ® by assertion [2| of the read_text Soundness Lemma.
So M + 5",k |= 3,1, P, as required.

Case 3: ¥ is in Iy, and of the form L(7”) or Vr, (® — L(F)).

First assume that all calls of check_limitedness succeeded in the first of
the two possible ways. Then, using similar reasoning as in the first two
cases, M + S’, h = ¥ follows from CMTN’s Functionality Axiom Schema
applied to ® and AT's.

Now if some call of check_limitedness succeeded in the second possible way,
we have to proceed as in the explanation of the special case of the second
criterion in section ® and ATy are transformed into formulae @’
and ATY that are equivalent in M +.5’ h to their respective originals, and
CMTN’s Functionality Axiom Schema is applied to ®' and AT instead
of ® and AT2. (Compare the more detailed exposition of the similar
situation in case 2 of the proof of the exist_check Soundness Lemma.)

(b) = (c):

As in case 1.

(c) = (a):

This case can be verified using similar reasoning as in the (a) = (b) case.

Assume v # wu. Then and the definitions of make_functions and
make_function imply that p; # u, that

if Tpyne # (), then for all T € Ty, T' @ (®) - L(T), (6.13)
and that
for every T € Ty — (T @ Ty) of the form 777 (Ty), I'y = L(T).  (6.14)

By similar reasoning as above, (6.13)) and (6.14)) imply that

for every h € [p]9, and every k € [0]%,, if there is a t €
dom(k) \ dom(h) of the form fo(T;), then k(t) € L™ and  (6.15)
h(t;) € LM for 1 <i < n.
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From py # u and assertion [5] of the Detailed Soundness Lemma applied
to (1), we can derive that ug # u and that

for every h[Ty]g and every S’ »= S such that M + S’ h =
Ty & (®), v(0, M, h) # u.

By assertion |§| of the read_text Soundness Lemma, (6.16)) implies that

(6.16)

for every h € [¢]%,, def([0]%,)- (6.17)

From pg # u and assertion [4| of the read_text Soundness Lemma, we can

derive that p # u and that def([¢]9,). Now (6.15)) and (6.17) imply that
def([o — 6]%,), i-e. that u+ v(e — 6, M, g) # u, as required.

Now assume that v = T. Then by , 11 = T. Then by assertion [5] of
the Detailed Soundness Lemma, we can derive that g = T and that

for every h[T]g and every S’ = S such that M + S’ h E

Lo®(®), v(0,M,h)=T (6.18)

By assertion |§| of the read_text Soundness Lemma, (6.18) implies that
for every h € [¢]%,, [0]%; # 0. (6.19)

Now by Lemma [6.3.23] [ — 0]%, # 0, i.e. v(p — 0,M,g) = T. Since
po = T, assertion[d]of the read_text Soundness Lemma implies that p = T,
ie. that py+v(p — 0, M, g) = T, as required.

6. Suppose that def([¢ — 6]%,), h € [ — 0]%;, M +S',h = I' and
T € F. Then by Lemma [6.3.22) T € dom(h), ie. XE5(T) = n(T).
But h(T) # uM by the definition of M -assignment.

Case 7: 0 is of the form 0 & £

In this case, there are I'y, I's, Ty, T and pq such that the following hold:
(i
(it
(iii
(i

Now we apply the fact that the lemma holds for # and £. We first concentrate
on the first two assertions of the lemma in each case:

check_text(0,T, T, ) = (T'1, Tq, p1)-

)
) check_text(§,T1, Ty, pu1) = (T'g, Ta, v).
i) I
v) T

1.1. tbe() = PL™Y(T, — T).

1.2. All MHF terms in I'y — I' are composed of PTL,; symbols and terms in
T,.

2.1. tbc(¢) = PL™Y(Ty — Ty).

2.2. All MHF terms in I'y — I'y are composed of PTLg; symbols and terms in
Ts.
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Now we establish the first two assertions of the lemma for 6 & &:
1. tbe(f & €) = tbe(f) @ tbe(¢) = PL™(Ty — T) by Lemma[5.2.17]

2. Let T be an MHF term in I'y — I'. There are two cases:

Case 1: T € I'y — TI'. Then by 1.2, T is composed of PTL; symbols and
terms in T;.

Case 2: T € I'ys — TI'y. Then by 2.2, T' is composed of PTLg; symbols and
terms in Ts.

In both cases, T' is composed of PTLg; symbols and terms in Ts.
The remaining four assertions of the lemma applied to 8 are as follows:

1.3. def([0]9,) iff for all presuppositionally marked premises ® in I'y — T,
pres(rla F7 Tl - Ta Ma Sa g, (I))

1.4. If def([0]3%,), then for all M-assignments k, the following three properties
are equivalent:

(a) k€[003
(b) k[Ty — T]g and k verifies 'y — T" over M + S.

(c) k[T, — T]g and there is a I';-skolem-assignment S’ > S such that
M+ S k=T

L5 p+v(0,M,g) > .

1.6. If def([0]3,) and k € [0]9,, then for every I'y-skolem-assignment S’ ex-
tending S such that M+S',k |= T'y and for every T € Ty, 245(T) #£ oM.

Additionally, if ¢’ is an M-assignment and S’ is a I';-skolem-assignment such

that M + S5',¢' ET'1, dom(g’) = Ty and for all T € Ty, M;S/ (T) # u™, then

by the lemma applied to £ the following four properties hold:

2.3. def([[fﬂ%;) iff for all presuppositionally marked premises ® in I'y — I'y,
pres(To, Ty, Ty — Ty, M, S, ¢, ).

2.4. If def([€]%,), then for all M-assignments &', the following three properties
are equivalent:
(a) K € [0]%,.
(b) K'[Ty — Ty]g" and k' verifies 'y — 'y over M + 5.
(c¢) K'[Ty —Ty]g" and there is a I's-skolem-assignment S” = S’ such that
M+ S" kET,
2.5. u +v(&, M, g") > v.

2.6. If def([[f]]?\;[) and k' € [[0]]?\/,[, then for every I'y-skolem-assignment S ex-
tending S’ such that M+S”, k' |= 'y and for every T' € T, M',L’,SN (T) # u™.
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Note that by Lemma 1.1, 1.4 and 1.6, for every ¢’ € [0]3,, there is a
I'1-skolem-assignment S’ such that the requirements for concluding 2.3 up to
2.6 are fulfilled.

In what follows, we will several times make use of the following fact:

If M’ is a CMTN model, S’ is a I'; — I'-skolem-assignment
and k is an M-assignment such that dom(k) C Ty

and M + S k = T';y — I, then for every M-assignment (6.20)
k'[Ty — Tq]k, we have M + S, k' =11 —T.

One can easily see that (6.20) follows from the following syntactic fact:
Every hereditarily free term in I'y — I that is in Ty — Ty (6.21)

is a subterm of a term in T;.

Intuitively follows from the semi-niceness of 6 & £ and the fact that the
proof checking algorithm only keeps track of terms that have occurred in the
already processed parts of a PTL text. Here is how can be established
formally: By 1.1, 2.1 and Lemma PL™Y(Ty —T) is pairwise independent.
Together with the pairwise independence of PL™*(T)®qt(&¢) and the fact that
tbc(0& &) = PL™!(Ty —T), this implies that PL™'(Ty) is pairwise independent.
Now let T be a hereditarily free term in I'y — I" that is in Ty — T;. There there
is an MHF term T” such that T is a subterm of T7. By 1.2, T is composed of
PTL,; symbols and terms in T;. Suppose for a contradiction that 7" is not a
subterm of a term in Ty. Then T is composed of PTLg, symbols and terms in
Ty, and is hence not independent of all terms in PL™*(T;), contradicting the
pairwise independence of PL_l(Tg).

We now need to prove the remaining four assertion of the lemma for 0 & &:

3. Left-to-right implication:

Assume def([0 & £]9,). Then def([0]%,) and for all h € [0]%,, def([€]%,).
We have to show that for all presuppositionally marked ® € I'y — T,
pres(Iy, T, Ty — T, M, S, g, ®).

For a presuppositionally marked ® in I'y —T', pres(T's, T, To =T, M, S, g, P)
follows from 1.3 and ([6.20)).

Let ® € Ty — Ty, let S’ be a (I's)g-skolem-assignment and let &[Ty — T]g
be an M-assignment such that M + S,k | (I'2)e — I'. Now we have

to show that there is a (I'y)gp4-skolem-assignment S” > S’ such that
M+ 5",k = ®. Define an M-assignment k' by

g(t) ifteTy, —T,

H(p) o
K = k(t) otherwise.
Then k[T> — Ty]k" and K'[T; — T]g. By (6.20), we can conclude that
M + S,k =Ty —T. By our basic assumption [ii], M + S’,k" =T, so
by [1.6], we have that for every T € Ty, M%,S/(T) # uM. This means
that 2.3 up to 2.6 hold for k" in place of ¢’. Now by 1.4, k' € [0]9,, i.e.
def([€]%;). So by 2.3, there is a (I'y)g-skolem-assignment S” = S’ such
that M + 5",k |= ®.
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Right-to-left implication:

Assume that for all presuppositionally marked ® in I's — T,
pres(Ty, T, Ty — T, M, S, g, ®). (6.22)

We need to show def([0 & £]9,), i.e. def([0]%,) and for all h € [0]Y,,
def([€]%,).  def([0]9;) now follows from 1.3. Let h € [0]9,. Now by
1.4, there is a I'y-skolem-assignment S’ > S such that M + S’ h = T'y.
Now by 2.3 it is enough to show that for all ® in I's — I';, we have
pres(I'g, T, To — T, M, S’ h, ®).

Let ® be in T'y — T'y, let S” = S’ be a (I'y)s-skolem-assignment, let
k[Ty — T]h be an M-assignment such that M + S”.k = (I'2)e — I'1.
By 1.4, h[T; — Tlg, ie. k[To — Tlg. By (6.20), M + S,k | Ty, ie.
M+ 8"k Ty, ie. M+ 5" k= (I'2)e —T. Then by (6.22), there is a
(T2)p-skolem-assignment S = S” such that M + 5"k = ®, as required.

Assume def([0 & £]9,), and let k be an M-assignment.
(a) = (b):

Assume k € [0 & £]9,;. Then there is an h such that h € [0]%, and
k € [€]%,. Then by 1.4, h[T; — T]g, h verifies I'y — T over M + S. By 2.4,
k[Ty —Ty]h. Then k[Ty — T]g and by (6.20)), &k verifies 'y —T" over M + S.

Now for T'j-skolem-assignment S’ = S such that M + S’ h E T'; — T,
k verifies 'y — 'y over M + S’ by 2.4. Hence k verifies I's —T'; over M + S.
This allows us to conclude that k verifies 'y — I" over M + S, as required.
(b) = (o)

As in case 1.

(c) = (a):

Assume that k[T — T]g and that S” is a I's-skolem-assignment extending

S such that M + S” k | I's — T'. Define S’ to be S” restricted to the
skolem function symbols appearing in I'y. Define an M-assignment k&’ by

g(t) ifteTy,—T,

)
R(8):= k(t) otherwise.
Then k[Ty — T1]k/, k'[T1 — T]g, M + S”,k = I's — T'; and by (6.20),
M+ S,k Ty —T. By our basic assumption , M+ S k' =T, so by
[1.6], we have that for every T € Ty, M,j,s/ (T) # u™. This means that
2.3 up to 2.6 hold for £’ in place of ¢’. So by 1.4 and 2.4, k' € [0]9, and
ke [€]k, ie ke [0 & €],

Assume v # w. Then by 2.5 and 1.5, u; # wu, for all ¢ € [0],,
v(&, M,q") #u (ie. def([€]%,)), p # uwand v(0, M, g) # u (i.e. def([0]%,))-
Then def([0 & £]%,), i.e. v(0 & &, M, g) # u, ie. p+v(0&E M,g) # u.

Now assume v = T. Then by 2.5 and 1.5, uy = T, for all ¢’ € [0]9,,
v(§,M,g") =T, p=T and v(0,M,g) = T. [0]3, # 0, say ¢’ € [0]%,.
Then [£]9, # 0, say h € [€]%,. Then h € [0 & &[4, sov(0&E, M, g) =T.
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6. Suppose that def([0 & £]%,), k € [0 & &%, 8" = S, M+ S,k E T'»
and T € Ty. Then there is a ¢’ € [0]9, such that k € [£]%;. Now by
Lemma [6.3.22] 1.1 and 1.6, the requirements for concluding 2.3 up to

2.6 are fulfilled for ¢’ and S’. This allows us to conclude by 2.6 that
M (7) M,

Case 8: 0y is of the form 3t ¢

In this case, there is a premise list I'*, a term list Ty, a PL formula ¢ and a
proof status value p’ such that the following hold:

(i) read_text(p, (PL(t)),T,T,pn) = (I'*, Ty, ®, p').
(ii) exist_check(T'*,T,3yy 31, ®,1/) = (T'T,v).
(iii) TV =T* @ (PL(t) # u®, ®),

(iv) T" =T @& To & (PL(t))

We now prove each of the six assertions of the Detailed Soundness Lemma for
3t ¢:

1. By assertion [1] of the read_text Soundness Lemma, tbc(p) = PL™(Ty).
By Lemma|5.2.17, tbc(3t ) = tbe(®) U {t} = PL™'(T'), as required.

2. This follows from assertions [2 and Bl of the read_text Soundness Lemma.

3. This easily follows from assertion [p|of the read_text Soundness Lemma and
the definition of I'* in the definition of read_text.

4. This easily follows from assertion [f] of the read_tezt Soundness Lemma.

5. This follows from the ezist_check Soundness Lemma using similar reason-
ing as in the previous cases.

6. This easily follows from assertion [7] of the read_text Soundness Lemma.

Case 9: 6y is of the form g

This case can be verified in a way very similar to case 3.

Case 10: 6y is of the form label(«,0)

This case follows trivially from the application of this lemma to 6.

Case 11: 0y is of the form ref(S, )

This case follows trivially from the application of this lemma to ¢.
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Case 12: 0 is of the form thm(¥,p,0)

In this case, there are premise lists I'; and I's, term lists T; and Ts and a proof
status value pg such that the following hold:

We now prove each of the six assertions of the Detailed Soundness Lemma for
thm(¥, ¢, 0):

1. tbe(thm(¥, p,0)) = tbe(p) = PL™H(Ty — Ty) = PL (T’ —T).
2. It can be verified from the definition of check_text that if
check_text(o, T, T, u) = (I'*, T*, /'), (6.23)

then T* = T’ and I'* differs from I only in the theorem-type marking of
its premises. Now assertion [2| of the Detailed Soundness Lemma applied
to implies that all MHF terms in I'* —I', and hence all MHF' terms
in IV — T, are composed of PTL,; symbols and terms in T* = T’.

3. This directly follows from assertion [3| of the Detailed Soundness Lemma
applied to (ii) and the fact that def([thm(d, ¢, 0)]%,) iff def([¢]%,)-

4. This directly follows from assertion [4] of the Detailed Soundness Lemma
applied to (i) and the fact that [thm(d, ,0)]%, = [¥]%,-

5. By assertion [5| of the Detailed Soundness Lemma applied to , w <
w+v(0,M,g) < p. No by assertion [5| of the Detailed Soundness Lemma
applied to , we have v < py +v(p, M, g) = p1 +v(thm(9, ¢, 8), M, g) <
p+ v(thm(d, ¢, 0), M, g).

6. This easily follows from assertion [f] of the Detailed Soundness Lemma
applied to ().
Case 13: 0 is of the form def(¢)

In this case, there is a premise list I'; and a proof status value p’ such that the
following hold:

(i) read_term(¢, T, T, ) =T, , p').

() I'=T@®(a: P~V |a:dF —¥ el -T).
u ifpu=u

(iii) v=< L ifpFubut py =u

i otherwise

(iv) TV =T.
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We now prove each of the six assertions of the Detailed Soundness Lemma for
def(t):

1. tbe(def(t)) =0 =T — T, since T = T.
2. This directly follows from assertion [3]| of the read_text Soundness Lemma.

3. Both sides of the required biimplication are necessarily true: The left hand
side because of the definition of def([def(t)]%,), and the right hand side
because IV — I" does not contain presuppositionally marked premises.

4. (a) = (b):

Assume k € [def(t)]). Then k = g, i.e. k[T” — T]g. Now it is enough to
show that g verifies IV — T" over M + S.

Since [def(¢)]%, # 0, %(t) # u. Note that since t is an (-free PTL term,
I'y —T" does not contain any skolem function symbols. Hence for every ® €
IV —T, every I'y-skolem-assignment S” and every I'g, -skolem-assignment
So = 8’, Sy = S’. Hence we can conclude from assertionof the read_term
Soundness Lemma that g verifies IV —T" over M + S.

(b) = (¢):

As in case 1.

(©) = (a)

Suppose that k[T’ — T]g and that there is a I''-skolem-assignment S’ = S
such that M + S’k =T". Since T'—T = (), k = g. Since I'; — " does not
contain any skolem function symbols, S’ = S. So M + S,g = I”. Now
assertion |3| of the read_term Soundness Lemma implies that %(t) # u, i.e.

k=g € [def(t)]4,-
5. Similarly as in previous cases.
6. Trivial.

This completes the proof of the Detailed Soundness Lemma.
Note that with the proof of the Detailed Soundness Lemma being completed,
the not yet proved lemmas [5.2.20] and [5.2.21] from chapter [5] now follow from

lemmas [6.3.22] and [6.3.23] respectively.

6.3.2 Two soundness theorems

We proved the Detailed Soundness Lemma in order to be able to prove the
Soundness theorem of the PTL proof checking algorithm. We restate this the-
orem before giving the proof:

Theorem (Soundness of the PTL proof checking algorithm). If 6 is a
nice PTL text and check(§) = T, then v(0) = T.

Proof. Suppose that check(8) = T. By the definition of check,
check_text(0, (), (), T) = (-, -, T). (6.24)

We now apply the Detailed Soundness Lemma to (6.24). For this, we have to
fix the values of the variables in the Detailed Soundness Lemma as follows:
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«T=()
e I'=)
e M is an arbitrary CMTN model (so we actually apply the Detail Soundness

Lemma once for every CMTN model).
e S is the empty skolem-assignment over M.
e g is eyy, i.e. the empty M-assignment.

The first assumption of the Detailed Soundness Lemma holds because 6 is semi-
nice. The second assumption holds because 6 is ground, i.e. contains no heredi-
tarily free terms. The other assumptions trivially hold, so we can actually apply
the Detailed Soundness Lemma. By assertion |5 of the lemma we can conclude
that p+v(0, M, g) > T. This implies that v(0, M, g) = T, i.e. that [0]}} is de-
fined and non-empty. Since this holds for all CM TN models M, we can conclude
that v(0) = T. O

The above Theorem [6.3.1]links the proof checking algorithm to the semantics
of PTL. But one can also use a PTL text to prove a PL entailment, so we will
present a separate soundness theorem linking the proof checking algorithm to
standard PL semantics. Let L = (¢q,...,¢; f{“, cee f,’f{";R]f;,. .. 7Riil) be a PL
language (here the superscripts indicate the arities of the function and relation
symbols). Suppose that I' = {®y,..., P} is a finite set of PL formulae, that ¥
is a further PL formula, and that we want to show that I' = U. A systematized

way of doing this using a natural language proof could be as follows:

Let D be a domain of objects, and suppose that ¢q,...,¢ €
D, that ffl is a kj-ary function on D, ..., that f*= is a
km-ary function on D, that lel is a kj-ary relation on D,

...and that Rfl:l is a k/ -ary relation symbol on D such that
the following axioms hold:

oP.
T (6.25)

° @kD.
Theorem. UL,

Proof. ... O

Here ®P denotes the relativization of ® to D (or some natural language
reformulation of this relativization), and the final “...” denotes some natural
language proof of ¥ p. We now formalize this kind of natural language argument
in PTL, identifying the domain D with the domain of urelements in PTL. For
this we need a way of expressing in PTL that f;“ is a k;-ary function on the
urelements, i.e. defined precisely on the urelements and returning an urelement
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as its value. One convenient way of doing this in PTL is by using implicit
function introduction to introduce the symbol fzk’

AfF (e, ) U (21,0, 2p,)-
We call the PTL formula in (6.26]) F, fk ). Similarly we need a PTL formula

Ry (R ) that formalizes that R is a k;-are relation on the urelements. Again
we do this using implicit functlon introduction:

(6.26)

Rk'(R ) = day axk; (U(xl)/\/\U({Ek;))—)
Hfz'ki(xlg...,l'kg) B(ff7($177$k1))

The PL function and relation symbols ffl, I ;, ey Rﬁi’ are thus
transformed to PTL variables in this PTL formahzatlon Similarly we will
transform the PL constant symbols to PTL variables. Now any L-formula ®
can be transformed into an equivalent L-formula ®* by getting rid of all occur-
rences of <» and V (using equivalent expressions involving —, A, = and 3). We
transform ® further to a PTL text ® by relativizing all existential quantifiers
in ®* to U and making them static using < (i.e. recursively substituting Jz ®
by ¢3z (U(x) A ®)), and finally replacing the constants, function and relation
symbols of L by the corresponding PTL variables.

Now given a PTL text 6 that formalizes the natural language proof of the
theorem in the above natural language text (6.25), the PTL text formalizing
the total text is as follows:

Jey Ulel) A ... A 3q U(cl) AFe (fFYAN A FL (fEm)A (6.27)
Ry, (RY)A.. /\R%(R AP AD] - thm(thm ' 0). '

We abbreviate the PTL text in (6.27) to L; ®y,..., P, Fo U. Now we are
able to state the soundness theorem that links the proof checking algorithm to
PL semantics states. Since we will need Theorem [£.3.27] in the proof of this
soundness theorem, we will have to take over the assumption of that theorem
that ZFC has an w-model.

Theorem 6.3.24. Suppose that ZFC has an w-model. Let L be a PL language
and let ®1,..., P and VU be L-formulae. Suppose that there is a PTL text 6
such that check(L; ®1,...,Ppto U) =T. Then &1,..., P, = U.

Proof. By Theorem v(L;®q,...,P, Fp ¥) = T. This means that for all
CMTN models M, [L; ®q,...,Px by \Il]]]e‘jlw is defined and non-empty. From the
PTL semantics of — it now follows that for k in

[Ber Uler) Ao A T U(cl) AFe (FF) A A Fy, (fFm)A
Ry (R A /\Rk;L(R PYABYA L ADLM
[thm(thm, ¥’ )M £ 0, i.e. [O']M £ 0.

Write T for {®1,...,Px}. For the rest of the proof, we will make extensive
usage of the notation from section [£.3.2] of chapter [

Let N be a CMTNy model such that N }= I';, UT*A2. By reconsidering the
constant symbols in L%\ that result from symbols in the signature of L as
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variable symbols, we can transform N into a pair consisting of a CMTN model
M and an M-assignment k such that

ke [F3er Ule)A. .. A3e U(e) AR, (FFYA L AFy,, (FF)A
ki ky,
Ry (R A AR (RI) AN A L ADL]M
So by the above, we can conclude that [¥']M # 0, i.e. that N = WAL,
Hence we have established that CMTN;, UT';, UTAz = VAL, Now Theorem

4.3.27| implies that I' = ¥, as required. O

6.4 Completeness of the proof checking algorithm

In this section we will present two completeness theorems about the proof check-
ing algorithm, analogous to the two soundness theorems from section i.e.
one theorem linking the algorithm to PL semantics and one to PTL semantics.
More precisely, the completeness theorems hold under the assumption that the
prover in the proof checking algorithm has a certain minimal proving power.
The first completeness theorem establishes that for every valid PL entailment
there is a PTL text that proves this entailment and that will be successfully
checked by the algorithm. The second completeness theorem establishes that
for every valid PTL formula there is a PTL text that proves this formula and
that will be successfully checked by the algorithm.

First we need to define the minimal proving power that the first completeness
theorem requires from the prover. In this definition as well as in the proof of
the first completeness theorem, we will refer to a restricted version of PL, in
which the only connectives are — and —, the only logical constant is 1 and the
only quantifier is 3, and which we call PL- _, | 3.

Definition 6.4.1. A prover P is called sufficiently strong if it satisfies the
following properties:

1. There is some translation function t from PL formulae to PL- _, | 3 for-
mulae with the following three properties:

e For any PL formulae @, t(®) is logically equivalent to ®.
e If @ is a PL formula such that t(®) € T, then P(T' -’ @) = 1.
e If @ is a PL formula such that ® € T, then P(I" 7 t(®)) = 1.

2. If T' is a premise list and a ® is a PL formula such that (-® — 1) € T,
then P(I' -7 @) = 1.

3. If® el and -® €T, then P(T'F* 1) = 1.

4.1 @ = iy (T1AL..AT,) € T and ¥, does not contain free
occurrences of vy, ..., v,, then P(I' - (& — ¥,,)) = 1.

5.1 (® > U) €T and ® €T, then P(T'F? ¥) = 1.

6. If T is a PL term and \111%, \:[12%, \113% €T, then P(T' F* ey (T1 AT A
U3)) = 1.
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7. 1f 3y ® €T, then P(T'H" 3,y L) =1.
8. If Tis a PL term, then P(CH T =1T) = 1.
9. If Ty =T, €T and @It €T, then P(I'H" ¢22) = 1.

10. Ve, oy (W1 Ao AW, < @) € T and T, ..., T, are PL terms such
that Ty # u, ..., Ty # w, Uit Lo 0, 0 Do are in T, then
PICF oo Toy =1,

U1 Un
Definition 6.4.2. Given a prover P and a PTL text 0, we write checkp(6) for
the result check(6) of applying the proof checking algorithm with prover P to 6.

For the first completeness theorem, we would like to state that if
®q,...,P;, E ¥ and P is a sufficiently strong prover, then there is a PTL
text 6 such that checkp(L; ®q,..., P o ¥) = T. But there is a problem with
this wording: In the definition of L; ®1,...,Px o ¥, we have @] A ... A P}
among the assumptions on the left hand side of the main — operator. This
basically means that we may assume ®/, ..., ®}. to be true before looking at
the thm(thm, ¥’,0) on the right hand side of that —. But we have to show
that the presuppositions of ®/, ..., ®} are fulfilled before we may assume them
to be true. There presuppositions amount from function applications involv-
ing the function and relation symbols of L, which are assumed to be defined
on urelements and to return urelements. Based on these assumptions, the pre-
suppositions of @}, ..., ®} are actually always fulfilled. But to ensure that
a prover with the above defined minimal proving power can prove that these
presuppositions are fulfilled, we have to give to the prover some intermediate
reasoning steps. In order to do this, we do not work with PTL texts of the form
L;®q,..., P, Fg U as defined previously, but with PTL texts of a similar form,
denoted L;&; ®q,..., Py o U, with the following definition:

Definition 6.4.3. Let L be a PL language, let ®1,...,®; and ¥ be L-formulae
and let £ and 0 be PTL texts. Then we define L;&; ®q,..., P, o U to be the
following PTL text:

ey U(e) Ao A3 U(e) AR (FFY AL AFy, (FEmA
Ry (R1') A ... ARy (Ru) — (EA(RA...AD, — (6.28)
thm(thm, ¥’ 0))).

Here the £ gives us the possibility to add intermediate reasoning steps needed
for proving the presuppositions of @, ..., ®,. One can easily see that if { = T,
then L; & @y, ..., Py Fg U is equivalent to L; Pq,..., Pg g U.

For proving the completeness theorems, we will make use of the completeness
of a certain system of natural deduction for PL- _, | 3. More precisely, it is a
system of natural deduction with variable declaration (see|Velleman) [2006). This
means that it has special proof lines for declaring variables, and that a variable
v may only appear freely in a formula ¢ if ¢ is inside the scope of a declaration
of v.

This system of natural deduction has eight rules:
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% proof by contradiction o J__'(I) ——elimination
o
DU —-introduction W —-elimination
dL
ﬁ J-introduction % J-elimination
o7
nemoen
T=T =-introduction oLz =-elimination
T

Velleman)| (2006]) sketches a completeness proof for such a system of natural
deduction with variable declaration. He actually defines a system which has
both existential and universal quantifiers, but the universal quantifiers play no
role in his completeness proof, so that the proof goes through without them.
Additionally, he is not precise about which connectives and which rules for
the connectives he presupposes, but one can easily check that the above set is
sufficient for his completeness proof to go through.

We still need two definitions and one lemma before presenting the first com-
pleteness theorem:

Definition 6.4.4. Given a PTL text ¢, we let PL(p) denote the PL formula
generated from ¢ by replacing every term ¢ occurring in ¢ as an argument of
a logical relation symbol by PL(t), replacing every other term ¢ occurring in ¢
without being a proper subterm of an occurrence of a term in ¢ by PL(t) =
T, dropping all occurrences of ¢ and relativizing all quantifiers to # u (i.e.
recursively replacing 3x ¢ by 3z (z # u A ).

Lemma 6.4.5. Let L be a PL language. For every L-formula ®, there is a
list (Th, ..., T,) of L-terms that includes all terms occurring in ® and such that
every term T; in this list is either a variable, a constant symbol or of the form
f(Tiy, ..., Ti,) for some k-ary function symbol f of L and iy, ..., i, <.

Proof. Trivial from the recursive definition of L-term. O

Definition 6.4.6. Given a situation as in the above lemma, we call (¢1,...,t,)
a list of the terms in ® ordered by term construction.

We are now ready to present and prove the first completeness theorem, which
links the proof checking algorithm to PL semantics:

Theorem 6.4.7. Suppose that L is a PL language and that ®q,..., Pk, ¥ are
L-formulae such that ®q,...,®, = V. Let P be a sufficiently strong prover.
Then there are PTL texts & and 0 such that checkp(L; & @1, ..., P U) =T.

Proof. Let T1, ..., T, be alist of the terms in &} A--- AP} A ¥ ordered by term
construction. Now ¢ is defined to be U(Ty) & ... & U(T),).

By the completeness of the above natural deduction calculus, there is a
natural deduction derivation D of t(®1),...,t(®x) F t(¥). The idea is that we
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transform this D into the required PTL text 6. For this we consider D to be
written in Fitch’s indentation notation (which is a common notation for natural
deduction proofs, also used in [Velleman)| (2006))).

For every proof line ® in D that is not a variable declaration, we choose a
list 752, ..., T2 of the terms in ® ordered by term construction, and add the
sequence U(TY), ..., U(T2) of proof lines in front of ® and with the same
indentation as ®. Next, for every variable declaration “Declare: v” appearing
in D, we replace “Declare: v” and the proof line ® that follows it by a single
proof line Fv (U(v) A ®’) of the same indentation. Afterwards, we replace every
proof line ® of D not touched in the previous step by ®'. Next, every indented
subproof of the form

[}
Wy

v,

is transformed into a PTL text of the form ® — ¥ & ... & ¥,, (just as in
section above, we can consider L-formulae to be PTL texts by considering
the constants, function symbols and relation symbols as PTL variables). This
transformation is recursively applied to subproof including subproofs, and so
on. On the highest level the subproofs and proof steps are conjuncted with &
in the original order. Call the result of this transformation of D 4. Then 6 is
defined to be Ot(P1) & ... & Ot(P,) A 6.

We now still have to show that checkp(L;&; Py, ..., P o U) =T.

First we ensure that all presuppositional calls to the prover are successful.
Every such call results from a function application and is hence of the form I" 7
PL(f*(T},...,T!)) # u for the currently active premise list I', some function
symbol f* of L (considered as a PTL variable) and some PTL terms T7},...,T".
We need to show that P(I' +* PL(f*(T},...,T")) # u) = 1 in every such
case. First we show that for every i, I contains formulae of the form T} # u
and U(PL(T})): If T} is complex, this follows from the definition of £ and the
first step in the transformation of D into 6. If T/ is a constant symbol ¢ of
L, this follows from the fact that 3c; U(cy) appears among the assumptions in
L;§;®q,...,D5 bp U. If T! is a variable, then it must be a declared variable,
so T/ # uw € T' and U(T]) € T follow from the fact that for every variable
declaration in D, we have added a PTL subtext of the form Jv (U(v) A ') to
§. From the definition of Fy(f*) and the definition of Tfunc in the definition of
the proof checking algorithm, it follows that I' contains a formula of the form

V(zlmmk>(U(x1) AN U(l‘k) &~ fk(xl, .. ,J,‘k) 75 u)

Now P(T' " PL(f*(T{,...,T.)) # u) = 1 follows from property in the
definition of sufficiently strong prover.

We can now concentrate on non-presuppositional calls to the prover for the
rest of this proof.

Keeping in mind the definitions of L;&;®q,..., P Fg ¥, check_text and
®’ one can easily see that the proof checking algorithm has PL(®}), ...,
PL(®!) in its active premise list when it starts processing the thm(thm, V', 6)

in L; & ®,..., 0 Fo V.
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For checking thm(thm, ¥’,0), the algorithm will first check 6 and then check
U’ based on the premise list resulting from checking . For checking 6, it will
first check Ot(®q), ..., Ot(®,) and then check 6. Let us first concentrate on
the checking of Ot(®q), ..., Ot(®y,).

We need the proof status value to stay T while checking Ot(®q), ..., Ot(Py,).
For every 1 < i < n, the proof checking algorithm will run the prover to calculate
P(T " PL(t(®;)")), where I is the currently active premise list, and we need
P F? PL(t(®;)")) =1 for all 1 <i < n. Since PL(®}) is in ', and PL(t(®;)")
is equal to t(PL(®})), P(T -’ PL(t(®;)’)) = 1 follows from property [1] in the
definition of sufficiently strong prover.

Now we concentrate on the checking of §. Note that while the algorithm
checks ¢, it processes the subformulae of § corresponding to lines in D in the
same order as they appear in D. Hence it makes sense to use a line in D for
specifying a point in the checking process of ¢.

We need the proof status value to stay T while checking §. Now for every
proof line ® in D that is not a variable declaration and is not a hypothesis
that starts a new subproof, the proof checking algorithm will run the prover to
calculate P(I' F¥ PL(®")) (or P(I' * PL(Fv (U(v) A @'))) in the case that ®
is preceded by a variable declaration “Declare: v”), where I" is the currently
active premise list, and we need P(T' " PL(®")) = 1 (or P(T' " PL(3v (U(v) A
®’))) = 1) in every such case in order for the proof status value to stay T. For
establishing this, we first need to show that in such a case, I contains PL(¥()
for every proof line ¥ preceding ® in D and not contained in an already closed
subproof (i.e. usable at line ® as a premise for an application of a natural-
deduction rule). For this we need to distinguish two cases:

Case 1: ¥, is preceded by a line of the form “Declare: v”

Then Jv (U(v)A¥}) appears in the part of 8 already processed by the algorithm,
not embedded in any already closed scope of an implication. Hence the premise
PL(T{) that was added to the active premise list after processing Jv (U (v) AWY)
is still in the currently active premise list, as required.

Case 2: ¥, is not preceded by a line of the form “Declare: v”

Then ¥{ appears in the part of 6 already processed by the algorithm, not
embedded in any already closed scope of an implication. Hence the premise
PL(T{) that was added to the active premise list after processing ¥y is still in
the currently active premise list, as required.

Now we are ready to show that P(T' " PL(®')) = 1 (or P(I' -* PL(Fv (U(v)A
®'))) = 1) for every proof line ® in D. By the nature of the system of natural
deduction that D is a proof of, we can distinguish eight cases:

Case 1: ¢ follows from an earlier line in D by proof by contradiction

Then the earlier line from which ® follows has the form —=® — 1. Then
PL((-® — 1)), i.e. =PL(®') — L, is in the active premise list I". Now
P " PL(®")) = 1 follows from property [2] in the definition of sufficiently
strong prover.
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Case 2: ¢ follows from earlier lines in D by —-elimination

Then @ is of the form | and the lines from which it follows are of the form X and
-X. Now PL(X') and PL((—=X)'), i.e. "PL(X’), are in T, so P(I' ¥ PL(®')) =
1 follows from property [3]in the definition of sufficiently strong prover.

Case 3: ¢ follows from earlier lines in D by —-introduction

Then @ is of the form ¥y — W¥,, and the lines from which ® follows are a
subproof of the following form:

The translation of this subproof in 6 is of the form ¥{ — (... & ¥]) or ¥ —
(...&3Jv (U(w) A)). In either case, the active premise list is augmented by
PL(T{) when processing the left argument of — and augmented inter alia by
PL(®! ) when processing the right argument of —. Hence the active premise list
I" that is active when encountering ® contains a premise of the form PL(¥() —
J(or,eon) (PLOYY) A ... A PL(P7,)), where vy, ..., v, are the variables declared
in the above subproof. Since the above subproof is used to conclude ¥y — ¥,,,
and since this line is not within the scope of the variable declarations inside the
subproof, the limitation that all free variables of ¥y — W¥,, must be in the scope
of some variable declaration declaring them implies that ¥,, does not contain
any free occurrences of v, ..., v,. Now P(I' 7 PL(®')) = 1 follows from
property [4] in the definition of sufficiently strong prover.

Case 4: ® follows from earlier lines in D by —-elimination

Similar to cases 1 and 2, but using property [5| in the definition of sufficiently
strong prover.

Case 5: ¢ follows from an earlier line in D by F-introduction

Then & is of the form Jx X and follows from an earlier line of the form X %, SO
PL(X %) is in the active premise list I'. By the same reasoning as in the case of
the presuppositional calls treated above, U(T) and T # u are in I'. Noting that
PL(®') is of the form 3z (z # uAU(x) AX), we can deduce P(I' -* PL(®")) =1
from property [0 in the definition of sufficiently strong prover.

Case 6: ¢ follows from an earlier line in D by J-elimination

Then @ is of the form V(2 and is preceded by a variable declaration of the form
“Declare: v”, and the line from which ® follows is of the form 3z ¥(. In this case
the variable declaration and ® together are translated as Jv (U(v) A (¥o2)’). T
contains PL((3(yy ¥o)'), i.e. PL(3(yy (U(x) A ¥})), so P(T'H PL(3(, (U(v) A

(¥92)))) = 1 follows from property 7| in the definition of sufficiently strong
prover.
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Case 7: ® follows from earlier lines in D by =-introduction

This easily follows from property [§]in the definition of sufficiently strong prover.

Case 8: O follows from an earlier line in D by =-elimination

This easily follows from property [J]in the definition of sufficiently strong prover.

Hence we have established that the proof status value stays T while checking
6. Now we still need to show that it stays T while checking ¥’. Let ' be the
premise list resulting from checking §. We need to show that P(I' -’ PL(¥")) =
1. Since D is a natural deduction derivation of t(®1),...,t(®x) F t(¥), it ends
in t(¥). This means that PL(t(¥)) is in T. Now P(T' - PL(¥')) = 1 follows
from property [1] in the definition of sufficiently strong prover. O

6.4.1 Completeness with respect to PTL semantics

In this section we will prove the following completeness theorem that establishes
completeness of the proof checking algorithm with respect to PTL semantics:

Theorem 6.4.8. Let ¢ be a valid nice PTL formula and let P be a sufficiently
strong pmver@ Then there is a PTL text 0 such that checkp(0 & p) = T.

For simplifying the exposition, we will assume that ¢ does not contain any ¢.
At the end of this section we discuss the problems encountered when ¢ contains
¢ and sketch a solution to these problems.

The proof for this completeness theorem is significantly more involved than
the proof for the previous completeness theorem (Theorem . Before going
into the details of the proof, we will present a naive approach to proving the
theorem, and explain which problems are encountered. In this way we motivate
the actual proof that follows this discussion.

The basic idea is that a valid PTL formula ¢ corresponds to a PL formula
® such that CMTN |= ®. Then there is a proof of ® from CMTN in the above
natural-deduction proof calculus, and as above we should be able to transform
this proof into a proof of ¢ in PTL. There are, however, two related problems
with this idea:

e When proof-checking ¢, the proof checking algorithm will have to check
not only non-presuppositional but also presuppositional proof obligations.
This amounts to checking T" # u under the locally active premise list for
every term t appearing in the proof. But in the natural deduction proof
of @, there are no limitations for occurrences of terms: Terms that may
turn out to equal u may appear in the proof and make it impossible to
transform the proof into a proof of ¢ in which all terms can be shown to
be defined.

e In the PTL-to-PL translation used in the proof checking algorithms, PTL
quantifiers are always rendered in PL by quantifiers restricted to objects
not equal to u. But the natural deduction proof of ® may contain quan-
tifiers not restricted in such a way. These can not be imitated in PTL.

25Note that the notion sufficiently strong prover will be defined differently in this section
than in the previous one.
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e PTL has no means to explicitly speak about the undefinedness object
u. In the proof checking algorithm, presuppositional premises of the
form T # u get added to the premise list, and in the processing of
a def(t)-construct, such presuppositional premises are changed to non-
presuppositional premises, so that subformulae of the form T # wu can
appear in all conceivable positions. But formulae containing » in another
fashion cannot be imitated in PTL.

In order to combat these problems, we will define a modified natural deduc-
tion calculus, which adheres to three restrictions corresponding to these three
problems:

e Terms may only appear in contexts in which they have been shown not to
equal u.

e The only quantification allowed in the language of this modified calculus
is restricted existential quantification of the form Jx # u .

e The constant u may only occur at the end of formulae of the form T" # u.

One central proposition needed for proving the above completeness theorem is
that this restricted natural-deduction calculus is complete.

First we define a modification PL, of the standard first-order predicate
logic PL: In PL,, the quantifiers 3 and V are lacking, and we instead have
two quantifiers 3, and V,. Every signature of a PL,-language must contain
the constant symbol u, but this constant symbol may only occur at the end of
subformulae of the form —t = u. Instead of 3.,z ® and V,,z ® we usually
write dr # u ® and Va # u ® respectively. This notation also explains the
intended semantics of these new quantifiers.

Note that the premises in the active premise list of the proof checking algo-
rithm as well as the conjectures of the proof obligations sent to the prover are
PL formulae that correspond in a natural way to PL, formulae: Quantifiers
appear in them only with restriction to objects not equal to u (i.e. in subfor-
mulae of form Jz (x # u A ®) and Vz (v # v — ®)), and the constant symbol
u appears only at the end of subformulae of the form —t = u. A PL formula ¥
of this form can be translated in a canonical way into a PL, formula t_,(¥)
by replacing all occurrences of subformulae of the form Jx (z # u A ®) and
Vo (z # u — ®) by 3%, © and V, P respectively.

Before defining the modified natural deduction calculus, we need to define
the concept of projected presuppositions of a formula, which will be used to
make precise what we mean by the restriction that terms may only appear in
contexts in which they have been shown not to equal u. The idea is that any
complex term T triggers the presupposition that 7' # u. If a complex term
appears in a complex formula, this presupposition gets projected in the way
explained in section [3.2] We now give a recursive formal definition of the set
p(®) of projected presuppositions of a PL,-formula ®:

Definition 6.4.9. Let ® be a PL_,-formula over the signature of CMTN. If ®
is atomic, then

(@) = {T # u | T is a proper subterm of Ty}  if ® is of the form Ty = u
. {T # u | T is a term appearing in ¢} otherwise.
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Furthermore,
p(=®) :=p(®P)

p(PAY):=p(@)U{P = X | X € p(V)}

p(® = V) :=p(@)U{®— X | X €p(¥)}

p(®V V) :=p(®) Up(¥)

PP V) ={V>X|Xep@}tu{d—X|XepWP}
p(Ax #ud):={Vz#uX | X € p(®)}
p(Ve #£u®):={Vr#uX| X e p(®)}.

Example 6.4.10. Let ® be the PL.,-formula

Jx #u (z#£0A (app,(f,x) =0V appy (g, app, (g, x)) = 0)).

Then the projected presuppositions of ® are

Va 7&“ (ZC #0— a'ppl(.ﬁx) 75’(1,),
Vo # u (x # 0 — app,(g9,x) # u), and
Vo #u (x # 0 — app, (g, appy (g, ) # u).

Note that the relation of being a projected presupposition of a formula is
transitive: A projected presupposition of a projected presupposition of @ is al-
ready a projected presupposition of ®. In the above example, the first two pro-
jected presuppositions of ® do not have any projected presuppositions, whereas
the third one has the second one as projected presupposition.

Just as we worked with the restricted language PL- _, | 3 in the previous
section in order to simplify the exposition and minimize the list of conditions
that the prover has to satisfy, we will use a restriction PL, of PL4, and a
translation t from PL.,-formulae to PL;u—formulae in this section. This trans-
lation has to be faithful to the above definition of projected presuppositions,
in the sense that p(t(®)) has to be t[p(®)]. For this purpose, we will have to
keep the connective V additionally to the connectives = and — in our restricted
language PL;u. The quantifier V., is dropped, so that we only retain the
quantifier 32,. Now t, is defined recursively by

tu(®) := @ for atomic
(D) 1= b (D)
(@ A T) = (2 (D) > (D))
ol 0) =t (8) )
tu(PV V) = tsu(P) V (V)
tu(® < V) = ( (tzu(®) = t2u (V) V 2 (t2u (V) = t2u(P)))
tru(z # u O) := 3z # u tu(P)
tou (Vo # u @) := =3z # u —t2u (D).

Now we define the proof calculus of presuppositional natural deduction over
PL;u as follows: Proofs can be formed out of the ten rules of inference specified
below in the usual fashion of natural deduction calculi, under the restriction
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that a formula ® may only appear in the proof in a position where all projected
presuppositions of ® have already been established. By this we mean that
every projected presupposition ¥ of ® must precede ® in the proof, and that
the open assumptions at the position where ¥ was deduced do not contain any
assumption that is not open at the position where ® is deduced. Here are the
ten rules of inference for presuppositional natural deduction:

% proof by contradiction ® J__'(I) —elimination
o
) EI) T —-introduction W —s_elimination
o Ventroduction 2V imination
°; T#u i : Jr#ud
m J4y-introduction e 3.4,-elimination
eclare: v
vFEuU
P
ren en
T=T =-introduction T =-elimination

We write I' -, ® to mean that there is a proof of ® from I in presuppositional
natural deduction.

Note that the calculus of presuppositional natural deduction can be viewed as
a way of modelling reasoning about partial functions and potentially undefined
terms. In this thesis, we use this calculus only as a tool for proving the second
completeness theorem of the proof checking algorithm. But at the same time
we believe this calculus to be an interesting object of study in its own right.

Now one of the three central propositions needed for proving the second com-
pleteness theorem for the proof checking algorithm states that presuppositional
natural deduction is complete:

Proposition 6.4.11. Let I' be a set of PL, -formulae such that for every

formula ¥ € T' and every formula X € p(¥), ', X. Let ® be a PL, -formula
such thatT'l=® and I' =V for all U € p(®). Then T+, ®.

Proof. We will prove the theorem by induction over the number of presupposi-
tional proof obligations of ®. (We choose this measure of formula complexity
for our induction, because we need the property that the complexity of formulae
in p(®) is always less than the complexity of ®.)

Now by the inductive hypothesis and the transitivity of the projected pre-
supposition relation, we may assume that I' -, ¥ for all ¥ € p(®). Suppose for
a contradiction that I' I7, ®.

First we need to establish that I' U {-~®} I/, L. Suppose for a contradiction
that ' U{=®} -, L. The proof for this may serve as the antecedent for the —-
introduction rule for concluding -® — 1 from assumptions I" only. But in order
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to ensure that the restrictions about projected presuppositions are fulfilled, we
need to append the proofs for I' - U for all ¥ € p(®) before the application of
the —-introduction rule. By an application of the proof by contradiction rule,
we can then conclude ® from the assumptions I', contrary to the assumption
that I' i/, .

We will now extend the set I' U {=®} to a larger set I'" such that I'" t#, L
that will allow us to construct a structure in which I' and —=® hold, contrary
to the assumption that T' = ®. The construction of I't is a modification of
the completeness proof of normal natural deduction with variable declaration
in |Velleman| (2006]), which itself was a modification of a familiar proof due to
Henkin (see [Enderton| (1972)).

While extending I' U {=®} to I'", we will add new constant symbols to the
language L of T'U {~®}. We call the thus enriched language L*.

We want to ensure that I'" satisfies the following properties:

1. For every LT-formula ¥, p(¥) C 't iff either ¥ € I'" or ~¥ € T'.

2. For every formula of the form 3z # w ¥(x) in ['", there is a constant
symbol ¢ in the signature of L™ such that U(c) e 't and ¢ £ u € I'".

We will now show how to construct I'" such that it satisfies these properties
and the properties already mentioned above.

Let ¢g,c1,... be infinitely many constant symbols not appearing in L. Let
L. be the language whose signature is the signature of L extended by cg, c1, .. ..
Let @, ®,,... be an enumeration of L.-formulae in which every formula ap-

pears infinitely many times. We now recursively construct a sequence of pairs
(Lo, T9), (L1,T1),..., where each L; is a language and each T'; is a set of L;-
formulae satisfying the following two properties:

(a) For every formula ¥ € I'; and every formula X € p(¥), I'; -, X.
(b) I t/p L.

For the base case of the recursive construction, we let (Lo,I'g) be
(L,T'U {~®}). For the recursive step we distinguish three cases:

1. If ®; is an L;-formula such that ®; ¢ T'; and p(®;) C T, weset L;yq1 := L;
and
r L, u{®;} T, U{®;}pL
i+l =
i I U{-®;} otherwise.

2. If ®; is in I'; and has the form 3z # u ¥(x), we let L; ;1 be the extension
of L; by the constant symbol ¢; and set ;11 :=T; U{¥(¢;),¢; # u}.

3. In all other cases, we set (L;11,T11) := (L;, T).

We now establish by induction that the two required properties hold for
all T;. The base case follows from the fact that T' U {~®} satisfies the two
required properties. For the inductive step, we again distinguish the three cases
mentioned above.
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1. Property (a) for I';y; follows from the inductive hypothesis and the fact
that p(®;) = p(—~®;) C I';. For property (b), note that if I'; U {®;} -, L,
then I'; U {-®;} t/, L. For if I; U {—~®;} F, L, then the fact that
p(=®; — L) = p(P;) C T'; ensures that we can use the proof by con-
tradiction rule to conclude that I'; F, ®;, i.e. I'; = L, contrary to the
inductive hypothesis.

2. For property (a), we need to establish that we can prove the projected

presuppositions of ¢; # u and ¥(¢;) from I';y;1. ¢; # u does not have any
projected presuppositions. The projected presuppositions of ¥(¢;) follow
from ¢; # u together with the projected presuppositions of 3z # u ¥(z),
which are derivable from T'; by the inductive hypothesis: Let X(z) €
p(¥(x)). Then X(¢;) € p(¥(c;)) and —Fz # v =X (z) € p(3z # u V(x)).
We can derive X (¢;) from =3z # u - X (z) by deriving 3z # v - X (x) and
hence L from the assumption =X (¢;). The requirements about projected
presupposition in this derivation of X (¢;) can be assumed to be fulfilled
by an induction over the number of projected presuppositions of formulae
in p(¥(c;)).
For establishing property (b) in this case, suppose for a contradiction that
I'iy1 Fp L. We now establish a contradiction to the inductive hypothesis
by transforming this proof into a proof for I'; I, L. For this we first ap-
ply 3,-elimination to 3z # u ¥(z), to infer the proof lines “Declare: v”,
v # wand ¥(v). Now we transform the proof of L from I'; U{¥(¢;), ¢; # u}
into one from I'; U {¥(v),v # u} be replacing ¢ by v everywhere. Addi-
tionally we need to ensure that the syntactic condition about projected
presuppositions is satisfied. The projected presuppositions of v # u and
U(v) follow from T'; in the same way as the projected presuppositions of
¢; # u and ¥(c;) treated in the property (a) case above. Additionally,
since I'; does not contain ¢;, for every projected presupposition X (¢;) on
which the derivation of L from I'; U{¥(¢;),¢; # u} depends, X (v) can be
established from I'; U {¥(v),v # u}.

3. In this case, both required properties trivially follow from the inductive
hypothesis.

Now we let LT := |JL; and I't := [JTI';. One can now easily see that I'"
has all the required properties.

Now we use the set I'" for building a structure A in which I' and =& hold.
For this, we first define an equivalence relation on the ground terms of LT as
follows: Ty ~ Ty iff either Ty =To € TT or Ty Zu ¢ Tt and Ty # w ¢ TF. Tt
can be easily seen that ~ actually is an equivalence relation.

The domain of A is defined to be the set of equivalence classes of ~ (we
denote the ~-equivalence class of T' as [T]). Function and relation symbols
are interpreted as expected: fA([Ty],...,[Ty]) = [f(T1,...,T})], and RA :=
{([Th],...,[Tn)) | R(Ty,...,T,) € TT}. One can easily establish that with this
definition the interpretation function is well-defined, and that the interpretation
of a term T in A is always [T].

Now we still need to show that A = T' U {=®}. For this we will show the
stronger result that for every LT-formula ® such that p(®) C T'T, A = ® iff
® € I'". We show this by induction over the complexity of L*-formulae. We
always assume that p(®) C T'T.
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For the base case, suppose that ® is an atomic formula. If ® is of the form
Ty = Ty, then T; cannot be u, and A =Ty =Ty if T} ~ T iff Ty =T € T
(we cannot have T; # u ¢ I't for i = 1,2, since T; # u € p(®) CI't). If & is
of the form R(Ty,...,Ty), then A = R(Ty,...,Ty,) iff ([T1],...,[Tn]) € RA iff
R(Ty,...,T,) €T,

Now suppose ® is of the form —V¥. First suppose that A = ®. Then A }= U,
i.e. by the inductive hypothesis (which we can apply since p(¥) = p(®) C T'M),
U ¢ I'". But since p(¥) C I't, we know that either ¥ € 't or =¥ € I'", so
-W € I'". Conversely, suppose =¥ € I'*. Then ¥ ¢ I'*, for else we would have
I'* k, L by —-elimination. So by the inductive hypothesis, A £ ¥, i.e. A = ®.

Next suppose that ® is of the form ¥ — X. First suppose that A = &, i.e.
either A= -0 or A = X.

Case 1: A=V

In this case, we have ¥ € I'" by the same reasoning as in the ® = —¥
case above. Now suppose for a contradiction that —=(¥ — X) € T't. Let
p(¥) be {¥q,...,¥,}, and let p(X) be {X1,...,X;n}. Then p(¥ — X) =
{Uy,...,9,,¥ - X;,...,¥ = X,,} CTt. But then the following is a deriva-
tion of L from I't:

vy

Wy
U — Xy

v — X,
(U = X)
-

v

X1

Xm

-X
-
X

v - X
L

So=(¥ — X) ¢TIt ie. ¥ — X €', as required.
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Case 2: A= X

In this case, we have X € I'" by the inductive hypothesis. Again, assume for
a contradiction that —=(¥ — X) € I'". Then the following is a derivation of L
from I'T:

(41

v,
\I’—>X1

v — X,
(¥ — X)

So in both cases ¥ — X € I't.

For the converse direction, suppose that ¥ — X € I'*. We need to show
that A = ® — X. Suppose that A = ®. Now it is enough to show A = X.
By the inductive hypothesis applied to ®, ® € I'*. Suppose for a contradiction
that X ¢ T'F.

Again we write p(¥) as {¥y,..., ¥, } and p(X) as {X1,..., X, }. For every
1<i<m, V¥ — X; € I'". By an induction over the number of projected
presuppositions of the X;’s, one can show that for every 1 <i < m, X; € I'*:
The inductive hypothesis is that we already have all X;’s with less projected
presuppositions than X; in I'", and we suppose for a contradiction that —=X; €
I't. By —-elimination applied to ¥ — X, and ¥, we can deduce X; and
hence L from I't. The syntactical restriction about projected presuppositions
in this deduction is fulfilled by the inductive hypothesis, since the projected
presuppositions of X; are projected presuppositions of X that have less projected
presuppositions than X;. So =X; ¢ I'". Again by the inductive hypothesis, we
know that either X; or =X, isin I't. So X; € I't.

Since all the projected presuppositions of X are in I't, we can now conclude
that =X € I'". But then we can derive L from {¥ — X, ¥, -X} C I'*, which is
the required contradiction. So X € I't, i.e. A = X by the inductive hypothesis
applied to X.

The case that ® is of the form ¥V X is similar to the case that ® is of the
form ¥ — X, but actually simpler because of the simpler structure of projected
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presuppositions of ¥V X. We leave the details to the interested reader.

Finally, suppose ® is of the form 3z # u ¥(z).

First suppose that A = 3z # u ¥U(z). Then there is a [T] € A such that
AET # v and A= ¥(T) (since the interpretation of T in A is [T]). By the
inductive hypothesis, we then have that T' # u and ¥(T') are in I'". But since
p(3z # uw ¥(z)) CI'", we can now conclude that I'" b, 3z # u ¥(z), and hence
that 3z # u ¥(z) € T't.

Conversely suppose that 3z # u ¥(z) € I'". By property (i) of I't, we
know that there is a constant symbol c in the signature of L* such that ¢ # u
and ¥(c) are in I'". By the inductive hypothesis, A |= ¢ # v and A = ¥(c), so
A = # u U(x), as required. O

For concisely stating the second central proposition needed for the proof of
the second completeness theorem, we will temporarily work with a somewhat
weaker proof checking algorithm than the one defined in section[6.2} This weaker
proof checking algorithm is obtained from the above proof checking algorithm by
deleting the second clause in the definition of check_limitedness and the first two
clauses in the definition of exist_check. In the proof of the second completeness
theorem, we will see why a proposition about this weakened proof checking
algorithm is relevant to proving a theorem about our original proof checking
algorithm.

In the proof of the second completeness theorem, we will have to take CMTN
axioms into account at a place where we need to use PL, rather than PL. For
this, we need to define a PL, variant CMTN., of the CMTN axioms. One
problem is that the CMTN axioms express the fact that any CMTN relation
yields a false statement when one of its arguments is the undefinedness object:
We cannot possibly express this fact in PLx,, because in PLx, we can only
mention u in formulae of the form T # u and not as an argument of a relation
other than =. A related problem is that the CMTN axioms express that any
CMTN function yields the undefinedness object when one of its arguments is
the undefinedness problem. Again, we cannot express this in PL,.

So CMTN_, will be equivalent to the CMTN axioms in all respects apart
from its lack of information about the value of relations and functions at u. To
make this more precise, we define a set U of PL-formulae as follows:

U :=U; UUsy, where

Uy :={—=C(u), "N (u), ~B(u), ~U(u), ~L(u),
Ve —x € u,Vx —~u € x,
Vo =M (z,u), Ve - M (u, z),
Vo =T (x,u), Ve T (u,x),
Vo nth(x,u) = u, Ve nth(u,z) = u}, and

Us :={® | ¢ is an instance of the CMTN Undefinedness Axiom Schema

or the CMTN Tuple Undefinedness Axiom Schema}

U expresses the information that any CMTN relation yields a false statement
when one of its arguments is the undefinedness object and that any function
applies to the undefinedness object yields the undefinedness object. Now we
will define a set CMTN,, of PL, sentences corresponding in a natural way to
the axioms of CMTN and satisfying the following three properties:
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e Every sentence in CM TN, corresponding to a non-comprehension CMTN
axiom logically follows from the non-comprehension CMTN axioms.

e Every CMTN axiom logically follows from CMTN_, U Um
e For every sentence ® in CMTN,,, the sentences in p(P) are logically valid.

Definition 6.4.12. For every CMTN axiom ® not listed below, the CMTN,
correspondent of ® is defined as a syntactical modification of ® in the following
way: Every quantifier Vz or dz in ® is replaced by V& # u or dz # w respec-
tively, every atomic formula of the form T" = u is replaced by =—=T = u, and
every atomic formula ® not of the form 7' = u and containing complex terms
T1,...,T, is replaced by (T1 # u A ... AT, # u A D) (where the ordering of
Ti,...,T, is such that if T; is a proper subterm of T}, then i < j).

Below we give a list of CMTN axioms that either do not have a correspondent
in CMTN,, or whose correspondent in CMTN, is defined in a special way:

o CMTNy, correspondent of the Map Extensionality Axiom Schema:
For n > 1 and Z a variable list of length n: Vf # u Vg # u (M(f,n) A
M(g,n) ANVzuZ ((f(2) # u < g(2) # u) AN(f(2) # ungz) #u —
f(2)=9(2) = f=9)

o CMTN,, correspondent of the first Boolean axiom:
Ve£u(Bx)xz=TVa=L)ATH#uANL#u

e Unlimitedness of Undefinedness and the axioms in the CMTN Undefined-
ness Axiom Schema and the CMTN Tuple Undefinedness Axiom Schema
have no correspondent in CMTN,, (as these are already in U).

One can easily check that with this definition CMTN, satisfies the above
mentioned properties.

Before we can state the second central proposition needed for the proof of
the second completeness theorem for the proof checking algorithm, we need to
remind the reader that some of the proof obligations produced during the proof
checking are not needed, in the sense that their result does not influence the
final result of the proof checking. Those proof obligations that actually do have
to be successfully checked for ensuring the proof checking is overall successful
we will call the proof obligation checked by the algorithm.

Now we can state the second central proposition, which ensures that every
proof obligation of a valid nice PTL formula can be encoded by a valid PL,
formula with valid projected presuppositions:

Proposition 6.4.13. Let ¢ be a valid nice PTL formula. Then for every proof
obligation p of the form I, |—7Sp U, checked by check(y), there is a finite subset
Ay, of CMTN, such that \(txu[T'p]UA,) = t2u(¥,) is a valid PLy, formula
all of whose projected presuppositions are valid PLx, formulae.

Before proving this proposition, we need to introduce some further concepts.
First recall that all proof obligations in the PTL proof checking algorithm are
called using the update function, whose second argument determines whether the

26Gince the notions of structure in PL and in PL, are identical, it is easy to make sense
of such assertions of logical entailment despite the fact that we are talking about formulae in
these two syntactically distinct formalisms.
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prover is called for a presupposition check (in which case the second argument
is 0) or for an assertion check (in which case it is 1). In the first case we also
say that the proof obligation checked by the algorithm at that point is a presup-
positional proof obligation. In the second case we call it a non-presuppositional
proof obligation.

We now still need the following three definitions:

Definition 6.4.14. Given a list I' of PL., formulae and a PL, formula @,
we recursively define the PL, formula I' = ® as follows:

° <>:><I)::(I).
e (MODN=d:=0 (= ).

One can easily see that I' = @ is logically equivalent to AT" — ®. This
motivates the following definition:

Definition 6.4.15. Given two sets A and B of PL, formulae, we write A & B
iff every formula ® in A can be obtained by a formula ¥ in B by replacing
subformulae of ¥ of the form AT — X by I' = X.

By inspection of the definition of the proof checking algorithm, one can easily
verify the following two lemmas:

Lemma 6.4.16. If T 5 ® is a proof obligation produced by the proof checking
algorithm, then plty[T]] Up(tsu(®)) S teu(l].

Lemma 6.4.17. If py is a proof obligation of the form I, F?Sm ®,, produced

by the proof checking algorithm and ® € p(A txulp,] = t2u(¥p,)), then there
is a proof obligation py of the form I'p, F?sz ®,, produced by the proof checking
algorithm earlier than py such that ® is I'p, = ¥,,,.

For the proof of Proposition [6.4.13] we will make use of the following lemma:

Lemma 6.4.18. Let ¢ be a wvalid nice PTL formula. Then for every proof
obligation p of the form T'), I—?Sp U, checked by check(p), CMTNUT, U,

In order to prove this lemma by an induction over the complexity of ¢, one
actually needs to prove the following stronger lemma, whose rather involved
proof we will only sketch:

Lemma 6.4.19. Assume the following properties:
(i) ¢ is a semi-nice PTL text.

(ii) T is a PTL-PL term lists such that PL™"(T) @ qt(y) is pairwise indepen-
dent.

(i) All MHF terms of ¢ are composed of terms in PL™'(T).

(iv) T is a premise list such that all MHF terms in T are composed of PTLg
symbols and terms in T.

(v) For every CMTN model M, every I'-skolem-assignment S and every M -
assignment g such that dom(g) = PL™Y(T) and M + S,g = T, we have

def([0])").
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(vi) p is a proof obligation of the form T, ng U, checked by
check_text(o, ', T, T).

(vii) At least one of the following two properties holds:

(a) p is a presuppositional proof obligation.

(b) For every CMTN model M, every I'-skolem-assignment S and every
M -assignment g such that M + S, g =T, we have [[ap]]g/f # (.

Then CMTNUT, |= U,,.

Note. One can easily see that Lemma [6.4.18] follows from Lemma [6.4.19] by
setting I' =T = ().

Proof sketch. We prove this lemma by an induction over the complexity of .

In the base case, ¢ can be either a PTL term ¢ or of the form R(ty,...,t,)
for a logical relation symbol R and PTL terms t,...,t,. Since the two cases
are similar, we will only discuss the first case. In this case, the proof checking
algorithm will calculate read_term(t,T’,T,T) = (I',T,v) in the course of cal-
culating check_text(t,T', T, T). We can divide the proof obligations checked by
check_text(t,T', T, T) into three groups:

e The proof obligations checked by read_term(t,I', T, T):

Informally speaking, these check that under the assumptions I', the term
t is a defined term. This corresponds to our semantic assumption in
that in every model of T', ¢ (i.e. t) is defined.

Formally, given one such proof obligation p of the form I'j }—gp v, we
need to show that CMTNUT, = ¥,. First we note by inspection of the
definition of read_term that I contains a formula W}, that is either identical
to ¥, or a Skolemized version of ¥, and I'), must be I} 3 (for this we need
the fact that we are using the restricted proof checking algorithm in which
only the first two clauses in the definition of exist_check have been deleted).
Then by assertion [3] of the read_term Soundness Lemma and our semantic
assumption in mentioned above, we can conclude that for every CMTN
model M, every I‘(I,;—skolem—assignment S and every M-assignment g such
that M+ 5,9 E F(I,;, we have M + S, g = ¥,. In other words, the axioms

of CMTN together with I',, = F/‘I’L logically imply ¥, as required.

e The proof obligation I F* B(T):
Let M be a model of CMTNUTI'. We need to show that M = B(T),
i.e. that %(T) € BM. By assertionof the read_term Soundness Lemma,
M1y = %(t). By assumption , we know that def([¢])"), which by the

g9
definition of PTL semantics (Definition [5.2.2) implies that & (t) € B,

as required.
e The proof obligation TV U (B(T)) F* T =T.
Since this proof obligation is not presuppositional, we may assume that
property (b) holds.
Let M be a model of CMTNUT U (B(T)). We need to show that

M E T = T, ie. that %(T) = TM. Again we have %(T) = %(t)
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by assertion [4| of the read_term Soundness Lemma. By property (b),
we have [[goﬂg/[ # (), which by the definition of PTL semantics implies that
M\ _ T—M
?(t) =TM,

The many cases of the inductive step are also similar, and we only discuss
the case where @ is of the form ¢1 A . In this case, calculating check_text(oq1 A
o, I', T, T) involves calculating

read_text(p1, (), T, T, pu) = (Tg, T1, @1, o), and (6.29)
read,text(gpg, <>7 F6 D <(I)1>7 Teo Tlv H’O) = (Fllv T27 ¢)27 ﬂ'l) (630)

We can divide the proof obligations checked by check_text(o1 A w2, T, T, T) into
three groups:

e The proof obligation checked by read_tezt(¢q, (), T, T, T):

By the definition of read_text, these proof obligations are also checked by
check_text(¢1,(),T, T, T). Hence for these proof obligations, the required
result follows directly from the inductive hypothesis for ¢;.

e The proof obligation checked by read_text(va, (), Tt @ (1), T @ T4, uo):

Suppose that p is a proof obligation of the form I'j ng ¥, checked by
read_text(pa, (), Iy & (®1), T @ Ty, o). So p is a presuppositional proof
obligation checked by check_text(p2, Ty @ (®1), T ® Ty, po).

The goal is to apply the inductive hypothesis to check_text(pz2, Ty @ (P1),
T @& Ty, po), which will allow us to conclude the required result that
there is a finite subset FI?MTN of the set of CMTN axioms such that
AL, UTFMTIN) — W, is a valid PL formula. Apart from some syntacti-
cal prerequisites, we need to ensure that the semantic assumption is
fulfilled for this application of the inductive hypothesis. In other words,
we need to show that for every CMTN model M, every I'y @ (P )-skolem-
assignment S and every M-assignment k such that dom(k) = PL™"(T®T,)
and M + S,k =T @ (1), we have def([p2] ).

So let M be a CMTN model, S be a I'y @ (®1)-skolem-assignment S and
k be an M-assignment such that dom(k) = PL™"(T®T;) and M + S,k =
[ @ (®1). Let g be k[pp-1(r). Let S’ be the I'-skolem-assignment such
that S = S’. Then M+5’,g |= I'. So by assumption (v)), we have def([¢1 A
©2]3"). By the definition of PTL semantics, we have that def([¢1])") and
that for every h € [p1]), def([1]}). By the second fact, it is enough to
show that k € [1])". This now follows from the equivalence between (a)
and (c) in assertion [6] of the read_text Soundness Lemma (with Ty = () in
this application of the read_text Soundness Lemma).

e The proof obligation TV 7 3, (® A Iy, ).
Since this proof obligation is not presuppositional, we may assume that
property (b) holds.
Assume that M is a model of CMTN UT’. We need to show that M
Ip, (PA3r, ¥). First we define the CMTN model M’ to be the restriction

of M to Leyrn. Next we define a IV-skolem-assignment S over M’ by
setting S(sk}') := (sk')™. Furthermore we define an M’-assignment g
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with dom(g) = PL™*(T) by g(t) := t™. Then M’ + S, g = I". Tt is now
enough to show that M’ + S, g = 3, (P A3, ).

By property (b), there is a k € [p; A 2] M. By assertion 4| of the
Detailed Soundness Lemma applied to check_text(p1 A2, T, T, T), we can
conclude that k[T; @ Tslg and that k verifies (I @ (®1,®P5)) — T over
M’ + S. This in turn implies that M + S,k = ®; and M + 5" k E ®,.
Since ®; does not contain any term from Ts, we can now conclude that
M'+ 5,9 E 3, (& A3Iq, ¥), as required. O

Proof of Proposition[6.4.13 Suppose that ¢ is a valid nice PTL formula. Let
p be a proof obligation of the form T, F?SP U, checked by check(yp). Then by
Lemma CMTNUT, =T, ie. CMTNz, UUUt4y[l)] = t2a(T)).

First we show that there is a finite A, C CMTN, such that A(tzu[l,] U
Ap) = tu(¥,) is logically valid. By compactness it is enough to show that
CMTN4, Uty [Tp] = t2u(¥p). Solet M be a model of CMTN, Uty [T'p]. We
need to show that M = t.u(¥,). We modify M to a model M’ of CMTN, U
UUtxu[Tp] by changing the interpretations of the CM TN relation and function
symbols in M as follows: For a CMTN relation symbol R, RM' is the result
of deleting all tuples containing «™ from RM. For an n-ary CMTN function
symbol f,

uM if x; = uM for some 1 <i<n

Mgy, an) =

7 @) {fM(xl,...,mn) otherwise.

The fact that M’ models U is trivial. Now we still need to show that M’ models
CMTNx,Ut4y[I',]. For this we first note that if for some PL, formula ¢ M =
p(p), then M = ¢ iff M’ = . Since the elements of p{CMTN,] are logically
valid, we can already conclude that M’ models CMTNy,. Additionally, by
Lemma pltsullp]] C tsu[I'p]. This allows us to prove by induction that
M" also models t[I',] and hence I',,. Hence the assumption that CMTNUT, |=
VU, implies that M’ models ¥, and hence t,(¥,). Again by Lemma
P(txu(¥p)) C tsy[lp], which allows us to conclude that M models t,(¥,), as
required.

Furthermore, by Lemma Lemma [6.4.18) and the fact that the pro-
jected presuppositions of CMTN., are logically valid, we have that every pro-
jected proof obligation of A(tizu[l'p] U A,) — t4u(V,) is logically valid, as
required. O

The third central proposition needed for the proof of the second completeness
theorem for the proof checking algorithm states that in a certain sense the
CMTN_, comprehension axiom can be proof-checked in PTL with a sufficiently
strong prover. Before we can state the third central proposition needed in the
proof of the second completeness theorem, we need to redefine the notion of a
sufficiently strong prover. For this we first need a preliminary definition, similar
to the definition of I' = ® above:

Definition 6.4.20. Given PL formula @, a list I' of PL formulae and a list V'
of PL variable lists such that I' and V are of the same length, we define I' = ®
recursively as follows:

° <> =><> o = .
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° (<\I/> b F) i((m,...,w))@\/ o = V(Ul,m’vw(\lf — (F =V (I)))

One can easily see that if the variables in an element of V' do not appear in
an earlier element of I', then I' =y @ is logically equivalent to Vgy v (AT — @).

The below redefinition of sufficiently strong prover is quite involved. The
important point is that whether a certain proof obligation satisfies one of the
properties listed there is a decidable condition, in contrast with the general con-
dition of being a proof obligation whose conjecture follows from the premises,
which is only a semidecidable condition. (See|Enderton| (1972)) for an introduc-
tion to decidability and semidecidability.)

Definition 6.4.21. A prover P is called sufficiently strong if it satisfies the
following properties:

1. If T is a premise list and a ® is a PL formula such that (-® — 1) € T,
then P(I' ¥ @) = 1.

2. If ® €T and -® €T, then P(T'F* 1) = 1.

3. ® — Jiyy iy (P1A...ATY,) €T and ¥, does not contain free
occurrences of vy, ..., v,, then P(I'F7 (& — ¥,))) = 1.

4. If (® - V) €T and ® € T, then P(T'F* ¥) = 1.

5 If =® — ¥ €T, then P(TH &V ¥) = 1.

6. fdV YT, then PTH -® — ¥) = 1.

7. If T'is a PL term and W1 L, ¥y L € T, then P(I'F7 3, (U1 A Wy)) = 1.
8. If 3, ® €T, then P(I'H* 3,y L) = 1.

9. If T is a PL term, then P(H T'=T) = 1.
10. If Ty =T €T and @t €T, then P(I'H" @22) = 1.

11. Suppose that Vi, o (® = U1 AL...AT,) € T and that 1 < k < n.
Suppose furthermore that T4,...,T, are PLy, terms such that T} # u,
oy Ty #wand ®Ib . Toare in T. Then P(T'H’ (W22 Tn)) =1

Uy, v1

12. f T #ueTl, then POCH Jy 2 =T) =1.

13. Suppose that & > 1 and that T contains the CMTN Map Extensionality
Axiom for n = k and all instances of the Undefinedness Axiom for which
n + m = k. Suppose furthermore that P(z) is some PL formula with
parameters and that I' contains premises of the form V., . v(=P(2) —
—appy (T, 2) # u), Yoy .2y (P(2) = @ A appy (T, 2) = appy (11, 2)) and
Vier,en) (P(Z) < appy(Ts, 2) # u), M(T1,n) and M (T, n). Then P(T F?
T,=T) =1

14. If T contains a premise of the form (/\f;l i, /\f;"l Ol ) =y (U1A...A
U, AX)aswell as ®1,... &% &l . &Fn then P(TH X) = 1.

15. If T contains premises ®1, ..., ®, and z is a variable, then P(I" -7 3, N, @) =1.
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16. Suppose that A is a finite set of non-comprehension CMTN, axioms.
Suppose that I" contains CMTN axioms for the arities covered in A (see
section for a clarification of what whis means). Suppose furthermore
that ' contains a formula of the form A(IYUA) — ¥, where I is a finite
subset of I'. P(T'F* ) = 1.

Now we can state the third central proposition needed for the proof of the
second completeness theorem for the proof checking algorithm:

Proposition 6.4.22. For every CMTN,, comprehension axiom O, there is a
PTL formula 0 such that for every sufficiently strong prover P, checkp(0) =T,
and such that the premise list that is active after checking 6 contains ©.

Proof. There are four CMTN., comprehension axiom schemata. The proposi-
tion has to be proved for each of them separately.

We call a PL, formula V¥ legitimate iff every atomic formula ® in ¥ that is
not of the form T' = w is part of a conjunction of the form (T} ZuA ... AT, #
uA®), where Ty, ..., T, are the complex terms appearing in ®, ordered in such
a way that if T; is a proper subterm of T}, then ¢ < j.

Fix a sufficiently strong prover P.

Class Comprehension

The CMTN,, Class Comprehension Axiom Schema with parameters made ex-
plicit is as follows:

Given a legitimate PL, formula F(p,y) that does not have x among
its free variables, the following is an axiom:

Veup (Vy #u (F(py) = L(y)) = Iz # u (Ca) AVy #u (y € x <
F(p,y))))

Let © be an instance of this axiom schema. We now define a PTL text 6
with the required properties as follows:

0:=3pr ... 3p T = (By F(p,y) = L(y)) = Fx (C(@)AFy T — (y € z & F(p,y)))))

One can easily verify that the premise list that is active after checking 6
contains ©. We now need to show that the prover P successfully checks all
proof obligations checked by check().

Since F(py) is legitimate, all presuppositional proof obligation triggered
within € have the conjecture among the premises and are hence certainly suc-
cessfully checked. When processing the subformula 3z # u (C(z) AVy # u (y €
x < F(p,y))) of 8, the proof checking algorithm calls exist_check with arguments
of the following form:

exist_check(1,T,T,3, (C(x) AVy(y € x <> F(p,y))), 1)

Here T' contains a premise of the form V,(F(p,y) — L(y)). Since the exis-
tentially quantified formula that exist_check has to check is of the right form,
the first clause in the definition of exist_check may be applied. The algo-
rithm now has to check that P(T' @ (F(p,y)) F* L(y)) = 1. Since I' contains
Vy(F(p,y) — L(y)), this follows directly from case |11] of the definition of suffi-
ciently strong prover.
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Set Comprehension

This case is similar to the above case, only that the second instead of the first
clause in the definition of exist_check has to be applied.

Map Comprehension

This case is similar to the Functionality case detailed out below (and even
somewhat simpler). It requires the properties and of the definition of
sufficiently strong prover.

Functionality

The Functionality Axiom Schema says that under certain syntactic and semantic
restrictions, all maps that can result from the Map Comprehension Axioms
Schema are limited. We prove this in PTL by implicitly introducing a new map
g that takes exactly the same values as the given map f. The precautions taken
for Functionality in the ¢ — 6 case of the proof checking algorithm ensure that
g is limited, and Map Extensionality ensures that g = f, which implies that f
is limited.

The CMTN,, Functionality Axiom Schema with parameters made explicit
is as follows:

Given legitimate PL, formulae P(p,Z) and R(p,Z,x) that do not
contain the symbol L, the following is an axiom:

Voup (L(p1) Ao A L(pr) = Vi Z Ve (R(D, 2, 2) — L(z1) A=+ A
L(zn) AN L(x)) = Vzuf (M(f,n) AViZz (P(p,2) — f(2) # uA
R(p, 2, f(2))) NV2uZ (P (P, 2) = ~f(2) #u) = L(f)))

Let © be an instance of this axiom schema. We will now define a PTL text
0 := 61 & 05 with the required properties. The subtext 05 of # has the form

Fp1 - Tk (L(py) A A Llpr)) = (Y1 = (3F 2(f) = L(f))),

where

1 =3z ...z, Jx R(P, Z,2) = L(z1) A+ A L(z) A L(z), and
Uo(f) = M(f,n) A(Bz1 ... 3z P(p, 2) — def(f(2)) A R(D, 2, f(2)))A
(321 ... 3z, 2P(p, 2) — —def(f(2))).

One can easily see that 5 and hence 6 gives rise to the premise ©. The task is
now to define #; in such a way that checkp (61 & 02) = T for every sufficiently
strong prover P.

We define the PTL text £ to be

(Jz1 ... 32, P(p,2) — def(f(2)) & Fg(2) g(2) = f(2)) & g = [.
Now 6 is defined to be

Ip1 - Fpk (Lpy) A A L(pr)) = (1 = B $2(f) = EAL(S)))-

We now need to show that the prover P successfully checks all proof obli-
gations checked by check(6, & 02). Since P(p,z) and R(p, z,x) are legitimate,
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all presuppositional proof obligation checked triggered within 7 and 5 have
the conjecture among the premises and are hence certainly successfully checked.
Apart from these, there are five further proof obligations checked by check(6; &
92):

e The def(f(2)) in ¢ triggers a proof obligation of the form T' -7 f(2) # u.
Here I contains P(p, z) and V., .. . y(P(p,2) = f(Z) # u A R(p, 2, f(2)))
as well as z; # u, ..., z, # u. Hence property of the definition of
sufficiently strong prover ensures that P(I'F’ f(2) # u) = 1.

e The 3g(2) g(2) = f(7) in £ triggers a proof obligation of the form I' -’
iz = f(2). Here f(2) # u € T, so property [12| of the definition of
sufficiently strong prover ensures that P(I'-" 3z = f(2)) = 1.

e The g = f in & triggers a proof obligation of the form T'+* g = f. T con-
tains the premises (., ..y (=P(5,2) > ~f(2) £ ), Vier 0y (P(5, 2) =
f(Z2) #ung(z) = f(2)) and Y, .. (P(p, 2) < g(Z) # u) as well as
M(f,n) and M(g,n) (the third and fifth resulting from the processing of
the implication in £ that implicitly introduced g). By the explanations in
section [6.1.6] the premise list gets extended by the CMTN axioms needed
for an application of property of the definition of sufficiently strong
prover, which allows us to conclude that P(I'F’ g = f) = 1.

e The L(f) at the end of §; triggers a proof obligation of the form I' - L(f).
One can easily see that in the processing of the implication in £ that
implicitly introduced g, the conditions for setting @ = 1 are fulfilled, so
that L(g) is added to the active premise list at the end of processing this
implication. Since g = f is in the premise list, property [I0]of the definition
of sufficiently strong prover ensures that P(I' =° L(f)) = 1.

e The L(f) at the end of 0, triggers a proof obligation of the form I' = L(f).
Here T is of the form I'"®(L(p1), . . ., L(pk), Y1, Ya(f)), where the premise
resulting from 67 in I'" has the form

(Lp1) Ao AL(PE), W1, 2 () = (). 00 00)) (XA L(S)).

Hence property of the definition of sufficiently strong prover ensures
that P(T' -7 L(f)) = 1. O

We now restate the second completeness theorem for the proof checking
algorithm before proving it:

Theorem Let ¢ be a valid nice PTL formula and let P be a sufficiently
strong prover. Then there is a PTL text 6 such that checkp(6 & ©) = T.

Proof for the case that ¢ does no contain any t. Let P = {p1,...,pr} be the
set of proof obligations checked by check(y). For every p € P, we write T,
for the premises of p without the added CMTN axioms (i.e. just the active
premise list at that point in the proof checking), and ¥, for the conjecture of p.

Now we want to apply Proposition to ¢ to conclude that for every
p € P there is a finite subset A, of CMTN, such that A(tzu[[,] UA,) —
t2u(¥,) is a valid PLy, formula with valid projected presuppositions. But
for the statement of Proposition [6.4.13| we assumed a weakened proof checking
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algorithm in which the second clause in the definition of check_limitedness and
the first two clauses in the definition of exist_check have been deleted. Note
that these deleted clauses are used by the original proof checking algorithm
only when the proof obligations triggered therein are successfully checked. Let
P’ be the set of proof obligations checked by check(p) which are and not proof
obligations triggered by one of these clauses and successfully checked by the
prover. Then we have the above conclusion only for p € P’ and not for all p € P.
But for p € P\ P, the proof checking is at any rate successful, so that these
proof obligation do not cause any problems.

Since ¢ does not contain ¢, A(tzu[I'p] UA,) = t1u(¥,) does not contain
any skolem function symbols and can hence be easily seen to be a PL,, formula
over the language of CMTN.

Now by Proposition we have -, A(t£a[[p]UA,) = t£u(¥,) for every
p € P’. In other words, there is a derivation D, in presuppositional natural
deduction for each of these PLy, formulae of the form A(t u[I'p] U A,) —
t2u(¥,). Note that any PL., formula appearing in any of these D,’s is a
PL, formula over the language of CMTN. We will now transform each D,
into a PTL text d, in a similar way as we transformed D into ¢ in the proof of
the first completeness theorem (Theorem .

Again we consider D,, to be written in Fitch’s indentation notation. First all
occurrences of the quantifier 3, are replaced by the PTL quantifier 3. Next for
every variable declaration “Declare: v” appearing in D,, we replace “Declare:
v” and the proof lines v # u and ® that follow it by a single proof line Jv & of
the same indentation. Afterwards, every indented subproof of the form

is transformed into a PTL text of the form ® — ¥, & ... & V,,. This transfor-
mation is recursively applied to subproof including subproofs, and so on. On
the highest level the subproofs and proof steps are conjuncted with & in the
original order. Call the result of this transformation of D, dy,.

Let ©4,...,0, be the CMTN,, comprehension axioms appearing in UpeP Ap.
Let 64,...,60, be the PTL texts that prove these axioms in the way specified in
Proposition [6.4:22]

Now the required PTL text § is defined to be 0, & ... &6, & 61 & ... &0,
We now have to show that P successfully checks all proof obligations checked
in check(0 & ).

First we consider the presuppositional proof obligations checked in the sub-
text 6,, & ... & dp, of 0. These are always of the form I F' T # u, where T
is a complex term occurring in some line ® of some D,. By the syntactical
limitation in the definition of the presuppositional natural deduction calculus,
the projected presuppositions of ® must appear as lines in D), preceding ® and
of the same indentation. One can easily see that their PL counterparts hence
appear in I'. Let IV =y T # u be the projected presupposition triggered by the
occurrence of T" in ® corresponding to the occurrence of 1" in 6, &...& 6, that
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we are currently considering. Before the proof checking algorithm encounters
this occurrence of T', it must syntactically analyse ® until it encounters this
occurrence of T'. By comparing the definition of the proof checking algorithm
with the definition of projected presuppositions, one can easily see that this
syntactical analysis involves adding the formulae in I to the active premise list.
Hence IV C T. But now the required result P(I' ¥ T # u) = 1 follows from
property [14] of the definition of sufficiently strong prover.

Next we consider the non-presuppositional proof obligations checked in
0p, & ... & 6,,. Each such proof obligation results from a proof line in one
of the D,’s. Based on the ten rules of inference of presuppositional natural de-
duction, we can distinguish ten cases. The proof in each of these cases is similar
to that in the proof of Theorem [6.4.7}

Now we consider the proof obligations checked in 6, & ... & 0,,. For every
1 < < n, we know by Proposition that checkp(6;) = T. In other words,
every proof obligation checked in 6; is successfully checked by the prover P.
Now when 6; gets checked as part of 61 & ... & 6,,, the proof obligations to be
checked by the prover are the same as when 6; is checked by itself, only that
the premise lists may be larger. But enlarging the premise list cannot change a
proof obligation that a sufficiently strong prover necessarily checks successfully
into one which in can no longer check successfully. Hence the proof obligations
checked in 6; within the checking of 6; & ... & 6,, are successfully checked by P.

Finally we are only left with the proof obligations checked in ¢. These are
the proof obligations in P with an augmented premise list: For p € P, the proof
obligation corresponding to p checked in ¢ as part of checking 0& ¢ is of the form
Lo ®T, " U, where Ty is the premise list that is active after checking 6. The
proof obligations in P\ P’ are at any rate successfully checked by the definition of
P’. Now fix p € P'. D,, was constructed to be a derivation of A(t4u[l'p]UA,) —
t2u(¥,). One can easily see that the premise list that is active after checking
dp, and hence also I'y, contains the premise A\(I', UA,) — ¥,. The CMTN,
comprehension axioms contained in A, are contained in I'y since they have
been proved in 61 & ... & 6,,. The CMTN correspondents of the CMTN,, non-
comprehension axioms contained in A, are added to the premise list of the proof
obligation I'g © I'), F? ¥, according to the explanations in section Hence
P(Ty@T, " ¥,) =1 follows from property [16] of the definition of sufficiently
strong prover. O

If  may contain ¢, the proof obligations in P may contain skolem function
symbols. In this case, the derivations D,, contain skolem function symbols, and
hence the above definition of the d,’s does not yield PTL texts, as the d,’s still
contain skolem function symbols. In order to solve this problem, one needs to
modify Proposition in such a way that the PL, formula whose validity
it asserts does not contain skolem function symbols. For this one has to define
a notion of deskolemization of proof obligations.

If all skolem function symbols were 0-ary (i.e. if we had only skolem con-
stants), then deskolemization would be trivial: We could just replace skolem
constants by free variables. But for skolem function symbols of arity greater
than 0, deskolemization is not a trivial task.

First one needs to note by inspection of the proof checking algorithm that
for any proof obligation of the form I' Fg ® produced by the algorithm, we have
the following two properties:
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e For every n-ary skolem function symbol sk appearing in T, there is a
formula list T such that I does not contain sk; and for every formula ¥
in I' containing sk, there is a list V' of variable lists such that @V has
length n and ¥ is of the form IV =y X, where all occurrences of sk} in
X are in terms of the form sk} (V).

e Every skolem functions symbol appearing in ® is 0-ary.

Now if our proof obligation contains just one skolem function symbol sk, we
can explain deskolemization by the following case distinction:

e Case1: n=0

In this case we just replace sk’ by some variable that appears nowhere
else in the proof obligation.

e Case 2: n> 1.

In this case, we let Uy, ..., ¥y be the formulae in T’ containing sk} and we
let TV, X1,..., X, and Vi,...,V} be as in the first property above. Then
we replace Uy,..., Uy in T by IV =y, Jz # u (A Xiw) for a fresh
variable x.

If our proof obligation contains more than one skolem function symbol, we apply
the above transformation recursively, starting with the skolem function symbol
whose first occurrence occurs the latest.

Now in the assertion of Proposition we need to replace the PL,
formula A (t4u[l'p] U Ap) — t2u(¥p) by Altzall}] UAL) — tru(P;,), where
I+ ¥ is the deskolemization of T' - W. The proof of this modified version of
Proposition [6.4.13]is similar to the proof of the previous version of Proposition
0.4. 15

In order for the proof of Theorem to work with this modified version of
Proposition[6.4.13] we need to modify property [16]of the definition of sufficiently
strong prover in such a way that it takes care of this deskolemization.

6.5 A proof checking algorithm using all three
prover output values

In this section we sketch how the PTL proof checking algorithm has to be
adapted if one wants to take into account the difference between an ATP’s
time-out and its finding a counterexample for a proof obligation. By taking
into account both this threefold distinction of possible ATP outputs and the
threefold distinction between possible semantic values of a PTL text according
to the validity function v, we can distinguish seven possible outputs for the
proof checking algorithm:

e The algorithm has determined that v(©) = u. In that case it does not
make sense for the algorithm to try to determine whether v(©) = T or
v(0) = L. We call this result of the proof checking algorithm (—1).

e The algorithm cannot determine whether v(©) = u, but based on the
assumption that v(0) # w, it can determine that v(©) = T. This result
is called (0,1).
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e The algorithm cannot determine whether v(©) = u, but based on the
assumption that v(0) # u, it can determine that v(©) = L. This result
is called (0, —1).

e The algorithm cannot determine whether v(©) = u, and using the assump-
tion that v(©) # u, it cannot determine whether v(©) = T or v(0©) = L.
This result is called (0, 0).

e The algorithm can determine that v(©) = T. This result is called (1,1).
o The algorithm can determine that v(0) = L. This result is called (1,—1).

e The algorithm can determine that v(©) # w, but it cannot determine
whether v(©) = T or v(©) = L. This result is called (1,0).

The first coordinate always expresses whether v(©) is defined according to the
algorithm, and unless it has been determined not to be so, there is a second
coordinate that expresses whether v(©) = T according to the algorithm. We
call the set of these seven possible results of the proof checking algorithm p.

We now use p instead of {u, L, T} as the set of proof status values in the
proof checking algorithm. The initial proof status value in the algorithm is now
(1,1) instead of T. We now still need to adapt the update function in order to
make it work on these seven proof status values.

Recall that the proof checking algorithm calls the prover for two different
purposes: For checking the definedness of v it checks presuppositional proof
obligations, whereas for checking whether v(©) = T or v(©) = L it checks
non-presuppositional proof obligations. If the prover returns 0 for some presup-
positional proof obligations, the final result of the proof checking algorithm is
(=1). If the prover returns 1 for all presuppositional proof obligations, then we
distinguish three cases:

e The prover returns 1 for all non-presuppositional proof obligations. In
that case the final result is (1, 1).

e The prover returns —1 for some non-presuppositional proof obligations.
In that case the final result is (1, —1).

e The prover does not return —1 for any non-presuppositional proof obliga-
tions, but does return 0 for some non-presuppositional proof obligations.
In that case the final result is (1,0).

If the prover does not return —1 for any presuppositional proof obligations, but
does return 0 for some of them, we distinguish the three then possible final
results (0,1), (0,—1) and (0,0) in a similar way based on the prover output for
non-presuppositional proof obligations.

Here is the adapted definition of the update function:

Definition 6.5.1. We define an update function update from p x {0,1} x
{-1,0,1} to p by

1 ifj=1
-1) ifu=(-1)orifi=0and j=-1
, ifu=(k,1),i=0and j=0

pdate(jinj) =4
k,min(j,1)) if p=(k,l) and i =1
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Remark. 1t is easily checked that the case distinction in the previous definition
covers all possible input argument combinations, and that for the input argu-
ment combinations that are covered by more than one case, the defined output
value of update is the same no matter which case is chosen.

Now the adapted proof checking algorithm only differs in the initial proof
status value and in the definition of the update function. One can now proof a
stronger soundness theorem for this adapted proof checking algorithm:

Theorem 6.5.2. Suppose that 6 is a nice PTL text and that check(6) = v.
1. If v = (-1), then v(0) = u.
2. Ifv=(1,-1), thenv(f) = L.
3. Ifv=(1,1), thenv(d) =T.

Assertion 3 of this theorem easily follows from the previous soundness the-
orem (Theorem . To prove the first two assertions, one needs to adapt
assertionof the Detailed Soundness Lemma to p+ update(p, 1,v(0, M, g)) > v,
where the (i1,71) > (i2,j2) means that i; > ip and j; > ja (the proof status
value (—1) should be read as (—1,—1) for the sake of this definition of >).



Chapter 7

The controlled natural
language of Naproche

In this chapter we describe the Naproche CNL, i.e. the controlled natural lan-
guage of the Naproche system. The description of its syntax is divided between
sections and which respectively explain the structure of Naproche
CNL texts, the syntax of the textual parts and the syntax of the symbolic parts
of the Naproche CNL. Section[7.5] describes the semantics of the Naproche CNL
by defining a translation from the Naproche CNL to Proof Text Logic.

The sections about the Naproche CNL syntax contain — besides clarifications
and design motivations — a semi-formal characterization of the Naproche CNL
syntax. A formal grammar of the Naproche CNL can be found in appendix [A]

The Naproche CNL grammar is described here as it is in the implemented
system Naproche 0.52. The scope of grammatical constructs from the language
of mathematics included in the Naproche CNL has been influenced by a number
of factors: The current Naproche CNL started in late 2008 as an adaptation of
Attempto Controlled English (ACE) to the language of mathematics. This first
version was in many respects simpler than ACE, since it lacked many ACE
constructs not needed in the language of mathematics; but it already contained
some grammatical constructs characteristic for the language of mathematics,
inter alia a relatively rich grammar for symbolic mathematics and text structure
above the sentence 1evelE| The further development of the Naproche CNL was
guided by two main driving forces:

e The application of the Naproche system to the beginnings of Landau’s
Grundlagen der Analysis and Euclid’s Elements, which motivated exten-
sions of the Naproche CNL which made increasingly faithful CNL refor-
mulations of these texts possible.

e A general analysis of the language of mathematics for linguistically and
logically interesting features, which were included in the Naproche CNL.

In ACE, a text is always considered a simple string of sentences, without any structure im-
posed on it. The Naproche CNL, on the other hand, provided for structure above the sentence
level, e.g. theorem-proof blocks and the nested introduction and retraction of assumptions. In
section we describe this macro-grammar of the current Naproche CNL.

179
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Extensions to the language were always a possible source of ambiguities, so
that robust disambiguation principles had to be enforced, of course under the
constraint that they coincide as well as possible with the way mathematicians
naturally disambiguate.

There are still many ways in which the current Naproche CNL could be
extended in order to make it more expressive and flexible. We discuss some of
the possible extensions in section [7.7] Additionally, some extensions that could
easily be implemented are already mentioned alongside the description of the
existing grammar.

One of the issues that has to be surmounted in order to treat mathematical
symbolism directly in a computer program is its two-dimensionality. Mathe-
maticians extensively use superscripts and subscripts and put terms above other
terms as in the fraction notation. Naproche has already for some time adopted
ITEX for its input, so that in this thesis we restrict ourselves to parsing and
disambiguating the IATEX code that is used for generating mathematical formu-
laeE| The reversion of a pictorial symbolic input into a I TEX input or another
linearization of it is certainly an interesting undertaking, but outside the scope
of this thesis.

In order to cope efficiently with the diversity of possible BTEX codes for a
given symbolic output — e.g. a~b and a~{b} both producing a® — we normalize
the ITEX input before the actual parsing process, in this case to a~{b}. For the
rest of this chapter, we use this normalized INTEX code whenever it is necessary
for the explanation; when the XTEX code is not necessary for the explanation,
we use the typographic notation that depicts the mathematical symbols as they
are commonly drawn and printed.

Note that all example sentences that are not explicitly stated to be in the
natural language of mathematics rather than in the Naproche CNL are Naproche
CNL sentences adhering to the grammar described in this chapter.

7.1 Quantterms and anaphoric accessibility

The grammar of the Naproche CNL allows for a special kind of symbolic terms,
which correspond to the quantifiable terms of PTL (see section , and
which we call quantterms. The simplest kind of quantterms are variables that
are used in a natural language quantifier; but just as PTL allows quantification
over more complex terms than variables, so does the Naproche CNL. We will
describe quantterms in more detail in section [7.4.6 But we already need to
say some words now about a special role that quantterms play in the Naproche
CNL, namely the role of anaphoric antecedents.

An anaphora is a linguistic expression whose interpretation depends on the
interpretation of a previously occurring expression, called the anaphoric an-
tecedent. For the kind of anaphora included in the Naproche CNL, one can
actually say more precisely that the anaphora corefers with the anaphoric an-
tecedent, i.e. refers to the same object in the discourse domain. A standard
example of anaphora in natural language are pronouns which corefer with some

2We restrict ourselves to standard IATEX, i.e. without any user-defined macros. Addition-
ally, we in some respects require the author to use neat INTEX, e.g. to write the sine function
using \sin rather than sin in order to distinguish it from the concatenation of the three
variables s, ¢ and n.
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previous noun phrase in the discourse. The Naproche CNL does not include
any pronouns, but does include a kind of anaphora very characteristic of the
language of mathematics, namely variables. Consider for example the following
sentence:

(1) There is a natural number n such that n +n = n?.

The first occurrence of n appears in a natural language quantification and serves
as an anaphoric antecedent of the three occurrences of n in “n +n = n2”.
The usage of a variable as an anaphoric antecedent is the simplest case of a
quantterm. Instead of n we could have — for example — used n; in all four
positions of n in the above example, in order to show that n depends on some
other previously introduced (and anaphorically accessible) variable k. The first
occurrence of ny in this modified example is an example of a more complex
quantterm; the latter three occurrences of ny are just considered subterms of
the term ny + nx = ni, and are not considered quantterms.

Given a certain position in a text, not all previously mentioned expressions
that have the potential of being used as anaphoric antecedents may actually be
used as an anaphoric antecedent for an anaphora in that position. Consider for

example and :

(2) There is a natural number n such that n = 4k. Clearly n is even.
(3) *There is no natural number n such that n = 4k. Clearly n is even.

In both examples, the quantterm n in the first sentence has the potential of being
used as anaphoric antecedent: Actually it is used as an anaphoric antecedent
for the n in n = 4k in both examples. But while in , it is also an anaphoric
antecedent for the occurrence of n in the second sentence, in the anaphoric
link between the quantterm m in the first sentence and the occurrence of n in
the second sentence does not work: The quantterm used in a negative quantifier
of the form “there is no” is not anaphorically accessible outside the scope of the
quantifier, whereas in the case of an affirmative existential quantifier like “there
is a” it is.

The work by Hans Kamp and others on Discourse Representation Theory
(see Kamp & Reyle] [1993) contains a well-established theory for anaphoric ac-
cessibility, i.e. for determining which expressions may serve as anaphoric an-
tecedents for anaphora at a given position in a discourse. In Dynamic Predicate
Logic, we have the notion of active quantifiers at a position in a formula (see
section , which models anaphoric accessibility in a way equivalent to that
of Discourse Representation Theory: When a natural language text fragment is
translated into DPL in a canonical way, the expressions anaphorically accessible
at a position in the natural language text correspond to the active quantifiers at
the corresponding position in the translation. In Proof Text Logic, we have also
defined a notion of active quantifiers at a position in a PTL text (see section
, which models the anaphoric accessibility relation that is in place in the
Naproche CNL.

The details of this anaphoric accessibility relation will become clear when we
define the translation of Naproche CNL texts into PTL texts in section[7.5] But
already in the sections about the syntax of the Naproche CNL, we sometimes
need to speak about the quantterms accessible at a given position in text.
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7.2 Structure of Naproche CNL texts

As pointed out in section [1.1} mathematical texts are highly structured in an
explicit way. Likewise Naproche CNL texts can be structured explicitly. We
call the rules by which texts are structured above the sentence level the macro-
grammar of the Naproche CNL. The macro-grammar incorporates the most
common ways of structuring mathematical texts in a standardized way.

Additionally to the usage of IATEX for typesetting mathematical formulae
in the Naproche CNL, some IX#TEX commands for structuring a text can also
be used. However, all text structuring possible in the Naproche CNL is also
possible without the usage of such BTEX commands.

While we describe the macro-grammar, we sometimes need to refer to special
kinds of Naproche CNL sentences:

e Simple declarative sentence

o Assertion

Assumption

e Definition

Variable type specification
e Alternative notation specification

These sentence kinds will be defined in section [Z.3.5
There are various kinds of structural blocks into which a Naproche text can
be structured:

e Axiom blocks

e Assumption-consequences blocks
e Theorem-proof blocks

e Definition blocks

e (Case distinction blocks

e Statement list blocks

e Note blocks

e Labelled text blocks

To some extent these can be nested into one another. Below, we explain each
of these kinds of structural blocks, specifying its internal structure and how it
can be nested in other structural blocks.

The global structure of a Naproche text is that of a sequence of concatenated
assertions and structural blocks. When specifying the internal structure of the
various structural blocks below, we sometimes say that at some point in the
structural block there can be text. Here again this means a sequence of concate-
nated assertions and structural blocks, but now with the restrictions about the
nesting of structural blocks in place.
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Potential ambiguities on the level of the macro-grammar are avoided by strict
rules that determine where a structural block starts and ends. The beginning
of some structural blocks is marked by a sentence consisting of a special word
(e.g. “Axiom” for axiom blocks) potentially followed by a number or word that
names the block. Given a special word = to be used in such a sentence, we call
a sentence of this form an x heading (so “Axiom.” and “Axiom 5.” are axiom
headings).

For some kinds of structural blocks, the beginning of a new paragraph can
mark the end of the blockﬂ But in all places where the beginning of a new
paragraph cannot mark the end of a block, new paragraphs may be started
without any influence to the structuring of the text.

Axiom blocks

The beginning and end of an axiom can be either marked by an axiom heading
and the beginning of a new paragraph or by the INTEX environment commands
\begin{axiom} and \end{axiom}. The content of the axiom must be stated as
zero or more assumptions followed by one or more assertions. Axiom blocks may
not be nested into other structural blocks apart from assumption-consequences
blocks and labelled text blocks.

Assumption-consequences block

An assumption-consequences block always starts with an assumption. Its end
may be marked by a sentence that starts with the word “Thus” followed by
a simple declarative sentence; in that case, the sentence starting with “thus”
itself no longer belongs to the assumption-consequences block. If its end is not
marked, an assumption-consequences block ends when the block inside which it
is immediately nested ends.

Assumption-consequences blocks may appear inside any structural block
that allows for general text in it (i.e. inside other assumption-consequences
blocks, inside the proofs of theorem-proof blocks, inside case distinction blocks
and inside labelled text blocks).

Theorem-proof blocks

A theorem-proof block consists of two sub-blocks, a theorem block and a proof
block, which must directly follow each other in this order.

A theorem block can have theorem type “theorem” or “lemma” (the theorem
types “proposition” and “corollary” are so far not implemented). It starts with
a theorem heading or lemma heading depending on its type. The content of
a theorem follows in the form of zero or more assumptions followed by one or
more assertions. The end of a theorem block is marked by the beginning of the
corresponding proof block.

A proof block consists of a sentence consisting just of the word “Proof”
followed by text followed by a sentence consisting just of the word “Qed”.

3A line break marked in IATEX by \\ is also considered the beginning of a new paragraph
for this purpose.
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Theorem blocks and proof blocks may alternatively be delimited using the
BTEX environment command pairs \begin{theorem}/\end{theorem} (or
\begin{lemma}/\end{lemma}) and \begin{proof}/\end{proof} respectively.

Theorem-proof blocks of type “theorem” may not be nested into other struc-
tural blocks apart from assumption-consequences blocks and labelled text blocks.
Theorem-proof blocks of type “lemma” may be nested inside any structural
block that allows for general text in it apart from other theorem-proof blocks
of type “lemma”.

Definition blocks

The core of a definition block is the definition sentence. It may optionally be
preceded by a definition heading. Additionally, it is possible to enclose the
definition sentence in the KTEX environment commands \begin{definition}
and \end{definition}. Definition blocks may appear in any structural block
that allows for general text in it.

Case distinction blocks

The main part of a case distinction is a list of consecutive cases. Each case
consists of three parts in the following order:

e A sentence consisting of the word “case” followed by a number or word
that names the case

e A simple declarative sentence that characterizes that case
e A text containing the proof of the desired result for the case in question

The entire case list may be preceded by a sentence marking the beginning of a
case introduction. Such a sentence generally has the form “There are n possible
cases”, where n should be replaced by a number word; additionally, there may be
an assertion trigger (see section like “Now” or “Hence” at the beginning
of the sentence.

Furthermore, the end of a case distinction may be marked by a an assertion
which starts with the words “in all cases” or “in both cases” (or has these words
after its assertion trigger).

Case distinction blocks may be nested inside any structural block that allows
for general text in it. When a case distinction is nested inside another case dis-
tinction, the marking of the beginning and the end of the inner case distinction
is obligatory (otherwise it would not be clear which cases belong to the inner
case distinction and which to the outer case distinction).

Statement list blocks

Simple declarative sentences, assertions and assumptions may contain a cat-
aphoric metalinguistic noun phrase (see section like “the following prop-
erty” or “the following axioms”, which announces a list of statements that fol-
lows the sentence in which it appears and about which some metalinguistic
statement is made (e.g. “The following property does not hold:”, “Assume that
the following axioms hold:” or “At most one of the following cases holds:”). The
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cataphoric metalinguistic noun phrase announces a type of statement (“prop-
erty”, “axiom” or “case”). Depending on the announced type, each list element
starts with a property, axiom or case heading, followed by zero or more assump-
tions, followed by one or more assertions. The list elements in such a list of
statements are separated by beginning new paragraphs.

The number of list elements must be coherent with the grammatical number
used in the cataphoric metalinguistic noun phrase: If the noun phrase is singular,
the list may only consist of one element; if it is plural, the list must consist of
at least two elements.

Statement list blocks may appear after any simple declarative sentence, as-
sertion or assumption containing a cataphoric metalinguistic noun phrase. This
means that they can even appear at places where we said that there must be
a list of assumptions followed by a list of assertions, i.e. inside axiom blocks,
inside theorem blocks and inside list elements of other statement list blocks.
When a plural statement list block appears inside another plural statement list
block of the same statement type, there is no way to mark the end of the inner
statement list block without marking the end of the outer statement list block.
Hence the inner statement list block cannot appear inside a list element that is
not the last list element of the outer statement list block.

Note blocks

The core of a note block is always a variable type specification or an alternative
notation specification. It may optionally be preceded by a note heading.

A note block may appear in any structural block that allows for general text
in it. Additionally, it may appear at the end of a theorem block.

Labelled text blocks

Labelled text blocks may be used to section a text (whether the global text
or a nested text like the proof of a theorem-proof block) into various sections.
Apart from helping the human reader to understand the logical structure of he
text better, such sectioning can also help the Naproche system to understand
where assumptions should be retracted: At the end of a labelled text block
all assumption-consequences blocks that started inside the labelled text block
end, i.e. all assumptions made since the beginning of the labelled text block get
retracted.

A labelled text block consist of one or more sections, each of which consists
of a label followed by the section’s content in the form of general text. A label is
a string of alphanumerical characters followed by ¢)”. We distinguish different
types of labels depending on the alphanumerical characters used: Capital Latin
letters (“A)”, “B)”, “C)” etc.), small Latin letters (“a)”, “b)”, “c)” etc.), Arabic
numerals (“1)”, “2)”, “3)” etc.) and Roman numerals (“i)”, “ii)”, “iii)” etc.).
The only way to mark the end of a labelled text block is by ending a structured
block inside which the labelled text block was nested. The end of a section is
not marked explicitly, but deduced from the fact that a new section of the same
label type begins.

Labelled text blocks may appear in any structural block that allows for
general text in it. But when a labelled text block is nested inside another
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labelled text block, it must use a different label type than any outer labelled
text block.

7.3 Naproche CNL textual syntax

We first describe the general rules for forming sentences adhering to the grammar
of the Naproche CNL. These general rules can cause some ambiguities, i.e. there
are sentences that can be formed in more than one way from these rules. In
section [7.3.6 below we will discuss additional disambiguation principles that free
the Naproche CNL of ambiguities.

Most Naproche sentences are constructed by combining one or more sim-
ple sentential phrases using sentential connectives. We first discuss the simple
sentential phrases, of which there are four kinds:

e Formulae: These will be explained in section [7.4] (where they are consid-
ered terms of type o). Formulae may optionally be preceded by “we have”
or “we get”.

e NP-VP-sentences: These are sentences that consist of a noun phrase (NP)
followed by a verb phrase (VP). The possible forms of noun phrases and
verb phrases will be discussed in sections and below.

o Metasentences: These are sentences that contain metalinguistic state-
ments. They actually also have the form of a noun phrase followed by
a verb phrase; but the noun phrases and verb phrases used in metasen-
tences must be of certain limited forms that make them metalinguistic
in character. We will call these metalinguistic noun phrases and verb
phrases meta-NP and meta-VP, and reserve the names noun phrase (NP)
and verb phrase (VP) for the usual non-metalinguistic noun phrases and
verb phrases.

o Quantified sentences: These are sentences headed by a natural language
quantification. We will discuss the possible forms of quantified sentences
in section [Z.3.4] below.

In NP-VP-sentences and metasentences the grammatical number of the noun
phrase and verb phrase must coincide. Below we will say some more words on
the grammatical number of complex noun phrases.

7.3.1 Noun phrases

Noun phrases are constructed by coordinating one or more simple noun phrases
using the connectives “and” and “or”. The two connectives may not be mixed
within a single noun phrase. In a conjunction of more than two simple noun
phrases, all but the last “and” can also be replaced by commas. For the purpose
of agreement with a verb phrase in an NP-VP-sentence, the grammatical number
of a complex noun phrase is determined as follows: If it is a conjunction of
simple noun phrases (i.e. uses “and” for the coordination), it is always plural.
If it is a disjunction of simple noun phrases of the same grammatical number,
its grammatical number coincides with that of the simple noun phrases. If
the disjuncts are of various grammatical numbers, the grammatical number of
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the complex noun phrase is considered mized, in which case it can no longer
agree with a verb phrase of an NP-VP-sentence. Such a noun phrase of mixed
grammatical number may still be used as an object or in a prepositional phrase,
but as a subject of an NP-VP-sentence it may only be used if the verb is in the
infinitive mode and hence does not have a determined grammatical number.

A simple noun phrase is either a symbolic term (see section or a deter-
miner noun phrase. Before presenting our semiformal description of determiner
noun phrases, we first illustrate the possible forms of determiner noun phrases
by some examples:

1. an integer
. an even integer k
. no finite sets

. the set of odd prime numbers

2
3
4
5. some even numbers a,, b, satisfying the following properties
6. every circle C such that p lies on C'

7

. distinct points p;, pe and ps on L such that d(py,p2) < d(p2,p3) or
d(p1,p2) > 1

8. points not on L
9. no k such that k2 > n

A determiner noun phrase consists of the following four parts in the follow-
ing order: A determiner, optional adjectives, the core of the determiner noun
phrase and optional postmodifiers. The determiner can be “a”, “an”, “some”,
“the”, “every” or “no” in the singular and “some”, “all”, “no” or the zero de-
terminer in the plural. In the list of optional adjectives there may be zero or
more adjectives, with only one restriction: Certain adjectives like “parallel”,
“coprime”, “distinct” and “disjoint”, which we term transitive adjectives, are
used to express binary rather than unary relations. These may only be used in
this list of optional adjectives if the noun phrase is in plural. Which adjectives
are considered transitive adjectives is fixed in the lexicon of the Naproche CNL.

The core of a determiner noun phrase consists either of a noun or of a list
of quantterms or of a noun followed by a list of quantterms. If the quantterm
list contains two or more quantterms, the grammatical number of the noun
phrase (and hence of the noun) must be plural. The quantterms in the quant-
term list must be placed in separate IXTEX mathematics environment and may
additionally be separated by commas or the word “and”.

There are four kinds of post-modifiers:

e Collection complements (e.g. “of odd prime numbers”): These consist of
either the word “of” followed by a plural determiner noun phrase with zero
determiner, or of the words “of objects called” followed by a plural noun.
They may only be used if the noun in the core of the noun phrase denotes
a collection of mathematical objects (like “set”, “class” or “collection”
and must precede other post-modifiers.

4The lexicon of the Naproche CNL fixes which nouns are counted as collection nouns for
this purpose.
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e Prepositional phrases (e.g. “on Cq and Cy” or “not on L”): These consist
of a preposition followed by a noun phrase. The preposition may option-
ally be preceded by “not”. Prepositional phrases must precede such-that
clauses and satisfying—phrasesﬂ

o Such-that clauses (e.g. “such that p lies on C”): These consist of the words
“such that” followed by a simple declarative sentence (see section |7.3.5).

o satisfying-phrases (e.g. “satisfying the following properties”): These con-
sist of the word “satisfying” followed by a cataphoric meta-NP, a special
kind of meta-NP discussed in section [7.3.3] satisfying-phrases may not
occur in determiner noun phrases that contain a such-that clause.

Such-that clauses and satisfying-phrases may only modify noun phrases that
have been named using some symbolic expression. For example, in “every circle
C such that p lies on C”, the noun phrase is named using the quantterm C,
which makes it possible to have a such-that clause. A special way in which a
noun phrase can be considered named is by appearing in a predicative position
in a verb phrase whose subject is a named noun phrase. For example, in “L
is a line such that p lies on L”, the noun phrase “a line such that p lies on L”
is itself not named, but it is the predicative part of the verb phrase “is a line
such that p lies on L” whose subject is the named noun phrase L, and hence is
considered named as well.

When a such-that clause or satisfying-phrase modifies the last determiner
noun phrase in a complex noun phrase, the syntactic interpretation of the com-
plex noun phrase chosen by the Naproche CNL does not coincide with the nat-
ural reading, but turns out to be semantically equivalent. Consider for example
sentence (|4)):

(4) There is a point ¢ and a positive number x such that d(p, q) < x.

Since in the Naproche CNL a such-that clause can only modify a determiner
noun phrase, the such-that clause modifies “a positive number z”. In the natural
reading, on the other hand, it modifies “a point ¢ and a positive number z”.
But these two reading are at any rate logically equivalent in the PTL-based
semantics that we give to the Naproche CNL in section [7.5] so that this is not
a serious problem.

Note that there is no rule in the Naproche CNL that nouns have to consist
of a single word. Indeed, in the Naproche CNL we consider “natural number”
to be a two-word noun, as this corresponds to the way this expression is usually
interpreted by mathematicians: When something is called a “natural number”,
this is not interpreted as two unary predicated being asserted of the object in
question (as would be the case in usual adjective-noun expressions like “even
integer”), but as a single unary predicate.

5Note that “of” is not listed as a proposition in the lexicon; hence there is no conflict
between prepositional phrases and collection complements. In the language of mathematics,
“of” is only used in combination with transitive nouns that require an of-complement. See
section @ for a clarification of transitive nouns, a linguistic construct so far not supported
in the Naproche CNL. Collection nouns can be considered a special case of transitive nouns
that is already supported in the Naproche CNL.



7.3. NAPROCHE CNL TEXTUAL SYNTAX 189

7.3.2 Verb phrases

Below we describe the various forms that affirmative verb phrases can have in
the Naproche CNL. Additionally, for every affirmative verb phrase, there is a
corresponding negated verb phrase formed by the standard rules for negating
verb phrases in English: If the verb phrase is in the infinitive mode, it is negated
by putting “not” before its head verb. If the verb phrase is not in the infinitive
mode and already contains an auxiliary verbﬂ it is negated by putting “not”
after the auxiliary verb. Otherwise it is negated by making the auxiliary verb
“do” the head of the verb phrase and putting “not” between the inflected fornﬂ
of “do” and the full verb of the original verb phrase, which now appears in the
infinitive mode.
There are three kinds of affirmative verb phrases:

e An intransitive verb
e A transitive verb followed by its object, which may be any noun phrase

e An inflected form of the copula “to be” followed by a predicative expres-
sion, which may take one of the following forms:

— A simple noun phrase which is either a term or a determiner noun

“ 7

phrase with “a”, “an”, “some” or “the” as determiner
— An intransitive adjective
— A transitive adjective (only possible if the verb phrase is in plural)

— A transitive adjective followed by a prepositional phrase, where the
preposition to be used in the prepositional phrase is fixed by the
lexical entry of the transitive adjective (e.g. “to” for “parallel” and
“coprime” and “from” for “distinct” and “disjoint”)

— A such-that clause (for this case we have the same kind of restriction
as already mentioned at the end of section above: The subject
of the verb phrase must be named using some symbolic expression.)

— A prepositional phrase (certain prepositions allow for verbs other
than the copula to be used before them without a change in meaning;
for example, one may write “to lie on L” instead of “to be on L”.)

The Naproche CNL grammar takes care that verbs are inflected in the right
way according to their grammatical number and mode (finite or infinitive).
Moreover, it takes care of the difference between infinitives that do and infini-
tives that do not require a preposed “to”.

Just as nouns can consist of more than one word, so can verbs. For example,
“to belong to” is considered a transitive verb in the Naproche CNL.

6In the Naproche CNL the copula “to be” is the only auxiliary verb used in affirmative
verb phrases.

"Whenever we speak of an inflected form of some word, the Naproche CNL grammar
actually takes care that only inflected forms grammatically acceptable in English will be
accepted.
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7.3.3 Metalinguistic NPs and VPs

There are two kinds of metalinguistic noun phrases:

o Anaphoric meta-NPs: Simple anaphoric meta-NPs always consist of the
word “case”, “property” or “axiom” followed by the name of a previously
introduced case. An anaphoric meta-NP coordinates one or more simple
anaphoric meta-NPs in one of the following three ways:

— As a conjunction, in which the simple anaphoric meta-NPs may be
separated by “and” or commas.

— As a disjunction, in which the simple anaphoric meta-NPs are sepa-
rated by “or”.

— By an expression starting with “precisely one of” or “at most one of”
followed by a list of simple anaphoric meta-NPs separated by “and”
or commas.

o Cataphoric meta-NPs: These consist of the words “precisely one of the
following”, “at most one of the following” or “the following”, followed by
an inflected form of one of the words “case”, “property” or “axiom” (in
the first two cases they must be plural, in the third case they may be
singular or plural).

A metalinguistic verb phrase is an inflected form of “to hold”, “to be true”,
“to be correct”, “to be incorrect”, “to be false”, “not to be true”, “not to be
correct”, “not to hold” or “to be inconsistent”. The last form may not be used
in combination with a meta-NP which is a disjunction of meta-NPs or which
contains the words “precisely one of” or “at most one of”.

7.3.4 Quantified sentences

There are two kinds of quantified sentences, universally quantified sentences and
existentially quantified sentences.

Universally quantified sentences consist of a universally quantifying expres-
siton followed by a potentially complex sentential phrase. These two parts may
optionally be separated by a comma. A universally quantifying expression al-
ways consists of the word “for” followed by a determiner noun phrase with a
universal determiner (“every” or “all”). The following is an example of a uni-
versally quantified sentence: “For all natural numbers m, n, m +n =n+m.”

Existentially quantified sentences come in two different flavours: The first
consists of an inflected form of “there to be at most one” or “there to be precisely
one” followed by a singular determiner noun phrase truncated of its determiner.
The second consists of an inflected form of “there to be” or “there to exist”
followed by a conjunction of determiner noun phrases which are separated by
“and” and whose determiner is indefinite or negative (“a”, “an”, “some”, the
zero determiner or “no”). If the conjunction consists of a single singular noun
phrase, “there to be” or “there to exist” has to be inflected in the singular. If
the conjunction contains at least one plural noun phrase, “there to be” or “there
to exist” has to be inflected in the plural. If the conjunction consists of multiple
singular noun phrases, “there to be” or “there to exist” may be inflected either
in the singular or in the plural.

Here two examples of existentially quantified sentences:
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e There is precisely one even prime number.

e There are no distinct parallel lines Ly and Lo such that p lies on L; and
Lo.

7.3.5 Sentential connectives

We use the term sentential connectives in a rather broad sense to encompass
all expressions that combine with one or more sentential phrases to form a new
sentential phrase. A special kind of sentential connectives are references. A
reference may be prefixed or postfixed to a sentential phrase. It consists of
the word “by” followed by a list of one or more reference cores, separated by
commas or “and”. A reference core is of the form “axiom X”, “theorem X”,
“lemma X”, “definition X” or “induction”, where “X” is to be replaced by the
name of a previously stated axiom, theorem, lemma or definition.

Another special kind of sentential triggers are the assertion triggers and as-
sumption triggers, which are used to distinguish between the sentence kinds sim-
ple declarative sentences, assertions and assumptions: An assertion is formed by
preceding a simple declarative sentence by an assertion trigger, and an assump-
tion is formed by preceding a simple declarative sentence by an assumption
trigger. The assertion triggers are “also”, “and”, “but”, “clearly”, “finally”,
“furthermore”, “hence”, “i.e.”, “in particular”, “now”, “observe that”, “obvi-
ously”, “recall that”, “so”, “therefore”, “this (in turn) implies (that)”ﬁ and
“trivially”, as well as some combinations of these that are grammatically ac-
ceptable in English (e.g. “now recall that”). Additionally there is an empty
assertion trigger, i.e. a simple declarative sentence may itself be considered an
assertion. The assumption triggers are “(now) assume (that)”, “(now) assume
for a contradiction that”, “(now) suppose that”, “(now) let” and “(now) con-
sider”.

Assertions and assumptions may additionally be formed in the following
ways: An assertion may just consist of a reference, of the word “trivial” or
of the word “contradiction” optionally followed by a reference. An assumption
may consist of a “(now) consider (arbitrary)” or “(now) fix (arbitrary)” followed
by a quantterm list, or of “let” followed by a quantterm list, followed by “be
given”. The quantterm lists in these assumptions may optionally be followed by
postmodifiers; the postmodifiers allowed here are the same as the ones allowed
in noun phrases (see section , with collection complements excluded.

All other sentential connectives, which we call the proper sentential connec-
tives, can be used in a nested way to form simple declarative sentences out of
simple sentential phrasesEI

1. (a) “implies”

(b) “implies that”

2. “and”

8The brackets indicate optional parts of the assertion trigger.

9Note that the word “simple” has different meanings in “simple declarative sentences” and
“simple sentential phrases” In the first case it means that the sentence lacks assertion and
assumption triggers, in the second case it means that the sentential phrase is not formed out
of simpler sentential phrases using sentential connectives.
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3. “or”

4. “ and”

5. ¢ or”

6. (a) “ ie”

(
(b
(

(b) “..if...”

(c) “iff”

(d) “f and only if”

)
)
a) “if...then...”
)
)

8. Inflected variants of

(a) “it to be false that”
(b) “it not to be the case that”
(c) “it to be the case that”

The sentential connectives listed under 1{7] are all binary. Their two argu-
ments either precede and follow the connective, or are placed in the positions
of the “...” indicated above. In the connectives under [7] the first argument
may optionally be followed by a comma. The connectives under [§] are unary
and precede their argument. If their argument is a complex sentential phrase
formed out of simple sentential phrases with the connectives under 1{6} each of
these simpler sentential phrases has to be preceded by “that”. This rule makes
it possible to use the semantically redundant “it to be the case that” for forc-
ing a certain bracketing of complex sentential phrases. For example, to express
—(A A B) in a more natural way in the Naproche CNL, one has to write .
If one just writes @, the interpretation will be (=A) A B, since the lack of a
“that” in front of B makes it impossible for B to be inside the scope of “it is
not the case that”.

(5) It is not the case that A and that B.
(6) Tt is not the case that A and B.

Further principles for disambiguating complex sentential phrases are discussed
in section [Z.3.6] below.

References only make sense and are naturally only accepted by human read-
ers in positions where they modify a sentential phrase that becomes the con-
jecture of a proof obligation in the process of proof-checking the text. These
positions can actually be recognized by purely grammatical means. For exam-
ple, in assumptions and in if-clauses references never make sense. We have
therefore included this restriction into the Naproche CNL grammar. In these
positions, in which references may not be used, the connectives “i.e.” and “so”
can also not be used with the semantics of a dynamic conjunction that we give
them, and are hence also excluded by restrictions included in the grammar.

In order to correctly predict the mode (finite or infinitive) of verbs, we also
attach a mode to sentential phrases: A sentential phrase following one of the as-
sumption triggers “let” or “consider” gets the mode “infinitive” or “to-infinitive”
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respectively. In the case of a simple sentential phrase, this means that its head
verb must be in the infinitive mode (and possibly be preceded by “to”). In
the case of a sentential phrase formed by one of the connectives listed under
16} this mode gets inherited to its subordinated sentential phrases. In the case
of a sentential phrase formed by one of the connectives under [§ that connec-
tive itself has to be inflected in the corresponding mode. Sentential phrases
formed by one of the connectives under [7| can never have the mode “infinitive”
or “to-infinitive”. Hence an assumption can for example not consist of “let” or
“consider” directly followed by an if-then construct; this of course is completely
in line with restrictions that are in place in natural English.

7.3.6 Disambiguation principles

The grammatical rules described so far can cause some ambiguities, i.e. there
are sentences that can be formed in more than one way from these rules. In
this section we will present disambiguation principles which have been incorpo-
rated into the Naproche CNL in order to make it free from ambiguities. The
disambiguation principles have been chosen in such a way that the reading they
give preference to very often coincide with the reading a mathematician would
actually give preference to. But readers of mathematical texts, just like people
confronted with general natural language, use a large number of disambiguation
principles weighted in a not well understood way. So they may in some circum-
stances prefer a reading which the disambiguation principles of the Naproche
CNL discard. For this reason it is important for an author of Naproche CNL
texts to understand the disambiguation principles used by the Naproche CNL.

First we present three special disambiguation principles which only apply
in special circumstances. Finally we present a general disambiguation principle
which removes all potential ambiguities not removed by the special disambigua-
tion principles.

For the proper sentential connectives presented in the previous section, the
numbers in the numbered list in which we presented them fix their operator
precedence. So “and” binds stronger than “or”, which binds stronger than
“ and” etc.

References are always considered to modify the largest sentential clause that
they could possibly modify given their position. For example, in (]2[), “by Lemma
12” modifies “R(z) and R(y)”, whereas in it modifies only “R(y)”.

(7) R(z) and R(y) by Lemma 12.
(8) R(z) and by Lemma 12 R(y).

As mentioned in section the core of a noun phrase may be just a
quantterm list. Given that the plural indefinite determiner may be empty,
this means for example that “z” could be interpreted both as a term or as a
determiner noun phrase consisting of a plural indefinite determiner followed by
the quantterm list “z”. If there is an anaphorically accessible occurrence of “z”,
the semantics of these two interpretations would be different: In the first case
“z” would corefer with this anaphorically accessible occurrence of “x”, whereas
the second case would be interpreted as an existential quantification over x. In
ordinary mathematical texts, the first reading would always be preferred. In

order to force that reading in the Naproche CNL, we have added limitations as
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to when the zero determiner may be used: It may only be used in determiner
noun phrases that either contain a noun or are used as the core of an existential
quantification. (]E[) and contain examples of these two cases:

(9) A contains points x, y such that d(z,y) = 1.
’ 5 ) = 1.
(10) There are @, y such that d(z,y) =1

Even though the three special disambiguation principles presented so far al-
ready remove many potential ambiguities, there are some potential ambiguities
left for which these special disambiguation principles present no solution. Con-
sider sentence (|11) occurring in a context in which the variables k and [ are
accessible anaphoric antecedents:

(11) k is a prime number such that k|l iff k is odd.

There are two potential readings for this sentence: In the first, it is a simple
NP-VP-sentence, whose verb phrase contains the such-that clause “such that k|l
iff k is odd”. In the second it is a bi-implication between “k is a prime number
such that k|I” and “k is odd”. Now the general disambiguation principle states
that whenever there are such ambiguities not removed by any of the special
disambiguation principles, the Naproche CNL grammar chooses the reading
which closes all scopes as late as possible. In this example, the scope of the
such-that clause is closed later by the first than by the second reading, so that
the first reading is the reading chosen by the Naproche CNL grammar.

This general disambiguation principle also has an effect when we coordinate
more than two simple sentential phrases with sentential connectives of the same
operator precedence. One of the few cases where it actually makes a semantic
difference are complex sentential phrases of the form “If A then B iff C”. The
general disambiguation principle gives preference to the reading in which “B iff
C” is the second argument of the “If ...then ...”-construct.

In most cases, this general disambiguation principle chooses the reading that
a mathematical reader would naturally prefer. However, there are of course
exceptions. presents an example of a sentence in which a mathematical
reader is likely to choose a reading that differs from the reading chosen by
Naproche CNL grammar:

(12) There is no square number & such that k|n, and n is a prime number.

Here the Naproche CNL grammar would consider “n is a prime number” to be
part of the such-that clause. There are two reasons for a mathematical reader
to prefer the reading in which the such-that clause ends at the comma: One
is the orthographic hint provided by the comma; the other is the semantic-
pragmatic reason that “n is a prime number” does not refer to the variable k
postmodified by the such-that clause. These two reasons taken together make it
very unlikely for a mathematical reader to naturally choose the reading chosen
by the Naproche CNL grammar. But for the Naproche CNL grammar, the
comma before the “and” could only make a difference in combination with
other proper sentential connectives, and semantic-pragmatic considerations as
the one relevant in this case are generally ignoredm

10The semantic-pragmatic natural disambiguation principle mentioned in this example could
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7.3.7 Definitions

Definitions are formed according to special rules, which we present in this sec-
tion. Definitions are used to introduce new symbols or words and fix their
meaning. For fixing the meaning we equate a definiendum, whose meaning is
to be specified, to a definiens, which specifies the meaning of the definiendum.
The definiendum is either the symbol that is being introduced, or the word or
symbol that is being introduced applied to some dummy variables, which may
also appear in the definiens. If the definiendum and definiens represent propo-
sitions, they are equated by a bi-implication (“iff” or “if and only if”); else they
are equated by an inflected form of the verb “to be”. So we distinguish between
bi-implicational definitions and copula definitions.
Here are some examples of bi-implicational definitions:

1. Define n to be even if and only if there is some k such that n = 2k.

2. Define a real r to be an integer iff there is a natural number n such that
r=norr=mn-(-1).

3. Define a line L to be parallel to a line M iff there is no point on L and M.
4. Define m and n to be coprime iff (m,n) = 1.

5. Define an integer m to divide an integer n iff there is an integer k£ such
that km = n.

6. Define R(z,y,2) iff z =y =z or 4o < 2y < z.
7. Define m|gn iff there is an | < k such that m -1 = n.

As can be seen from the examples, a bi-implicational definition can define
an adjective (transitive or not), a noun, a verb (transitive or not) or a relational
symbolic expression. In all cases it consists of the word “define” followed by a
definiendum, followed by “iff” or “if and only if”, followed by a definiens, which
is a simple declarative sentence. The definiendum introduces some dummy
variables; in the case of definitions of words, these may optionally be preceded
by a specification consisting of an indefinite determiner, zero or more adjectives
and a noun. These dummy variables are considered accessible in the definiens.

Bi-implicational definitions of words always have a verb in the definiendum:
In the case that they define a verb, this is clear; in the case of an adjective,
the copula is placed before the defined adjective; in the case of a noun, we also
use the copula, but additionally place an indefinite article between the copula
and the defined noun, as can be seen in example The verb always has to
be in the infinitive mode and preceded by “to”. Definitions of verbs have an
optionally specified variable in subject position, and in the case of transitive
verbs, additionally also in object position. Definitions of nouns and intransitive
adjectives only have one optionally specified variable, namely in subject position.

Transitive adjectives represent binary relations, so their definitions always
have two optionally specified variables. But there are two different options for

actually be detected on purely syntactic grounds. For this reason, future versions of Naproche
might include a disambiguation principle of this kind, or at least detect when the result of
such a disambiguation principle conflicts with its usual disambiguation principles in order to
warn the user that the reading chosen might not be the reading a mathematical reader would
naturally choose.
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arranging them in the definiendum: Either, as in example [4] both optionally
specified variables appear in the subject separated by “and”; or, as in example
one appears in the subject and the other in a propositional phrase that
postmodifies the transitive adjective and uses the preposition that is determined
by the lexical entry of the transitive adjective (see section [7.3.2)).

Bi-implicational definitions of relational symbolic expression have a definien-
dum that consists of a special kind of quantterm called definition quantterm that
is described in section [7.4.6]

Here are some example of copula definitions:

1. Define ¢ to be /5.
2. Define f(x) to be z2.
3. Define f,(y, 2) to be z(2y — 52).
4. For defining ! at 2/, define z'! to be 2’ - z!.

In most cases, a copula definition consists just of the word “define” followed
by a definiendum, followed by “to be”, followed by a definiens. The definiendum
of a copula definition is a definition quantterm (see section ; the definiens
is any term. The definiendum may introduce dummy variables, which serve as
anaphoric antecedents for occurrences of the same variables in the definiens. If
there are no such dummy variables, as in the first example, the definition is
what one would normally call a definition of a constant symbol. If there are
such dummy variables, as in the other three examples, the definition defines a
function.

A copula definition may also be used to define the value of a function at
a fixed argument, as in example [d] The fixed argument may be represented
not only by a variable, but also by a complex term, which appears in the same
form in the definiendum and in the definiens. The definition quantterm parser
may have difficulties determining which symbols are part of the function being
defined and which are part of the fixed complex argument; in order to ensure
that the definition quantterm parser correctly parses the definition quantterm,
one may optionally precede the copula definition by an expression of the form
“For defining f at a”, where f should be replaced by the name of the function
being defined and a by the fixed argument at which we define the value of the
function.

7.3.8 Notational specifications

There are two special kinds of sentences that can be used for specifying certain
notational conventions.

Variable type specifications are sentences used to specify that certain vari-
ables will from now on be used only to refer to a certain kind of objects, e.g.

(L3):
(13) Small Latin letters will stand throughout for integers.

More precisely, variable type specifications always consist of a subject referring
to some collection of letters, followed by the words “(will) always denote”, “will
be used throughout to denote” or “will stand throughout for”, followed by a
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plural noun. The subject is a conjunction of one or more expressions of the
following form, separated by commas or “and”: An optional capitalization ad-
jective (“small” or “capital”) followed by an alphabet adjective (“Latin, “Greek,
“Fraktur” or “German”, with the latter two being synonymous), followed by the
word “letters”.

Alternative notation specifications can currently only be used to specify that
a given binary function expressed by an infix function symbol may also be
expressed by concatenation, as in :

(14) Instead of x - y we also write xy.

Alternative notation specifications always have the form of (14)), only that the
infix function symbol - may be replaced by another infix function symbol, and
that instead of xz and y other variables may be used.

7.4 Symbolic mathematics in the Naproche CNI]']

In section we showed some of the problems involved in giving a syntactic
description of symbolic mathematics, and in particular of parsing and disam-
biguating these expressions. We remind the reader about the example of the
expression “a(x+y)”, which can be understood in two completely different ways,
depending on what kind of meaning is given to a: If a is a function symbol and
z 4y denotes a legitimate argument for it, then a(z + y) would be understood
to be the result of applying the function a to x + y. If on the other hand a, =
and y are — for example — all real numbers, then a(z 4 y) would be understood
as the product of a and x + y.

7.4.1 Possible approaches to disambiguation

If a(x + y) is to be read as the value of a function a at « + y, then a has to be a
function. This requirement can be understood in two different ways, which are
nevertheless related and combinable: Either it is considered to be a presuppo-
sition of the symbolic expression a(x + y); in this case, the linguistic theory of
presuppositions becomes applicable (see section . Or it is considered to be
a type judgement about a; in this case, it should be possible to formulate a type
system for symbolic mathematics and reuse existing ideas from type theory to
describe and work with this type system.

Since we had to include a treatment of presuppositions in Naproche at any
rate (see section, one possible approach that we took into consideration for
disambiguating symbolic expressions was to check their presuppositions already
during the parsing process, so that readings which lead to wrong presuppositions
would already be blocked during the parsing process. This approach, however,
has turned out to be far too inefficient: It would involve constantly calling
automatic theorem provers during the parsing process and waiting for their
output before continuing the parsing.

Another approach is to rely on a type system rather than on presupposition
fulfilment for disambiguating symbolic mathematics. In that case, one needs
a very rich and flexible type system for symbolic mathematics. Such a type

1 This section is partly taken over from |Cramer et al.| (2011)).
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system has been developed ingeniously by Ganesalingam (see (Ganesalingam),
2009). However, to attain the richness of the type system required for handling
all kinds of ambiguities that can arise, he was obliged to require the author of a
text that is to be parsed by his system to write sentences whose sole function is
to create types that are needed for certain disambiguations. Given that the goal
of Naproche is to stay as close as possible to the language that mathematicians
naturally use, this aspect of Ganesalingam’s approach made it less attractive
for us.

So we decided to take up a combined approach, in which there is a relatively
simple type system capable of blocking most unwanted readings during the
parsing process, with the remaining readings being filtered by checking their
presuppositions.

7.4.2 A type system for symbolic mathematics

In the type system that Naproche uses for handling symbolic mathematics, there
are two basic types: i for individuals and o for formulae expressing propositions.
Apart from these, there are function types of the form [¢y,...t,] — ¢, where
t1,...,t, are the types of the arguments the function takes and ¢ is the type
of the term that we get when we apply this function to legitimate arguments.
So unlike in the Simple Theory of Types (STT) (see|Church} |1940), we have an
inherent way of handling multi-argument functions. In STT, multi-argument
functions must be simulated by their curried counterparts (see section .
We, however, want to use types to describe how mathematical formulae are
structured in actual mathematical texts, and for this purpose it is better to
have multi-argument functions inherently in the type system.

Note that formulae are also considered terms (namely terms of type o), and
that the logical connectors are considered functions of type [0, 0] — o or [o] — o.
Even quantifiers are considered to be functions, namely two-place functions
whose first argument has to be a variable and whose second argument is a term
of type o that may depend on the variable. We formalize this by writing the
type of quantifiers as [var(_, X),X — o] — o, where var(-, X) means that the
first argument is a variable X of type _ (i.e. of any type), and X — o means that
the second argument is a term of type o possibly depending on X B

Notational types

As already discussed in section[I.1.2] functions can behave in syntactically differ-
ent ways. For example, + is generally used as an infix function symbol (“a+b"),
whereas the notation f(z) uses a function symbol f in prefix position with its
argument in brackets. In Naproche, we distinguish six basic ways in which func-
tion symbols behave syntactically, and call these the basic notational typeﬂ of
the corresponding function symbols:

1. infix: Two-argument function symbol placed between its arguments (e.g.
+ in n+m).

12We use Prolog-like notation, i.e. capital letters for variables and _ for an anonymous
variable, when describing the type system.

13In |Cramer et al.| (2011), we used the term syntactic type rather than notational type. We
now consider notational type to be less prone to misunderstanding than syntactic type.
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2. suffix: One-argument function symbol placed after its argument (e.g. !
in n!).

3. prefix: Omne-argument function symbol placed before its argument (e.g.
sin in sinx).

4. classical: Function symbol with one or more arguments preceding its
arguments, which are bracketed and separated by commas (e.g. [ in f(z)

or f(z,y)).

5. quantifier: Two-place function symbol placed before its two arguments,
where the arguments have to have types of the form var(t1, X) and X —to,
and where the first argument position may be filled with a variable list
rather than a single variable (e.g. Va,y R(x,y)).

6. circumfix: Expression for a function with one or more arguments, which
are embedded into a predefined string of symbols, with at least one symbol
at the beginning, at the end and between any two successive arguments
(e.g. the degree of a field extension, [K : k], considered as a two-place
function depending on K and k). The name of a circumfix function is this
predefined string with [arg] denoting the positions of its arguments. For
example, the name of the field extension function is [[arg] : [arg]].

A notational type is a finite list of basic notational types. For motivating this
definition, we first consider an example from real analysis: The differentiation
function is a function from differentiable real functions to real functions, sending
any f to its derivative f’. When written in this '-notation, this function clearly
has notational type suffix. But when we write f’(x), we use the complex
function name f’ as a function with notational type classical. Now this does
not seem to depend on the notational type of f: Suppose we have defined an
extension of the factorial function ! to the reals (e.g. by ! := I'(z + 1) using the
Gamma function (see [Heuser) (1991, p. 195)). If we then apply its derivative !
to some real x, we would write !'(x) and not z! E So it seems to be inherent in
the way the differentiation function symbol ’ is used that the complex function
name it produces is of notational type classical. We formalize this by saying
that ’ is of notational type [suffix,classical]. This means that its basic
notational type is suffix, and the notational type of any function name whose
head is ’ is [classicall.

This machinery makes it possible to correctly handle many complicated no-
tations: For example, exponentiation is treated as a function of notational type
[circumfix,suffix] and of type [i] — ([{] — 7)) (so in this case the notation
used makes us treat this multiple-argument function in a curried way rather
than using an inherent multiple-argument function type), where the name of
the circumfix function is “{[arg]}. In the case of x~{y}, this function is first
applied to y, yielding ~{y2}, which is considered a suffix function, so that apply-
ing it to x yields x~{y}.

When concatenation is used to express a binary function (as is usually done
for multiplication, as in nm for n - m), we consider the function to be ex-
pressed by an empty infix function symbol. The possibility of expressing an

14Since this is a made-up example, we should add that our intuition as to what notation
would be appropriate here has been confirmed by a number of mathematicians from the
University of Bonn.
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infix function by concatenation is announced by an alternative notation speci-
fication as discussed in section In some cases, the way a seemingly infix
function is introduced makes the system consider it a function of notational
type [prefix,suffix] or [suffix,prefix] E Such a function may also be
expressed by concatenation, i.e. the function symbol of such a function may
also be empty.

As already mentioned in section [7.3] Naproche distinguishes two different
kinds of symbolic expressions:

e Terms serve either as definite noun phrases (e.g. 22 — 1) or, if they have
type o, as formulae and thus as sentential phrases (e.g. z = 3?).

e Quantterms correspond to the quantifiable terms of PTL and can, possibly
together with a noun, make up the core of a determiner noun phrase.

7.4.3 Term Grammar

Below we describe the term grammar semi-formally by first listing (in a formal
definite-clause-grammar notation (see [Pereira & Warrenl [1980) with Prolog-like
syntax) a list of simplified grammar rules that any term must obey and then
describing informally additional constraints that any term must satisfy in order
to be actually parsed by the grammar. The constituent “term” used in the
DCG rules below has an argument specifying the notational type of the term
(i.e. a list of basic notational types). We use the variable name NT for a variable
ranging over notational types.

Simplified term grammar

(NT) — term([classical|NT]), ['(’], term_list, [*)’].
term(NT) — term(_), term([suffix|NT]).
(NT) — term([prefix|NT]), term(-).
term(NT) — term([quantifier|NT]), variable_list, term(_).
(NT) — term(.), term([infix|NT]), term(-).
(NT) — circumfix_term(NT).
(NT) = [(], term(NT), [)].
(NT) — variable(NT).

term_list — term(-), [’,’], term_list.

term_list — term(_).

variable_list — variable(_), [’,’], variable_list.
variable_list — variable(_).

variable(_) — [].

15 An example for this are the addition and multiplication signs in the proofs of theorems 4
and 28 respectively of the Naproche CNL reformulation of chapter 1 of Landau’s Grundlagen
der Analysis, which is included in appendix |B|and discussed up to theorem 4 in chapter



7.4. SYMBOLIC MATHEMATICS IN THE NAPROCHE CNL 201

For every predefined variable or accessible quantterm V of notational
type NT, add a rule of the following form to the grammar:

variable(NT) — V.

For every accessible circumfix function of notational type NT and
name St ...S7 [arg)Ss ... Sy%[arg]...[arg]S), ... S, add a rule of
the following form to the grammar:

circumfix_term(NT) —
[S1] ..., [ST ], term (L), [S3], .. [S3], term (L), ... term (), [Sh], - . [Spim]-
Infix relation symbols (i.e. infix function symbols with type of the form
[-,-] => 0) may be used for chained formulae, e.g. t; = to = t3 = #4. In this

case, the parse tree we produce for the formula is the same as if the formula
had been tl = tz A t2 = t3 /\tg = t4.

Operator precedence

Syntactic disambiguation principles like the precedence of multiplication and
division operators over addition and subtraction operators are encoded into the
grammar using predefined operator priorities. We use the following operator
priorities (in the order of decreasing precedence):

e + — — and <
e Prefix functions
e Suffix functions

e Other infix functions

Additionally, there is a principle which overrides the above operator pri-
orities, namely that the operators used to form atomic formulae always have
a higher precedence than the operators used to combine atomic formulae into
complex formulae.

As an example for the functioning of these syntactic disambiguation princi-
ples,

(15) z+yz=sinanl N\e =y —>z2—y+2=0
is disambiguated as

(16) (((x + (y2)) = sin(a(n))) A (z = y)) = (2 —y) + 2) = 0).

In all cases that we are aware of, these syntactic disambiguation principles lead
to an intuitive reading of the symbolic expression.

Defaultness of the notational type classical

As already alluded in section [I.1.2] the notational type classical is the default
notational type for newly introduced functions. This principle is implemented
into the grammar by an additional constraint that in the second to fifth DCG
rule specified above, as well as in the rule “variable(-) — [].”, the notational
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type of a term may not be instantiated to infix, prefix, quantifier, suffix
or circumfix. For example, the requirement of the final term to have “suffix” as
notational type in the second rule means that this notational type must already
be associated with the term when parsing it and may not be attached to the
term afterwards. There is a limited list of predefined infix function symbols (-,
+, —, %, ., 0, /, € <, > <, >) for which this constraint does not apply.

In practice, this constraint means that when you are quantifying over a func-
tion, this function may be used with classical notational type or, if a preferred
infix function symbol is used, with infix notational type, but not with prefix,
suffix or quantifier notational type. So and are allowed, but ,
and (with z read as an infix, f as a prefix and g as a suffix function symbol)
are not allowed.

(17) 3f f(a) = 0
(18) 3 zxz =2
(19) 3z zza =z
(20) 3f fa=0
(21) 3gag =0

The defaultness of the notational type classical is one of the two reasons
why we do not formalize functions used in this notational way as circumfix func-
tions. This would theoretically be possible: A one-argument classical function
f could also be considered a circumfix function with name f ([arg]). However,
this way we would not be able to account for the fact that a function that was
introduced without fixing its notational type can be used with notational type
classical. The second reason for avoiding this solution is that non-circumfix
function symbols can be used to refer to the function itself: If f is a classical
function symbol, we can use f to refer to the function; for circumfix functions
no way of referring to the function has been implementedm

Simple and complex variables

In the above simplified term grammar, variables are always single symbols. In
the actually implemented term grammar, there is more flexibility: Additionally
to the single-symbol simple variables, there are multi-symbol complezx variables.
Complex variables always consist of a single symbol followed by a sequence of
subscript digits, e.g. 1 or yis.

Predefined variables

It should be noted that we do not make the distinction between variables and
constants that is usually made in the syntax of first-order logic and many other
logical systems. In the semi-formal language of mathematics, there is a con-
tinuum between variable-like and constant-like expressions; this continuum is

16 An accepted way of referring to circumfix functions in the language of mathematics is by
the use of — or e in the argument positions of a circumfix function. For example, the circumfix
function with name [[arg]: [arg]l] can be referred to as [—: —] or [e : e].
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captured in Naproche through the use of dynamic quantification inherent in
DPL, so that the bivalent distinction used in first-order logic is not needed.

However, logical constants are still treated in a special way, namely as “pre-
defined variables”. These are also given a predefined type and notational type
as follows:

Predefined variable Type Notational type
—, <>, Aand V [0,0] = 0 infix

- [o] = o prefix

¥ and 3 [var(,, X),X —o] = o quantifier

= [T,T] — infix

+ [, ] — infix

€ [i,3] = o infix

Kinds of variables

In the parsing process we distinguish different kinds of variables:

e Predefined variables (logical constants)
e Bound variables

e Variables that were implicitly introduced earlier on in the symbolic ex-
pression and are now reused

e Accessible variables whose antecedent is in the same sentence
e Accessible variables whose antecedent is in a preceding sentence

e Implicitly introduced variables

When trying to parse a variable, we always first try to parse it according to
a variable kind higher up in the above list before trying the kinds lower down in
the list. Once a variable has been parsed in one way, it may no longer be parsed
in such a way as to be of a kind that is mentioned later in the above list than
the kind that it has already been assigned. This means, for example, that if =
is accessible and we parse dx x + x = x, then all instances of x in this formula
are bound by the existential quantifier; none of the instances of x refers to the
accessible variable.

Coverage of the term grammar

The term grammar can cope with almost all terms that serve as definite noun
phrases and formulae found in mathematical texts. Here is a list of formulae

1
1

7i.e. the two arguments must be of the same type
8i.e. the two arguments may be of distinct types
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that can be correctly parsed and disambiguated by it:

z(y+2)=0
r=y<z

TrRG X =T
En:i_n(n—i-l)
-~

=0

x°

zo lim f(a?) = 2f(

Tr—x0 2
12 .
T = 77%05((005<Po<p6)2 + (—singogp)?)

) # /(N

Of course, these formulae can only be parsed if the types and notational types
of the function symbols appearing in them are known in advance. This infor-
mation is created by the quantterm grammar described in section when
the functions are introduced.

There are some limitations of the current implementation of the term gram-
mar that we are aware of: Firstly our term grammar can only handle variable
binding if the occurrence of the variable that binds the other occurrences pre-
cedes the bound occurrences. Hence the term grammar cannot handle the in-
tegral notation of the form [ f(z)dz, where the first occurrence of z is bound
by the final occurrence of z. Furthermore, the term grammar can currently not
cope with formula fragments like “= 0” nor with formulas containing triple dots
like “n € {1,...,N}”. However, we believe that the approach presented in this
section constitutes a framework for tackling even these harder cases, i.e. that
the current limitations are not due to principle limitations of our approach, but
rather due to the prototypical character of the implementation.

7.4.4 Disambiguation after Parsing

As mentioned in section the type system is not capable of blocking all
unwanted readings. This is due to the fact that our type system is not fine-
grained enough. All objects that are not functions are of the same type, namely
i. So, for example, both natural numbers and sets would be of the type ¢. If one
has defined that for sets A, B, the expression A® denotes the set of functions
from A to B, and one has furthermore defined that for natural numbers m,
n, the expression m™ denotes the n-th power of m, then one has defined two
functions of notational type [circumfix,suffix] and type [i] — ([i] — %), both
named ~{[argl}. Since their name, type and notational type are identical, they
are indistinguishable during the parsing process. Thus, the ambiguity arising
from this notational clash has to be resolved after the parsing process.

In such cases we keep track of all possible readings until the proof checking
processE As described in section the proof checking involves checking
the presuppositions of the PTL text. The two just mentioned functions of
equal name, type and notational type would trigger different presuppositions:
The first would trigger the presupposition that both of its arguments are sets,

9More precisely, the PTL text that we use to translate the Naproche CNL text is in such
a case actually an underspecified PTL tert, in which some subformula or subterm is not
determined, but may be filled in with one of a number of possible subformulae or subterms.
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whereas the second would trigger the presupposition that both of its arguments
are numbersm Since it is not possible for both of these presuppositions to be
fulfilled for a given pair of arguments, the ambiguity can certainly be removed
in the process of checking the presuppositions.

It is of course also possible that more than one reading fulfils the presuppo-
sition. Consider for example the following text, appearing in a context in which
n is an accessible integer variable and in which >, > and < are accessible binary
infix function symbols of type [i,i] — o and triggering the presupposition that
both its arguments must be integers:

(22) There is an integer k such that & > n. Hence there is an integer k such
that £ > n. Then n < k.

Because of the dynamic nature of natural language existential quantification,
both the £ from the first sentence and the k from the second sentence is accessible
in the third sentence. Hence n < k has two readings, depending on whether k
refers to the k introduced in the first sentence or the k introduced in the second
sentence. Both of them fulfil the presuppositions of <. For disambiguating
such formulae, the Naproche system uses the principle that a later anaphoric
antecedent is preferred over an earlier one. Hence the Naproche system would
choose the second reading of k > n, as a mathematical reader would naturally

do as wellZ1]

7.4.5 Type dependency graphs

It is also possible that the type information needed for disambiguating a sym-
bolic expression is only available after the completion of the parsing process for
that expression. Suppose, for example, that sentence appears in a context
where two binary relations named > are accessible, one defined on natural num-
bers and one defined on functions of natural numbers, and where the symbol 1
is accessible both as a name for the natural number 1 and as a name for the
identity function, but where the variable x is not accessible.

(23) If # > 1 and 22 + 1 is prime, we have R(z).

If the exponential notation x2 is only defined for numbers and not for functions,

then this sentence can be disambiguated using type information: x has to be
of type i in “z? + 17 and therefore also in “z > 1”7, and so the “>” in “x > 1”
refers to the relation on numbers and not the one on functions. But this type-
based disambiguation of “x > 1”7 was not possible during the process of parsing
“r > 17, because at that point “z? + 1”7 had not yet been parsed. In order
to handle such type-based disambiguations that occur after that parsing of an

20The information that these functions trigger these presuppositions gets extracted from
their definitions: In section below, we define how function definitions are translated by
implications in such a way that the functions they define are dynamically implicitly introduced
in the PTL translation of the definition. Hence the explanations in section @ about ex-
tracting information about the domain of a dynamically implicitly introduced function applies
to function definitions.

2INote that already when parsing k > n, both the k from the first sentence and the k
introduced at the beginning of the second sentence are accessible. But in this case, the
ambiguity is already resolved by the principle mentioned under the heading “Kinds of variable”
above, since one potential anaphoric antecedent is in the same sentence and the other is not;
so the disambiguation principle mentioned here is not needed for k > n.
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expression, we use type-dependency graphs, which specify which reading of an
expression depends on which type judgements.

The parsing module of the Naproche system constructs a type-dependency
graph for every sentence in a Naproche text. The type-dependency graph is
modified whenever a symbolic expression is encountered. There are two kinds
of vertices and two kinds of directed edges in a type-dependency graph:

e For every symbolic expression appearing in the sentence and every variable
implicitly introduced in some term, there is an E-verter representing this
symbolic expression or variable.

e For every possible reading of a term and every possible type assignment
for a quantterm or implicitly introduced variable, there is an R-vertex
representing this reading or type assignment.

e Whenever a reading represented by vertex r; depends on a type assignment
represented by vertex 1o, there is a D-edge from 11 to rs.

o Whenever an R-vertex r represents a reading of type assignment of a
symbolic expression or variable represented by an E-vertex e, there is an
R-edge from r to e.

Type-assignments are graphically represented by a variable or quantterm with
its type as a subscript index. Since in the examples we consider, the different
readings of a term always differ by the type assignments of their variables, we
graphically represent readings by writing the types of the variables occurring in
them as subscript indices.

After parsing x > 1, the type-dependency graph of contains two R-
vertices for the two possible readings of x > 1 and two further R-vertices for
the two corresponding type assignments of . The term z? + 1 is then parsed
with only a single reading, in which = has to be of type i. Hence the R-vertex
of the type assignment z(;_,; gets deleted from the graph, and consequently
the reading x[j—; >[[]-i,[i]—i]—o llij—i of > 1 that depends on this type
assignment also gets deleted from the graph, thus indicating that « > 1 has
been disambiguated based on type information.

We now describe the algorithm that takes care of these modifications of the
type-dependency graph. In order to increase the readability of this description,
we write “r; depends on r3” instead of “there is a D-edge from r; to ro in the
current type-dependency graph” and “r is a reading of €” instead of “there is an
R-edge from r to e in the current type-dependency graph”. When we say “add a
vertex” or “add an edge”, we mean that it should be added to the current type-
dependency graph. When we say “delete v” for some vertex v of the current
type-dependency graph, we mean that the vertex v and all edges that begin or
end in v should be deleted from the current type-dependency graph.

After parsing a symbolic expression E,

1. add an E-vertex e representing F,
2. for every reading R of F,

2.1. add a vertex r representing R,
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2.2. for every accessible variable v in F whose antecedent is in
the current sentence, add a D-edge from r to the R-vertex
representing the type assignment that v has according to
the reading R,

2.3. for every variable v implicitly introduced in F,
2.3.1. add an E-vertex e, representing the variable v,

2.3.2. add an R-vertex r, representing the type assignment
that v has according to the reading R,

2.3.3. add an R-edge from r, to e,,
2.3.4. add a D-edge from 7 to 7,
2.4. for every R-vertex t (representing a type assignment) such
that r depends on t,
2.4.1. for every R-vertex t' such that ¢ and ¢ are distinct
readings of the same E-vertex and such that no reading
r’ # r of e depends on t,

2.4.1.1. for every R-vertex r’ depending on ¢/,
2.4.1.1.1. let e, be the E-vertex that 7’ is a reading of,

2.4.1.1.2. for every R-vertex t” # ¢’ such that v’ depends on
t" and such that no other reading of e,» depends
on t”, do 2.4.1.1 and 2.4.1.2 with ¢’ replaced by t”,

2.4.1.1.3. delete 1/,
2.4.1.2. delete t'.

7.4.6 Quantterm grammar

As already mentioned in section quantterms correspond to the quantifiable
terms of PTL (see section . However, the syntax of quantterms is much
more flexible than that of the quantifiable terms of PTL. In PTL all functions
are written in a way that corresponds to the classical notational type of the
Naproche CNL. This also holds for the quantifiable terms of PTL. Quantterms
on the other hand allow for all notational types apart from quantifier.

This additional syntactic flexibility is also a potential source of ambigui-
ties. Below we will discuss the disambiguation principles used by the quantterm
grammar. But in order to make the potential ambiguities tractable, we needed
to impose some very natural syntactic limitation to quantterms that the quan-
tifiable terms of PTL are not subject to. This limitation is natural in the sense
that it is usually followed in the language of mathematics for purely pragmatic
reasons: The usage of quantterms that do not follow this limitation would not
increase the expressibility of the language, but would make quantterms very
hard to parse and disambiguate@

This additional syntactic limitation can be phrased as follows: While the
head function of a complex quantterm may recursively be any quantterm, its
arguments may only be accessible quantterms. Let us illustrate this limitation

22In the case of the quantifiable terms of PTL, we left out this additional syntactic limitation,
since the limited syntax of PTL makes parsing PTL texts completely unproblematic at any
rate, so that this additional syntactic limitation would have been an unnecessary complication
at that point of the theoretic development.
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by considering some examples. Examples , and should be con-
sidered to appear at a position in a text at which a unary classical function
symbol f and a ternary classical relation symbol R are accessible, but at which
no variable named z is accessible.

(24) For all z, y there is some g, (y) such that R(x,y, g.(y))-
(25) *For all z, y there is some g, (f(y)) such that R(x,y, g-(f(y))).
(26) *For all z, y there is some g, (y) such that R(z,y,g.(y)).

has the same truth conditions as (27), but additionally implicitly intro-
duces a function symbol of notational type [circumfix,classical] named
g_{largl}.

(27) For all z, y there is some z such that R(z,y, 2).

The quantterm g, (y) in fulfils the additional syntactic limitation, since its
argument y is accessible and its head function g, is again a quantterm satisfying
this syntactic limitation, as its argument is the accessible variable x.

The quantterm g.(f(y)) in does not satisfy the additional syntactic
limitation, since its argument f(y) is not an accessible quantterm. So is
not accepted in the Naproche CNL. And indeed it does not seem to be acceptable
in the natural language of mathematics either. The reason for this seems to be
that is it not clear what it should mean to make g,(f(y)) dependent on f(y)
by mentioning f(y) as an argument. If one were forced to interpret in
some sensible way, one could maybe with an increased amount of imagination
interpret it as ([28]); but if this meaning was really intended, one would usually
write it as in and not in the hardly interpretable manner of .

(28) For all z, z such that for some y z = f(y), there is some g, (z) such that
R(x,y, g2 (2))-

The quantterm g¢.(y) in also does not fulfil the additional syntactic
limitation: Even though its only argument y is an accessible quantterm, its head
function g, does not fulfil the additional syntactic limitation, as its argument z
is not accessible. So is not accepted in the Naproche CNL. And indeed it
does not seem to be acceptable in the natural language of mathematics either:
It makes no sense to mention an argument like z in a quantterm as if the value
of the quantterm was dependent on the value of z, when z is not accessible and
hence only a meaningless symbol.

Now the quantterm grammar without the additional disambiguation princi-
ples to be presented below can be concisely described as follows: A quantterm
can either be simple, in which case it is any symbol or circumfix function name,
or it can be a complex quantterm, in which case it is a function of a given
notational type, which itself is a quantterm according to this grammar, applied
to arguments which are accessible quantterms, where of course the application
of the function to its arguments follows the rules of the given notational type.

Disambiguating quantterms

Now one problem is that the quantterm grammar finds a number of possible
readings for any input. For example, f(x,y) can be interpreted in four ways:
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1. as two-place classical function f (depending on z and y)

2. as two-place circumfix function f ([arg], [arg]) (depending on x and y)
3. as one-place circumfix function f ([arg],y) (depending on x)

4. as one-place circumfix function £ (x, [arg]) (depending on y).

Here we want to choose the first reading as the preferred reading to be used
by the program. This is done by a special algorithm for selecting the preferred
reading, which works as follows:

e Non-circumfix readings are always preferred over circumfix readings.

e Between two circumfix readings, one is preferred over the other if its
circumfix name has an [arg] at a place, where the other has a symbol.

e A reading that has classical in the second position of the notational
type list is preferred over one that does not. (This principle is needed,
for example, to ensure that in f/(z), ’ is interpreted as a suffix function
making f’ classical rather than as a classical function making '(x) a suffix
function.)

e When none of the above rules decides which reading is better, we recur-
sively check which head function is preferred by those rules.

Anaphoric accessibility

As mentioned in section [7.1] the anaphoric accessibility of quantterms is mod-
elled by the notion of active quantifiers (aq) in PTL (see definition in
section PTL scope). The only essential difference between the notions of ac-
tive quantifiers in DPL and PTL is that in PTL a quantifier occurring inside
the scope of an implication can still be active outside the scope of the implica-
tion, because the implication may have implicitly introduced a function symbol
through that quantifier. We repeat the definition of aq for implications:

aq(gp - 0) = {(Ht,to) | aq(cp) = {(Elt/latl)a R (Elt;wtn)} for n > 1,
(3t,t') € aq(f) and there is an n-place argument filler o
such that ¢/ = tg(t1,...,tn)}

When t' = t§(t1,...,t,) holds for some n-place argument filler o, we say that
t' is a quantterm for the function ty dependent on ti,...,t,. In order to keep
track of which quantterms are anaphorically accessible, the Naproche system
needs to check for each implication whether any quantterm introduced in the
consequence of the implication is a quantterm for some function dependent on
the quantterms introduced in the antecedent of the implication. As we will
see below, the procedure for checking this will also be needed for correctly
parsing some expressions that introduce functions in a more explicit way than
the implicit dynamic function introduction.
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Dependent quantterms

In the above example , the quantterm g, (y) depended on the two variables
x and y, which had to be quantificationally introduced beforehand. Another
way of introducing variables on which a quantterm may depend is with a -
construct:

(29) There is some function z,y — ¢, (y) such that for all z, y, R(x,y, g(y))-

Such +—-constructs are called dependent quantterms. A dependent quantterm
always consists of a list of variables, separated by commas, followed by +,
followed by a quantterm. The quantterm following — must be a quantterm
for some function dependent on the variables preceding +—. This criterion has
preference over the disambiguation criteria mentioned above: If there are any
readings fulfilling this criterion, the chosen reading is that reading fulfilling this
criterion that ranks highest according to the disambiguation criteria above.

Definition quantterms

As mentioned in section above, there is a special kind of quantterms for
definitions. Just like dependent quantterms, definition quantterms can be con-
sidered a mechanism for introducing functions in an explicit rather than implicit
way.

Let us first consider a simple example of a definition quantterm. Suppose
occurs in a context where x is not accessible:

(30) Define & to be z + x.

In this definition, x is used as a dummy variable for defining the unary suffix
function &. One problem faced by any system aimed at parsing such definitions
is that the system has to recognize which parts of the definition quantterm
(in this case x&) make up dummy variables. In order to make this problem
tractable, we impose the very sensible restriction that the dummy variable may
not be accessible@ Now in order to determine which parts of the quantterm
make up dummy variables, we actually parse the definiens (here x+ ) first, and
determine which variables are implicitly introduced variables according to the
definition in section In this example, this would be only x, which would
hence be considered a dummy variable also for parsing and disambiguating z&.

In such simple cases, the disambiguation of definition quantterms works in
the same way as the disambiguation of the quantterm following — in a depen-
dent quantterm, where the variables implicitly introduced in the definiens take
over the role of the variables preceding — in a dependent quantterm.

The parsing and disambiguation of definition quantterms is a bit more com-
plex in the case of definitions that define the value of a function at a fixed
argument. Consider for this example appearing in a context where z is an
accessible variable and ’ is an accessible unary suffix function:

(31) For defining ! at 2, define 2'! to be 2’ - x!.

23Using an accessible variable as a dummy variable for a definition would at any rate be
considered very bad style in the natural language of mathematics.
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The 2’ in “For defining ! at 2’” is parsed according to the term grammar, whereas
the ! is parsed according to the quantterm grammar. We now know that the
quantterm z'! has to define ! at the value x’. With this restriction, it is clear
that z’! can only be parsed as a unary suffix function applied to the argument
2/, which is the intended interpretation. This example is especially simple,
since the quantterm z'! does not contain dummy variables. We now consider a
somewhat more complex example with a dummy variable, which comes from the
Naproche adaptation of Landau’s Grundlagen der Analysis discussed in chapter
Suppose that appears in a context where x is an accessible variable, ’ is
an accessible unary suffix function and + is an accessible function of notational
type [suffix,prefix], which has so far only been defined at the value z (in
other words, 4+ can be treated as if it were a binary infix function so far only
defined when its first argument is ).

(32) For defining + at a’, define 2’ 4+ y to be (z + y)’.

now defines + at z’. Applying the [suffix,prefix] function + to z’
gives a prefix function z’+, which in 2’ + y is further applied to the dummy
variable y. The definition quantterm parser has to automatically recognize this
interpretation of the definition quantterm x’+y. Since y is implicitly introduced
in (z + y)’, the parser has the information that y is a dummy variable. Now
for the parsing process, the additional syntactic restriction of quantterms has to
be loosened somewhat: The arguments of a complex definition quantterm may
not only be variables, but also the term that we expect as a fixed argument (in
this case z’). With this loosened restriction, the parser produces in total 16

readings@
L. +ineix) (2, )
2. Fisusix,intix] ()[intix) (T, Y)
3. /[prefix,infix] () finesx] (2, Y)
4. I[suffix,prefix,prefix] () [presix,prefix] (1) presix (¥)
5. I[prefix,suffix,prefix] (+) [suffix,prefix] (z) [prefix] (y)
6. I[prefix,prefix,suffix] (+) [prefix,suffix] (y) [suffix] ()
7. +pretix,sutfix] (¥)[pretix) (')
8. +(suttixprefix] (T')[pretix] (¥)
9. +[prefix,suffix,suffix] (y) [suffix,suffix] (") [suffix] ()
10. “+[sutfix,prefix,suffix| (/) [prefix,suffix] (y) [suffix] (3?)
11. +(sutfix,sutfix,prefix] () [suffix,prefix] (z) [prefix] (y)

12, Yioussix sustiz] () [sustix) (¥)

24In order to write down a reading, we write its functional applications in classical notation,
but note as a subscript index to the corresponding function the actual notational type that
the function has according to that reading. When z’ appears as a fixed argument, we just
write / without indicating its parse tree.
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13. Ylsussix,sustiz,suttiz] (+)[sustiz,sutsiz] () sursix] (T)
14. Tprefix,prefix,prefix] ( )[preflx,preflx] (+) [prefix] (y)
15. x[arg|+(circunsix proix) () prefix) (¥)
)

16. /[arg]y[circu.mfix,suffix]( ) [prefix] (LC
Now the restrictions for choosing the preferred reading are as follows:

1. The fixed argument (in this case 2’) has to appear as a single argument
to the function mentioned at the beginning of the definition (in this case

2. The dummy variables (in this case only y) have to make up all arguments
of a sequence of consecutive function applications. (In a case of a sin-
gle dummy variable, this restriction simplifies to the restriction that the
dummy variable must be the single argument of some function applica-
tion.)

In our example, the only reading that fulfils both restrictions is reading If
more than one reading fulfils these requirements, the reading that ranks highest
according to the disambiguation criteria above is chosen.

7.4.7 Comparison to Ganesalingam’s solution

The only work outside Naproche we are aware of that recognizes the problem
of parsing and disambiguating symbolic mathematics as intertwined with the
natural language component of mathematical texts and as of a completely dif-
ferent kind than parsing formal languages is |Ganesalingam, (2009)). There are,
however, two main differences between Ganesalingam’s approach and ours:

Firstly, Ganesalingam has the methodological principle that no mathemati-
cal content is encoded directly into his theory, and he considers such syntactic
disambiguation principles as the precedence of multiplication over addition as
part of mathematical content Thus he does not encode such principles into
his theory, but requires the author to write sentences of the following form in
order to get the desired disambiguation of arithmetic expressions:

(33) If m, n and k are natural numbers, then “m + nk” means “m + (nk)”.

We on the other hand do not want to require the author to write things that
mathematicians do not normally write, and so decided to encode some basic
syntactic disambiguation principles directly into our theory.

Secondly, as already alluded in section [7.4.1] Ganesalingam relies much more
heavily on a type system than we do for disambiguating symbolic mathematics.
This is due to the fact that he does not include presuppositions into the dis-
ambiguation machinery. By making use of presuppositions for disambiguation,
we were able to attain similar goals as Ganesalingam with a much more coarse
type system. One of the benefits of the coarseness of the type system is that we
do not require the author to make statements whose only goal is to influence
the typing of symbolic material.

25Gee page 105 in |Ganesalingam| (2009).
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7.5 Naproche CNL semantics

We endow the Naproche CNL with a semantics by specifying a translation from
Naproche CNL texts to PTL texts. In this way, the Naproche CNL does not only
inherit the model-theoretic semantics of PTL defined in section but also
a procedural semantics based on the proof checking algorithm defined on PTL.
For example, the Naproche CNL text fragments and are translated
into PTL texts of the form and respectively, which are equivalent
according to the model-theoretic semantics of PTL defined in section [5.2.2

(34) There is an = such that P(z). Then R(z).
(35) There is an = such that P(z) and R(x).
(36) 3z P(x) & R(z)

(37) 3z (P(z) A R(z))

But the proof checking algorithm treats and differently: For proof-
checking , it lets the automated theorem prover first check the conjecture
Jx P(x) based on the active premise list, and next check the conjecture R(x)
based on the premise list now extended by the new premise P(x). For proof-
checking on the other hand, it only sends one proof obligation to the auto-
mated theorem prover, namely to check Jx (P(z) A R(z)) based on the active
premise list. This captures the difference that mathematicians feel between
and (35).

One can easily convince oneself of the fact that PTL is expressive enough
to be used as a translation for Naproche CNL texts. Indeed, someone who has
some experience of reformulating mathematical statements in first-order logic
and who has studied the particularities of PTL presented in chapter [5| would
not find it difficult to translate Naproche CNL texts to PTL texts, maybe with
some exceptions: It is not intuitively clear how to treat the quantifiers in bi-
implications and reversed implications and how translate definitions and some
macro-grammatical structures like case distinctions. These special difficulties
will be treated in sections [7.5.9} [7.5.4] and [7.5.5] below. But even those parts of
the translation that a logically trained human might find intuitive are difficult
to define formally. This is of course due to the very different syntactical nature
of the Naproche CNL and PTL. Much of this chapter will be about the formal
details of this Naproche-CNL-to- PTL translation.

Additionally to the syntactic disambiguation principles treated in section
we need to mention one important semantic disambiguation principle
which the Naproche-CNL-to- PTL translation presupposes: A quantifier that is
introduced earlier in a sentence is always given wider scope than a quantifier
introduced later in the sentence. Here “quantifier” refers both to determiners
that get rendered by quantifiers in PTL and to the natural language quantifiers
in quantified sentences as discussed in section

This disambiguation principle coincides with the natural reading of sentences
with more than one quantifier in the language of mathematics@ with one ex-
ception, namely quantifiers appearing in the complement of a transitive noun:

26Of course, the preference for this reading also exists in common language use, but is much
more strictly followed in the language of mathematics.
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(38) A contains some divisor of every number in B.

In , “every” is naturally given a wider scope than “some”. But since transi-
tive nouns are so far not supported in the Naproche CNL (see sectionbelow),
this exception does not need to be taken into account in the Naproche CNL.

In sections[7.5.1] to we define the translation from Naproche CNL texts
to PTL for a restricted class of Naproche CNL texts, in order to simplify the
exposition. The restriction in place here is that the Naproche CNL text to be
translated does not contain any plurals, complex noun phrases coordinated with
“and” or “or”, variable type specifications, dependent quantterms, metalinguis-
tic constructs, bi-implications (with “iff” or “if and only if”) outside definitions
or reversed implications (with the antecedent following the consequence of the
implication, i.e. the sentential connective from section . Variable type
specifications will be treated in section dependent quantterms will be
treated in section [7.5.7} metalinguistic constituents will be treated in section
bi-implications and reversed implications will be treated in section [7.5.9
plurals and complex noun phrases will be treated in section [7.6

7.5.1 PTL variables and IDs

In the definition of PTL syntax, we assumed a countably infinite supply of
variables without specifying what form these variables take. For the translation
of a Naproche CNL text T into PTL, we use the following variables:

e For every variable z used in T as a non-predefined variable and every
natural number n > 1, we use z™ as a PTL variable.

e For every circumfix function name N of a circumfix function used in T
and every natural number n > 1, we use N as a PTL variable.

e For every noun, verb, adjective or preposition w and every natural number
n > 1, we use w” as a PTL variable.

e We use v/, v", v etc. as PTL variables.

We use the PTL variable z' to translate the occurrence of the variable z in T
where z is first introduced as well as all occurrences of = that have this first
occurrence of z as their anaphoric antecedent. If x is introduced a second time,
now not anaphorically linked to the first introduction of x, we translate it as
22, 23, x* etc. are used in a similar way. The same can be said about PTL
variables of the form N™, where N is a circumfix function name.

The predefined variables of the symbolic part of the Naproche CNL naturally
correspond to logical relation symbols, connectives and quantifiers of P TLE and
are hence not translated by PTL variables.

In the case of nouns, verbs, adjectives and prepositions, we consider every
definition to be a dynamic existential introduction of the defined word. Ad-
ditionally, for nouns, a collection complement of the form “of objects called
w”, where w is a plural noun, is also considered to existentially introduce the
noun w. The notion of anaphoric accessibility is also applied to occurrences

27+ and V do not have correspondents in basic PTL; but taking into account that the
abbreviations V¢ ¢ and (¢ <+ 1) have been defined for the PTL formulae (3t T — ¢) and
(O = ) AO(Y — ), the intended translations for <+ and V in PTL become obvious.
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of nouns, verbs, adjectives and prepositions: These existential introductions of
such words can serve as antecedents for later occurrences of the same word, pro-
vided that the constraints of anaphoric accessibility defined through the notion
of active quantifiers are fulfilled (compare section . If a word is existentially
introduced more than once and more than one of its existential introductions
is anaphorically accessible at a given point in the text, we consider the most
recent existential introduction of the word to be its anaphoric antecedent.

Occurrences of nouns, verbs, adjectives and prepositions in positions where
such an existential introduction is not accessible are called global uses of these
words. For translating a global use of a word w, we use w'. The occurrence of a
word in a definition or collection complement that introduces that word for the
first time in a text is translated by w?, and so are all occurrences of the same
word anaphorically linked to this introduction. If a word is introduced through
a definition or collection complement more than once, its later introductions are
translated by w3, w* etc.

The variables v/, v/, v"" etc. are used in the translation whenever we need a
variable which does not have a direct correspondent in the Naproche CNL text
that we are translating. The first time we need such a variable we use v’, the
second time v’ etc. In the definition of the semantics of expressions that trigger
the use of such variables, we use the symbol v to denote that such a variable
should be used; in the actual translation algorithm, such a v would have to be
replaced by the first variable in the sequence v’,v”, v, ... that has so far not
been used.

Similarly to the case of PTL variables, we assumed in the definition of PTL
syntax a countably infinite supply of IDs without specifying what form these IDs
take. In a Naproche CNL text, what corresponds to these IDs of PTL syntax
are the names of axioms, theorems, lemmas and definitions, always used after
one of the words “axiom”, “theorem”, “lemma” and “definition” in a heading
or reference. For the translation of a Naproche CNL text T into PTL, we
use IDs of the form ¢_N, where ¢ is to be replaced by the ID type (“axiom”,
“theorem”, “lemma” and “definition”), N is to be replaced by the name used in
T corresponding to the ID and n is to be replaced by a natural number in order
to distinguish IDs in case that the same name is introduced in combination with
the same ID type more than once in T, just as we did in the case of natural
numbers.

7.5.2 Simplified Naproche-CNL-to-PTL translation

In this section, we define the Naproche-CNL-to-PTL translation for simple
declarative sentences. Additionally to the restrictions already mentioned above,
we here assume one additional restriction, namely that the sentence to be trans-
lated does not contain terms with implicitly introduced variables. Implicitly
introduced variables will be treated in section [.5.9] below.

For symbolic expressions that have been parsed and disambiguated accord-
ing to the rules specified in section the translation into a PTL text can
be read of directly from the disambiguated parse tree: We just need to ignore
the notational types writing all function applications in the classical syntax,
replace variables and circumfix functions by the corresponding PTL variables as
specified in section above, and ensure that chained formulae are translated
by conjunctions as specified in section Furthermore, since the existential
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quantifier 3 appearing in mathematical formula usually does not have the dy-
namic interpretation of the 3 of PTL but the static interpretation of the 3 in
PL, we prefix the static operator < to any existentially quantified subformula
of the PTL translation of a symbolic expression.

For defining the translation of NP-VP-sentences and quantified sentences, we
need to define semantics for such constituents as nouns, noun phrases, verb and
verb phrases. It does not make much sense to define their semantics to be certain
fixed PTL terms or formulae. Instead, we will make use of a common technique
in formal semantics, namely to define the semantics of such constituents using
a variety of the lambda calculus. For a detailed exposition of the application of
the lambda calculus to formal linguistics, see for example Blackburn and Bos
(2005).

In our case, we use the lambda calculus to describe the construction of
certain strings of symbols, which turn out to be PTL texts. For example,
Az.3v (z A P(v)) denotes the function that maps any string x to the string
resulting from concatenating the strings “Jv (7,  and “AP(v))”. When this
lambda term is applied to R(v), which we write as Az.3v (x A P(v))@QR(v), then
the result is the string Jv (R(v) A P(v)), which is a well-formed PTL text.

In some cases, the semantics that we need to give to a certain constituent
has two parts. In such cases, we write the semantics as a pair (a1, az), where a;
and ao are lambda terms. In order to conveniently refer to the elements a; and
as of such a pair a = (a1,a2), we use the standard notation 71(a) and ma(a)
for a; and as respectively@ When we say “lambda term”, we mean any term
constructed from strings of PTL symbols using lambda abstraction, application
with @, pairing and the functions 7 and 5.

In order to define a semantics for every possible constituent of the Naproche
CNL, we map every terminal constituent of the textual grammar to a lambda
term, which constitutes the semantics of this constituent, and additionally map
every grammatical rule of the textual grammar to a lambda term, which we call
the semantics of the rule. If a grammatical rule is used to form a constituent
c out of the constituents cy, ...c,, then the semantics of ¢ is defined to be the
semantics of the rule applied sequentially to the lambda terms representing the
semantics of ¢y, ... c,. Let us illustrate this through a simple example. Consider
the following PTL text:

(39) Some integer k is even.

By what we have already said, the semantics of the quantterm k is the PTL
term k'. By the explanations in section m “integer” and “even” will be
translated with the help of the variables integer! and even'. More precisely,
the semantics that we give to the noun “integer” and the adjective “even” are
A\z.integer' (z) and Az.even'(z). The determiner “some” gets the semantics
Az Ay Ama () (71 (2)Qma () A yQma(x)).

The grammatical rule that forms the core of a noun phrase out of a noun
and a quantternﬁ is given the semantics Az.\y.(z,y). Hence the semantics

28Note that this pair notation should not be confused with the tuple notation 7, defined
inside PTL. PTL terms and texts are now just viewed as strings of symbols, and among the
allowed symbols in these strings are these 7,,. Additionally we now have a notation for talking
about pairs of strings.

29Gince we are currently ignoring plurals, the quantterm list in a noun phrase whose core
does not lack quantterms altogether must consist of precisely one quantterm.
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of the noun phrase core “integer k” is Az.Ay.(x,y) applied sequentially to
Mz.integer (x) and k', i.e. (Az.integer' (x), k'). The grammatical rule for form-
ing a noun phrase out of a determiner and a noun phrase core is given the seman-
tics Az.Ay.x@y. Hence the semantics of “some integer k” is Az.\y.x@y applied
sequentially to Az.\y.3mo(x) (my (2)Qma(2) AyQma(x)) and (Ax.integer' (z), k1),
i.e. \y.3k! (integer' (k') A yQEL).

The copula gets the semantics Az.z, and the grammatical rule for forming
a verb phrase out of the copula and an intransitive adjective is given the se-
mantics Az.Ay.x@Qy. Hence the semantics of “is even” is Az.Ay.z@y applied
sequentially to Az.z and Az.even!(x), i.e. Ax.even!(zx). The rule for forming an
NP-VP-sentence out of a noun phrase and a verb phrase is also given the se-
mantics Az.\y.xQy. So the semantics of is Az.Ay.zQy applied sequentially
to Ay.3k! (integer' (k') A y@Qk') and Az.even'(x), i.e. the following PTL text:

(40) 3k (integer' (k') A even'(k'))

It is easily seen that reflects the natural meaning of . Furthermore, the
usage of k! as variable for the dynamic existential quantification ensures that if
further sentences are added to the Naproche CNL text and these sentences
anaphorically refer to the k in , then the PTL translation will have k! as a
translation of k, which will be bound by the existential quantifier Ik' of ,
as semantically required.

We get precisely the same result as above if the rule for forming a verb
phrase out of the copula and an intransitive adjective is given the semantics
Az.A\y.y instead of Az.\y.x@Qy. What we do in this case is that we just ignore the
semantics of the copula. When we specify the semantics of all grammatical rules
below, we will actually always ignore the semantics of the copula in grammatical
rules that involve the copula. Hence the copula does not need to be given
any semantics. Other constituents that similarly do not need to be given any
semantics are “such that”, “satisfying”, the comma or “and” used to separate
reference cores in a reference, the “then” of an if-then-construct and the “of
(objects called)” in a collection complement.

We now define the semantics of all terminal constituents and grammatical
rules needed in simple declarative sentences that adhere to the restrictions men-
tioned at the beginning of this section. There is not much we can say in the way
of explaining these formal definitions, besides appealing to the interested reader
to try out the functioning of these definitions in some simple example sentences,
in order to convince himself of the fact that these definitions do coincide with
the intuitive way that a logically trained person with knowledge of PTL would
translate from the Naproche CNL to PTL.

We start with the semantics of the terminal constituents:

e A noun N which is represented by the PTL variable N™ according to the
explanation in section [7.5.1} (Az.N"(z), N")

e An intransitive verb V' which is represented by the PTL variable V" ac-
cording to the explanation in section Az V" (x)

e A transitive verb V which is represented by the PTL variable V" according
to the explanation in section Az Ay V" (y,x)

e An intransitive adjective A which is represented by the PTL variable A™
according to the explanation in section Az . A™(z)
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A transitive adjective A which is represented by the PTL variable A™
according to the explanation in section Az y. A" (y, x)

A preposition P which is represented by the PTL variable P™ according
to the explanation in section Az \y.P™(y, x)

A reference core R which is represented by the PTL ID ig according to
the explanation in section [7.5.1} ir

The indefinite determiners “a”, “an” and “some”:

Az Ay Ima(z) (71 (z)Qma(x) A yQra(z))

The negative determiner “no”: Az.Ay.—3ma(x) (71 (x)Qma(z) A yQma(z))
The universal determiner “every”: Az Ay.3ma(x) m1(x) — yQma(x)

The definite determiner “the”: Ax.Ay.yQums(x) 71 (2)

Inflected forms of “there to be at most one”:
Az.3may(z) v (m1 () Qe (z) A 11 (2)Qu) — mo(x) =0

Inflected forms of “there to be precisely one”:
Az 3mo(x) (m1(x)Qma(x) A (Fu mp(2)Quv — mo(x) = v))

Inflected forms of “there to be” and “there to exist”: A\z.zQT

“by” used in references: Az.\y.ref(x,y)

4 b2

The sentential connectives “and”, “, and”, “, i.e.” and “, s0”: Ax.A\y.x Ay
The sentential connectives “or” and “, or”: Az.A\y.x Vy
“if” and “implies”: Az.\y.x — y

Inflected forms of “it to be false that” and “it not to be the case that”:
AL

Inflected forms of “it to be the case that”: \z.x

Some terminal constituents have a special logical or CMTN-theoretical mean-
ing when they are used globally (see section above for the definition of
global use). The semantics presented for them below are exceptions to some of
the classes presented above. In the case of the nouns in this list, the second
element of the pair that defines their semantics is irrelevant (since it only plays
a role in forming collection complements starting with “of objects called”, and
the usage of a noun in such a collection complement is never a global use; see
section . Hence we just place a dummy v in the position of this irrelevant
element in the below definition.

The transitive adjective “distinct”: A\z.Ay.—~y =«
Inflected forms of “class”: (A\x.C(z),v)
Inflected forms of “set”: (Az.L(z) A C(x),v)

Inflected forms of “to belong to”: (Az.A\y.y € x,v)
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e Inflected forms of “to contain”: (A\x.\y.x € y,v)

e Inflected forms of “map”: (Az.O3v M(x,v),v)

e Inflected forms of “function”: (Az.L(x) A OJv M(x,v),v)
e Inflected forms of “relation”: (Az.03Jv M(z,v),v)

e The intransitive adjective “unary”: Ax.M (z, s(0))

e The intransitive adjective “binary”: Ax.M (z, s(s(0)))

e The intransitive adjective “ternary”: Ax.M (z, s(s(s(0))))

“

e The preposition “in”: A\z.\y.y €

e Inflected forms of “tuple”: Az.3v T'(z,v)
e Inflected forms of “natural number”: Az.N(z)
e Inflected forms of “object”: Azx.T

We will now present the semantics of the grammatical rules needed for con-
structing simple declarative sentences that adhere to the above mentioned re-
strictions. The expressions we use to refer to the rules are not intended as
complete descriptions of the rules; some optional commas are ignored and some
additional syntactic limitations may hold for them, as specified in section
But these expressions do allude to the intended way of dividing the constructed
constituent into smaller constituents, since the way this division is carried out
is important for using the defined lambda term for constructing a semantic rep-
resentation. In these expressions, we use N to denote the part of a determiner
noun phrase that follows the determiner. In the terminology of section [7.3.1]
this is a noun phrase core possibly preceded by adjectives and possibly followed
by postmodifiers.

We start with the grammatical rules needed for forming noun phrases:

e The rule for forming an NP out of a term: \z.\y.yQx

e The rule for forming an NP out of a determiner and an N: Az.\y.zQy

e The rule for forming an N out of a noun and a quantterm: \z.\y.(m1 (), y)
e The rule for forming an N out of a noun: \z.(m(x),v)

e The rule for forming an N out of a quantterm: A\x.(T,y)

e The rule for forming an N out of an adjective and an N:
Az Ay.(Az.(2Qz A 71 (y)Qz), ma(y))

e The rule for forming an N out of an N and a collection complement or a
propositional phrase: Az.Ay.(Az.(m(2)Qz A y@z), ma(x))

e The rule for forming an N out of an N and a such-that clause:
Az Ay.(Az.(m (2)Qz A y), ma(x))

e The rule for forming a such-that clause out of “such that” and a sentential
phrase: Az.\y.y
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The rule for forming a prepositional phrase out of a preposition and a
noun phrase: Az.\y.\z.yQ(z@Qz)

The rule for forming a collection complement out of “of objects called”
and a noun:
Az Ay Az 3ma(y) (M (m2(y), s(0))AVv B(m1(y)Qu)AYY (v € z <> m1(y)Qu))

The rule for forming a collection complement used in a definite noun phrase
out of “of” and an N: Az. Ay Az.3m(y) T — (ma(y) € z <> m(y)Qma(y))

The rule for forming a collection complement used in a non-definite noun
phrase out of “of” and an N
Az Ay Az 3ma(y) T = (ma(y) € 2 — m1 (y)Qma(y))

Now we define the semantics of the rules needed for forming verb phrases:

The rule for forming a VP out of an intransitive verb: Az.z

The rule for forming a VP out of a transitive verb and an NP:
Az Ay Az.yQ(zQz)

The rule for forming a VP out of the copula and an NP:
Az Ay Az (yQz)QAw.w = z

The rule for forming a VP out of the copula and an intransitive adjective:
AT AY.Y

The rule for forming a VP out of the copula followed by a transitive
adjective, followed by its fixed preposition, followed by a noun phrase:
Az Ay Az Aw . w@(yQu)

The rule for forming a VP out of the copula and a such-that clause:
AT Y. A2y

The rule for forming a VP out of the copula and a prepositional phrase:
AT Y.y

The rule for transforming an affirmative into a negative VPE Az A\y.—xQy

Finally, we consider the rules needed for forming sentential phrases:

The rule for forming an NP-VP-sentence out of an NP and a VP:
Az Ay.zQy

The rule for forming a universally quantified sentence out of “for”, a de-
terminer noun phrase and a sentential phrase: Az.Ay.\z.y@Q(A\w.z)

The rule for forming an existentially quantified sentence out of “there to
be” or “there to exists” and a noun phrase: Azx.\y.xQy

30 The semantics of a collection complement with “of” depends on whether it is used as
a postmodifier in a noun phrase whose specifier is “the” or not. For example, “the set of
integers” contains all integers (and only them), whereas “a set of integers” may not contain
all integers (so that the only requirement is that it contains only integers). This difference is
reflected by the usage of <+ and — respectively in the formal definitions of the semantics of
collection complements.

31'We consider the affirmative VP to be the only constituent in the negative VP formed by
this rule.
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e The rule for forming an existentially quantified sentence out of “there to
be at most one” or “there to be precisely one” and an N: Az.\y.zQy

e The rule for forming a reference core list out of a reference: Az.x

e The rule for forming a reference core list out of a reference core list followed
by a comma or “and”, followed by a reference core: Ax.Ay.\z.xz

e The rule for forming a reference out of “by” and a reference core:
Az \y.xQy

e The rule for forming a sentential phrase out of a sentential phrase followed
by a reference: \x.\y.yQx

e The rule for forming a sentential phrase out of a reference followed by a
sentential phrase: Ax.\y.xQy

e The rule for forming a sentential phrase out of a sentential phrase followed
by an infix sentential connective, followed by a further sentential phrase:
Az Ay Az (yQz)Qz

e The rule for forming a sentential phrase out of “if” followed by a senten-
tial phrase, followed by “then”, followed by a further sentential phrase:
Az Ay Az A w. (zQy)Qu

e The rule for forming a sentential phrase out of a unary prefix sentential
connective followed by a sentential phrase: Ax.\y.xQy

In two special cases, the formal definition of the semantics gives rise to
a PTL representation that seems a bit more complicated than necessary. The
first relates to the usage of equality for translating copula VPs whose predicative
expression is a noun phrase:

(41) « is an integer.
(42) Jv (integer' (v) Av = x!)
(43) integer'(x!)

(41)) gets translated as , even though the simpler equivalent (43)) might seem
a more intuitive translation. The translation with equality as in (42]) has been

chosen in order to conserve compositionality in the definition of the semantics of
such VPs and in order to avoid complicated and unnecessary case distinctions.
The kind of simplification that is needed to get to from is performed
by the Naproche system at the point where PTL is translated to PL in the proof
checking module.

The second such complication relates to the unnecessary appearances of T

as in the translation of :

(44) There is an integer.
(45) Jv (integer (v) A T)

(46) Fv integer' (v)
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The simpler equivalent might seem more intuitive; the source of this com-
plication is again compositionality and the avoidance of case distinctions. In
the actual Naproche system, this problem does not appear because of the usage
of Proof Representation Structures instead of PTL (see appendix .

When we present the PTL translation of extended fragments of Naproche
CNL text in chapter [8) we — for the sake of readability — avoid these complica-
tions and use the simplified variants.

7.5.3 Implicitly introduced variables

Consider the following sentence, appearing in a context where a unary classical
relation symbol R is accessible, but = is not accessible:

(47) If R(z), then x is even.

In this sentence, x is implicitly introduced in the formula R(x). The occurrence
of z in R(z) does not have an anaphoric antecedent. But in the PTL translation
of , x has to be bound by some quantifier, since otherwise the resulting PTL
text would not be ground and hence not have the niceness properties of PTL
texts that we defined in chapter [5| and assumed to hold for all PTL texts that
result from Naproche texts.

For every variable implicitly introduced in a formula, we add an existen-
tial quantifier quantifying over the translation of that variable in front of the
translation of the formula. Thus the translation of is (48)), which is also its

natural reading:
(48) Jxt RY(x!) — even!(x?)
Variables can also get introduced implicitly in terms that are not formulae:
(49) If f(z) is even, then z is even.

In this case we can’t add the existential quantifiers directly in front of the
translation of the term. Instead, we add them directly in front of the smallest
PTL formula containing the translation of the term:

(50) Fzt even!(fl(x')) — event(xl)

If one wants to account for the appearance of these existential quantifiers
using the lambda-calculus formalism used above, we need to define the semantics
of a ternﬁ in which the variables v1, ..., v, get introduced implicitly, to be a
pair consisting of the actual translation of the term into PTL and the sequence
Jvy ...3v, . This quantifier sequence is in a similar way added as additional
information to superordinated constituents, until we reach a constituent that is
translated by a PTL formula, e.g. an NP-VP-sentence. There it is prefixed to
the translation defined above.

7.5.4 Definitions

Until now we have only defined the semantics of simple declarative sentences.
Before we can go on to define the semantics of complete texts, we need to define
the semantics of definitions.

32Remember that a formula is just considered a special case of a term.
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PTL does not have any explicit notation for definitions. Definitions can be
considered to extend the language by the symbolic construct or word that they
are defining. But in a similar way, existentially quantified statements could be
considered to extend the language due to the dynamic nature of the existential
quantifier: The variable we quantify over becomes a possible antecedent for later
uses of the same variable; so in a sense we have extended the language by that
variable.

In definitions without dummy variables, we make direct use of this analogy
by rendering the definition by an existentially quantified PTL formulaﬁ

(51) Define ¢ to be a + g(a).
(52) 3! ¢ = +1(al, g ("))

The translation of existentially introduces the PTL variable ¢! that
corresponds to the defined symbol ¢. In the proof checking algorithm, this
existential PTL formula makes the premise ¢! = +!(a', g'(a')) available for
proving later assertions, just as would be expected for definition .

There is one point in the proof checking algorithm where one might think
that the analogy between definitions and existential PTL formulae breaks down:
The existential PTL formula triggers a proof obligation with an existential con-
jecture; in our example, this means that 3z (v # u Az = +'(at, g% (al)))
has to be proven to follow from the active premise list. For a definition, on
the other hand, one would not expect any proof obligation, since it does not
make an assertion but just expands the language. But note that the premise
list that is active when 3z1 (71 # u A 21 = +'(at, g*(al))) has to be proven
already contains the presuppositional premise +!(a', g'(a')) # wu, since the
read_term function in the proof checking algorithm has already checked the pre-
suppositions of +1(a', g'(a')) (i.e. has checked that +!(a', g'(a')) is defined),
and has added this presuppositional premise to the premise list. But using this
premise, it becomes completely trivial to prove the conjecture Jx; (x1 # u A
1 = +1(at, g'(a'))). So this difference between existential assertions and def-
initions is not a real issue. Hence we can say that our choice to translate
definitions with existential PTL formulae is justified.

Now in the case that a definition contains dummy variables, its translation
is not an existential formula, but an implication whose antecedent introduces
the dummy variable and whose consequence contains an existential claim:

(53) Define f(z) to be = + x.
(54) J! T 3f1(a)) Flal) = (o), )

The principle of implicit dynamic function introduction in PTL now ensures
that the translation dynamically introduces the function symbol f! as a
possible antecedent for subsequent parts of a PTL text. The conjecture of the
proof obligation which triggers is still an existential claim that trivially
follows from the active premise list, namely 3z1 (21 # uAxy = +1(z!, 21)) (the

active premise list contains the presuppositional premise +!(z!, 2!) # u).

33 All examples in this section are considered to appear in a context in which a unary classical
function symbol g, a binary infix function symbol + and the variable a are accessible, whereas
z is not accessible.
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As mentioned in section [7.3.7] copula definitions may be preceded by an
expression of the form “For defining ...at ...”. These expressions may influence
the way that the definition quantterm is disambiguated, but apart from that
they do not influence the semantics of the definition. Given that we now already
assume all symbolic expressions to be disambiguated, we can thus completely
ignore these expressions when defining the translation from Naproche definitions
to PTL formulae.

Now let us consider an example of a bi-implicational definition:

(55) Define an integer = to be even iff x = g(x).
(56) 3t integer' (v') — Jeven?(x') (even?(x') « zt = g'(a!))
The translation now triggers a proof obligation with conjecture
Ja1 (z1 Aun(z1=T &zt =g'(ah))).

But this conjecture follows directly from three CMTN axioms which according
to the explanation in section get added to the active premise list, namely
the Boolean axioms T # L and Vo (B(z) +> = T Vax = 1) and the sort
disjointness axiom, which together with the second Boolean axiom ensures that
T #u and L # u.

Having illustrated the translation of definitions through these examples, we
can now proceed to giving the formal definition of this translation. We assume
that the semantics of a term is as explained at the end of the previous section, i.e.
a pair consisting of the actual translation of the term into PTL and a quantifier
sequence for existentially quantifying over the implicitly introduced variables of
the term.

Just as before, there are some constituents that do not need their semantics
to be defined, as it would at any rate be ignored by the composition rules.
But now the list of constituents that do not need a semantics does not only
include terminal constituents, but also the optional premodifier to a copula
definition of the form “For defining ...at ...”. So the grammatical rule for
forming this premodifier does not need to be given a semantics. The terminal
constituents that do not need to be given a semantics are “define”, the “iff” in bi-
implicational definitions and the “and” in a definiendum containing a transitive
adjective. We will actually not need to present the semantics of any terminal
constituents, since all other terminal constituents appearing in definitions have
already had their semantics defined above.

Here are the semantics of the grammatical rules needed for constructing
bi-implicational definitions:

e The rule for forming a bi-implicational definition out of “define”, a definien-
dum, “iff” or “if and only if” and a simple declarative sentence:
Az Ay Az w1 (y) — Ime(y) (m2(y) <+ w)

o The rule for forming a definiendum out of an N, “to be” and an intransitive
adjective: Az Ay.Az.(Tmae(z) m1(2)Qma(z), 2Qma(x))

e The rule for forming a definiendum out of an N followed by “to be”, fol-
lowed by a transitive adjective, followed by its fixed preposition, followed
by an N:
Az Ay Az Aw . (Fme(x) Ima(u) (w1 (z)Qmg(z) Ay (u) Qe (u)), (2@ (u))Qma(x))
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e The rule for forming a definiendum out of an N followed by “and”, fol-
lowed by an N, followed by “to be”, followed by a transitive adjective:
Az Ay Az Aw Au.(Ima () Ima(z) (71 (x)Qma(x) AT (2)Qma(2)), (uQme(2))Qma(x))

e The rule for forming a definiendum out of an N, “to be”, an indefinite
determiner and an intransitive adjective:
Az Ay Az w. (Ime(z) m (z) Qg (z), wQmg(x))

e The rule for forming a definiendum out of an N and an intransitive verb:
Az Ay.(Ima(x) 1 (2)Qma(x), yQma(x))

e The rule for forming a definiendum out of an N, a transitive verb and an N:
Az Ay Az.(Ime(x) Fma(2) (m1(2)Qma(x) AT (2)Qma(2)), (yQma(2))Qma(z))

e The rule for forming a definiendum out of a term: Az.(ma(z) T,71(x))

Here are the semantics of the grammatical rules needed for constructing
copula definitions:

e The rule for forming a copula definition out of “define”, a quantterm, “to
be” and a term: Az Ay Az dw.me(w) T — Ty y = m(w)

e The rule for forming a copula definition out of a premodifier of the form
“For defining ...at ...” and a copula definition: Az.A\y.y

7.5.5 Macro-grammatical semantics

So far we have defined the Naproche-CNL-to- PTL translation for simple declar-
ative sentences and definitions. In this section we will extend the translation to
complete Naproche texts.

Below we define a provisional translation for Naproche CNL texts. In the
case a Naproche CNL text does not contain globally used words (see section
H, the provisional translation is the final translation for the Naproche CNL
text[**| But if a Naproche CNL text contains globally used words, the intended
interpretation of the text is that what it asserts about the globally used words
should hold for all relations of the corresponding arity (unary or binary)ﬁ This
intended interpretation is formally achieved as follows: Let wi,...,w, be the
words globally used in the Naproche CNL text that express unary relations
(nouns and intransitive verbs and adjectives), and let W1, ..., W,, be the words
globally used in the Naproche CNL text that express binary relations (prepo-
sitions and transitive verbs and adjectives). Then the Naproche CNL text is

34For the purpose of this section, we do not consider the global uses of words that were
given a special logical or CMTN-theoretical meaning to be globally used words.

35Usually, a Naproche CNL text containing globally used words would start with some
axioms or assumptions containing properties assumed of the relations expressed by these
words. In that case, what the text asserts about the globally used words is that if they satisfy
these assumed properties, then they also satisfy whatever follows these axioms or assumption.
So what follows the axioms or assumptions only has to be satisfied by all relations satisfying
the assumed properties, and not by all relations whatsoever.
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translated by a PTL text of the form

Fw] (M(w?,s(0)) A Vo B(w](v)))

AN

Fwy, (M (wy, 5(0)) A Vo B(w)(v)))

N

I (MW, 5(s(0))) A Vo Yo' BWY (v,0")))
VANRAN

AW, (M(W,),, 5(s(0))) AV Yo' B(W,(v,v")))
— 0,

where 6 is the provisional translation of the Naproche CNL text.

Assertions and assumptions that are composed of a trigger and a simple
declarative sentence are translated in the same way as the simple declarative
sentence in them. The semantic difference between assertions and assumptions
is thus not captured in their translation, but in the way this translation gets
used to form the translation of a Naproche text containing them.

We now define the translation of assertions and assumptions formed in other
ways:

e The rule for forming an assertion out of the word “trivial”: Az.T
e The rule for forming an assertion out of a reference: Az.z@QT

e The rule for forming an assertion out of “contradiction” and a reference:
ArAy.y@QL

e The rule for forming an assumption our of “(now) consider (arbitrary)”
or “(now) fix (arbitrary)” and a quantterm: Az.Ay.Jy T

e The rule for forming an assumption out of “let”, a quantterm and “be
given”: Az. Ay A\z.Jy T

For defining the semantics of Naproche texts, it is useful to revise one aspect
of the division of texts into structural blocks: Instead of considering axiom
blocks structural blocks, we consider there to be a kind of structural blocks
called aziom-consequences block. An axiom-consequences block always consist
of what is called an axiom block in section[7.2)and text. But a text may no longer
contain axiom blocks directly, but only axiom-consequences blocks. This revised
division of a text into structural blocks corresponds better to the semantics we
will define for texts.

Below we will define how to translate the various structural blocks into PTL.
Only note blocks will not be given any semantics. The provisional translation of
a Naproche text, and likewise the translation of text embedded in a structural
block, is constructed by connecting with & the translations of the assertions and
structural blocks — apart from note blocks — that the text is made of. Whether
the & is used in a left-associative or right-associative way for forming this large
conjunctions does not matter semantically.

An axiom-consequences block is always translated by a PTL text of the form
@ — 0, where ¢ is the translation of the axiom block and 6 the translation of the
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text following it. If the axiom block contains no assumptions, its translation
is just the conjunction of the translations of the assertions in it. If it does
contain assumptions, its translation has the form ¢; — @9, where 1 is the
conjunction of the translations of the assumptions and 9 is the conjunction of
the translations of the assertions.

An assumption-consequences block is always translated by a PTL text of the
form ¢ — 60, where ¢ is the translation of the assumption and 6 the translation
of the text following it.

If the theorem block in a theorem-proof block contains no assumption, the
translation of the theorem-proof block has the form thm(¥, ¢, ), where ¥ is the
theorem type of the theorem block, ¢ is the conjunction of the translations of the
assertions in the theorem block, and 6 is the translation of the text in the proof
block. If the theorem block does contain assumptions, the translation of the
theorem-proof block has the form y — thm(¥, ¢, 6), where x is the conjunction
of the translations of the assumptions in the theorem block, and ¥, ¢ and 6 are
as in the previous case. (Thus the assumptions in a theorem block are not only
available for the assertions in the theorem block, but also in the proof block.)

Now we define how to translate case distinction blocks. Suppose that the

case distinction that we want to translate is as follows, where Ni,..., N are
case names, S1, ..., S are simple declarative sentences and 77, . .., T} are texts:
Case Nyp: 5.
Ti.
Case Ni: Sy.
Ty

Let t(S1), ..., t(Sk) be the translations of Sy, ..., Sk, and let ¢(T1), ..., t(Tk) be
the translations of 77, ..., Tx. Then the translation of this case distinction block
is the following PTL text:

(51—>T1)&...&(Sk—>Tk)&(81\/...v5k)

For both the conjunction and the disjunction it does not matter semantically
whether the connective is interpreted in a left-associative or right-associative
way.

The translation of a definition block is just the translation of the definition
it contains. The translation of a labelled text block is just the translation of the
text in it. Statement list blocks can only occur after sentences with a cataphoric
meta-NP. Thus they cannot appear in the restricted kind of Naproche texts that
we are now considering; we will discuss them together with other metalinguistic
features in section [Z.5.8] below.

7.5.6 Variable type specifications

By now we have defined the Naproche-CNL-to- PTL translation for all Naproche
CNL text adhering to the restrictions mentioned just before section [7.5.1] Now
we will consider each of these restrictions and explain how the translation can
be expanded to texts that do not have this restriction. The first restriction
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that we will drop in this way is the restriction that the text should not contain
variable type specifications.

Variable type specifications link a predicate to a class of variables. For
example, the variable type specification links the predicate \z.integer! ()
to variables that are small Latin letters.

(57) Small Latin letters will stand throughout for integers.

Note that it may happen that two variable type specifications link different
predicates to the same class of variables.

When a variable x gets introduced in a Naproche CNL text as a quantterm
or implicitly in a term, its first appearance in the translation of the text is in an
existentially quantified PTL formula Jz™ ¢. If = belongs to a class of variables
to which some variable type specification has linked a predicate, we replace
Jz™ ¢ by Jx™ (PQx™ A ¢), where P is the predicate which has most recently
been linked to a variable class containing x by a variable type specification.

There is one special case in which this way of treating variables affected by
a variable type specification does not give the desired result, namely the case of
variables introduced in collection complements. Consider the following example
sentence, appearing in a text in which sentence [57| has been stated:

(58) A is the set of k such that 2 divides k.

According to the above defined treatment of variables affected by a variable
type specification, the translation of would be , whereas the natural

reading of is :
(59) A° = 1w (C(v)AL(v)ATEC (integer® (k°)AT) = (kO € v & divide®(2°, k°)))
(60) A° = 1w (C(V)AL(W) AT T — (kO € v <> integer® (k°) A divide® (2°, k°)))

The difference is that in , the specified set is allowed to contain non-integers;
only its integer members are specified to be divisible by 2. In the natural reading
(60)), only integers can be members of the specified set. (The unwanted reading
faces the additional problem that its uniqueness presupoposition would
not be fulfilled, since there is more than one set which is a superset of the even
integers.)

So we need a special treatment of variables introduced in collection com-
plements and affected by a variable type specification. Let z be a variable
linked to a predicate P by an active variable type specification. Before consid-
ering the effect of variable type specifications, a collection complement whose
NP has the variable x as its quantterm list is translated by a PTL formula
of the form 3z T — (x € y O ¢), where O is either <» or —. For tak-
ing the variable type specification into account, we replace this translation by
T — (xeyOP(x)Ay).

7.5.7 Dependent quantterms

Now we drop the restriction that the text should not contain dependent quant-
terms. See section for the definition of dependent quantterms.

We will first explain the desired translation of an example sentence involving
a dependent quantterm before explaining how to translate dependent quant-
terms in general. Suppose that the following sentence appears in a context
where the ternary relation symbol R is accessible:
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(61) There is some map z,y — F(x)(y) such that for every x there is a y such
that R(x,y, F'(z)(y)).

The desired PTL translation of is :

(62) (32 F° T — IF°(2%)(y°) T) A v M(FO,v) A
(Fz' T = Iy Rz, ', FO(ah)(yh)))

Compare this to the PTL translation of the similar sentence not
involving a dependent quantterm:

(63) There is some map F' such that for every x there is a y such that
R(z,y, F(x)(y))-

(64) IF° (3o M(F°,v) A Bzt T — Iyt RO(2t, 9t FO(2Y)(y1))))

The only difference between and is in the way the PTL variable
F? is dynamically introduced: In it is introduced through the explicit
existential quantification 3F°, whereas in it is implicitly introduced through
the implication 3z° 3y° T — IF°(2%)(y°) T.

Note that dependent quantterms are especially useful in combination with
a variable type specification affecting the variables it depends on. Suppose

for example that sentence (61) appears in a text in which the variable type
specification from section has been stated. Then its PTL translation

is (65):

(65) (3x° (integer” (z°)ATy° (integer® (yO)AT)) — FFO(20)(y?) T)&Iv M(F°,v)
A3zt (integer® (x°) A T) — Ty (integer®(y°) A RO(x', 4t FO(z)(yY))))

Here the way F gets dynamically introduced allows us to conclude that it is
a unary function defined on integers, whose value at every integer is again a
unary function defined on integers.

Now we explain how to translate dependent quantterms in general. After
parsing and disambiguating a dependent quantterm in the way explained in
section [7.4.6] we have a parse tree for the functional core of the dependent
quantterm (i.e. for F' in the above example), a parse tree for the part following
the — (i.e. for F'(z)(y) in the above example) and a list z1,...,z, of variables
listed in front of the —. Let ¢ and ¢’ be the PTL terms corresponding respectively
to these two parse trees in the way explained in section[7.5.1]and at the beginning
of section

First we produce a provisional translation, in which we pretend that instead
of a dependent quantterm we have a quantterm whose parse tree is the parse
tree of the functional core of the dependent quantterm. In the above example,
is the provisional translation of .

Next we consider the formula of the form 3t ¢, where 3t is the quantification
that corresponds to the quantterm that we imagined in place of the dependent
quantterm. We replace 3t ¢ by (3z1 ...3x, — 3¢’ T) & ¢ in the provisional
translation, thus producing the final translation. Note that this replacement
should be in effect before taking care of variable type specifications in the way
described in section [.5.6l

Additionally to this general definition of the translation, we need to take
care of a special case, namely when the dependent quantterm appears in an ex-
pression starting with “precisely one” or “at most one”. Consider the following
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example sentence, appearing in a text in which the variable type specification

from section has been stated:

(66) There is precisely one map z,y — F'(z)(y) such that for every x there is
a y such that R(z,y, F(x)(y)).

According to the above explanation, its translation would be @:

(67) (3 (integer® (x°)ATy° (integer®(y*)AT)) — IFO(20)(y°) T)&Iv M(F°,v)
A3z (integer® (2°) A T) — Iy* (integer” (y°) A RO(2!, 4, FO(2')(y1))))
A Fv M(v',v) A 3zt (integer®(2®) A T) —

Iy* (integer®(y°) A ROz, y" v(z)(y")))) — F° =)

The difference between the quantification with “some” in and the quan-
tification with “precisely one” in is expressed using an implication whose
antecedent introduces a new variable v’ and asserts of it the same properties as
we have asserted of F?, and whose consequence is the equation F° = v. The
idea is of course that any object having the properties stated about F° is iden-
tical to FO, i.e. that there is only one object with the stated properties. But v’
is introduced explicitly using the quantification Jv’, whereas FY is introduced
implicitly using the implication

32 (integer®(2°) A Iy (integer®(y°) A T)) — IF° () (y°) T.

The additional information contained in this implication is not asserted of v’.

This problem is due to the fact that in the provisional translation we only
changed the quantification 3F° , leaving the quantification v’ unchanged. So
what we need to do is to also replace 3v’ ¢ by

(320 (integer® (2°) A Fy° (integer®(y°) A T)) — 3/ (2°)(y°) T) & .

In general, the provisional translation of a sentence involving a quantification
over a dependent quantterm with “precisely one” or “at most one” contains a
formula of the form Jv ¢, where ¢ asserts of v the properties previously asserted
of the function ¢ introduced by the quantterm. This occurrence of Jv ¢ has to
be replaced by (3z; ...3x, — It (v) T) & ¢, where x1,...,x, are as above
and t'(v) is a modification of the above t', in which the functional core ¢ of ¢/
has been replaced by v.

7.5.8 Metalinguistic constituents

Now we drop the restriction that the text should not contain metalinguistic
constituents.

The basic idea of how to translate metalinguistic constituents is very simple.
Suppose for example that in one place a Naproche CNL text contains a fragment
of the following form, where S; and Sy are simple declarative sentences:

Case 1: S;.
Case 2: Ss.

Case 3: S3.
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If we let ¢(S1), t(S2) and t(S3) denote the translations of S, Sz and (S3) re-
spectively, then the basic idea is to translate metasentences involving anaphoric
meta-NPs referring back to these cases as shown in the following examples:

e Case 1 holds: #(S1)

e Case 1 does not hold: —¢(S)

e Case 1, case 2 and case 3 do not hold: —t(S7) A —t(S2) A —t(S3)

e Case 1, case 2 and case 3 are inconsistent: —(t(S1) A t(S2) A t(S3))

e At most one of case 1, case 2 and case 3 holds: —(¢(S1) At(S2)) A—(¢(S2) A
t(S3)) A =(t(S1) At(Ss))

e Precisely one of case 1, case 2 and case 3 holds: —(£(S1)At(S2)) A—(¢(S2) A
t(S3)) A = (¢(S1) At(S3)) A (#(S1) V t(S2) V £(S3))

However, there is an issue with this basic idea. Consider, for example, the
following fragment from the Naproche CNL adaptation of Landau’s Grundlagen
der Analysis{]

Theorem 9: Fix z, y. Then precisely one of the following cases holds:
Case 1: z =y.

Case 2: There is a u such that x =y 4 u.

Case 3: There is a v such that y = = + v.

Proof:

B) Fix . Let 9 be the set of y such that precisely one of case 1,
case 2 and case 3 holds.

At the position in the text where the metasentence appears, the variable x has
two possible anaphoric antecedents: The occurrence of x fixed at the beginning
of the theorem, and the occurrence fixed at the beginning of part B of the proof.
Similarly, the variable y has two possible anaphoric antecedents, the second one
being the quantterm y appearing in the expression “the set of y such that”.
Assuming that no instances of & and y appear before this text fragment, the
translation of the sentence originally called case 1 is z° = y°. But the intention
of “case 17 in the metasentence is ! = y' and not 20 = ¢°.

One possible solution to this problem is to keep track of the surface form of
a named sentence instead of its translation, and reparse this surface form when
parsing the metasentence. In the above example, we would keep track of the
fact that case 1 is the sentence “x = y”, and not of the fact that the translation
of case 1 is 2% = 9. When reparsing “c = y” in the course of parsing the
metasentence, we have the later introduced = and y as possible anaphoric an-
tecedents, which would get preferred according to the disambiguation principle
mentioned at the end of section Thus we would get the reading z' = y*,
as required.

But there is a serious problem with this proposed solution: If the sentence
involves ambiguities which can get resolved by presupposition checking as de-
scribed in section[7.4.4] the sentence might get disambiguated in a different way

36See appendix [B] for the complete text from which this is a fragment. The issue discussed
here appears in the same form in Landau’s original text, i.e. is not a product of the adaptation
of the text to the Naproche CNL.
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when reparsed. The difference between different readings might amount not
just to a different anaphoric antecedent for a variable, as in the above example,
but even to a different syntactical structure of a parsed formula. Such a differ-
ence in interpretation can however never be intended in the case of anaphoric
meta-NPs. Hence we need a different solution.

The solution is that we do keep track of the translation of the named sen-
tence. But when we reuse this translation in the course of translating a metasen-
tence, we reconsider the possible anaphoric antecedents for the variables appear-
ing freely in the terms of the named sentence. Since the set of possible anaphoric
antecedents might be different than at the position where the named sentence
was originally parsed, it can happen that a variable is given another anaphoric
antecedent than in the original translation. But since we just modify anaphoric
antecedents in the translation and do not reparse the sentence, we cannot get
the problem that the previously proposed solution hadm

There are two more problems with the translation of metasentences involving
anaphoric meta-NPs. The first is a purely syntactical technicality: If the trans-
lation of the named sentence existentially introduces a PTL variable, inserting
a copy of this translation at a later point will cause the niceness properties of
PTL texts defined in chapter 5] to be violated. In order to adhere to the niceness
properties, we need to rename every variable ™ existentially introduced in the
translation of the named sentence to ™, where m is the smallest integer such
that £ does not yet appear in our translation.

The second problem is of a more semantic nature: If the translation of the
named sentences existentially introduces a PTL variable x”, the solution de-
scribed so far would cause the metasentence to make a variable ™ anaphorically
accessible. This does not agree with actual use in the language of mathematics.
Suppose for example that a text contains the following fragment:

(68) Case 1: There is an integer = such that R(x).

If at a later point, where no x is accessible, we write “Hence case 1 holds”,
this does not allow us to speak of x in the subsequent sentence in the way that
the alternative assertion “Hence there is an integer x such that R(z)” does. In
order to correctly model the anaphoric accessibility relation of the language of
mathematics, we prefix the already modified translation of the named sentence
by the operator <, which blocks the accessibility of variables introduced in the
translation.

So far we have only discussed anaphoric meta-NPs. For cataphoric meta-
NPs, the basic idea is practically the same, but the problems discussed above
do not arise in the same way. In the case of cataphoric meta-NPs, the sentences
whose translations have to be inserted into the metasentence are only parsed
after the metasentence. They have not been parsed previously, so the first
problem discussed above does not arise at all. The syntactical technicality
relating to the niceness property of PTL texts can arise, but in a different
manner: In the case of metasentences involving “at most one” or “precisely
one”, the translation of the named sentence may have to be inserted more than
once into the translation of the metasentence. In this case, we also have to
rename existentially introduced PTL variables in all copies of the translation
besides the first.

3TReaders with a computer science background will note that this solution is comparable
to the dynamic scoping of variables that is possible in some programming languages.
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As for the last problem discussed for anaphoric meta-NPs above, cataphoric
meta-NPs behave differently on this issue. Consider for example the following
fragment:

Now the following properties hold:

Property 1: There is an integer k such that R(k).
Property 2: Some odd prime number p divides k.
Observe that 3 does not divide k, so p # 3.

As this example illustrates, variables introduced by a statement in the state-
ment list block announced by the cataphoric meta-NP may become accessible
both for later statements in the statement list block and for the text following
the statements list block. This, however, depends on the form of the metasen-
tence. If instead of “the following properties hold” we have “precisely one of
the following properties hold”, the accessibility is blocked both between state-
ments in the statement list block and between the statement list block and
subsequent text. And if instead of “the following properties hold” we have “the
following properties are inconsistent”, the the accessibility between statements
in the statement list block is conserved, whereas the accessibility between the
statement list block and subsequent text is blocked.

The Naproche-CNL-to- PTL translation takes care of all these issues in the
case of metasentences.

7.5.9 Bi-implications and reversed implications

Now we drop the restriction that the text should not contain bi-implications
and reversed implications.

In bi-implications and reversed implications, a phenomenon similar to that
of the donkey sentences discussed in section [3.1f can be observed:

(69) 2 divides an integer x iff x is even.
(70) Vz (integer(x) — (divide(2,x) <> even(x)))

The natural interpretation of in PL is , i.e. the variable z introduced in
an indefinite noun phrase in the left part (“antecedent”) of the bi-implication is
interpreted as globally universally quantified. This corresponds to the interpre-
tation of mathematical donkey sentences like , where a variable introduced
in an indefinite noun in the antecedent of a usual implication is interpreted as
globally universally quantified:

(71) If a space X retracts onto a subspace A, then the homomorphism
ix : m(A4,29) — m (X, o) induced by the inclusion i : A — X is in-
jective.

The phenomenon appears in the same way in reversed implications:

(72) 2 divides an integer z if x is even.

(73) Vz (integer(x) — (even(x) — divide(2,x)))
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Reversed implications — unlike bi-implications — are common not only in the
language of mathematics but also in general language use. Nevertheless, there
has to our knowledge not been any systematic study of this donkey-sentence-like
phenomenon for reversed implications. It might be the case that in common
language it can be reduced to the phenomenon of generic readings of indefinite
noun phrases (see|/A. Cohen|(2002) for an overview over generic interpretation of
noun phrases). A generic reading differs semantically from a universal reading
in that it is restricted to typical members of a category. But in the language of
mathematics this typicality restriction of generic readings is generally dropped
and generic noun phrases are interpreted in the same way as universal quan-
tifiers. Hence, for the purpose of our interpretation of reversed implications
and bi-implications in the Naproche CNL, we can ignore this possible linguistic
difference between usual donkey sentence and the phenomenon discussed here.

In the discussion that follows we will, for simplifying the exposition, concen-
trate on bi-implications, with the understanding that everything we say could
just as well be said about reversed implications.

In the case of usual implications, the donkey-sentence phenomenon is treated
by the interpretation of 3 and — in PTL and hence does not need to be
treated separately in the Naproche-CNL-to-PTL translation. The analogous
phenomenon for bi-implications, however, presents some problems which the
usual donkey sentences do not present, and which have been the motivation for
treating this issue not within the semantics of the purely formal language PTL,
but within the Naproche-CNL-to- PTL translation.

The first problem is that the conjunct integer(x) A divide(2, x) in the seman-
tics Az (integer(z) A divide(2,z)) that we have so far given to “2 divides an
integer x” has to be split up in order to attain the intended interpretation :
integer(x) has to restrict the universal quantification, while divide(2,x) has to
become one argument of the logical bi-implication. So we cannot make use of
the semantics x (integer(x) A divide(2,x)) in a compositional way.

Note that indefinite noun phrases always give rise to PTL formulae of the
form 3z (¢ A1), where @ results from the indefinite noun phrase itself and
results from other expressions in the semantic scope of the noun phrase (e.g.
from the verb phrase of an NP-VP-sentence of which the noun phrase in question
is the subject). Of course each of ¢ and ¢ may again be a conjunction, but
the bracketing of the complex conjunction which ¢ A % is in that case tells us
which parts come from the indefinite noun phrase itself and which one from
other expressions. The solution to the first problem is that the part ¢ which
results from the indefinite noun phrase itself is used to restrict the universal
quantification over x, whereas the part ¢ which results from other expressions
becomes part of the logical bi-implication.

The second problem is that not every existential quantification in the left
part of a bi-implication is to be interpreted as a universal quantifier outside the
scope of the bi-implication. Consider sentence , whose natural interpretation

in PL is and not :

(74) For all n, n divides a prime number iff n = 1 or n is prime.
(75) Vn (3p (prime(p) A divide(n, p)) <> n = 1V prime(n))

(76) Vn Vp (prime(p) A divide(n,p) <> n =1V prime(n))
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If we interpreted all existential quantifications in the left part of a bi-implication
in a universal way, we would get the interpretation , which however is not
equivalent to the natural interpretation .

In the case of usual implications, this problem does not arise, since 3z P(z) —
Q is equivalent to Va (P(x) — @). Since the analogous formulae involving bi-
implications — 3z P(x) <> @ and Vx (P(x) <> Q) — are not equivalent, the
phenomenon now discussed for bi-implications inherently causes problems that
the donkey sentences cannot cause.

The basic idea for solving this second problem is simple: We give a universal
interpretation only to those existential quantifiers introduced in the left part of
the bi-implication which serve as anaphoric antecedents for an expression in the
right part (“succedent”) of the bi-implication. However, there is a problem with
this basic solution. Consider for example sentence :

(77) An integer k such that k% — 1 is prime divides an integer [ iff 1> — 1 is
prime.

(78) Vi (integer(l) — (3k (integer(k)Aprime(k*—1)Adivide(k,1)) <> prime(12—1)))
(79) Vk VI (integer(k)Aprime(k?—1)Ninteger(l) — (divide(k, 1) <> prime(I*—1)))

According to the basic solution just proposed, only [ would be interpreted in a
universal way, as in . But since [ is introduced after k in the left part of
the bi-implication, it is felt to be somehow dependent on k, which makes it very
unnatural to give it wider scope than k. Hence the interpretation which
gives wide scope and a universal interpretation to both k and [ is naturally
preferred.

Hence we modify our solution to the second problem as follows: If at least
one of the existential quantifiers introduced in the left part of the bi-implication
serves as anaphoric antecedent for an expression in the right part, we give a
universal interpretation to all existential quantifiers introduced in the left part
of the bi-implication preceding or identical to an existential quantifier serving
as anaphoric antecedent for an expression in the right part.

Before we proceed to explaining how this desired interpretation is actually
produced as a PTL translation, we need to say a word about anaphoric ac-
cessibility in bi-implications and reversed implications: Because of this special
semantic handling, the general principle mentioned in section that the PTL
notion of active quantifiers at a given position defines which quantterms may
serve as anaphoric antecedents at the corresponding position in the text cannot
be applied. Instead, we need to say that all quantterms anaphorically accessi-
ble at the end of the left part of the bi-implication or reversed implication are
accessible in the right part.

Now we define the PTL translation that leads to the above interpretation.
Suppose that we have a bi-implication or reversed implication whose left and
right parts are respectively translated by the PTL formulae ¢ and 1. For every
term t such that (3¢,t) € aq(y), we check whether ¢ appears in ¢. If no such
t appears in 1, the translation of the bi-implication or reversed implication is
@ <> ¥ or ¥ — @ respectively. If there is such a t appearing in v, let ty be
the one that is introduced latest in ¢. Now let 3t,,, ..., Ity be the occurrences
of existential quantifiers 3¢t with (3¢,¢) € aq(p) that precede or are identical
with 3tg. Now for every term ¢ among t,...,t, whose existential introduction
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translates an indefinite noun phrase, the existential subformula of ¢ introducing
t has the form 3t (x A x). Let x1,...,xx be the collection of all subformulae
of ¢ appearing in the position of x in such an existential subformula of ¢. Let
¢’ be the formula resulting from ¢ by removing 3t,,..., 3ty and x1,..., X
from @E Then the translation of the bi-implication or reversed implication is
Ftp ... Fto AN Axk) = (@ ) or Tty ... Tto (a Ao Axi) = (0 — @)
respectively.

7.5.10 Accommodation of presuppositions

In this section, we do not discuss a semantic phenomenon already implemented
in the Naproche system, but a phenomenon which could be implemented in
future versions of Naproche.

As discussed in section there can be no global accommodation of pre-
suppositions in mathematical texts, but only local accommodation. We will now
discuss how local accommodation could be implemented within the framework
that we have developed so far.

In the current Naproche system, a failure to prove a presupposition will
always lead to the proof text not being accepted. However, as already mentioned
in section local accommodation of presuppositions is sometimes required
for interpreting real mathematical texts, as in the following example already
discussed in section B.2.4

Suppose that f has n derivatives at zy and n is the smallest positive
integer such that £ (xg) # 0.

(Trench) 2003| p. 102)

Given the machinery developed so far, we can characterize the positions at
which local accommodation is possible as follows: They are those positions of
a text whose PTL translation gets processed within a read_text process of the
proof checking algorithm. Remember that in PTL text fragments processed
by a check_text process not embedded in a read_text process, every assertion
has to be checked, whereas PTL text fragments processed within a read_text
process do not have to be checked but just get translated to PL; nevertheless,
the presuppositions of PTL text fragment processed within a read_text process
do have to be checked.

Let us illustrate this using a simple Naproche text fragment as example.
Suppose that appears in a context where a binary relation > has been
defined on the reals and a function o — z~! has been defined for all reals = # 0:

(80) For every real x such that 2= > 0, z > 0.

When a mathematician reads such a sentence, he does not stop at 2= > 0 to
protest that —! might not be defined since x might be zero, but instead locally
accommodates that ! is defined, i.e. that 2 # 0. So he adds the assumptions
that x is real, that @ # 0 and that x=! > 0 to the local context under which he

380f course, this removal cannot be performed naively on the string of symbols that con-
stitutes the PTL formula . For example, if ¢ is 3ty (xo A X), we of course intend ¢’ to be ¥
and not the ungrammatical string (AX).
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then considers the formula x > 0. Let us now look at the PTL translation

of ﬂ
(81) 3z (real(z) Nz=t >0) =2 >0

Suppose that the gets processed by check_text. The premise list that is
active before checking is assumed to contain information about the presup-
positions of the function = + =1 in the form of the following formula:

Yo (real(v) Av # 0 < vt # u).

The definition of check_text for formulae of the form ¢ — v specifies that first
3z (real(z) Az~ > 0) gets processed by read_text; so by the above characteri-
zation, local accommodation is possible while processing 3z (real(z) Az~! > 0).
When the proof checking algorithm processes 2~ > 0, it produces a presuppo-
sitional proof obligation whose conjecture is =! # u, and whose premise list
contains real(z) as the only information about z. Since nothing in the premise
list informs us that x # 0, this presuppositional proof obligation will not be
proved by the automated theorem prover.

With local accommodation in place, this must no longer mean that the proof
checking fails at this point. Instead, we modify the PTL translation in such a
way that the presuppositional proof obligation no longer fails. More precisely,
we modify the original PTL translation to :

(82) 3z (real(z) Adef(x= ) Az™t >0) =2 >0

Since in the context where this PTL text fragment appears, def(z~!) is equiva-
lent to real(xz) A x # 0, this models our informal explanation of local accommo-
dation in this example.

Having illustrated how local accommodation can work in Naproche, we want
to illustrate with a similar example why accommodation only makes sense within
a read_text process:

(83) For every real o such that = >0, 2! > 0.
(84) Jz (real(z) Az >0) =271 >0

In this example, the processing of z=! > 0 does not take place within a read_text
process, so that we do not only have to prove the presuppositions of z=! > 0
using the premise list that is active when encountering 2= > 0, but also have
to prove = > 0 itself. =! > 0 produces a presuppositional proof obligation
with conjecture ! # u, which can only be proven if x # 0. But nothing in
the premise list of this proof obligation tells us that z # 0. If we now modified
to , we could prove the presuppositional proof obligation produced by
| >0

(85) 3z (real(z) ANz > 0) — def(x= 1) Az™t >0

39For readability, we have left out superscripts from the PTL variables in this PTL trans-
lation of (80), and have written the suffix function —1 in suffix notation and the infix relation
> in infix notation. Below we use analogous notation for modified versions of this PTL text
fragment and for PL formulae produced from this PTL text fragment.
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But now we do not only have to prove the non-presuppositional proof obligation
whose conjecture is 2=! > 0, but also a further non-presuppositional proof
obligation whose conjecture is = # u. Of course this new proof obligation can
only be proved if x # 0, so the proof checking fails at any rate.

Of course, what happened here is that the accommodation of the presup-
position of 7! > 0 is a global accommodation, since inserting def(x~!) into
the PTL formula results in a modification of the global premise list, i.e. of the
global context. We already explained in section [3.2.4) why this is not possible in
mathematical texts; the above example and its clarifications only show how this
explanation can be recast with the formal machinery developed in the course of
this thesis.

Now the proposed solution for generally allowing local accommodation in
Naproche CNL texts is as follows: Whenever a presuppositional proof obligation
called within a read_text process fails and ¢ is the term whose definedness was
checked by this presuppositional proof obligation, we replace the atomic PTL
formula ¢ containing ¢ by def(t) A .

The choice in this proposed solution to insert def(¢) in front of the atomic
formula ¢ containing ¢ (rather than in front of some more complex formula
containing t) amounts to local accommodation always getting performed on the
most local level possible. Compare the discussion at the end of section
where we gave an example of a text where local accommodation is possible
at more than one level. We do not think that mathematicians have a clear
intuition as to which level to prefer for local accommodation in such cases,
so we could have proposed a different choice for such cases. But the solution
we have proposed has the advantage that it is relatively easy to explain to a
mathematician what this amounts to: Our solution amounts to interpreting any
atomic statement involving an undefined term as false.

There is one serious problem with the proposed solution as presented above:
According to our definition of PTL, def(t) is only a legitimate PTL formula if
t is an (-free PTL term. However sometimes, for example in the citation from
Trench| (2003) at the beginning of this section, we need to locally accommodate
presuppositions of definite descriptions, i.e. of PTL terms of the form tx ¢. In
order to solve this problem, we define an extension of PTL which allows for
PTL formulae of the form def(t) for arbitrary PTL terms ¢t. In this case, the
definition of the semantics of def(t) needs to be modified a bit. More precisely,
the only modification needed is in the definition of when [[def(t)]]f]w is defined
(recall that previously [def(t)]}! was always defined):

def([def(t)])") iff for every subterm of ¢ of the form wz ¢ that is not
a subterm of another subterm of ¢ of this form, def([])").

The reason for this modification is to ensure that inserting def(¢) corresponds
to accommodating on the most local level possible: For example, if [def(tx z =
w @z, y))]5 were always defined, inserting def(1z 1y ¢(x,y)) in front of an
atomic formula containing the term tz vy ¢(z,y) would accommodate not only
the presuppositions triggered by tx, but also those triggered by ty. But the
presuppositions triggered by ty should be accommodated within the scope of
the atomic formula = = 1y ¢(z,y) in order to be accommodated at the most
local level possible.

The proof checking algorithm now also has to be modified in order to han-
dle this extension of PTL correctly: The presuppositional proof obligations
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originating from within the scope of an ¢ have to be marked in a special way.
For this we introduce a special marker (PP, which is treated just like the usual
marker P for presuppositional proof obligations in all cases apart the one spelled
out below. Additionally, we need a fourth proof status value u, for signalling
that some presuppositions within the scope of an ¢ have failed. Now the only
parts of the definition of the proof checking algorithm that need to be mod-
ified in a significant way are the definitions of check_text(def(t),I', T, 1) and
read_term(vx @, I, T, p):

check_text(def(t), ', T, u) = (I'1, T, v) -
read_term(t,T, T, u) = (T, _, 1),
= (% | oF TV - T),
[y =(®° | ®F ¢ TV —T),
skiy, ..., sk;, are the skolem function symbols appearing in I's,
I'"=T® Fay,...en) A2 s’fcill Sz?n )
if p=wu, or p =uy,:
vV =1u,,
else:
if p=mu:
vV =u,
else:
if / =w:
v=.1,
else:
V= U.

read_term(vx o, T, T, u) = (T'y, sk, v) -
read_text(p, (x), T, T, n) = (Lo, To, P, p1),
exist_check(0,To, 3z I, @, pu1) = (p2),
if pp = u,:
V=14,
else:
v = update(piz, 0, P(To & (31, <I>Sk2m> V2 (3, @ — x = sk™))),
Iy is 'y with all occurrences of the marker P replaced by (P,
Iy =T @ ((3r, ®EZ)P (Vo (3, @ — x = sk"))F).

xT

The soundness proof for the proof checking algorithm can be adapted to
show that this modified proof checking algorithm is still sound. The details of
this adaptation go beyond the scope of this thesis.

7.6 Complex noun phrases and pluralﬂ

In this section we describe how the semantics of sentences involving complex
and plural noun phrases is defined in the Naproche CNL. For this we first need
to discuss some ambiguities that plurals, both in common language and in the
language of mathematics, give rise to.

The following sentence in common language is ambiguous@

40Most parts of this section are adapted parts of |(Cramer and Schroder| (2012).
41 A comprehensive overview over plural readings is given by |Link| (1991
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(86) Three men lifted a piano.

It can mean either that three men lifted a piano together (in a single lifting
act), or that there were three lifting acts, each of which involved a different
man lifting a piano. The first is called the collective reading, the second the
distributive reading@ The ambiguity arises because the agent of a lifting event
can either be a collection of individuals or a single individual.

In the language of mathematics, both the collective and the distributive
reading exist:

(87) 12 and 25 are coprime.
(88) 2 and 3 are prime numbers.

Instead of , one could also say “12 is coprime to 25.” So the adjective
“coprime” can be used in two grammatically distinct ways, but in both cases
refers to the same mathematical binary relation: either it is (predicatively or
attributively) attached to a plural NP that gets a collective reading, or it has
as a complement a prepositional phrase with “t0”. When used in the first way,
we call this usage of “coprime” a collective usage of a transitive adjective, when
used in the second way, a transitive usage of a transitive adjective. We say
that the two logical arguments of “coprime” can be grouped into one collective
linguistic argument, a plural NP with a collective reading. In general, mathe-
matical adjectives expressing a symmetric binary relation have these two uses
(cf. “parallel”, “equivalent”, “distinct”, “disjoint”; in the case of “distinct” and
“disjoint” , the preposition used for the transitive case is “from” rather than
“t0”). Other cases of grouped arguments are “z and y commute” (cf. “z com-
mutes with y”) and “z connects y and z” (cf. “z connects y to 2”). “x is
between y and z” is an example of an expression with a grouped argument for
which there is no corresponding expression without grouped arguments.

Since “prime number” expresses a unary relation, it is not possible to group
two of its logical arguments into a single linguistic argument; this explains why
cannot have a collective reading of the sort that has. Which expressions
can have grouped arguments is coded into the lexicon of the Naproche CNL.

An ambiguity like that of can only arise when an expression (here
the verb “to lift”) has a linguistic argument that can be either a collectively
interpreted plural NP or a singular NP (and can hence also be a distributively
interpreted plural NP). Such expressions are extremely rare in the language of
mathematics. One example that we are aware of is the adjective “inconsistent”:

(89) ¢ and % are inconsistent.

can be mean either that the set of formulae {p, 4} is an inconsistent set
of formulae, or that ¢ is inconsistent and v is inconsistent. This ambiguity
is avoided in Naproche by not marking “inconsistent” as an expression with
grouped arguments in our lexicon, so that only has the distributive read-
ing; the collective reading can only be expressed with explicit set notation in
Naproche.

42We ignore cumulative readings here, because they play a negligible role in the mathemat-
ical contexts we have in mind.
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7.6.1 Scope ambiguity

Another kind of ambiguity of special interest for our treatment of plurals and
noun phrase conjunctions is a scope ambiguity that arises in certain sentences
containing a noun phrase conjunction and a quantifier:

(90) A and B contain some prime number.

can mean either that A contains a prime number and B contains a (possibly
different) prime number, or that there is a prime number that is contained in
both A and B. In the first case we say that the scope of the noun phrase
conjunction “A and B” contains the quantifier “some”, whereas in the second
case we say that the scope of “some” contains the noun phrase conjunction.
We call the first reading the wide-conjunction-scope reading and the second the
narrow-conjunction-scope reading.

Sometimes certain considerations of reference or variable range force one of

the two readings, as in and .

(91) « and y are integers such that some odd prime number divides = + y.

(92) z and y are prime numbers p such that some odd prime number ¢ divides

p+ 1]

only has a narrow-conjunction-scope reading, because the existentially in-
troduced entity is linked via a predicate (“divides”) to a term (“x + y”) that
refers to the coordinated noun phrases individually. on the other hand only
has a wide-conjunction-scope reading, because the variable p must range over
the values of both x and y, and ¢ depends on p.

Recall the semantic disambiguation principle mentioned at the beginning of
section namely that a quantifier that is introduced earlier in a sentence
is always given wider scope than a quantifier introduced later in the sentence.
With the addition of complex noun phrases, we extended this principle to their
scopes, with the exception of the cases like (91) where another reading is forced
by certain syntactical considerations. Section [7.6.4] contains an account of how
cases like are identified.

7.6.2 Pairwise interpretations of collective plurals

In mathematical texts, one often sees sentences like and , which are
interpreted in a pairwise way as in and @

(93) 7, 12 and 25 are coprime.
(94) All lines in A are parallel.

(95) coprime(7,12) A coprime(12,25) A coprime(7,25)

43Given that this example is made up, one might ask whether it really occurs in mathemat-
ical texts that a plural noun followed by a variable is predicatively linked to a conjunction of
terms as in this example. One real example that we found comes from page 4 of|G. L. Cohen
(2003)): “Notice that 13, 37, 61, ..., are primes p such that p? + 2 and p> 4 1 are squarefree.”

*3In this section, we use ordinary PL formulae to spell out interpretations of example
sentences.
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(96) Va,y € A (z # y — parallel(z, y) {7

Sometimes, especially in connection with the negative collective adjectives “dis-
tinct” and “disjoint”, this interpretation is reinforced through the use of the
word “pairwise”, in order to ensure that one applies the predicate to all pairs
of objects collectively referred to by the plural NP. But given that this pairwise
interpretation is at any rate the standard interpretation of such sentences even
in the absence of the adverb “pairwise”, we decided not to require the use of
the word “pairwise” in the Naproche CNL.

7.6.3 Non-plural complex noun phrases
Consider the five following example sentences:

(97) 3 and 4 are coprime.
(98) 3 and the smallest even positive square number are coprime.
(99) “3 and some even integer are coprime.
(100) *Every odd integer and some even integer are coprime.
(101) *3 or 4 is coprime.

While and are normal expressions, is a somewhat unusual wording,
but still intelligible, whereas and do not make any sense. The reason
is that the subject of “coprime” must refer to a collection of two or more objects
to which we can apply the pairwise reading discussed in section [7.6.2 above. A
conjunction of terms can always be interpreted as referring to the collection
of objects referred to by the conjuncts. But noun phrases with a universal
or negative determiner do not refer to to a fixed object, so that conjunctions
involving them cannot be interpreted as referring to a fixed collection of objects.
(In the case of a noun phrase with an indefinite determiner as in (99), it is
possible to consider it to both dynamically introduce an object and to refer
to that introduced object. In this way it is possible to make sense of )
Disjunctions can never be interpreted as referring to a collection of objects.

This motivates the following distinction: A complex noun phrase is called a
plural complex noun phrase iff it is a conjunction of noun phrases which are terms
or which are determiner noun phrases with a definite or indefinite determiner.
The semantics of plural complex noun phrases will be defined through the plural
interpretation algorithm described in section below. In this section we
describe the semantics of non-plural complex noun phrases.

A non-plural noun phrase conjunction is always translated by a conjunction
of formulae, where each conjunct in the translation is the translation of the
sentence resulting from replacing the noun phrase conjunction by one of its
conjuncts. Consider for example sentence , whose translation is :

(102) Every odd integer and some even integer are prime.

(103) (F0 odd’ (v') A integer®(v') — prime(v')) AFv” (even®(v"") Ainteger® (v"") A
prime(v"))

45The distinctness condition here can be ignored in the case of reflexive relations like “par-
allel”, but is certainly needed for non-reflexive relations like “coprime” or “disjoint”.
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The first conjunct of can be considered to be a translation of “Every
odd integer are prime”, ignoring the ungrammaticality of this sentence that is
due to the lack of agreement between the subject and the verb with respect to
grammatical number (note that the definition of our semantics does not depend
on this agreement being fulfilled). Similarly the second conjunct of can
be considered to be a translation of “Some even integer are prime”.

The same principle can be adapted to noun phrase disjunctions, as in the
following example:

(104) n divides every odd integer or some even integer.

(105) (30" odd’ (v') Ninteger® (v') — divide(n,v'))VIv” even? (v") Ninteger” (v") A
divide(n,v'"")

If more than one non-plural complex noun phrase appears in a sentence,
we begin the replacement of complex noun phrases by one of their conjuncts
or disjuncts at the first non-plural complex noun phrase in the sentence. The
sentence resulting from this first replacement has one non-plural complex noun
phrase less. So by recursion this defines a procedure to translate sentences
involving any number of non-plural complex noun phrases. The choice to start
at the first non-plural complex noun phrase was made in order to ensure the
adherence to the semantic disambiguation principle mentioned above at the
end of section that a complex noun phrase that is introduced earlier in a
sentence is always given wider scope than a complex noun phrase introduced
later in the sentence.

7.6.4 The plural interpretation algorithm

We have implemented a plural interpretation algorithm in Naproche which can
cope with plurals, plural ambiguity resolution and pairwise interpretations as
explained in the introduction to section [7.6] and in sections [7.6.1] and [7.6.2] We
illustrate how the algorithm treats plurals by considering the following example
sentence (appearing in a context where x and y are accessible):

(106) x and y are distinct primes p such that p+1 is a square number and some
odd prime divides = 4 y[™]

This example has only one natural reading, and illustrates all the natural disam-
biguation methods mentioned in the previous sections: The plural construction
“x and y” is modified by one predicate (“distinct”) that needs to be interpreted
collectively and by one predicate (“prime”) that needs to be interpreted distribu-
tively. One of the existential NPs in the such-that clause (“a square number”)
has to be given a narrow scope, while the other (“some odd prime”) has to be
given a wide scope. The algorithm specifies a formal procedure to attain this
natural reading.

46For the sake of simplicity, we consider “square number” a single two-word noun, and
translate it to PTL as square.
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The algorithm works by first producing a preliminary translation into an
extension of PTL. The preliminary translation of (106 is as followsﬂ

plural(uy o, 3p (distinct(p) A prime(p) A v (square(v) Av = +(p,1))A
Jw (odd(w) A prime(w) A divide(w, +(x,y))) A Ugy = D))

The extension of PTL used here has two features that do not exist in PTL:

e It allows for plural variables, which are written like normal PTL variables
but which have a list of PTL terms as subscript. Plural variables are
used when translating plural complex noun phrases. The terms in the
subscript of a plural variable correspond to the single conjuncts of such a
conjunction.

o It allows for formulae of the form plural(z, ¢), where z is a plural variable
and ¢ is a formula. The ¢ is the translation of everything in the logical
scope of the plural complex noun phrase translated by x (e.g. the complete
NP-VP-sentence of which this complex noun phrase is a subject).

The above explanations already suggest how the preliminary translation can be
obtained from a Naproche CNL sentence. Since the construction of such pre-
liminary translations works along the same lines as the Naproche-CNL-to-PTL
translation defined above, we will not say more on this, but instead concentrate
on the algorithm needed for transforming this preliminary translation into the
final PTL translation of the sentence.

Note that in this preliminary translation, the relation symbols that translate
transitive adjectives can be used in a unary way, i.e. with a single argument.
They are translated in this way when used without being followed by a prepo-
sition phrase indicating the second argument of the transitive adjective. As
explained in section such uses of transitive nouns are only allowed in plural
NPs and VPs. The plural interpretation algorithm ensures that the unary uses
of these relation symbols get replaced by binary uses in the final PTL trans-
lation. Furthermore, note that the transitive adjective “distinct”, which has
a special semantics (Az.\y.—y = x), is translated as distinct. The special se-
mantics of “distinct” is taken care of as soon as the unary usage of distinct is
replaced by a binary usage.

The goal of the algorithm is to eliminate the plural variables in favour of the
terms they subordinate. This has to be done separately for the distributively
and collectively interpreted parts. Certain variables introduced in the scope of
the plural may depend on collective uses of the plural variable (compare example
in section above, in which ¢ depended on p).

The algorithm consists of one preliminary normalization step followed by the
following five steps: For each plural variable:

1. Mark the collective uses of the plural variable.
2. Mark the distributive uses of the plural variable and dependent variables.

3. Separate the scope of distributive uses of the plural variable from the rest.

47For the sake of readability, we leave out superscripts in the PTL variables and use u, v, w
instead of v/, v, v'".
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4. Replace collective variable occurrences.
5. Replace distributive variable occurrences.

Now we describe each of the steps in more detail:

0. Normalization:

First we normalize the plural(z,, . . ,.,®)-construct. This normalization can
be divided into two sub-steps: In the first, the formula ¢ in this construct
is replaced by a logically equivalent PTL formula ¢’, in which all existential
quantifiers that are active quantifiers in ¢ appear at the onset of the formula.
The following diagram shows how this affects the preliminary translation in our
example:

plural(uy ,,,3p (distinct(p) A prime(p) A v (square(v) Av = +(p,1))A
Jw (odd(w) A prime(w) A diwvide(w, +(x,y))) A Ugy = p))

$

plural(uy ,3p Fv Jw (distinct(p) A prime(p) A square(v) Av = +(p, 1)A
odd(w) A prime(w) A divide(w, +(z,y)) A ug,y =D))

In what follows, we will often need to refer to the conjuncts of the conjunction
that follows the quantifiers in ¢’; for this we will just use the term “conjunct”
without any further specification.

If the existential quantifiers at the onset of the thus produced ¢’ introduce
a variable z which is equated by one of the conjuncts with the plural vari-
able x,, ., of the plural(z,, . ,p)-construct, we delete 3z and the equating
conjunct from ¢’ and replace both z,,, ., and z by z,, . throughout. In
our example, Jp and u, , = p are deleted and u, , and p are replaced by py
throughout, as shown below:

plural(uy ,3p Fv Jw (distinct(p) A prime(p) A square(v) Av = +(p, 1)A
odd(w) A prime(w) A divide(w, +(z,y)) A ug,y =D))

$

plural(py y,Iv Jw (distinct(ps,y) A prime(pg y) A square(v) A v = +(pgy, 1)A
odd(w) A prime(w) A divide(w, +(z,y))))

1. Marking the collective uses of the plural variable:

We mark every conjunct which consists of a predicate that has the plural variable
as grouped argument (“distinct(p)” in the example formula, marked by boldface
below). That the plural variable is a grouped argument is derived from the fact
that the number of arguments, with which the predicate appears in the conjunct,
is one less than its logical number of arguments fixed in the lexicon, and from
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the fact that the lexicon specifies the possibility of grouping two of its arguments
into one.

plural(py ,3v Jw (distinct(ps ) A prime(py y) A square(v) Av = +(pg,y, 1)A
odd(w) A prime(w) A divide(w, +(z,y))))

$

plural(pg ,y,3v Jw (distinct (pg,y) A prime(pg ) A square(v) A v = 4+(pg,y, 1)A
odd(w) A prime(w) A divide(w, +(x,y))))

2. Marking the distributive uses of the plural variable and dependent
variables:

We recursively mark (in the example by underlining) all conjuncts that were not
marked in step 1 and contain the plural variable or a marked variable, and all
variables contained in a conjunct marked in this way, until no more conjuncts
and variables can be marked by this process:

plural(pg ,,3v Jw (distinct (pg,y) A prime(pa,y) A square(v) Av = +(pgy, 1A
odd(w) A prime(w) A divide(w, +(x,y))))

$

plural(py ,3v Jw (distinct (pa,y) A prime(pg ) A square(v) A v = +(pg,y, 1)A
odd(w) A prime(w) A divide(w, +(z,y))))

3. Separating the scope of distributive uses of the plural variable
from the rest:

All variables (together with their quantifiers) and conjuncts not marked in step
2 get pulled out of the plural(x,, .. ., ,¢)-construct and inserted to the left of
this construct

plural(pg ,,3v Jw (distinct (pg,y) A prime(pa,y) A square(v) Av = +(pgy, 1A
odd(w) A prime(w) A divide(w, +(z,y))))

§

Jw distinct(pg.y) A odd(w) A prime(w) A divide(w, +(z,y))A
plural(pg , v (prime(pg ) A square(v) Av = +(ps,y,1)))

48Since this step moves quantifiers and conjuncts around, one might wonder whether it
can cause formerly bound variables to become free. This, however, is impeded by the recur-
sive procedure in step 2: If a certain variable stays in the plural(zy, ... y, , ¢)-construct, no
condition containing this variable can be pulled out of this construct.
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4: Replacing collective variable occurrences:

For every formula R(zy, ... ,,.) with grouped argument z,, ., , and every pair
(Yi,y5) € {y1,--.,yn} with i # j, we create a formula of the form R(y;,y;) and
remove the original formula R(z,, . ) by a conjunction of all formulae thus
created. This is also the place where binary usages of distinct are replaced by
the special semantics Az.A\y.—y = = of “distinct” (in our example this amounts
to replacing distinct(py ) by -z = y):

Jw distinct(pg,y) A odd(w) A prime(w) A divide(w, +(x, y))A

PUal(pay, Fo (prime(pay) A square(v) Av = +(pays 1))

$

Jw -z =y A odd(w) A prime(w) A divide(w, +(z,y))A
plural(pg ,y, Jv (prime(pg. ) A square(v) Av = +(pgy, 1))

5. Replacing distributive variable occurrences:

Consider the remaining plural(x,, ..., ,®)-construct. For every term y; subor-
dinated to the plural variable z,, . .., we make a copy of G¢ in which every
instance of x,,,. . 4, is replaced by y;. The conjunction of these copies of O
replaces the plural(zy, .. 4., )-construct:

yeeey

Jw —x =y A odd(w) A prime(w) A divide(w, +(z,y))A
plural(pa,, o (prime(py ) A square(v) A v = +(pay, 1)))

¢

Jw -z =y A odd(w) A prime(w) A divide(w, +(z,y))A

ST (prime(x) A square(v) Av = +(x,1))A

ST (prime(y) A square(v) Av = +(y, 1))
There is a technical problem related to this step: In our example, the variable
v gets existentially introduced twice, once in each copy of ¢ produced at this
step. This violates the niceness properties of PTL texts defined in chapter ] In
order to adhere to the niceness properties, we additionally rename every variable
z existentially introduced in the y;-copy of Go by zy,:

Jw -z =y A odd(w) A prime(w) A divide(w, +(z,y))A

T (prime(x) A square(v) Av = +(x,1))A

O3 (prime(y) A square(v) Av = +(y, 1))

§
Jw —x =y A odd(w) A prime(w) A divide(w, +(z,y))A

T, (prime(z) A square(vy) A vy = +(x,1))A
O3Jvy (prime(y) A square(vy) A vy = +(y, 1))

This final PTL formula corresponds to the natural reading of sentence (106)
that we described at the beginning of this section.
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7.7 Coverage of the Naproche CNL

In this section we will give some clarifications about the coverage and the limi-
tations of the Naproche CNL and discuss some possible extensions to this CNL.
Since the coverage of the symbolic part of the Naproche CNL was already dis-
cussed in section 21} we will focus here mainly on the textual parts of the
language, and to a lesser extent on the macro-grammatical coverage.

As explained in section [I.3.2] of the introduction, mathematical proofs can
in general be modelled by proofs in some formal system, such as first-order
logic together with the set-theoretic axioms of ZFC. Since the Naproche CNL
has a much higher expressivity than such formal systems, mathematical proofs
can similarly in general be modelled in the Naproche CNL. But as described in
section[I.3:2] the modelling of mathematical proofs in ZFC is not very faithful to
the original: The translation of mathematical statements into the basic language
of ZFC with € as the only non-logical symbol causes a massive blow-up in the
length of the text. Furthermore, there is also a massive blow-up in the number
of proof steps needed in order to model a normal mathematical proof in one of
the standard fine-grained proof calculi for first-order logic.

The goal of the Naproche CNL is, of course, to be more faithful to the original
and to avoid this blow-up as much as possible. To which degree the number
of proof-steps needs to be increased depends on the strength of the automated
theorem provers used in the proof-checking module of Naproche; so this does
not directly depend on the expressive strength of the CNL that we want to focus
on in this section. Hence we will focus on the question how faithful a Naproche
CNL adaptation of a mathematical text can be if we ignore the problem of it
possibly containing proof steps that the proof-checking module cannot follow.

As should already be evident from the description of the Naproche CNL
syntax in the previous sections and from the example sentences presented in
order to illustrate this description, the Naproche CNL contains a large number
of natural language constructs commonly used in mathematical texts. Given
a mathematical text that needs to be adapted to the Naproche CNL, these
constructs make it possible to leave many parts of such a text unchanged, and
make it possible to adapt the parts that have to be changed in a way that still
sounds relatively natural and does not use much more lengthy expressions than
the original.

So far, the coverage of the Naproche CNL has not been evaluated quantita-
tively: Such an evaluation would require choosing diverse mathematical texts
and trying to translate them into the Naproche CNL, staying as close as pos-
sible to the original, and, when this is not possible, choosing the most concise
Naproche CNL expressions logically equivalent to the original. This is, of course,
a highly non-trivial task. Given that the research conducted for this thesis did
not just aim at a rich mathematical CNL, but also at successful proof checking
of mathematical texts adapted to the CNL, we did not make the effort to adapt
mathematical texts which would at any rate not have been proof-checkable. The
texts that we did adapt to the Naproche CNL are the first chapter of Edmund
Landau’s Grundlagen der Analysis, which can be found in appendix [B] and
which is discussed in detail in chapter [8] as well as the first five theorems of
Euclid’s Elements together with an axiomatization of geometry based on the
system E by |Avigad et al. (2009), consisting of more than eighty axioms. The
successful adaptation of these texts to the Naproche CNL must of course be
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considered in the light of the fact that the language was extended in order to
make certain constructs appearing in these texts be more faithfully represented
in the Naproche CNL.

Given that the Landau’s Grundlagen der Analysis uses the textual parts of
the language of mathematics very schematically, the same holds for its adap-
tation to the Naproche CNL, so that this text does not give a good picture of
what is possible in the textual part of the Naproche CNL. In order to illustrate
better the expressiveness of the textual part of the Naproche CNL, we have
written the following geometric text in the Naproche CNL. All sentences in this
text are interpreted by the Naproche system in the way that a mathematical
reader would naturally interpret them.

Axiom 1: For all points p, ¢, there is precisely one line L such that
p and g are on L.

Axiom 2: If Ly and Lo are distinct lines, then there is at most one
point p such that p is on L; and Ls.

Suppose that there is a set R of objects called numbers and a binary
function + and a binary relation < and a number 0 in R satisfying
the following axioms:

Axiom 3: For all points p, ¢ there is a number d(p, q).
Axiom 4: For all points p, ¢ and o, d(p,0) < d(p,q) + d(g,0).

Axiom 5: Let p be a point and r be a number. Then there is a point
g such that d(p,q) = r.

Axiom 6: For every number r, there is a number —r such that
r+(—r)=0.

Definition 7: Define line L and line M to be parallel iff L = M or
no point is on L and M.

Lemma 9: If L and M are parallel lines, then there is a number
D(L, M) such that the following properties hold:

Property A: There is a point p on L and a point ¢ on M such that
D(L, M) = d(p, q).

Property B: For all points p, ¢ such that p is on L and ¢ is on M,
D(L, M) < d(p, q).

Proof: Trivial. Qed.

Theorem 10: Suppose that L is a line. Then there are functions fr,,
gr, satisfying the following properties:

Property A: For every line M such that M is parallel to L, fr(M)
is a number such that fr, (M) = D(L,M) or fr,(M)=—D(L,M).
Property B: For every number r, gz, (r) is a line and g, (r) is parallel
to L.

Property C: For every line M, g1 (frL(M)) = M.

Property D: For every number r, f1,(gr(r)) = r.

Proof:
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Clearly there is a point p not on L and a line NV such that p is on
N and L and N are not parallel. Then there is precisely one point
q such that ¢ is on L and N.

Let M be a line such that M is parallel to L. Then there is precisely
one point pys such that pps is on M and N. Now if L # M, then
precisely one of the following cases holds:

Case 1: d(q,pm) + d(par, p) = d(q,p).

Case 2: d(par,q) + d(q,p) = d(py,p)-

So there is precisely one number fr, (M) such that case 1 holds and
fo(M) = D(L, M) or case 2 holds and fr(M) = —D(L,M). Thus
property A holds. Furthermore, for every number r there is precisely
one line gy, (r) such that f1(gr(r)) = r and gr(r) is parallel to L.
Now this in turn implies that property B, property C and property
D hold. Qed.

There are, of course, many common constructs in the language of mathemat-
ics that have not yet been included in the Naproche CNL. Some of them would
require new techniques for parsing, disambiguating and semantically interpret-
ing them to be included, whereas others could easily be added to the system as
it is, and have only not been added so far for the lack of need to do so. In order
to give the reader a feeling of what kind of limitations the Naproche CNL has,
we now present a list of such missing linguistic constructs that we are aware of.
We start with constructs that could easily be added to the current system:

e Transitive nouns, i.e. nouns that express binary relations and similarly
to transitive adjectives use a postposed prepositional phrase with a fixed
preposition, in most cases “of” (e.g. “divisor of n” or “subgroup of G”)

e More flexibility with expressions similar to “at most one” and “precisely

— The expression “at least one” besides “at most one” and “precisely
one” for forming existentially quantified sentences

— These three expressions as determiners for determiner noun phrases
and not only for existentially quantified sentences with “there to be”
or “there to exist”

— “at least”, “at most” and “precisely” followed by other number words
than “one”

— The adjective “unique” with the same semantics as the determiner
“precisely one”

e The {... | ...} notation for sets (e.g. {z | z C A}) additionally to its
already supported textual counterpart “the set of ...such that ...”

e Transitive adjectives followed by a propositional phrase (e.g. “parallel to
L") as postmodifiers and not only as predicatives in copula verb phrases

e Existential statements with “for some ...” analogously to the existing
“for all”
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2 b2

e Assumptions of the form “Fix ...”, “Consider ...” and “Let ...be given”
with indefinite determiner noun phrases (e.g. “an integer k”) instead of
just quantterm lists in the position of the dots

e More flexibility in the wording of definitions:

4 )

— Expressions like “we say” and “we define” as alternatives to the cur-
rently supported “define” at the beginning of definitions; definitions
preceded by a definition heading may even lack such an expression (so
“n is even iff there is some k such that n = 2k” could be a definition
if it follows a definition heading).

— Definitions with “:=” (e.g. f(z) := 2?) additionally to their already
supported textual counterpart “Define ...to be ...”

— Bi-implicational definitions with “if” instead of “iff” (compare foot-
note [4] in section |1.2)

— Definitions of transitive adjective with plural determiner noun phrases
containing a two-variable variable list (e.g. “Define lines L and M to
be parallel iff ...”) instead of a conjunction of two determiner noun
phrases (e.g. “Define line L and line M to be parallel iff ...”)

— Definitions that fix the meaning of a preposition (e.g. “Define a to
be above b iff m3(a) > m2(b).”

T ifx>0

e Case distinctions inside symbolic material, e.g. |x| =
—z otherwise.

e Inflected forms of “to be defined” (e.g. “+ is defined”)

e Symbolic terms prefixed to nouns, adjectives, verbs or suffixes (e.g. F-
module, (Z x Z)-module, p-adic, n-ary)

e Verb phrases coordinated with “and” and “or”

e Ending proofs by contradictions with expressions like “which contradicts
Theorem 7”7 postfixed to a sentence, instead of with a separate sentence
of the form “contradiction by Theorem 7”

e Variable type specifications that link a predicate not to all variable sym-
bols of a predefined class (like small Greek letters), but to a list of variable
symbols explicitly stated (e.g. “a, 8 and v will stand throughout for or-
dinals.”)

e A larger lexicon of nouns, verbs and adjectives usable in the Naproche
CNL than that currently supportec@

Now we present missing linguistic constructs that would require additional
techniques for their interpretation or disambiguation. How involved the elabo-
ration of these required additional techniques would be varies greatly between
the different constructs: For some of them one could take over existing inter-
pretation and disambiguation techniques from the linguistic literature or from

49Gee the lexicon at the end of the formal textual grammar in section of appendix
for a list of the currently supported nouns, verbs and adjectives.
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existing applications of computational linguistics, whereas others would require
novel techniques adapted to the language of mathematics to be developed. For
each linguistic construct presented in this list, we briefly touch on the kind of
techniques required and the expected difficulty of elaborating these techniques.

e Inflected forms of “to have” as well as “with” or “without” followed by
a noun phrase whose head noun is a transitive noun which has “of” as
its fixed preposition (e.g. “n has an odd prime divisor”, “f) has no proper
subset”, “a number with an odd prime divisor”, “a number without odd
prime divisor”)

(It is easy to develop an interpretation algorithm for a construct of a
fixed form, e.g. for “to have” followed by an indefinite noun phrase with
such a transitive noun. But it is not a priori clear in which way the
different possible forms (noun phrases with various determiners preceded
by either “to have”, “with” or “without”) can be given a unified semantic
treatment.)

e The expressions “at least”, “at most” and “precisely” followed by a natural
number variable instead of a number word

(If the system is based on a foundational theory that knows of natural
numbers and of the relation < on them, then this is easy to implement.
CMTN knows of natural numbers, but < is not axiomatized in it, though
it could easily be expanded to include an axiomatization of <. But, as
described in appendix[C}, CMTN is not implemented in the current system,
nor does the foundation theory implemented know anything about natural
numbers.)

7

e A noun phrase postmodifier of the form “defined on ...” (e.g. “a function
defined on R” or “a binary relation defined on positive integers”)

(The only difficulty here is the flexibility required: “defined on” may be
followed by singular noun phrase explicitly referring to a set or by a plural
noun phrase that can be considered to refer to a collection; the interpre-
tation of “defined on ...” depends on the arity of the function or relation
referred to by the noun phrase preceding “define on”; the ideal case would
be that the interpretation of “defined on ...” is even successful if the arity
of this function or relation is only specified later, though this is likely to
be hard to implement.)

e Certain restricted uses of the ellipsis (“...”) used in symbolic parts of the
language of mathematics, for example “1 +---+n” or “for all vy,...,v,”

(A CNL cannot include all possible uses of the ellipsis found in mathemat-
ical texts, since its usage is too diverse and its interpretation too much
based on heuristics and mathematical intuition to define a deterministic
interpretation algorithm for all possible uses of the ellipsis. But single
uses of the ellipsis, like those cited above, can be given a determinate
formal semantics@ One should study the possibility of giving a unified
semantic account of as many such uses of the ellipsis as is possible under

50The formal semantics of “for all v1,...,v,” must universally quantify over a function

defined on {1,...,n}; in other words, it should be given the same semantics as the expression
“for every function i — v; defined on {1,...,n}”.
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the restriction that the interpretation algorithm for these uses should be
deterministic and not dependent on heuristics.)

e The word “respectively” in expressions like “c+ 2z <y+z, z+z=y+ =2
and x4+ 2z >y + 2z imply z < y, © =y and = > y respectively”

(The interpretation of plurals discussed in section needs to allow for
special cases when the word “respectively” is used in such ways. The
single special cases are certainly easy to elaborate, but it is likely to be
more difficult to ensure that all ways in which “respectively” is used are
included in the CNL.)

e It should be possible to postfix quantterms with a binary infix relation
symbol followed by a second argument for the relation (e.g. “there is some
xeA)

(The problem here is that the quantterm as well as the second argument to
the relation may be complex, which makes it hard to recognize where the
relation symbol is. Currently the quantterm and term grammar are com-
pletely separated and even use different parsing techniques, so unifying
them is technically difficult. Additionally, new disambiguation principles
would be needed for this kind of symbolic expressions: Note that quant-
terms may even reintroduce a symbol previously introduced, now with a
new meaning; one needs to ensure that the infix relation symbol is not the
head of the quantterm and is not being reintroduced with a new meaning.)

e Terms consisting of an accessible function applied to quantterms, used in
a quantterm position (e.g. “There is a fraction %”)

(Again, the problematic case are complex quantterms and the interaction
between the quantterm grammar and a construct currently implemented
only in the term grammar. In a previous version of Naproche, when only
simple variables could be used in positions where we now have quantterms,
this kind of expression was already possible, but it had to be removed in
order to make the flexible quantterm grammar possible. If we want to rein-
troduce it, we need to develop disambiguation techniques to distinguish
such terms from usual quantterms.)

e Allowing universal and existential quantifications with “for all” or “for
some” to be postposed instead of preposed to their scope (e.g. “z + 1y’ =
(x +y) for all z,y”)

(Here a special disambiguation principle for determining where the scope
of such a quantification starts in a complex sentence might be required.)

e Relative clauses with “which” and “that” (e.g. “a number that divides 12”
or “a number which 2 and 3 divide”)

(If the relative pronoun is to be allowed to have other syntactic functions
in the relative clause than that of its subject, then one needs to take care
of the gap left in the relative clause. For example, in “a number which
2 and 3 divide”, no object follows the transitive verb “divide”, since the
relative pronoun “which” already has the syntactic function of an object.)
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e The determiner “any”

(For this, one needs to include a syntactic distinction that specifies in
which position “any” is interpreted like an indefinite determiner and in
which positions like a universal quantifier.)

e Natural language anaphora:

— Anaphoric pronouns (“it” and “they”)

(These would require principles for anaphora resolution, i.e. for de-
termining the antecedent of such anaphoric pronouns, to be included
in the Naproche CNL. These principles should be simple enough so
that authors of Naproche CNL texts can ensure that the anaphoric
pronouns they use get resolved in the intended way. These princi-
ples could be taken over from existing general purpose CNLs like
Attempto Controlled English. However, it might be desirable to
consider specifics of the language of mathematics with respect to
anaphora resolution.)

The determiner “such a” for referring to a recently mentioned prop-
erty (e.g. “such a function” for a function satisfying certain properties
of functions that were recently mentioned)

(Just as for “it” and “they”, anaphora resolution principles would be
required. Unlike for “it” and “they”, such principles probably have
not yet been developed for “such a” in any existing CNL.)

— The expression “otherwise” for introducing an assumption that negates
a previously made statement
(Just as for “it”, “they” and “such a”, the CNL would have to include
anaphora resolution principles, in this case for determining which pre-
viously made assertion is being negated. In the case of “otherwise”
these anaphora resolution principles certainly need to take into ac-
count specifics of the language of mathematics.)

— Anaphoric definite noun phrases, i.e. anaphoric usage of “the” (e.g.
“the group” to refer to a group previously mentioned; compare sec-
tion
(New disambiguation principle would be required to distinguish an-
aphoric definite noun phrases from the already supported definite
descriptions with “the”.)

e Constructs like “We still need to show that ...”

(Such constructs only make sense if the proof-checking module can follow a
goal-oriented approach, similar in nature to the backward reasoning briefly
described in the subsection about HOL in section [[3.3] of the introduction:
The assertion of a theorem or lemma can be considered a goal of the proof
that follows it, and certain proof steps can be considered to simplify this
goal. Once such a goal-oriented approach is implemented in the proof-
checking module, it is both natural and unproblematic to include linguistic
constructs like “We still need to show that ...”.)

e It should be possible for definitions of nouns, verbs and adjectives to dy-
namically extend the lexicon, so that one can introduce such words in
definitions even if they do not appear in the lexicon of the Naproche CNL.
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(Given that in the current Naproche system relation and function symbols
are not listed in a lexicon but have to be introduced in some way in the
text, e.g. by definitions, the machinery for such dynamic extensions of the
lexicon already exist. But for nouns and verbs we would need additional
rules for determining their various inflected forms once some base form
has been introduced in a definition. The preposition to be used with a
transitive adjective dynamically added to the lexicon would either have to
be stated in the definition or be recognized at its first usage.)

Note that some of the proposed extensions could, in combination with some
existing disambiguation principles, lead to a different interpretation of sentences
already included in the current Naproche CNL. For example, the addition of
anaphoric definite noun phrases would cause some noun phrases starting with
“the” to be interpreted as anaphoric definite noun phrases, which would cur-
rently be interpreted as definite descriptions.

A different kind of limitation of the Naproche CNL is caused by some strict
syntactic postulations that were included in order to make the CNL unambigu-
ous. For example, every assumption that is to be retracted without closing the
structural block in which it was introduced needs to be retracted by a sentence
starting with “thus”, and this is the only allowed way of using “thus”. This,
of course, does not correspond to the usual usage of “thus” in the language of
mathematics. The reason for this unnatural aspect in the Naproche CNL is that
the language of mathematics does not have clear signs for marking the retrac-
tion of an assumption. Readers of mathematical texts use their understanding
of the proof progress together with various typographical heuristics to determine
where assumptions are retracted. Nevertheless, it might be worthwhile to study
the ways in which assumptions are retracted in actual mathematical texts with
the goal of possibly making this aspect of the Naproche CNL more natural.

There is also a serious problem with giving a controlled natural language a
wide coverage and sophisticated interpretation algorithms: One of the central
ideas of a controlled natural language is that an author of a CNL text can have
control over the interpretation of the text by the system that processes it. But
if the CNL has a very wide coverage and a number of sophisticated interpreta-
tion algorithms, it becomes hard for an author to understand the CNL and its
interpretation well enough to ensure that the text he writes has the intended
meaning. The current Naproche CNL already faces this problem to some extent.
For example, a Naproche CNL author has to know that indefinite noun phrases
do not have a generic interpretation in the Naproche CNL, but only a dynamic
existential interpretation. But in the language of mathematics, indefinite noun
phrases also appear with a generic reading (which is, as mentioned in section
in a mathematical context semantically indistinguishable from a universal
reading), e.g. “A homotopy f; : X — X” in :

(107) A homotopy f; : X — X that gives a deformation retraction of X onto a
subspace A has the property that f;|A = 1 for all ¢. (Hatcher] 2002} p. 3)

But in implications the dynamic existential reading does lead to a reading which
is equivalent to a universal quantification outside the scope of the implication
(this is the donkey-sentence phenomenon discussed in section E[) Furthermore,
in bi-implications and reversed implications, there is a sophisticated algorithm
for determining whether an indefinite noun phrase gets a universal reading or
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not (see section . A Naproche CNL author has to be aware of these facts
in order to have control over the interpretation that the system will give to his
text.

If the Naproche CNL gets extended further, it will be even more problematic
than now to assume an author to be capable of being aware of all these issues.
In order to minimize this problem, the Naproche system would have to give
semantic feedback to the author. One possible way of giving semantic feedback
to a CNL author is by providing him with paraphrases of the sentences that he
writes. This method has been explored and partly implemented for Attempto
Controlled English, as discussed in [Kaljurand| (2009). The basic idea is that
a paraphrase is a sentence semantically equivalent to but syntactically distinct
from the sentence written by the author. The paraphrases the system produces
should preferably be held within a particularly simple subset of the CNL, in
order to ensure that they are understood correctly by the author.



Chapter 8

A case study: Landau’s
Grundlagen der Analysis

In this chapter we illustrate the theory described in this thesis and the function-
ing of the Naproche system on the beginnings of the Naproche CNL adaptation
of the first chapter of Landau’s Grundlagen der Analysis.

Landau’s Grundlagen der Analysis is a text on the foundations of number
systems needed for analysis: Starting from the Peano axiomatization of the nat-
ural numbers, Landau in turn extends each number system using set theoretic
methods, building up first the positive rationals, next the positive reals, next
the number system of all reals, and finally the complex numbers.

Since Landau’s text explicitly introduces the natural numbers through
Peano’s axiomatization, his text — unlike most mathematical texts — does not
take the natural numbers for granted. For this reason, we will assume the back-
ground theory for this text to be CMT instead of CMTN. (Recall from section
of chapter [4] that CMT is a theory of classes, maps and tuples, so unlike
CMTN it does not have the natural numbers among its primitives.)

In his text, Landau freely talks about sets, functions and tuples and uses
properties of these fundamental mathematical objects without formally defining
a theory for these. CMT can be used to model Landau’s background assump-
tions about these fundamental objects[[] Below we will show how CMT models
the set-theoretic and function-theoretic machinery used by Landau in the frag-
ment considered in this chapter (which does not contain talk about tuples).

Landau stated the Induction Axiom in set-theoretic terms, just as Peano had
done in his original axiomatization of the natural numbers. Nowadays, Peano’s
axioms are most well-known in their first-order reformulation, in which there is
not a single Induction Axiom, but an Induction Axiom Schema. In this first-
order reformulation of Peano’s axiomatization, addition and multiplication have
to be assumed to be given and their basic properties have to be axiomatized.
But with the set-theoretic formulation of the Induction Axiom, one can show
the existence and uniqueness of the addition and multiplication functions with
the desired properties. The only function assumed in the axioms is the successor

1Since all objects that Landau talks about can by typed, one could just as well model these
background assumptions using a type theory with set types, function types and tuple types
among its type constructs.
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function.

The beginning of Landau’s text that we consider in this chapter contains the
Peano axiomatization of the natural numbers, three basic theorems about the
successor function, and the theorem that proves the existence and uniqueness
of the addition function with the desired properties.

In our discussion of the Naproche CNL adaptation of this text fragment, its
PTL translation and the functioning of the proof checking on it, we will start
with a very detailed analysis. When discussing later parts of the text fragment,
our analysis becomes less detailed and focuses on those aspects that are not
similar to what we have already discussed.

8.1 Peano’s axioms

In the first section of his first chapter, Landau introduces Peano’s axiomatization
of the natural numbers. Here are the paragraphs of this section that we actually
translated into the Naproche CNLH

Wir nehmen als gegeben an:

Eine Menge, d.h. Gesamtheit, von Dingen, natiirliche Zahlen
genannt, mit den nachher aufzuzdhlenden Eigenschaften, Axiome
genannt.

Kleine lateinische Buchstaben bedeuten in diesem Buch, wenn
nichts anderes gesagt wird, durchweg natiirliche Zahlen.

]

Axiom 1: 1 ist eine natirliche Zahl.

]

2In Landau’s text, all formulae are displayed on separate lines. When we cite from Landau’s
original and its translation by [Steinhardt| (trans., 1951), we put short formulae in-line, so that
the citations do not take up too much space.

Here is the English translation of the cited paragraphs by [Steinhardt| (trans., 1951):

We assume the following to be given:

A set (i.e. totality) of objects called natural numbers, possessing the
properties—called axioms—to be listed below.
Unless otherwise specified, small italic letters [see footnote [4 on page [261)
will stand for natural numbers throughout this book.

Axiom 1: 1 is a natural number.

[

Axiom 2: For each x there exists exactly one natural number, called the
successor of x, which will be denoted by z’.

]

Axiom 3: We always have =’ # 1.

]

Axiom 4: Ifz' =y thenxz =1y.

[

Axiom 5 (Axiom of Induction): Let there be given a set M of natural num-
bers, with the following properties:

I) 1 belongs M.

IT) If = belongs to M then so does z’.

Then M contains all natural numbers.
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Axiom 2: Zu jedem x g¢ibt es genau eine natiurliche Zahl, die
der Nachfolger von x heifit und mit =’ bezeichnet werden maoge.

]

Axiom 3: Stets ist 2’ # 1.

Axiom 4: Aus x' =y folgt x = y.

Axiom 5 (Induktionsaxiom): Es sei 9 eine Menge natirlicher
Zahlen mit den Figenschaften:

I) 1 gehort zu .

IT) Wenn x zu 9 gehort so gehort ' zu M.

Dann umfafit M alle natirlichen Zahlen.

In the omitted paragraphs, indicated by “[...]”, Landau introduces the syntax
and semantics of = and #, mentions some bracketing conventions and presents
some clarifications of the axioms.

8.1.1 Naproche CNL adaptation and PTL translation

Below we present the Naproche CNL adaptation of these paragraphs together
with the PTL translation of this Naproche CNL text. The Naproche CNL
adaptation has a completely natural appearance, and could even go through as
a translation — though not perfectly literal — of the original text into natural
English. Nevertheless, there are some noteworthy differences, which we will
discuss below.

The PTL translation is formatted in such a way that the PTL subformula
corresponding to a certain sentence appears directly to the right of that sentence.
For the sake of readability, we present the PTL translation with some syntactical
simplifications and adaptationsf|

e We use the simplification mentioned at the end of section [7.5.2} For
example, “x is a natural number” gets translated as N(x) instead of
Jv (N(w) Av = z), and “There is a natural number” gets translated
as Jx N(x) instead of Jz (N(z) A T).

e Unnecessary brackets are dropped (as already practised in the previous
chapter); usual conventions of operator priorities hold as mentioned in
chapter [2}

e We generally write v for v/, v/, v/, etc. In one place, we use the seman-
tically motivated N instead.

e Superscripts of PTL variables are dropped (except in the case of PTL
variables of the form u’ for i € N, since dropping the superscript in this
case would make the variable indistinguishable from the undefinedness
constant v used in the PL translation of the PTL text).

e The successor function ’ is written in suffix instead of classical notation,
as in the original text.

3The clarifications of simplifications listed lower in the list already presuppose the simpli-
fications listed above them. This list of simplifications also contains simplifications that will

only be needed in sections and below.
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We write N instead of natural_number.

We write ao and b, for the PTL variables a_{[arg]} and b_{[arg]} respec-
tively.

PTL IDs are abbreviated: For example, instead of aziom_1, we write axl
o We write Vz ¢ for dz T — ¢.
o We write ¢ <> ¢ for (Cp — OP) A (O — Op).

In the PTL translation of this axiom text, we use the variable 6 to indicate
the position where the translation of subsequent text will be inserted.

Below on the left is the Naproche CNL adaptation of the paragraphs under
discussion, and on the right is its PTL translation:

Assume that there is a set of objects | IN (C(N) A L(N) AIN (M1 (N) A
called natural numbers. Yo B(N(v)) AVv (v e N« N(v)))) —

Small Latin letters will stand
throughout for natural numbers.

Axiom 1: 1 is a natural number. (label(azl,31 N(1)) —

Axiom 2: For every z, there is a | (label(az2,3x N(z) — J2’ N(z')) —
natural number z’.

Axiom 3: For every z, 2’ # 1. (label(aa3, 3z N(x) —» -2’ =1) —

Axiom 4: If 2/ = ¢/, then z = y. (label(azd, 3z (N(x) Ay (N(y) A
=y)) 2w =y) >

Axiom 5: Suppose M is a set of nat- | (label(az5,3IM (C(IN) A L(OMN) A
ural numbers satisfying the follow- | (Jv v € M — N(v)) A

ing properties:
Property 1: 1 belongs to 1. 1eMA

Property 2: If « belongs to 9, then | (Jz (N(z) Az € M) —» 2’ € M)) —
' belongs to M.
Then 9 contains all natural num- | (Jv N(v) = v € M)) — 0)))))
bers.

We will first discuss some differences between the Naproche CNL adaptation
and the original text, before we go on to explain the PTL translation.

First consider the sentence introducing the set of natural numbers. The first
difference is that the original text contains an additional parenthetic comment
(“d.h. Gesamtheit”) for the sake of clarifying the word “Menge” (“set”), suppos-
edly for readers not familiar with basic set theoretic terminology. We generally
left out such clarifying parenthetic comments in the Naproche CNL adapta-
tions. The other difference is the appearance of a cataphoric meta-NP in the
original text (“den nachher aufzuzéhlenden Eigenschaften, Axiome genannt”)
which is absent in our adaptation. The reason for this absence is that in the
Naproche CNL, the cataphoric antecedent of a cataphoric meta-NP must always
directly follow the sentence containing the cataphoric meta-NP. Note that ax-
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ioms in a statement list block following an assumption that never gets retracted
are semantically equivalent to axioms in axiom blocks, so that dropping this
cataphoric meta-NP makes no semantic difference.

The variable type declaration and Axiom 1 in the Naproche CNL adaptation
are perfect translations of the originalﬁ

In Axiom 2 there are again two differences: Onme difference is that the
Naproche CNL does not introduce a textual expression for the successor func-
tion, but only the suffix function symbol /. In order to introduce the expression
“successor of” using an expression of the form “called the successor of x”, we
would have to introduce two new linguistic constructs into the Naproche CNL:
Transitive nouns (as already discussed in section and construction of the
form “called the ...”. But Landau does not use the expression “successor” out-
side clarifying comments in the subsequent text, so that there is not much need
for introducing this expression here.

The second difference between the Naproche CNL adaptation and the orig-
inal in Axiom 2 is that we have used a normal existential quantification with
“there is a”, where the original has a quantification with “there is precisely
one” (“gibt es genau eine”). The problem is that after removing the expression
“called the successor of z”, quantifying with “there is precisely one” would be
semantically wrong: “For every z, there is precisely one natural number z’”
would have the same truth conditions as “For every zx, there is precisely one
natural number g”, i.e. it would imply that there is at most one natural num-
ber. Quantifying with “there is a” makes Axiom 2 a normal implicit dynamic
function introduction for the function symbol ’: The choice principle included
in our treatment of implicit dynamic function introductions ensures that the
uniqueness restriction is not needed. We can only change this quantification to
the more faithful “there is precisely one” if we also use the expression “called
the successor of z”7 here; in this case the semantics of such expressions with
“called the” would have to ensure that the quantification with “precisely one”
no longer implies that there is at most one natural number.

In Axiom 3 we only had to replace the somewhat imprecise allusion to a
universal quantification with “Stets ist” (“We always have”) by the more ex-
plicit universal quantification with “For every z”. Axiom 4 is again a perfect
translation of the original. In the quite verbose Axiom 5, the only adaptation
we had to make was in the names of the listed properties (“Property 1”7 and
“Property 2” instead of “I)” and “II)”).

Let us now consider the PTL translation of the axioms. The PTL translation
of the first sentence existentially introduces a set N and a unary relation N
(corresponding to the noun “natural number”), and asserts that the elements of
N are precisely the objects satisfying N. The fact that N is a unary relation is
expressed using the CM T function symbol M for unary functions (in CMTN we
would have M (N, s(0)) instead of M7(N)) and the formula Vv B(N(v)), which
asserts that all values of this function are Booleans.

The variable type declaration does not have a correspondent on the PTL
side, but does influence the PTL translation of the subsequent text: Whenever
a small Latin letter x is used for a newly introduced variable, the additional

4|Steinhardt| (trans., 1951) wrongly translates “lateinische” in this variable type declaration
as “italic” rather than “Latin”. Given that the Naproche CNL adaptation was made from the
German original rather than from the English translation, we have conserved the meaning of
the original German text in this respect.
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subformula N(z) is added to the PTL translation.

In Axiom 1, the variable “1” is implicitly introduced in the term “1”. Given
that implicitly introduced variables are rendered in PTL as existentially quan-
tified, the PTL translation of the content of Axiom 1 starts with 31. Because
of the dynamic nature of PTL’s existential quantifier, the translation of Axiom
1 has precisely the intended effect, which in the usual metalanguage of mathe-
maticians would be phrased as follows: “Axiom 1 introduces a constant symbol
1, which may be used in the subsequent text, and which is asserted to have the
property ‘natural number’ (i.e. to fulfil the predicate N).”

In the fragment currently considered, there are four more implicitly intro-
duced variables: The x and y in Axiom 4 get implicitly introduced in the formula
2’ = y'; the MM in Axiom 5 gets implicitly introduced in the term 91 after “Sup-
pose”; and the z in Property 2 of Axiom 5 gets implicitly introduced in the
term x after “If”. The existential quantifiers corresponding to these four im-
plicitly introduced variables all appear in the ¢ of a formula of the form ¢ — 6.
The effect of this is that the introduced variable may only be used in the text
corresponding to the implication ¢ — 6, and that after closing the scope of this
implication, the variable may be read as universally quantified over the scope of
the implication. The 1 implicitly introduced in Axiom 1 also appears in the ¢
of a formula of the form ¢ — 6, but in this case the implication ¢ — 6 spans the
rest of the PTL translation, so that 1 may be used for the rest of the Naproche
CNL text and is never felt as universally quantified.

Given these clarifications, the rest of the PTL translation of the fragment
considered becomes self-explanatory.

8.1.2 Proof checking

We will now consider what the proof checking algorithm does with the PTL
translation. For conveniently writing down the PL formulae produced by the
proof checking algorithm, we will make use of the following definition:

Definition 8.1.1. Given a PL formula ¢ and a variable z, we define 3,¢ and
Yz to be 3z (x # u A ) and Vz (x # u — @) respectively.

This definition is of course a simplified variant of definition (which
defined the notation 3y ¢ and Vg ¢ for a term list T), which we made abun-
dant use of when defining the PL translation of PTL formulae produced by the
proof checking algorithm. Definition [6.1.8] additionally required a substitution
of terms by variables, which we will now make explicit. For this we will have to
choose variables for substituting terms (compare footnoteto deﬁnition;
we will make this choice in such a way that it supports comprehensibility.

When the PTL translation of the Naproche CNL text starting with the cur-
rently considered axiom text is handed to the proof checking algorithm, the
algorithm will first process the PTL translation of the axioms. Given that each
translation of an axiom appears to the left of an implication sign, it will be
processed within a read_text process, and hence the only proof obligations that
need to be checked are presuppositional proof obligations. The only presupposi-
tional proof obligations appearing in the axioms are those that check that terms
involving the successor function are well-defined (for which the argument of the
successor function has to be an natural number). For discussing these presup-
positional proof obligations, we first need to discuss the proof checking of the
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PTL translation of Axiom 2, which is the axiom that introduces the successor
function.

Before encountering the PTL translation of Axiom 2, the proof checking
algorithm translates the PTL formulae preceding it and translates them to PL
formulae. The PL formulae thus created by the algorithm get annotated by
PTL IDs to make up the premise list I', which is the premise list that is active
when the algorithm encounters the PTL translation of Axiom 2:

I = (C(),
(),
My(N),
BN (v)),
V(v € N+ N(v)),
arl : N(1))
The PTL translation of the content of Axiom 2 is Jx N(z) — Iz’ N(z’). For
understanding how the proof checking algorithm handles this PTL formula, you

need to keep in mind the definition of check_text on formulae of the form ¢ — 6
from page [108] The proof checking algorithm needs to calculate

check_text(3x N(z) — 32’ N(2'),T, (N, N, 1), T).
For this it first determines that
read_text(3x N(z), T, (N,N, 1), T) = (T, {z), N(z), T)
and that
check_text(3x’ N(z'),T®(N(z)), (N,N,1,z), T) = T&(N(z), N(z')),(N,N,1,z,2"), T),

as the interested reader can easily verify.

Next the proof checking algorithm checks whether it may apply Functionality
to the map that gets introduced implicitly in this implication. Since L does not
appear in (N(z), N(z')), this amounts to ensuring that

check_limitedness(I' @ (N (z), N(x')), (N(z), N(z')), (N, N,1), N)

holds. Since T' & (N (x), N(2')) together with the non-comprehension axioms
of CMT does not imply L(N), this can certainly not be established using the
first clause in the definition of check_limitedness. But the special case formal-
ized in the second clause of this definition does work: I' contains the premise
V(v € N+ N(v)), so that it is enough to check that

check_limitedness(I' & (N (x), N(z')), (N(x), N(z')), (N, N, 1),N)

holds. This can now be established using the first clause in the definition of
check_limitedness: For this the proof obligation

I'& (N(z), N(z')) H{y L(N)

is given to the ATP. Since I' already contains L(N), this proof obligation is
trivially solved by any ATP.
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Now the proof checking algorithm proceeds to calculating
make_functions({x), (z'),T,T & (N(z), N(z")), N(z),1,T),

which is where it will determine that the successor function ’ is introduced im-
plicitly in the implication 3z N(z) — Ja’ N(2'), at the same time determining
the domain information of ’ (i.e. the conditions under which applying ’ to an
argument results in a defined term).

The central part in calculating this make_functions term consists of calcu-
lating

make_function({z), 2, ® (N(z),N(z")), N(z),1,T).

For this the algorithm first needs to find a term 7" and 1-place argument filler o
such that 2’ (i.e. '(x)) is T (z). The choice T' =" and ¢ = (id{13, (0, 1)) satisfies
this property. Next the algorithm determines that '(z) is the only function-
head subterm of /(z) that contains ' as a proper subterm. It then constructs

the formula
Uy =V, (N(z) < 2’ # u)

which encodes the domain information of ’.
Now the algorithm sends the proof obligation
'@ (N(x),N(x')) F% L(x") (8.1)

to the ATP. Since V,(v € N +» N(v)) is in T" and the CMT Element Axiom
Va,y (L(y) Nz € y — L(y)) is among the axioms added to the premise when

handing (8.1 to the ATP (see section [6.1.6)), (8.1]) is solvable by any state-of-
the-art ATP

Since the conditions for applying Functionality were fulfilled (i.e. the « in
the definition of make_function is 1), the algorithms constructs the formulae
L(’) and V,(N(z) — L(2")) and concludes that

make_function({z), ', ® (N(z),N(z')), N(z),1,T)
= ((), 0, (Vo (N(2) & 2" # u), L('), Vo (N(z) = L(2'))), T).

For concluding the calculation of the make_functions term, the algorithm now
still needs to do two things: Firstly, it lets the ATP check the proof obligation

L@ (N(x)) F% L(z),

which can be solved in the same way as (8.1]). Secondly, it constructs the formula
Vo (N(z) — L(z)). Finally, it concludes that

make_functions({z),2', T & (N(x), N(z")), N(x),1,T)
= ((), (), (Ya(N(2) ¢ 2" # w), L), Yo (N (z) = L(2))), (¥a(N(z) = L(2))"), T).

For concluding the calculation of the processing of the implication under
check_text, the algorithm now still determines that

pull_out_pres((), (x,z'),T,T & (N(x),N(z"))) = (T, (N(z), N(z)), ()

5In this chapter, we will several times claim a proof obligation to be solvable using a state-
of-the-art ATP. All proof obligations about which we make such a claim correspond to proof
obligations actually produced by Naproche 0.52 on the text under consideration and solved in
fractions of a second by the ATP integrated in Naproche 0.52 (E 1.2; for general information
about the prover E, (see|Schulzl [2004))).
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and constructs the formula V,V, (N(z) AN(y) — L(y)). Finally it can conclude
that

check_text(3x N(x) — 32’ N(z'),T, (N, N, 1), T)
= (T @ (Vo(N(z) = L(2))",

Vo (N (2) = L(2'))),
(N,N,1,/),T).

The fact that the successor function has been introduced in Axiom 2 can now
be seen from the fact that the list of accessible terms has been extended from
(N,N,1) to (N, N,1,). The formula V,(N(z) <+ 2’ # u) encodes the domain
information of this introduced function, while the formula V,(N(z) — N(z'))
can be said to express what Axiom 2 explicitly states about the implicitly intro-
duced function. The other formulae added to the premise express CMT-theoretic
details about limitedness.

Now we want to consider what presuppositional proof obligations need to
be checked in the subsequent axioms. Axiom 3 contains the formula z’ # 1.
Before encountering this formula, the active premise list already gets extended
by the formula N(z). The term 2’ in 2’ # 1 gets processed by the third clause
of read_term, for which a presuppositional proof obligation with the conjecture
x' # wu is sent to the ATP. Since the formulae V,(N(z) <> 2’ # u) and N(x)
are in the premise list of this proof obligation, the conjecture can be concluded
by any state-of-the-art ATP. Similarly, the formula 2’ = 3 in Axiom 4 triggers
two presuppositional proof obligations and the term z’ in Property 2 of Axiom
5 triggers one presupposition, all of which can be solved in an analogous way to
the one just discussed.

The premise list I'g that is active when the algorithm finishes the processing
of the PTL translation of the five axiom is as follows:

Lo = (C(N),
L(N),
M (N),
vy B(N (v)),
V(v € N N(v)),
azl : N(1),
ar2 : Vo (N(z) — L(z))F,
aa2 : ¥, ¥y (N(z) A N(y) = L(y))F,
az2 : V. (N(x)
ar2 : ¥, (N(x)
ar2 : L('),
az2 : V(N (z) — L(2)),
ar3 : Vo (N(z) — 2’ #u)¥,
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ar3 Vo (N(z) = 2’ # 1),

ard 1V, ¥y (N(z) AN(y) A2’ =y — 2’ # u)F,

ard V.V, (N(z) AN(y) A =y =y #u)F,

ard : v (N(:E)/\N(y)/\:v =y s z=y),
a:v5:V9n(C(§m) LM AV,(veM—> N@w)ALleM—

Vo(N(@) Az €M — 2’ #u))f,
azh : Yop (C(OM) A L(ON) AV,(v € M — N(w)) AL €MA
Vo(N(z)Az e M — 2’ €M) =V, (N(v) = veM)))

Note that for every presuppositional proof obligation that was checked while pro-
cessing the PTL translation of the axioms, we have one presuppositional premise
(marked by a superscript P) in I'g. The interested reader can check for himself
how the pull_out_pres function constructs these presuppositional premises from
the premise lists and conjectures of the presuppositional proof obligations. For
each of Axiom 3, 4 and 5 we have one non-presuppositional premise expressing
the actual content of the axiom.

8.2 Theorems 1-3: Properties of the successor
function

The second section of Landau’s first chapter is named Addition, since Landau
proves the existence of the addition function and its basic properties in this
section. But the first three theorems in this section are preliminary work that
establishes some useful properties of the successor functionﬂ

Satz 1: Aus x # y folgt o’ #v/'.

Beweis: Sonst wire ' = ¢’, also nach Axiom 4 x = y.
Theorem 2: z/ # x.

Beweis: 91 sei die Menge der x, fiir die dies gilt.

6Here is the English translation of this fragment by [Steinhardt| (trans., 1951):

Theorem 1: Ifx #y then ' #y'.

Proof: Otherwise we would have 2’ = 3’ and hence, by Axiom 4, z = y.

Theorem 2: z’ # x.

Proof: Let 9 be the set of all = for which this holds true.

I) By Axiom 1 and Axiom 3, 1’ # 1; therefore 1 belongs to 1.

II) If = belongs to M, then z’ # x, and hence by Theorem 1, (z’)’ # 2/, so
that =’ belongs to 9.

By Axiom 5, 9 therefore contains all the natural numbers, i.e. we have for
each z that ' # x.

Theorem 3: If x # 1, then there exists one (hence, by Axiom 4, exactly
one) u such that x = u'.

Proof: Let 9 be the set consisting of the number 1 and of all those = for
which there exists such a u. (For any such & we have of necessity that  # 1 by
Axiom 3.)

I) 1 belongs to 9.

II) If z belongs to M, then, with u denoting the number x, we have ' = u/,
so that z’ belongs to 9.

By Axiom 5, 9 therefore contains all the natural numbers; thus for each
x # 1 there exists a u such that x = u’.
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I) Nach Axiom 1 und Axiom 3 ist 1’ # 1; also gehort 1 zu 9.
IT) Ist  zu M gehorig, so ist 2’ # x, also nach Satz 1 (') # 2/,

also 2’ zu 9 gehorig.

Nach Axiom 5 umfafit also 9 alle natiirlichen Zahlen, d.h. fiir

jedes x ist @’ # x.

Theorem 3: Ist x # 1, so gibt es ein (also nach Axiom 4 genau

ein) u mit © = u'.

Beweis: I sei die Menge, die aus der Zahl 1 und denjenigen x
besteht, zu denen es ein solches u gibt. (Von selbst ist jedes derartige

x # 1 nach Axiom 3.)
I) 1 gehort zu M.

IT) Ist = zu 9 gehorig, so ist, wenn unter u die Zahl x verstanden
wird, 2’ = v/, also 2’ zu M gehorig.

Nach Axiom 5 umfaflt also 9t alle natiirlichen Zahlen; zu jedem
z # 1 gibt es also ein u mit z = u’.

8.2.1 Naproche CNL adaptation and PTL translation

Here is our Naproche CNL adaptation of these theorems together with its PTL

translation:

Theorem 1: If x # y then 2’ # y'.

Proof:
Assume that z # y and 2/ = y/.
Then by Axiom 4, x = y. Qed.

Theorem 2: For all z z’ # x.

Proof:

Let 9 be the set of x such that ' #
x.

By Axiom 1 and Axiom 3, 1’ # 1,
i.e. 1 belongs to 901.

If = belongs to M, then z’ # z, i.e.
by Theorem 1 (z')" # «’, i.e. ' be-
longs to 9.

By Axiom 5 90 contains all natural
numbers, i.e. for every z 2/ # =x.

Qed.

Theorem 3: If  # 1 then there is a
u such that z = /.

Proof:

Let 9t be the set of x such that x =
1 or there is a u such that z = u’.

1 belongs to .

Suppose = belongs to M. Now if u =
x then ' = u’. So 2’ belongs to M.

thm(thm, label(thm1, 3z (N (z) A
Fy (N(y) A~z =y)) = —2' =),

x (N(x) AJy (N(y) A—z =y)) A
o' =y = ref((and), x = y)) &
thm(thm, label(thm2,3x N(x) —
-z’ =x),

IM M = (C(v) A L(v) AVz (x € v >
N(z)AN -2’ =x)) —
ref({axl, az3),-1"' =1A1 €M) &

(Fz (N(x)AzeM) — (-2’ =z A
ref((thml), (—2" =2’ ANz’ € M)))) &

ref({azb), (3v N(v) = v € M) A
(3z N(z) — -2’ =x))) &

thm(thm, label(thm3, (3x (N (x) A
z#£1) = 3z =ul)),

(IM M =

(N(z) A
lem&
(Jz (N(z

v (C(v) ANL(v) AV (x € v &
Alz=1VI0z=1u")))) —

)/\sceim) ((3u® (N(u®) A
O—g) s’ =u)&a' e M) &
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Thus by Axiom 5, 9t contains all | ref({az5), (Fv N(v) - v e M)) &
natural numbers. Hence for every z | (3z (N(z) A~z = 1) — Fu® -z = u?")))
such that x # 1, there is a u such

that z = /. Qed.

We will now discuss the differences between this Naproche CNL adaptation
and the original. Note that in general we refrain from mentioning differences
completely analogous to differences already previously discussed.

The assertion of the first theorem is a normal implication. The original
text implicitly assumes at the beginning of the proof that the antecedent of
this implication holds. In other words, one can say that the proof is inside
the scope of the implication. In the Naproche CNL, assumptions made in a
theorem assertion only have their scope extended in this way into the proof if
they are made in a separate sentence. The scope of an assumption introduced
with “if” on the other hand always ends at latest at the end of the sentence.
Hence we had to make the assumption & # y explicit at the beginning of the
proof. Furthermore, the proof in the original starts with the anaphoric “sonst”
(“otherwise”), which introduces as a further assumption the negation of the
proof goal ' # y' (compare the proposal to extend the Naproche CNL by
“otherwise” made in section of chapter [7]). By double negation elimination,
Landau immediately concludes ' = g’ from this. We instead added z’ = ¢/
directly to the assumption that we had to add at the beginning of the proof.

In the original text, x is implicitly introduced in the assertion of Theorem
2, but is understood to be universally quantified. Since implicitly introduced
variables are always interpreted in a dynamically existentially quantified way in
the Naproche CNL, we had to add “For all ” at the beginning of the assertion
of Theorem 2.

For characterizing the elements of the set 9t introduced at the beginning
of the proof of Theorem 2, Landau uses the anaphoric expression “fir die dies
gilt” (“for which this holds true”), where “dies” (“this”) is anaphorically linked
to the formula 2’ # x in the theorem assertion. Since this kind of anaphora is
not supported in the Naproche CNL, we had to repeat the formula 2’ # z in
this place.

Landau uses the labels “I)” and “IT)” to mark parts of the proof of Theorem
2 that correspond to the properties mentioned with the names “I)” and “II)”
in Axiom 5. One might wonder why we dropped these labels completely rather
than writing a labelled text block with the labels “I)” and “II)” in order to
make Naproche CNL adaptation more faithful to the original. In the original,
the scope of each of these labels is precisely the paragraph which it started, so
the last paragraph of the proof is outside the scope of these labels. But in the
Naproche CNL, a new paragraph does not mark the end of a labelled text block;
a labelled text block may only end if a superordinated structural block ends.
In this case, this could be done by retracting the assumption introduced at the
beginning of the proof (thus ending the assumption-consequences block) or by
ending the proof. But the last sentence of the proof of Theorem 2 needs to be
inside the scope of the assumption. So in this case, we cannot have labelled text
blocks in the proof. (Note that in the proof of Theorem 4 we have a labelled
proof block of the kind that the Naproche CNL supports, with labels “A)” and
“B)”.)
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We had to make two adaptations to the expression that characterizes the
elements of the set 91 introduced at the beginning of the proof of Theorem 3:
Firstly, since we cannot characterize a set by an expression of the form “the
set containing 1 and those x for which ...”, we had to introduce the variable
x a bit earlier, writing “the set of x such that z = 1 or ...”. Secondly, the
anaphoric expression “ein solches u” (“such a «”) had to be resolved as “a u
such that x = «””. (Compare the proposal to extend the Naproche CNL by
“such a” made in section of chapter )

Note the word “Thus” appearing at the beginning of the last paragraph of
Theorem 3. It ensures that the assumption “Suppose x belongs to 9" gets re-
tracted. In the original there is of course no such clear marker for the retraction
of this assumption. For a reader, this usage of “Thus” in no way reduces the
naturality of the text. But an author of a Naproche CNL text has to be careful
to put the word “Thus” in the right positions in the text.

At the end of the proof of Theorem 3, we had to render the quantification
“zu jedem x # 17 (“for each = # 17) as “for every x such that x # 17. (Compare
the proposal made in section [7.7]to extend the Naproche CNL by the possibility
to postfix quantterms with a binary infix relation symbol followed by a second
argument for the relation.)

Most parts of the PTL translation of the three theorems now under consider-
ation are self-explanatory. One detail is worth mentioning: The three references
appearing in the proof of Theorem 2 (“By Axiom 1 and Axiom 3”, “by Theo-
rem 1”7 and “By Axiom 5”) all appear at the beginning of a simple sentential
phrase which is linked to one or more subsequent simple sentential phrases us-
ing “i.e.”. In the PTL translation the scope of these references includes the
translations of these subsequent simple sentential phrases, but in the natural
and intended reading their scope is limited to the simple sentential phrase that
they introduce. The reason for their extended scope in the PTL translation is
the disambiguation principle mentioned in section that references are al-
ways considered to modify the largest sentential clause that they could possibly
modify given their position. This disambiguation principle does not give natural
results in the case of complex sentences involving “i.e.”. One might consider the
possibility of introducing an exception to this disambiguation principle for such
complex sentences; but the advantages of introducing such an exception would
have to be weighed against the disadvantage of thus making the interpretation
rules of the CNL more complex and hence less learnable for potential authors
(compare the discussion at the end of section .

8.2.2 Proof checking

We will now consider what the proof checking algorithm does with the PTL
translation of the three theorems under consideration. Since the presupposi-
tional proof obligations and presuppositional premises triggered by the succes-
sor function were already discussed in section above, we will ignore these
in the discussion that follows.

When checking a theorem-proof block thm(¥, ¢, ), the proof checking algo-
rithm always first checks the proof PTL text 6. In the case of Theorem 1, 6 has
the form of an implication whose right hand side is a conjunction of the two
PTL formulae 3z (N(2) Ay (N(y) A—xz =y)) and 2’ = ', and whose left hand
side is ref({az4), x = y). For checking the implication, the proof checking algo-
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rithm first extends I' by the premises z # u*, N(z), y # u’, N(y), -2 = y and
2’ =y corresponding to the left hand side of the implication. It then proceeds
to checking the PTL formula ref({az4), z = y) using this extended premise list.
The only proof obligation sent to the ATP for checking this PTL formula is the
following:

P& (x# u" N(@)y # o, N(y)~w = yoa’ =y Flpy 7=y

Since I' contains azd : V.V, (N(z) A N(y) Ao’ =y — x = y), this proof
obligation is of course quickly solved by any state-of-the-art theorem prover.
Having checked this proof obligation, the proof checking algorithm determines
that the PL translation of the whole proof PTL text 6 is

O=V,Yy(N@)ANy)A~z=yAz' =y =z =y).
The proof obligation for the assertion of Theorem 1 now is
Lo @ (6, N(z), N(y),~x=y) H, ~' =y,

which is quickly solved by any state-of-the-art theorem prover.
The premise list that is active after processing Theorem 1 is

'y =Ty ® (thml : VY,V (N(z) AN(y) A~ =y — —a’ =y') — thm).

Note that the formula that has been added to I'g corresponds only to the as-
sertion of Theorem 1. The premise © corresponding to the proof of Theorem 1
has been dropped and is no longer accessible for the subsequent proof checking.
The proof of Theorem 2 contains the first use of a definite description, so
we will briefly discuss how this is handled in the proof checking. The PTL
translation of the first sentence of this proof contains the PTL term

w (C(v) ANL(v) AVx (x € v+ N(z) A 2’ = 1)),

which gets processed using read_term. For this, the value of the following
exist_check term has to be calculated:

exist_check(0,T1,3v (C(v) A L(v) AVz (x € v+ N(z) A -z’ =x)),T)

Calculating the value of this term corresponds to checking the existential pre-
supposition of the definite description “the set of x such that ' # z”. Note
that the second clause of the definition of exist_check, which formalizes the ap-
plication of the CMTN (or CMT) Set Comprehension Axiom Schema, may be
applied to this exist_check term. After checking the proof obligation

[y @ (N(x)A -2’ =2z) I—E> L(x)

and checking the limitedness of N and ’ using check_limitedness, the algorithm
concludes that

exist_check(0,T'1,3v (C(v) A L(v) AVz (x € v <> N(z) A~z =x)), T) = (T).
Next the algorithm sends the proof obligation
[y @ (C(sko) A L(sko) AVy(x € sky <> N(x) A -z’ = z))

2

Fiy Y (C(w) A L(w) AVa(z € v N(z) A =2’ = 2) = w = sko)
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to the ATP. This proof obligation corresponds to checking the uniqueness pre-
supposition of the definite description “the set of z such that ' # x” and can
be solved because of the fact that the CMT Set Extensionality Axiom is added
to the premise list when handing it to the ATP.

After processing the translation of the first sentence of the proof, the active
premise list is

T =T @ (C(sko) A L(sko) AVo(x € sky <> N(x) A2’ = x)¥,
Vo (C(w) A L(w) AVp(z € v ¢ N(z) Az’ =z) = w = sko)F,
M = sky).

At the end of the proof, Landau establishes that for every z, 2’ # z. This
is what we wanted to establish, so when reading this, we have the feeling that
the proof is finished. But in the Naproche CNL adaptation there is a small
problem: The assumption with which the proof started (“Let 99t be the set of x
such that o’ # 2”) has still not been retracted. It gets retracted at the “Qed”.
After this, what we have proved is just that “for every z, 2’ # 2” follows from
this assumption. Of course the reason why we intuitively feel that the proof
is already finished when Landau writes “for every z, ' # z” is that we do
not really feel this assumption as an assumption, but just as an introduction
of the temporary constant ) with a defined meaning. We can account for this
intuition in the framework of the theory developed in this thesis as follows:

The non-presuppositional content of the assumption is trivial. It is repre-
sented by the premise 9 = sky, where 9t is a newly introduced variable. After
retracting the assumption, we thus have a premise of the form

Yo (I = skg — Ve’ # )

in our active premise list. This premise is trivially equivalent to the conjecture
V.x' # x of the proof obligation produced for the theorem assertionm Since
the non-presuppositional content of the assumption is trivial and leads to this
premise trivially equivalent to the desired result, we do not feel the assumption
to have any content at all, and hence do not feel it to be an assumption in the
first place.

The remainder of the proof checking of Theorems 2 and 3 does not contain
any interesting features not discussed so far. I's is the premise list that is active
after checking the PTL translation of Theorem 3|

I3 =T & (thm2: VY, (N(z) —» 2’ # x) — thm
thm3 : Vy(N(x) ANx # 1 — Jpox = uol)

"In the Naproche system, the formula simplification mentioned at the end of section
actually ensures that the premise will be simplified in such a way that it becomes identical
with the conjecture.

8Note that we are ignoring the presuppositional premises resulting from applications of the
successor function.
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8.3 Theorem 4: The addition function

In Theorem 4, Landau introduces the addition function, proving its existence

and uniqueness with the desired propertiesﬂ

Satz 4, zugleich Definition 1: Auf genau eine Art lafit sich
jedem Zahlenpaar x, y eine natirliche Zahl, x+vy genannt (+ sprich:
plus), so zuordnen, dafs

1) z+1=2a fiir jedes x
2) x4y =(z+y) firjedes z und jedes y.

x+y heifit die Summe von x und y oder die durch Addition von
y zu x entstehende Zahl.

Beweis: A) Zunichst zeigen wir, dafl es bei jedem festen x
hochstens eine Moglichkeit gibt, x + y fiir alle ¥ so zu definieren,
daBz+1=2"und 2+ = (z +y) fir jedes y.

9Here is the English translation of this theorem by [Steinhardt| (trans., 1951)):

Theorem 4, and at the same time Definition 1: To every pair of numbers
x, Yy, we may assign in exactly one way a natural number, called x +y (+ to be
read “plus”), such that

1) z+1=2a for every x
2) x4y =(x+y) for every x and every y.

x4+ y s called the sum of x and y, or the number obtained by addition of y
to x.

Proof: A) First we will show that for each fixed = there is at most one
possibility of defining x + v for all y in such a way that z +1=2" and z + 3’ =
(z +y)' for every y.

Let ay and by be defined for all y and be such that

!
a; =, by =/,

ay = (ay), by = (by)'  for every y.

Let 90 be the set of all y for which ay = by.

I) a1 = o’ = b1; hence 1 belongs to M.

IT) If y belongs to M, then ay = by, hence by Axiom 2, (ay)’ = (by)’,
therefore a,s = (ay)" = (by)’ = by, so that 3’ belongs to M.

Hence 91 is the set of all natural numbers; i.e. for every y we have ay, = by.

B) Now we will show that for every z it is actually possible to define z + y
for all y in such away that x +1 =z’ and =z + 3y = (x + y)’ for every y.

Let 9 be the set of all z for which this is possible (in exactly one way, by
A)

I) For x = 1, the number z + y = y’ is as required, since
x+1=1 =2,
ety =) =(x+y).

Hence 1 belongs to 9.
II) Let = belong to 9M, so that there exists an x + y for all y. Then the
number ' +y = (z + y)’ is the required number for z’, since

2 +1=(x+1) = ()
and
+y =@+y) =(@+y)) =" +y) .
Hence z’ belongs to 9.
Therefore 9 contains all x.
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Es seien a, und b, fiir alle y definiert und so beschaffen, daf

/ /
a, =x, by =,

ay = (ay)', by = (by) fir jedes y.

M sei die Menge der y mit a, = by.

I) ay = 2’ = by; 1 gehort also zu M.

II) Ist y zu M gehorig, so ist a, = by, also nach Axiom 2 (a,) =
(by)', also a, = (ay) = (by) = by, also y’ zu M gehorig.

Daher ist 9 die Menge aller natiirlichen Zahlen; d.h. fiir jedes y
ist ay = by.

B) Wir zeigen jetzt, dafl es zu jedem x eine Moglichkeit gibt,
x4y fir alle y so zu definieren, dal z+1 =2’ und z+y' = (z+y)’
flr jedes y.

M sei die Menge der x, zu denen es eine (also nach A) genau
eine) solche Moglichkeit gibt.

I) Fiir x = 1 leistet « + y = ¢’ das Gewlinschte. Denn

r+1=1=2,
x+y/:(y/)/:(m+y)/.

Also gehort 1 zu 9.
IT) Es sei x zu 9 gehorig, also ein x + y fiir alle y vorhanden.
Dann leistet 2’ 4+ y = (z + y)’ das Gewiinschte bei z’. Denn

r+1=(x+1) = (")

und
:I/_I_’_y/ — (x+y/)/ — ((x_’_y)/)l — (x/ +y)/.
Also gehort z’ zu .
Daher umfafit 9t alle x.

8.3.1 Naproche CNL adaptation and PTL translation

Here is our Naproche CNL adaptation of these theorems together with its PTL
translation:

Theorem 4: There is precisely | thm(thm, label(thml,(3z (N(x) Ay N(y))
one function z,y — = 4+ y such | — I+ (z,y) T) A Ma(+) AL(+) A

that for all z, y, x + y is a nat- | (3= (N(z) — Jy (N(y) = N(+(z,v))

ural number and z + 1 =2" and | A +(z,1) =2’ A +(z,¥) = +(x,y)"))) A
r+y = (r+y). (G (N(z) ATy N(y)) = Jv(z,y) T) A
Ms(v) ANL(v) A (3x (N(v) = Ty (N(y) —
N(v(z,y)) Av(z,1) =2' A

v(,y') =v(z,9)) = + =),

Proof:

A) Fix z. Suppose that there are | (3z N(z) = ((3y N(y) = Jas(y) T) A
functions y — a, and y — b, | (Jy N(y) = Fbe(y) T) A M(as) A L(as) A
such that a; = 2’ and by = 2/ | M(be) A L(be) N ae(1) =2’ Abe(1) = 2’ A

and for all y, ay = (ay) and | (y N(y) = ae(y') = ae(y) A
by = (by)". be(y') = be(y)’) =
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Let 9 be the set of y such that
ay = by.

a1 = x’ = by, so 1 belongs to M.
If y belongs to M, then a, = by,
i.e. by Axiom 2 (a,)" = (b,)’, i.e.
ay = (ay) = (by) = by, ie. v/
belongs to 9.

So M contains all natural num-
bers. Thus for all y, a, = b,.
Thus there is at most one func-
tion y — x 4+ y such that x + 1 =
z' and for ally, z+y' = (x4 y)'.

B) Now let 9t be the set of x
such that there is a function y +—
x + y such that for all y, x +y is
a natural number and z +1 = 2’
and z+y = (x +y).

Suppose x = 1. Define =z + y to
bey’. Thenxz+1=1 =2, and
for all y, o+y' = (y/) = (z+y).
Thus 1 belongs to 9.

Let x belong to 9. Then there is
a function y — x+y such that for
all y, z + y is a natural number
andx+1=2a"andz+y = (z+
y)'. For defining + at 2/, define
' +y to be (z+y).

Then 2/ +1 = (z + 1) = (a')
and for ally, 2’ +y' = (x+vy') =
(@ +1)) = (@' +y)"

So 7’ belongs to M.

Thus 2 contains all x. So for
every z, there is a function y —
x + y such that for all y, x + y is
a natural number and z +1 = 2’
and z + ¢ = (x +y)". Qed.
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Jv N(v) = v €M)
(Fy N(y) = ae(y) = be(y))) &
(Qy N(y) — 3+ (z)(y) T)
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We will now discuss the differences between this Naproche CNL adaptation

and the original.

The first difference is only a minor one, namely that in the Naproche CNL
adaptation we could not mention the alternative name “Definition 1”7 of Theo-
rem 4. But we do want to call the reader’s attention to the fact that Landau has
called a theorem with an existential assertion a definition. This lends additional
support for our semantic treatment of definitions, according to which definitions
are translated into PTL in the same way as certain existential assertions (com-

pare section [7.5.4)).
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Now we turn our attention to a more significant modification of the original,
in the assertion of Theorem 4: Where the adaptation makes an explicitly exis-
tential statement about the existence of a certain function, the original speaks
more informally of the possibility to assign a natural number to every pair of
natural numbers. So far the Naproche CNL does not allow this alternative more
informal way of phrasing an assertion about the existence of a function. It is
possible to extend the Naproche CNL by such a means of expression, but before
doing this, one should not only survey whether this means of expression is used
by various mathematical authors, but also whether it is considered good style
by modern mathematicians. At any rate, we believe that for formal mathe-
maticians, even when given the means to express themselves in a natural input
language, it is intuitive and reasonable to adapt such an informal and implicit
means of expression by a more explicit one, as we have done.

The reader might wonder why we used the somewhat cumbersome and un-
usual expression “function x,y — = + y” instead of the simpler “function +” in
this existential assertion. The reason is that if we had simply written “function
+”, we would not have expressed the fact that the function should be defined
precisely on the natural numbers. The properties we require of the function in
the rest of the sentence imply that it must be defined at least on all pairs of
natural numbers, but they do not exclude the possibility of it being defined on
a larger domain including the pairs of natural numbers. Because of the unique-
ness assertion made in this sentence, the sentence would even turn out false: If
we may consider functions defined on larger domains, there is more than one
function satisfying the stated properties. In the original text, Landau speaks
of assigning = + y to a pair of numbers z, y, and the fact that he uses small
Latin letters x, y implies that these must be natural numbers. In this way it is
clear that the domain of the intended function must be precisely the set of pairs
of natural numbers. In our adaptation, this is modelled well by the usage of a
dependent quantterm x,y — x + y, in which it is also the usage of the small
Latin letters x and y that gives us this information about the domain of the
intended function.

In the original, the fact that x + y is always a natural number is expressed
as part of the assertion about ways of assigning x + y to pairs x,y. In our
adaptation we had to mention it after the explicit existential quantification as
first property required of the function in question.

Where the original mentions the two further required properties in a list and
with postposed universal quantifications (“fur jedes x” and “fiir jedes z und
jedes y”), we have stated these two properties in-line inside the scope of a single
preposed universal quantification (“for all z,y”), whose scope also contains the
assertion that x + y is a natural number. As we have mentioned in section
postposed universal quantification is so far not possible in the Naproche CNL.
The usage of a single universal quantification over x and y is motivated by the
fact that the Naproche CNL has no means for closing the scope of a universal
quantification with “for all” without closing the scope of some superordinated
constituent, and justified by the fact that VZ (v1(Z) A ... A ¢, (Z)) is equivalent
to VZ 1 (Z) A ... AVT @, (T).

Landau’s proof is divided into two sections, and at the beginning of each
section, he announces what he will prove in this section. As mentioned in sec-
tion the Naproche CNL does not yet support such expressions announcing
subgoals of a proof goal, as it does not support any goal-oriented proving. So
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we have replaced these announcements of subgoals made at the beginning of
each section by corresponding assertions at the end of each section.

In both sections Landau introduces a function + in a similar way as in the
theorem assertion. But instead of talking about ways of assigning a number
T + y to a pair z,y of numbers, he now speaks of ways of defining a number
x+y for a number y, where x has been previously fixed. The difference between
the verbs “assign” and “define” is here semantically irrelevant and does not
influence the Naproche CNL adaptation. But the fact that we now fix = in
advance and hence make x 4+ y dependent only on y means that instead of the
dependent quantterm “x,y — x + y” we now use the dependent quantterm
“y — x 4+ y” in the Naproche CNL adaptation. In particular, this means that
all occurrences of the function symbol + in the proof are not, like the function
symbol + in the theorem assertion, binary function symbols of notational type
infix, but have notational type [suffix,prefix]. In other words, they are
interpreted in a curried way: They are applied first as a suffix function to the
preposed argument x to form a function x4+, which is then applied as a prefix
function to y (or some other possible argument, e.g. y').

Apart from this, the first section of Landau’s proof did not have to be mod-
ified in a note-worthy way. In the second section, Landau twice uses an expres-
sion of the form “leistet ...das Gewiinschte” (“...is as required”). These are
anaphoric expressions referring to part of the subgoal announced at the begin-
ning of the second section. The sentences involving these expressions implicitly
define the function + at certain values. We have made the definitional character
of these sentences explicit and dropped the anaphoric expression.

In the long chained equation at the end of the proof, the variable y is im-
plicitly introduced in the original, but interpreted in a universally quantified
way. Since implicitly introduced variables are interpreted existentially in the
Naproche CNL, we have made the universal quantification explicit by adding
“for all ¢” in front of the equation.

We now turn our attention to the PTL translation of Theorem 4. The
translation of the theorem assertion is very long and may scare off the reader.
The main reason for this length is the doubling of the semantic contribution of
the N following “precisely one”: The PTL translation of the theorem assertion
is of the form ¢(+) A (¢(v) — + = v), where ¢(+) is the following PTL
formula, which implicitly dynamically introduces the function 4+ (compare the
explanation of the translations of dependent quantterm in section and
states its intended properties:

A similar doubling of a long PTL formula occurs in the last sentence of part A)
of the proof due to the usage of “at most one”.

Note that the different syntactic treatment of the function symbol + in
the theorem assertion and proof, which we discussed above, is of course also
reflected in the PTL translation: While + takes two arguments at once in the
PTL translation of the theorem assertion, it takes its two arguments one after
the other in the PTL translation of the proof.
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Apart from this, the translation of the proof of Theorem 4 does not contain
any surprises. In part B) of the proof the reader can see examples of how defini-
tions get translated in the Naproche CNL, of course in line with the explanations

in section [.5.41

8.3.2 Proof checking

The interesting part in the proof checking of Theorem 4 is how the existence and
uniqueness of a function with the properties desired for the addition function
is attained. We will focus on this point and leave out the details of the proof
checking that are not relevant for this point, as they are at any rate similar to
what we have already seen in the previous sections.

The PTL translation of part A) of the proof is of the form Iz N(z) —
0(z) & ¢(x), where ¢(x) encodes the information that there is at most one
function y — x + y satisfying the intended properties and 6(z) encodes an
argument for concluding ¢(x). ¢(x) encodes this information by an implication
of the form ¥(+) A ¥(v) = + = v, where ¥(+) dynamically introduces + and
states its intended properties. 6(x) has a similar form:

0(z) =3y N(y) = Jae(y) T) A3y N(y) = 3be(y) T) A1) (ae) A1’ (bs)
— g(aoa b.) A (Ely N(y) — ao(y) = bo(y))

Here 1’ (a,) states the intended properties of the function a, in the same way as
1(+4), but without dynamically introducing the function. Instead, what precedes
¢’ (ae) in O(z) dynamically introduces ae and bs. The PTL text £(ae, be) contains
an argument for concluding (Fy N(y) — ae(y) = be(y)).

Note that §(z) would have been more similar to ¢(z) if it ended in ae = be
instead of (Jy N(y) — ae(y) = be(y)). Of course, the first follows from the
second by Map Extensionality. But since a, = be is not mentioned in 6(x), Map
Extensionality is not needed when proof-checking 6(x), but when using the
premise list produced by 6(x) for proof-checking ¢(x). So the proof-checking
of p(x) can only succeed because we add an appropriate instance of the CMT
Map Extensionality Axiom Schema to the premise list of the proof obligation
for concluding + = v, as explained in section [6.1.6

Part B) of the proof establishes the existence of the addition function. It
does not directly establish the existence of the intended binary addition function,
but of a curried version thereof. This is done by establishing that for every x
there is a function y — x + y with the intended properties. The fact that such
a function exists for every x means that by the principle of implicit dynamic
function introduction applied in the same way as in Axiom 2 (see section
above), + is a [suffix,prefix] function with the desired properties. We
will discuss below how the existence of this curried function together with the
uniqueness of such a curried function established in part A) implies the existence
and uniqueness of the intended uncurried function.

Now we want to consider how part B) of the proof establishes that for every
x there exists a function with the intended properties. Note that the Landau
text contains no axioms about the existence of functions, and the CMT axioms
that we add to the premise list during the proof checking also do not contain
the axioms of the Map Comprehension Axiom Schema. The reason why we
can nevertheless prove the existence of functions is because of the principle of



278 CHAPTER 8. LANDAU’S GRUNDLAGEN DER ANALYSIS

implicit dynamic function introduction included in PTL and the proof checking
algorithm. We will now show how this works in practice by discussing the case
x =1 of the proof.

The definition “Define  + y to be y'” is translated as Jy N(y) — I +
(z)(y) + (z)(y) = v'. The crucial part is the existential quantification 3 +
(x)(y) + (x)(y) = v'. When proof-checking this part of the PTL translation,
the algorithm will send a proof obligation with conjecture 3z z = 4’ to the ATP.
Here the complex term +(x)(y) has been replaced by a new variable z in order
to make the conjecture a PL formula. As can be easily seen, this conjecture is
trivially valid and can hence be checked by any ATP. But in the premise
that is then added to the active premise list, the complex term +(x)(y) is not
replaced by z, but is left as a complex term, only rewritten using the application
function app;:

appy (appy (+,2),y) =¥/ (8:2)

When closing the scope of the implication 3y N(y) — 3+ (z)(y) + (z)(y) =¥/,
(8.2) gives rise to the premise ¥V, (N (y) — app, (app, (+,2),y) =¥').

In this way, the proof checking algorithm has already introduced the function
+. The following sentence establishes that it has the desired properties. Here
again the premise list gets extended by premises involving + as first argument
of app;. When in the next sentence the proof checking algorithm has to check
that 1 € 91, it has among the active premises the premise characterizing the
elements of 9 as natural numbers x for which a function with certain properties
(involving x) exists, and has premises involving app, (+, ) and stating of it that
it is a function with these properties for the case x = 1. Hence it can successfully
check that 1 € 9.

This concludes our discussion of the function existence proof in the case
2 = 1 of the proof. In the case of z’ it works completely analogously.

After checking the proof of Theorem 4, the proof checking algorithm needs
to check the theorem assertion. The only problem here is, as already mentioned
above, the fact that the theorem asserts the existence and uniqueness of a binary
function, whereas the proof has established the existence and uniqueness of
the corresponding curried function. At this point, we will need the currying-
uncurrying axioms discussed in section which are added to the premise list
of proof obligations in the same way as CMT axioms. For proving the existence
of the binary addition function, we need the Uncurrying Axiom for unc; i, since
this axiom transforms a doubly unary curried function into a binary uncurried
function. For proving the uniqueness of the binary addition function, we need
the Currying Axiom for cur;; and the unc-cur Axiom for uncy i and cury 1, as
the interested reader can easily check.



Chapter 9

Conclusion and outlook

In this work we have given a thorough analysis of the language of mathematics
and have proposed a theoretical framework for proof-checking mathematical
texts in controlled natural language. This theoretical framework consists of
three main parts:

e A formal language PTL (Proof Text Logic), which captures dynamic and
text-structural aspects of natural mathematical texts and whose semantics
was built on the foundational theory CMTN, a theory with classes, maps
tuples, natural numbers and Booleans as primitive objects and equicon-
sistent to ZFC.

e A proof checking algorithm for PTL, which makes use of an automated
theorem prover for standard first-order predicate logic for checking the
correctness of given PTL text.

e A controlled natural language for mathematical texts, whose semantics
was specified by defining a translation from this controlled natural lan-
guage to the formal language PTL.

We have motivated the formal language PTL by certain constructs in the
language of mathematics. Especially noteworthy is the implicit dynamic func-
tion introduction found in the language of mathematics, which to our knowledge
had not been previously described or formalized by other logicians or linguists.

The proof checking algorithm has been shown to be sound and correct both
with respect to PTL semantics and with respect to the semantics of standard
first-order predicate logic.

As an example for the practical functioning of the theoretic framework pro-
posed in the thesis, we have shown in detail how it can be applied to the begin-
ning of [Landau’s (1930) Grundlagen der Analysis.

The theory described in this thesis has largely been implemented in the
Naproche system; for the differences between the actual implementation and
the theory as described here, see appendix [C]

9.1 Outlook

In the course of the thesis, we have already mentioned some ways in which
the theoretical framework proposed here can be developed further or adapted.
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We now discuss some of these possible further developments that we consider
especially promising.

Less controlled input language

In the introduction we mentioned the goal of having an input language that is
natural for the potential users, in our case for the mathematicians. But in order
to make the problem tractable, we limited ourself to the usage of a controlled
natural language with a limited syntax and limited semantic interpretation rules.
The main reason for this is that in the application we had in mind — the ver-
ification of mathematical proofs — absolute reliability of the program is very
important. However, absolute reliability of uncontrolled natural language pro-
cessing is not attainable. Nevertheless, there is a way in which we can attain
absolute reliability while allowing the input language to leave the stringent re-
quirements of a controlled natural language: For the statement of the axioms,
definitions and the assertions of theorems, it is important to have an absolutely
reliable interpretation of the natural language input, and for this the controlled
natural language approach should be kept. But inside the proofs to the stated
theorems, we could allow for a more flexible natural input language, for whose
interpretation one could use heuristics based on statistical methods for natural
language processing. There is then a risk of misinterpretation by the system:;
but if a proof is found to be correct, we know for sure that the system has used
the input by the author to find some valid mathematical proof of the stated
theorem, and the statement of the theorem was certainly interpreted correctly,
as it is still written in a controlled natural language.

This envisioned division between controlled natural language in axioms, def-
initions and theorem statements on the one hand and more flexibility in proofs
on the other hand reflects an actually existing difference between these parts of
a proof text in actual mathematical practice: Mathematicians usually use natu-
ral language much more careful in axioms, definitions and theorem statements,
since they are aware of the fact that misunderstanding in these places can be
very grave. Inside a proof, on the other hand, they often use natural language
in a more sloppy way, as they know that a misunderstanding will usually be de-
tected by a careful reader based on the fact that the misunderstood statement
no longer functions as a valid proof step in the proof of the theorem in question.

Goal-oriented proving

In the proof-checking as described in this thesis, we only took account of forward
reasoning, in which one builds up proven facts until one attains the fact that
one wanted to show. But mathematicians usually state the desired result at
the beginning of the proof, and as they are proving it, they might also use
backward reasoning: The assertion of a theorem or lemma can be considered
a goal of the proof that follows it, and certain proof steps can be considered
to simplify this goal. For example, if the goal is to show an implication, then
assuming the antecedent of this implication simplifies the goal to the conclusion
of the implication. Mathematicians use expressions like “We still need to show
that ...” in order to guide the reader through such a goal-oriented proof.

In text linguistics, there is a model called the Quaestio model for analysing
how a text in its totality as well as parts of it are aimed at answering a certain
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question, called Quaestio in this model; see Klein and Stutterheim| (1987). We
hope that this linguistic model in combination with existing methods for for-
malizing goal-oriented proving can give us new insights as to how goal-oriented
proving works in practice, and how it should be implemented in a natural lan-
guage proof system like the Naproche system.

Making use of type theory

In section we briefly mentioned the possibility to use a type-theoretic ap-
proach to avoiding the paradoxes of unrestricted function comprehension. The
reason we gave for developing an untyped theory for avoiding the paradoxes is
that mathematicians sometimes make use of functions that do not fit into the
corset of strict typing, e.g. a function defined on both real numbers and real
functions. We have, however, made use of some type-theoretic machinery in the
disambiguation of the symbolic parts of the Naproche CNL. Additionally, since
most of the times mathematicians do actually work with objects that fit into a
the corset of strict typing, one can argue that requiring such strict typing in a
system like the Naproche system is comparable to requiring controlled natural
language rather than allowing unrestricted natural language input.

In the actual implementation of the Naproche system (see appendix [C)),
we do actually use the type-theoretic restriction introduced for disambiguation
purposes for avoiding the paradoxes of unrestricted function comprehension.
Ackermann-like function theory is not implemented in the system. So based
on the actual state of the system, we could further develop the type-theoretic
approach.

It is an interesting undertaking to explore how mathematicians actually make
use of type information in their texts. |Ganesalingam| (2009) has made some
research in this area, and has come up with an ingenious novel type system
for typing the objects that a given mathematical text refers to. However, he
uses his type system only for purposes of linguistic disambiguation. It would be
interesting to explore further whether this function of his type system can be
combined with the function of avoiding paradoxes. Additionally, a type system
can make some presuppositional calls to the prover redundant and hence make
the system more effective.
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Appendix A

Formal grammar of the
Naproche CNL

This appendix provides formal grammars of the partial grammars that make up
the grammar of the Naproche CNL, namely of the macro-grammar, the textual
grammar and the quantterm grammar. The fourth component of the grammar
of the Naproche CNL, namely the term grammar, is not presented as a purely
formal grammar, but is also given a more formal characterization than in chapter
[l The interaction between the component grammars is not defined formally,
but described semi-formally.

All formal grammars in this appendix are written in the definite clause
grammar (DCG) formalism (see Pereira & Warren, [1980) with Prolog syn-
tax. Additionally to standard Prolog syntax, we also make use of the syn-
tax for feature structures that is defined by GULP 4, a package for SWI-
Prolog (see |Covington, [1994bl 2007)). Furthermore, we have added a predicate
change_feature/4 to GULP that can be used to change the value of a single fea-
ture: change_feature(FeatureStructureln, Feature,NewValue,FeatureStructureQut)
holds precisely if FeatureStrutureQut coincides with FeatureStructureIln on
all features other than Feature, and takes the value NewValue at the feature
Feature.

The formal grammars are commented to some extend, in order to make
them more comprehensible. Comments always appear in lines starting with %.
Additionally, we make use of the semi-formal type- and mode-description that
is part of the structured comment style defined by SWI Prolog (see|Wielemaker,
Schrijvers, Triska, & Lager} 2012)). A comment of the form

predicate(+Argl,+Arg2,-Arg3)

means that we will now define a three-place predicate, whose first two arguments
can be considered input and whose last argument can be considered output.
The macro and textual grammars are intended for a top-down-parser (see
Covingtonl [1994a), p. 151), the quantterm grammar for a chart parser (see|Cov-
ington, (1994a;, p. 167).
We consider the input given to these grammars to be tokenized and pre-
processed: A text is presented as a list of sentences. Paragraph boundaries
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are represented as sentences whose only word is “##”. A sentence is pre-
sented as a list of its words. A mathematical expression coming from a sin-
gle IXTEX mathematics environment is treated like a single word inside a sen-
tence, and is presented as a list of the symbols appearing in it, with the nor-
malization described in section [7.4] already realized. KTEX environments like
\begin{axiom} ... \end{axiom} are represented in the same way as a se-
quence of sentences of the form axiom. ... End_axiom..

A.1 Macro-grammar

The macro-grammar defines how different kinds of sentences can be put together
to a Naproche text. The form of the different kinds of sentences is defined in the
textual grammar. Here in the macro-grammar the different kinds of sentences
defined in the textual grammar are the terminal symbols.

The beginning of a new paragraph may serve as an indicator that some
text segment (e.g. an axiom) is finished. However, in contexts where they
cannot serve as such indicators, new paragraphs may be freely used with-
out any influence on the parsing. For formalizing this behaviour, the macro-
grammar has two undefined predicates, begin_limited_new_paragraphs and
end_limited_new_paragraphs, which can appear in this order among the goals
of a clause. This should be thought of as an indication to the parser of the macro-
grammar that during the parsing process that takes place between the encounter
of the first and the second of these two corresponding predicate occurrences, a
new paragraph may only be parsed where there is a new_paragraph terminal
symbol in the grammar. In all other cases, new paragraphs may be parsed even
where there is no new_paragraph terminal symbol in the grammar.

Here is the commented formal macro-grammar:

%% text(?Features,?Emptyness)
%

% A text can contain different kinds of construct, depending on its

%  features. It may always contain simple assertions.

%  The argument Features is a feature list with features "in_proof"

% (taking values "no", "lemma" and "theorem") and "in_case" (taking

%  values "yes" and "no").

%  The argument Emptyness takes values "yes" or "no".

)

%  For parsing a Naproche text, we initialize Features with
%  in_proof~mno..in_case~no..label~nothing.

text (F,no) -->
text_block_sequence(F,_,no).

text(F,no) -—>
[assertion],
text (F,_ ).
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text (F,no) -->
{ F = in_proof~no..in_case~no },
axiom,
text (F,_).

text (F,no) -—>
theorem(TheoremType) ,
{
\+ F = in_proof~lemma,
( TheoremType = theorem -> ( F = in_proof~nmno..in_case~no ) ; true )
},
text (F,_).

text (F,no) —-—>
definition,
text(F,_).

text(F,no) -—>
[assumption],
text (F,no),
optional_closing_and_text(F).

text (F,no) —-—>
note(F),
text (F,_).

text (F,no) -->
{ F = subtype~beginning..length~greater_than_1 },
cases(F),
optional_case_closing_and_text(F).

text(_,yes) -->
.

%% text_block_sequence(?Features,?Type, TEmptyness)

text_block_sequence(F,Typ,no) -->
text_block(F,Typ),
text_block_sequence(F,Typ,_).

text_block_sequence(_,_,_,yes) --> [].

%/ text_block(?Features, ?Typ)

h

% A text block starts with a label of the form ’word)’. There is a feature
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"label" which indicates the type of enumeration (lower-case, upper-case,
roman or arabic numbers). If within a text segment a label of the same
type as at the beginning of the text segment is encountered, it fails.
Therefore a new text segment is started.

text_block(F,Typ) -->

Dot
b
%
A
A
A
b

{ F = label~NoTyp 1},
[1abel(Typ,NoTyp)1],

{ change_feature(F,label,Typ,NewF) },
text (NewF,no) .

axiom

An axiom consists of an axiom heading, followed by a possibly empty
list of assumptions, followed by a non-empty list of assertions,
followed by some marking of the end of the axiom, which may just be
a new paragraph. Since a new paragraph marks the end of the axiom,
there may be no new paragraph within the axiom.

axiom —-->

[heading(axiom)],

{ begin_limited_new_paragraphs },
assumptions,

assertions,

axiom_ending,

{ end_limited_new_paragraphs }.

axiom_ending -->

[end(axiom)],
optional _new_paragraphs.

axiom_ending -—>

A
A
b

new_paragraphs.

new_paragraphs

One or more new paragraph sentences.

new_paragraphs -->

)
A
A

[new_paragraph],
optional _new_paragraphs.

optional_new_paragraphs

Zero or more new paragraph sentences.
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optional_new_paragraphs -->
[new_paragraph],
optional_new_paragraphs.

optional_new_paragraphs -->

(1.

%  optional_closing_and_text(?Features)

% Parses either an assumption closing followed by possibly empty text,

%  or nothing.

optional_closing_and_text(F) -->
[closing],
text(F, ).

optional_closing_and_text(_) -->

0.
%% mnote(?Features)

note(F) -->
[heading(note)],
note_core(F).

note(F) -—>
note_core(F).

note_core(F) -—>
{ F = in_proof~no..in_case~no },
[var_type_fix].

note_core(_ ) -—>
[alternative_notation].

optional_note(F) -->
note(F).

optional_note(_) -->

(1.

% theorem(-TheoremType)
h

% A theorem consists of a heading, a goal text, the marker "Proof",

a body
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%  text (which possibly includes lemmas) and the marker "Qed".

theorem(TheoremType) -->
[theorem_heading(TheoremType)],
assumptions,
assertions,
optional_note(in_proof~mno..in_case~no),
optional_end(TheoremType),
[proof],
text (in_proof~TheoremType. .in_case~no..label~nothing,no),
[proof_end] .

optional_end(TheoremType) -->
[end (TheoremType)] .

optional_end(_) -->

1.

%  assumptions
A
0

% 0 or more assumptions.

assumptions -->
[assumption],
assumptions.

assumptions -->

1.

%  assertiomns
%

% 1 or more assertions.

assertions —-->
[assertion],
optional_assertions.

optional_assertions -->
[assertion],
optional_assertions.

optional_assertions -->

.
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% definition

% definition parses a definition possibly preceeded with a sentence
% declaring a name for the definition (e.g. "Definition 4:").

definition -->
[heading(definition)],
[definition],
optional_end(definition).
definition -—>
[definition].

%% cases(+Features)

%  The Features argument consists of four features:

% - "in_case" can either have the values "yes" or "no".

% - "in_proof" can either have the values "yes" or "no".

% - "subtype" can either have the value "beginning" or "rest-list".

% - "length" can have the values '"greater_than_1", "greater_than_0" and "O".

% The "length" feature is used to ensure that a case distinction has at
% least two cases.

cases(in_case~X..in_proof~Y..subtype~Z..length~Length) -->
case_introduction(in_case~X..subtype~2Z),
[case_id],
[case],
text (in_case~yes..in_proof~Y..label~nothing,_),
{ Length == greater_than_1 -> SubLength = greater_than_O ; true },
cases(in_case~yes..in_proof~Y..subtype~rest-list..length~SubLength) .

cases (subtype~rest-list..length~0) -->
(1.

%% case_introduction(?Features)

% Depending on its features, case_introduction either parses nothing or
% a sentence that announces the beginning of a case distinction: A case
% distinction made within a case distinction (i.e. when the feature

% "in_case" is not "yes") must be announced; else the announcement is

% optional. If the feature "subtype" is "rest-list", then we are not at
%  the beginning of a case distinction, but at the beginnning of a new
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% case of an already open case distinction. Hence there may be no
%  announcement of the beginning of a case distinction in that case.

case_introduction(in_case~no) —-->

.

case_introduction(subtype~rest-list) -->

1.

case_introduction(subtype~beginning) -->
[case_intro].

optional_case_closing_and_text(F) -->
[case_closing],
text (F,_ ).

optional_case_closing_and_text(in_case~mno) -->

1.

%% list(+FollowingType,+Number)

)

% A list has to be parsed after a sentence containing a following_np

% (see textual grammar). The values of FollowingType and Number depend
% on the following_np.

list(FollType,singular) -->
{FollType = axiom ; FollType = case ; FollType = propertyl},
list_element (FollType) .

list(FollType,plural) -->
{FollType = axiom ; FollType = case ; FollType = property},
list_element (FollType),
list_element (FollType),
optional_list(FollType).

optional_list(FollType) -->
list_element (FollType),
optional_list(FollType).

optional_list(_) -->
1.

list_element (FollType) -->
[heading (FollType)],
{ begin_limited_new_paragraphs },
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assumptions,
assertions,
list_element_ending(FollType),
{ end_limited_new_paragraphs }.

list_element_ending(axiom) -->
[end(axiom)],
optional_new_paragraphs.

list_element_ending(_) -->
new_paragraphs.

A.2 Textual grammar

The textual grammar defines the grammar on the sentence level. Since it makes
extensive use of feature structures, we first explain all features used in the
grammar:

e number: This feature marks the grammatical number (singular or plural)
of a noun phrase, specifier, noun, verb phrase, verb or similar component.
Additionally, it can be used to count whether a list (e.g. a list of quant-
terms) has one or more than one element. In that case it can also take
the value null, meaning that the list is empty.

e mode: This feature indicates whether a verb or verb phrase is in the finite
mode (finite) or in the infinitive mode (infinitive or to-infinitive,
depending on whether it is an infinitive without or with “to”). Addi-
tionally, sentential phrases may take this mode feature, in which case it
indicates the mode of the head verb of the sentential phrase (or of any of
a number of coordinated sentential phrases).

e transitive: This feature is used to distingish between transitive verbs
(for which it takes the value plus), intransitive verbs (minus) and the
copula “to be” (copula).

e adj_trans: This feature indicates whether an adjective is transitive or
not (see section 7 and — in the case of transitive adjectives — speci-
fies which preposition is used for the complement. Its value is either no
(for intransitive adjectives) or the name of the preposition used for the
complement of a transitive adjective.

e specifier_type: The specifier (i.e. determiner) of a noun phrase may

be of specifier_type definite (“the”), indefinite (e.g. “a”, “some”
and the empty plural specifier), negative (“no”) or universal (“all” and
“every”). The specifier type is also inherited by the noun phrases headed
by the specifier in question. Noun phrases that are just symbolic terms

and hence lack a specifier get specifier type term.



292 APPENDIX A. FORMAL GRAMMAR OF THE NAPROCHE CNL

e subordinated: This feature of a sentential phrase takes values yes or no
in order to indicate whether the sentential phrase is subordinated in such
a way that it may not take references (see section [7.3.5]).

e typ: This feature serves various purposes: It is used to distinguish various
kinds of sentence type triggers (assertion, ass (assumption),
variable_declaration, ass_closing (assumption closing), case_closing),
it is used to distinguish between existential and universal natural lan-
guage quantifiers, and to distinguish between different styles of itemization
labels (see comment at the definition of label/2 in the formal grammar
below).

e noun_type: Nouns that denote collections (e.g. “set”, “class” and “col-
lection”) can be used in special syntactic ways. In order to account for
that, these are marked with a noun_type feature collection; for other
nouns this feature takes the value normal.

e alt_copulas: For some prepositions, the copula in predicative usages of
the preposition (e.g. “to be on ...”) may be replaced by another verb
without a shift in meaning (e.g. “to lie on ...”). Which verbs may in this
way be used as alternatives to the copula is indicated in the lexical entry
of a preposition using the alt_copulas feature: Its value is a list of | verbs
other than the copula that may be used in its place.

e comma: Certain assertion triggers may optionally take a comma after them,
while others may not. This is marked in their lexical entry using the comma
feature, which can take the value optional or no.

e named: Such-that clauses may only modify noun phrases that have been
named using some symbolic term. But in the case of a predicative noun
phrase, it is enough if the subject noun phrase predicated by it is named.
This feature is used to keep track of whether a such-that clause will be
allowed according to these rules: It takes the value yes on named noun
phrases, on noun phrases predicating named noun phrases and on verb
phrases whose subject is a named noun phrase. Otherwise it taked the
value no.

e empty: Special care has to be taken to ensure that the empty plural spec-
ifier is not postulated at spurious places (see section [7.3.6)). This feature
is used to take care of this. It can take the value yes or no.

Note that the grammatical rules in the formal textual grammar presented
below have been extracted from rules containing semantic information. Hence
there are sometimes separate rules that could — from a purely syntactic point of
view — be easily unified, but which are separated because of different semantic
behaviour.

The names of the predicates (i.e. non-terminal symbols) in the grammar
are as in the actual code of the Naproche system. A significant number of the
predicates go back to ACE’s terminology. We consider some of the predicate
names, especially those naming different kinds of sentential phrases, not to
be well-chosen terminology. For example, note that the predicate sentence
refers to what we have termed NP-VP-sentence in section [L.3} When the word
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sentence appears in complex predicate names, it means any simple sentential

phrase. In the comments to the formal
according to the terminology used in the

grammar, I use the word “sentence”
thesis.

Here is the commented formal textual grammar:

assertion -—>
[triviall].

assertion —->
necessary_references.

assertion -->
trigger(typ~assertion),
references,

proposition_coord(mode~finite.

references.

assertion —->
[contradiction],
references.

definition -->
[define],
definiendum,
iff,
proposition_coord(mode~finite

definition -->
optional_definition_intro,
[define],
symbolic:definition_quantterm,
copula(mode~to-infinitive),
symbolic:term(_Type) .

optional_definition_intro -->
[for,defining],
symbolic:quantterm,
[at],
symbolic:term(_Type),
comma (comma~optional) .

optional_definition_intro -->

(1.

definiendum -->

.subordinated~no),

. .subordinated~yes) .

symbolic:definition_quantterm.
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definiendum -->
optionally_specified_variable,
copula(mode~to-infinitive..number~singular),
indefinite_article(number~singular),
noun (_,number~singular) .

definiendum -->
optionally_specified_variable,
copula(mode~to-infinitive..number~singular),
adjective (number~singular) .

definiendum -->
optionally_specified_variable,
copula(mode~to-infinitive. .number~singular),
adjective_parser(adj_trans~T. .number~singular),
{\+T=nol,
(T1,

optionally_specified_variable.

definiendum -->
optionally_specified_variable,
[and],
optionally_specified_variable,
copula(mode~to-infinitive),
adjective_parser(adj_trans~T. .number~plural),
{\+T=no }.

definiendum -->
optionally_specified_variable,
intransitive_verb(_,mode~to-infinitive..number~singular) .

definiendum -->
optionally_specified_variable,
transitive_verb(mode~to-infinitive..number~singular),
optionally_specified_variable.

%% optionally_specified_variable

)

%  This predicate parses a variable optionally preceded by an indefinite
% noun phrase.

optionally_specified_variable ——>
simple_indefinite_np,
symbolic:variable.
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optionally_specified_variable -->
symbolic:variable.

simple_indefinite_np -—>
specifier(specifier_type~indefinite),
simple_nbar.

simple_nbar -->
noun(_,number~singular) .

simple_nbar -->
adjective (number~singular),
simple_nbar.

assumption -->
trigger(typ~variable_declaration),
quantterm_list_bar(_).

assumption -->
[let],
quantterm_list_bar(_),
[bel,
[given].

assumption -->
trigger(typ~ass..mode~Mode),
proposition_coord(mode~Mode. .subordinated~yes) .

%% proposition_cord(?Features)

%  propoosition_coord parses the core of a sentence. This can be a complex
%  sentential phrase consisting of numerous simple sentential phrases. The
% following is a detailed characterisation of proposition_coord in terms

% of sentence_coord:

%  proposition_coord can be either a simple sentence_coord, or a number of
%  sentence_coords linked with "if...then" or "iff".

proposition_coord(mode~Mode. .subordinated~S1) -->
{ var(81); S1 = no; S2 = yes 1},
sentence_coord(mode~Mode. .subordinated~S2),
proposition_coord_tail.

proposition_coord(mode~finite..subordinated~Sub) -->
[if],
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sentence_coord(mode~finite..subordinated~yes),
comma (comma~optional),

[then],

references,

trigger (typ~conseq),

references,

proposition_coord(mode~finite. .subordinated~Sub) .

proposition_coord(mode~that. .subordinated~Sub) -->
[that],
[if],
sentence_coord(mode~finite..subordinated~yes),
comma (comma~optional),
[then],
references,
trigger (typ~conseq),
references,
proposition_coord(mode~finite..subordinated~Sub) .

proposition_coord_tail -->
comma (comma~optional),
(if],
sentence_coord(mode~finite..subordinated~yes).

proposition_coord_tail -->
comma (comma~optional),
iff,
sentence_coord(mode~finite..subordinated~yes).

proposition_coord_tail -->

.

%% sentence_coord(?Features)

A

%  sentence_coord links a number of topicalised_sentences with "and",
% "or", ", and", ", or" and "i.e." in such a way that the bracketing
%  is unambiguous.

sentence_coord(mode~Mode. .subordinated~S) -—>
sentence_coord_0(mode~Mode) ,
sentence_coord_tail (mode~Mode. .subordinated~S).

sentence_coord_tail (mode~Mode. .subordinated~no) -->
references,
conseq_conjunct_marker,
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references,
sentence_coord (mode~Mode) .

sentence_coord_tail (mode~Mode. .subordinated~no) -->
references,
comma (comma~optional),
[and],
necessary_references,
sentence_coord(mode~Mode) .

sentence_coord_tail (mode~Mode. .subordinated~no) -->
necessary_references,
comma (comma~optional),
[and],
sentence_coord(mode~Mode) .

sentence_coord_tail(_ ) -->

(1.

sentence_coord_0(mode~Mode) -->
sentence_coord_1(mode~Mode),
sentence_coord_0_tail (mode~Mode) .

sentence_coord_0_tail (mode~Mode) -->
(.1,
[or],
sentence_coord_0(mode~Mode) .

sentence_coord_0_tail(_) -->

(1.

sentence_coord_1(mode~Mode) -—>
sentence_coord_2(mode~Mode) ,
sentence_coord_1_tail (mode~Mode) .

sentence_coord_1_tail (mode~Mode) -->
(.1,
trigger (typ~conjunction),
sentence_coord_1(mode~Mode) .

sentence_coord_1_tail(_) -->

1.

sentence_coord_2(mode~Mode) -—>
sentence_coord_3(mode~Mode) ,
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sentence_coord_2_tail (mode~Mode) .

sentence_coord_2_tail (mode~Mode) -->

[or],
sentence_coord_2(mode~Mode) .

sentence_coord_2_tail(_) -->

1.

sentence_coord_3(mode~that) -->

[that],
topicalised_sentence(mode~finite),
sentence_coord_3_tail (mode~that) .

sentence_coord_3(mode~Mode) -->

topicalised_sentence (mode~Mode),
sentence_coord_3_tail (mode~Mode) .

sentence_coord_3_tail (mode~Mode) —-—>

trigger (typ~conjunction_or_comma),
sentence_coord_3(mode~Mode) .

sentence_coord_3_tail(_) -—>

Dot
A
)
A
A

.
topicalised_sentence(7Features)
A topicalised_sentence can be a quantified sentential phrase, two

composite_sentences linked with "implies that", or just one
composite_sentence.

topicalised_sentence(mode~Mode) -->

existential_topic(mode~Mode) .

topicalised_sentence(mode~finite) -->

universal_topic,
comma (comma~optional),
proposition_coord(mode~finite..subordinated~no) .

topicalised_sentence(mode~finite) -->

composite_sentence(mode~finite),
comma (comma~optional),

implies,
composite_sentence(mode~finite).
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topicalised_sentence (mode~Mode) -->
composite_sentence (mode~Mode) .

%% existential_topic(7Features)

/)

% An existential_topic is a sentential phrase headed by a natural language
% existential quantification.

existential_topic(Features) -->
{ Features = typ~existential },
quantifier(Features),
existential_np_coord(Features).

existential_topic(Features) -->
{ Features = typ~at_most_one 1},
quantifier(Features),
nbar (Features) .

existential_topic(Features) -->
{ Features = typ~precisely_one },
quantifier(Features),
nbar (Features) .

existential_np_coord(number~Number. .typ~Typ) -->
np(specifier_type~ST. .number~Numberl. .typ~Typ),
{ ST = indefinite ; ST = negative 7,
existential_np_coord_tail (number~NumberTail..typ~Typ),

{
NumberTail = null ->
Number = Numberl
( Numberl = singular , NumberTail = singular
Number = plural
)
T

existential_np_coord_tail (Features) -->
[and],
existential_np_coord(Features) .

existential_np_coord_tail (number~null) -->

(1.

%% universal_topic
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)
% A universal_topic is a sentential phrase headed by a natural language
% universal quantification.

universal_topic ——>
[for],
np(specifier_type~universal).

%% composite_sentence(?Features)

)

% A composite_sentence is either a simple sentential phrase or a
%  proposition_coord prefixed with a sentence_init.

composite_sentence (mode~Mode) -->
sentence_init (mode~Mode) ,
proposition_coord(mode~that. .subordinated~yes).

composite_sentence (mode~Mode) -->
trigger (typ~formula..mode~Mode),
symbolic:term(o) .

composite_sentence (mode~Mode) -->
sentence (mode~Mode) .

composite_sentence (mode~Mode) -->
metasentence (mode~Mode) .

%% sentence(?Features)

%

% A sentence is what we termed NP-VP-sentence in the thesis: A noun
%  phrase followed by a verb phrase.

sentence (mode~Mode) -->
np_coord (number~Number . .named~Named, ),
vp (mode~Mode . .number~Number . .named~Named) .

%% mnp_coord(?Features,-Connective)
h
% np_coord parses a noun phrase of any complexity: It may coordinate

%  simple noun phrases (np) with "and" or "or".

In a conjunction of
%  more than two simple noun phrases, all but the last "and" can also

%  be replaced by commas.

np_coord (number~plural . .named~Named,and) -->
simple_np_conjunction(named~Named) .
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np_coord (number~plural. .named~Named,and) -->
np (named~Named) ,
comma_or_and (obligatory),
np_coord (named~Named,and) .

np_coord (number~plural. .named~Named,and) -->
np (named~Named) ,
[and],
np (named~Named) .

np_coord (number~CoordNumber . .named~Named,or) -->
np (number~Number1l. .named~Named) ,
for],
np_coord (number~Number?2. .named~Named, or) ,
% In an NP disjunction, the grammatical number of the single disjuncts
% affects the grammatical number of the disjunction.
% If the disjuncts have the same number, the disjunction takes over this
%  number.
% If the disjuncts have different numbers, the disjunction number is
%  "mixed".
% Since verb agreement is not possible for NP disjunctions with number
% "mixed", such NP disjunctions can only be used as objects or as subjects
% of infinitive constructs.
{ Numberl = Number2 -> CoordNumber = Numberl ; CoordNumber = mixed }.

np_coord (number~CoordNumber . .named~Named,or) -->
np (number~Number1l. .named~Named) ,
[or],
np (number~Number?2. .named~Named) ,
{ Numberl = Number2 -> CoordNumber = Numberl ; CoordNumber

mixed 7.

np_coord(Features,no) -->
np (Features) .

%% simple_np_conjunction(?Features)

t

%  simple_np_conjunction parses a conjunction of noun phrases that are not
% headed by a universal or negative specifier.

simple_np_conjunction(named~Named) -->
np(specifier_type~SpecifierType. .named~Named) ,
{

\+ SpecifierType = universal,

\+ SpecifierType = negative
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+s
comma_or_and (obligatory),
simple_np_conjunction(named~Named) .

simple_np_conjunction(named~Named) -->
np(specifier_type~SpecifierTypel..named~Named),
{
\+ SpecifierTypel = universal,
\+ SpecifierTypel = negative
1},
[and],
np(specifier_type~SpecifierType2..named~Named),
{

\+ SpecifierType2 = universal,

\+ SpecifierType2 = negative
}.

%% mnp(?Features)

)

% np parses a simple noun phrase, i.e. either a term or a specifier
% followed by an nbar.

np (number~singular. .specifier_type~term) -->
symbolic:term(_Type).

np(Features) -->
specifier(Features),
{
% Variables without "there are" or a noun in front of them
% should never be read as plural nbars with empty indefinite
% specifiers, but only as terms:
( Features = empty~mno ; subsumes(typ~existential,Features) )
->
true
Features = noun~obligatory
1,

nbar (Features) .

%% nbar(?Features)

)

%  An nbar is a noun, possibly preceeded by an adjective, and possibly
% followed by a quantterm_list_bar. Alternitavely, it is just a

% quantterm_list_bar possibly preceeded by an adjective.
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nbar (Features) -->
nbar1 (Features) .

nbar (Features) -->
adjective(Features),
nbar (Features) .

nbarl(Features) -->
{Features = noun_type~collection},
noun(_,Features),
quantterm_list_bar(Features),
collection_complement.

nbarl (Features) -->
{Features = noun_type~collection},
noun(_,Features),
{
Features = named~Named,
( Named == yes -> true ; Named = no )
},
collection_complement,
optional_ppst (Features) .

nbarl (Features) -->
noun(_,Features),
quantterm_list_bar(Features).

nbarl(Features) -->
noun(_,Features),
{
Features = named~Named,
( Named == yes -> true ; Named = no )
1,
optional_ppst (Features) .

nbarl (Features) -->
{ Features = noun~optional },
quantterm_list_bar(Features).

collection_complement -->
[of ,objects,called],
noun(_,number~plural) .

collection_complement -->
[of],
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nbar (number~plural) .

%% quantterm_list_bar(?Features)

)

% A quantterm_list_bar is list of quantterms possibly followed by a
%  propositional phrase and/or a such_that_clause.

quantterm_list_bar(Features) -->
{
change_feature(Features,number,VariableListNumber,VariableListFeatures)
},
quantterm_list(VariableListFeatures),
{
\+ VariableListNumber = null,
( VariableListNumber = plural -> Features = number~plural; true )
},
optional_ppst (named~yes) .

quantterm_list (number~Number) -->
symbolic:dependent_quantterm,
quantterm_rest_list (number~RestNumber) ,

{ RestNumber = null -> Number = singular; Number = plural }.
quantterm_list (number~Number) -->

symbolic:quantterm,

quantterm_rest_list (number~RestNumber) ,

{ RestNumber = null -> Number = singular; Number = plural }.

quantterm_rest_list(Features) -->
comma_or_and (optional),
quantterm_list (Features) .

quantterm_rest_list (number~null) -->

1.

%% optional_ppst(?Features)

)

% This predicate optionally parses a (possibly negated) prepositional
%  phrase, a such_that_clause or a prepositional phrase followed by a
%  such_that_clause.

optional_ppst(Features) -->
optionally_negated_pp(Features),
optional_such_that_clause(Features).
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optional_ppst (Features) -->
optional_such_that_clause(Features).

optionally_negated_pp(Features) -->
[not],
pp(Features) .

optionally_negated_pp(Features) -->
pp(Features) .

%%  pp(?Fetures)

% pp parses a prepositional phrase, i.e. a preposition followed by a
% noun phrase.

pp(Features) -->
preposition(Features),
np_coord(_,_).

optional_such_that_clause(Features) -->
{ Features = named~yes 1,
such_that_clause.

optional_such_that_clause(_) -—>
satisfying_clause.

optional_such_that_clause(_) -->

0.
%% such_that_clause

% A such_that_clause is a subclause starting with "such that"
% followed by a proposition_coord.

such_that_clause -->
comma (comma~optional),
[such],
[that],
proposition_coord(mode~finite. .subordinated~yes) .

%% satisfying_clause

% A satisfying clause is a postposed adjectival phrase
%  consisting of "satisfying" followed by a following_np.
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satisfying_clause -—>
satisfying,
following np(_).

satisfying -->
[satisfying] .

satisfying -->
[not],
[satisfying] .

%% vp(?Features)
%

% vp parses a verb phrase.

vp(Features) -->
negation(Features),
{
Features = number~Number,
VBarFeatures = mode~infinitive..number~Number
},

vbar (VBarFeatures) .

vp(Features) -->
vbar (Features) .

vp(Features) -->
optionally_negated_copula(Features),
{
Features = named~Named,
( Named == no -> true ; Named = yes )
3,
specifier (Features),
nbar (Features),
{

Features = specifier_type~indefinite

)

Features = specifier_type~definite

>
Features = specifier_type~term

}.

vp(Features) -->
optionally_negated_copula(Features),
adjective(Features).
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vp(Features) -->
optionally_negated_copula(Features),
adjective_parser (Features),

{

Features = adj_trans~T,
\+ T = no

3,

(T,

np_coord(_,_).

vp(Features) -->
optionally_negated_verb(Verb,Features),
pp(Features),
{
Features = alt_copulas~AltCopulas,
member (Verb, [be|AltCopulas])
}.

vp(Features) -->
{ Features = named~yes 1,
optionally_negated_copula(Features),
such_that_clause.

vbar (Features) -->
transitive_verb(Features),
np_coord(_,_).

vbar (Features) -->
intransitive_verb(_,Features).

negation(Features) -->
{ Features = mode~finite },
intransitive_verb(do,Features),
[not] .

negation(Features) -->
{ \+ Features = mode~finite },
[not].

optionally_negated_copula(Features) -->
negated_copula(Features) .

optionally_negated_copula(Features) -->
copula(Features) .
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negated_copula(Features) -->

{ Feature = mode~finite 7,
copula(Features),
[not].

negated_copula(Features) -->

{ \+ Feature = mode~finite 7},
[not],
copula(Features) .

optionally_negated_verb(be,Features) -->

optionally_negated_copula(Features).

optionally_negated_verb(Verb,Features) -->

negation(Features),

{

Features = number~Number,

VerbFeatures = mode~infinitive..number~Number
},

intransitive_verb(Verb,VerbFeatures).

optionally_negated_verb(Verb,Features) -->

Dot
b
b
A
A
A
A
)
A
A
A
b
b

intransitive_verb(Verb,Features).
label(-Type, ?NoType)

label parses sentences of the form "i)", "ii)", "A)" etc. Given the
way these are pre-tokenized, we can say that label always parses

a string of single-character words, of which the last must be ")"
(and no previous single-character word may be "(").

The Type argument can take the values "capital" (for labels of the

form A), B), C) etc.), "latin" (for a), b), c) etc.), "number" (for

1), 2), 3) etc.), "roman" (for i), ii), iii) etc.) and "unknown"

(for any other string followed by ")"). The NoType argument may indicate
which value the Type argument may not take. If all values are allowed
for Type, then NoType is "nothing".

label(Type,NoType) -->

alnum(Identifier),

)1,

{
dcg_lexicon([Identifier],enumeration,typ~Type),
\+ NoType = Type
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alnum(Out) -->

[Char],
{ atom(Char),
\+ Char = >’ },
alnum(TmpOut),
{ atom_concat (Char, TmpOut, Out) }.

alnum(Char) -->

[Char],
{ atom(Char),
\+ Char = >’ }.

metasentence (?Features)

metasentence parses a simple sentential phrase that either announces
a list of statements starting in the following sentence (using
following_np) or talks about previously introduced statements. (For
the second case, only talk about previously introduced cases of a
case distinction is implemented.)

metasentence (mode~Mode) -->

following_np (number~Number) ,
meta_vp(mode~Mode. .number~Number) .

metasentence (mode~Mode) -->

meta_np(_,number~Number) ,
meta_vp(mode~Mode. .number~Number) .

following_np(?Features)

following_np parses a noun phrase that contains the word "following"
followed by "axiom", "property" or "case" (possibly in plural form),
and is used to announce a list of statements starting in the following
sentence.

following_np(number~singular) -->

[precisely,one,of ,the,following],
noun (Noun,number~plural),
{ Noun = axiom ; Noun = property ; Noun = case }.

following_np(number~singular) -->

[at,most,one,of ,the,following],
noun (Noun ,number~plural),
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{ Noun = axiom ; Noun = property ; Noun = case }.
following_np(Features) -->
[the,following],
noun (Noun,Features),
= case }.

{ Noun = axiom ; Noun = property ; Noun
meta_np(and,number~plural) -->
[case,_Identifier],
comma_or_and (obligatory),

meta_np(and,_).

meta_np(at_most_one,number~singular) -->
[at,most,one,of],
[case,_Identifier],
comma_or_and (obligatory),

meta_np(and,_).

meta_np(xor ,number~singular) -->
[precisely,one,of],
[case,_Identifier],
comma_or_and (obligatory),

meta_np(and,_).

meta_np (or ,number~singular) -->
[case,_Identifier],

lor],
meta_np (or,number~singular) .

meta_np (or ,number~singular) -->
[case,_Identifieri],

[or],
[case,_Identifier2].

meta_np(and,number~singular) -->
[case,_Identifier].

meta_vp(Features) -->
copula(Features),

[correct].

meta_vp(Features) -->
copula(Features),

[true].
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meta_vp(Features) -->
intransitive_verb(hold,Features).

meta_vp(Features) -->
copula(Features),
[incorrect].

meta_vp(Features) -->
copula(Features),
[false].

meta_vp(Features) -->
negated_copula(Features),
[correct].

meta_vp(Features) -->
negated_copula(Features),
[truel.

meta_vp(mode~Mode. .number~Number) -->
negation(mode~Mode. .number~Number) ,
intransitive_verb(hold,mode~infinitive

meta_vp(Features) -->
copula(Features),
[inconsistent] .

% LEXICAL ITEMS

noun (Noun,Features) -->

{

dcg_lexicon(DeclinedNoun,noun,Features,

T,

DeclinedNoun.

%% adjective(?Features)

311

. .number~Number) .

Noun)

% adjective parses adjectives in positions where no propositional

%  complement to transitive adjectives is

possible. Hence transitive

% adjectives may only be parsed by adjective if the number feature is

%  "plural".

adjective(Features) -->
[Adjective],
{
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Features = adj_trans~no,
dcg_lexicon([Adjective],adjective,Features)

}.
adjective (number~plural) -->
[Adjective],
{
dcg_lexicon([Adjective] ,adjective,adj_trans~T),
\+ T = no
}.

%% adjective_parser (?Features)

h

% adjective_parser parses any adjective, i.e. also transitive adjectives
%  that have to be followed by a propositional complement.

adjective_parser (Features) -->
[Adjectivel],
{
dcg_lexicon([Adjective] ,adjective,Features)

T

transitive_verb(Features) —-->
{
Features = transitive~plus,
dcg_lexicon(ConjugatedVerb,verb,Features,_)
3,
ConjugatedVerb.

intransitive_verb(Verb,Features) -->
{
Features = transitive~minus,
dcg_lexicon(ConjugatedVerb,verb,Features,Verb)
},
ConjugatedVerb.

copula(Features) -->
{
Features = transitive~copula,
dcg_lexicon(ConjugatedVerb,verb,Features,_)
},
ConjugatedVerb.

specifier (Features) -->
{ dcg_lexicon(Specifier,specifier,Features) },
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Specifier.

number -->
[Number] ,
{ dcg_lexicon([Number] ,number) }.

preposition(AltCopulas) -->
{ dcg_lexicon(Preposition,preposition,AltCopulas,_,_) },
Preposition.

quantifier (Features) -->
{ dcg_lexicon(Quantifier,quantifier,Features) 7,
Quantifier.

trigger (Features) -->
{ dcg_lexicon(Trigger,trigger,Features) 1,
Trigger,
comma (Features) .

sentence_init (mode~Mode) -->
{ dcg_lexicon(Sentencelnit,sentence_init,mode~Mode) },
Sentencelnit.

comma (comma~optional) -->

[7’)]_

comma(_) -->

(1.

iff -—>
[iff].

iff -——>
[if],
[and],
[only],
[if].

implies -->
[implies],
[that].

implies ——>
[implies].
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indefinite_article(number~singular) -->

[a].

indefinite_article(numbermsingular) -—>
[an].

indefinite_article(number~plural) -->

1.

comma_or_and(_) -->

0,’].

comma_or_and(_) —-->
[and] .

comma_or_and(optional) -->

.
comma_or_or —->
[J 7].
comma_or_or —->
[or].
conseq_conjunct_marker -->
I
trigger(typ~ie).

conseq_conjunct_marker -->
comma (comma~optional),
[and],
trigger (typ~conseq_conjunct).

references ——>
necessary_references.

references —->

1.

necessary_references ——>
[by],
reference_list,
comma (comma~optional) .

reference_list —-->



A.2. TEXTUAL GRAMMAR

reference,
comma_or_and (obligatory),
reference_list.

reference_list —->
reference.

reference -->
[axiom],
[_Identifier].

reference -->
[theorem] ,
[_Identifier].

reference -->
[lemma],
[_Identifier].

reference -—>
[definition],
[_Identifier].

reference --—>
[induction].

% SPECIAL SENTENCE TYPES

closing ——>
trigger(typ~ass_closing),
references,
proposition_coord(mode~finite. .subordinated~no),
references.

theorem_heading -->
{ Type = theorem ; Type = lemma 1},
heading(Type) .

heading(Type) -->
[Typel .

heading(Type) -->
[Typel,
[_Identifier].

315
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proof -->
[proof].

proof_end -—>
[ged] .

proof_end -->
[’End_proof’].

end(Type) -->
{ atom_concat(’End_’,Type,End_Type) 17,
[End_Type] .

case_id -->
[case],
[_Identifier].

case_intro -->
trigger (typ~assertion),
[there,are],
number,
[cases].

case_closing -->
trigger (typ~assertion),
trigger (typ~case_closing),
proposition_coord(mode~finite. .subordinated~no) .

case —-—>
proposition_coord(mode~finite. .subordinated~yes) .

new_paragraph -->
[##] .

% VARIABLE TYPE FIXING

%% var_type_fix

0,

h

%  var_type_fix parses a sentence that links certain variable symbol
%  collections to certain predicates (named ’types’ here).

var_type_fix -->
symbol_collections,
infix_var_type_fix,
noun (_,number~plural) .
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symbol_collections -->
symbol_collection,
comma_or_and (obligatory),
symbol_collections.

symbol_collections -->
symbol_collection,
[and],
symbol_collection.

symbol_collections -->
symbol_collection.

symbol_collection -->
optional_capitalization,
alphabet,
[letters].

optional_capitalization -->
[small].

optional_capitalization -->
[capital].

optional_capitalization -->

1.

alphabet -->
[latin].

alphabet -->
[greek] .

alphabet -->
[fraktur].

alphabet -->
[german] .

infix_var_type_fix -->
[always],

[denote] .

infix_var_type_fix -->

317
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[willl],
[always],
[denote] .

infix_var_type_fix -->
[willl],
[bel,
[used],
[throughout],
[to],
[denote] .

infix_var_type_fix -->
[willl,
[stand],
[throughout],
[for].

% ALTERNATIVE NOTATION

%% alternative_notation

0,

b

% alternative_notation parses a sentence that announces the possibility
% of concatenative notation for a binary predicate that was introdced

% with infix notatiom.

alternative_notation -->
[instead],
[of],
[math([X,_Infix,Y])],
[wel,
[also],
[writel,
[math([X,Y])].

% Simple nouns
dcg_lexicon([set] ,noun,number~singular..noun_type~collection,set).
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dcg_lexicon([sets] ,noun,number~plural..noun_type~collection,set).
dcg_lexicon([class] ,noun,number~singular. .noun_type~collection,class).
dcg_lexicon([classes] ,noun,number~plural..noun_type~collection,class).
dcg_lexicon([collection] ,noun,number~singular..noun_type~collection,collection).
dcg_lexicon([collection] ,noun,number~plural..noun_type~collection,collection).
dcg_lexicon([element] ,noun,number~singular. .noun_type~normal,element) .
dcg_lexicon([elements] ,noun,number~plural..noun_type~normal,element) .
dcg_lexicon([number] ,noun,number~singular..noun_type~normal,number) .
dcg_lexicon([numbers] ,noun,number~plural..noun_type~normal,number) .
dcg_lexicon([integer] ,noun,number~singular..noun_type~normal,integer) .
dcg_lexicon([integers] ,noun,number~plural..noun_type~normal,integer) .
dcg_lexicon([real] ,noun,number~singular..noun_type~normal,real).
dcg_lexicon([reals] ,noun,number~plural..noun_type~normal,real).
dcg_lexicon([ordinal] ,noun,number~singular..noun_type~mnormal,ordinal).
dcg_lexicon([ordinals] ,noun,number~plural..noun_type~normal,ordinal).
dcg_lexicon([point] ,noun,number~singular..noun_type~normal,point).
dcg_lexicon([points],noun,number~plural..noun_type~normal,point).
dcg_lexicon([line] ,noun,number~singular..noun_type~normal,line).
dcg_lexicon([lines],noun,number~plural..noun_type~normal,line).
dcg_lexicon([circle] ,noun,number~singular..noun_type~mnormal,circle).
dcg_lexicon([circles] ,noun,number~plural..noun_type~mnormal,circle).
dcg_lexicon([segment] ,noun,number~singular. .noun_type~normal,segment) .
dcg_lexicon([segments] ,noun,number~plural..noun_type~mnormal,segments) .
dcg_lexicon([angle] ,noun,number~singular. .noun_type~normal,angle).
dcg_lexicon([angles],noun,number~plural. .noun_type~normal,angle).
dcg_lexicon([area] ,noun,number~singular. .noun_type~normal,area) .
dcg_lexicon([areas] ,noun,number~plural. .noun_type~normal,area) .
dcg_lexicon([triangle] ,noun,number~singular..noun_type~normal,triangle).
dcg_lexicon([triangles] ,noun,number~plural..noun_type~normal,triangle).
dcg_lexicon([axiom] ,noun,number~singular..noun_type~normal,axiom) .
dcg_lexicon([axioms],noun,number~plural. .noun_type~normal,axiom) .
dcg_lexicon([property] ,noun,number~singular..noun_type~normal,property) .
dcg_lexicon([properties] ,noun,number~plural..noun_type~normal,property) .
dcg_lexicon([case] ,noun,number~singular..noun_type~normal,case).
dcg_lexicon([cases] ,noun,number~plural. .noun_type~normal,case) .

% Type nouns

dcg_lexicon([function] ,noun,number~singular..noun_type~normal,’’).
dcg_lexicon([functions],noun,number~plural..noun_type~normal,’’).
dcg_lexicon([relation] ,noun,number~singular..noun_type~normal,’’).
dcg_lexicon([relations],noun,number~plural. .noun_type~normal,’’).
dcg_lexicon([object] ,noun,number~singular..noun_type~mnormal,’’).
dcg_lexicon([objects],noun,number~plural..noun_type~normal,’’).

% Complex nouns
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dcg_lexicon([natural,number] ,noun,
number~singular. .noun_type~normal,natural_number) .
dcg_lexicon([natural,numbers] ,noun,
number~plural..noun_type~normal,natural_number) .

% Pronouns
dcg_lexicon([it],pronoun,number~singular).

% Numbers

dcg_lexicon([two] ,number) .
dcg_lexicon([three] ,number) .
dcg_lexicon([four] ,number) .
dcg_lexicon([five] ,number) .
dcg_lexicon([six] ,number) .
dcg_lexicon([seven] ,number) .
dcg_lexicon([eight] ,number) .
dcg_lexicon([nine] ,number) .
dcg_lexicon([ten] ,number) .

dcg_lexicon([empty] ,adjective,adj_trans~mno) .
dcg_lexicon([even] ,adjective,adj_trans~mno) .
dcg_lexicon([natural] ,adjective,adj_trans~no).
dcg_lexicon([odd],adjective,adj_trans~mno).
dcg_lexicon([prime],adjective,adj_trans~mno).
dcg_lexicon([compound] ,adjective,adj_trans~mno) .
dcg_lexicon([composite] ,adjective,adj_trans~mno).
dcg_lexicon([positive] ,adjective,adj_trans~no).
dcg_lexicon([transitive],adjective,adj_trans~mno).
dcg_lexicon([square] ,adjective,adj_trans~no).
dcg_lexicon([rational] ,adjective,adj_trans~mno).
dcg_lexicon([irrational] ,adjective,adj_trans~no).
dcg_lexicon([finite],adjective,adj_trans~mno).
dcg_lexicon([infinite] ,adjective,adj_trans~no).
dcg_lexicon([nonzero] ,adjective,adj_trans~no).
dcg_lexicon([triviall ,adjective,adj_trans~no).
dcg_lexicon([nontrivial] ,adjective,adj_trans~no).

dcg_lexicon([distinct],adjective,adj_trans~from).
dcg_lexicon([disjoint],adjective,adj_trans~from).
dcg_lexicon([parallel] ,adjective,adj_trans~to).
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dcg_lexicon([coprime] ,adjective,adj_trans~to) .

% Type adjectives
dcg_lexicon([unary],adjective,adj_trans~mno).
dcg_lexicon([binary] ,adjective,adj_trans~mno) .
dcg_lexicon([ternary] ,adjective,adj_trans~mno) .

% Verbs

dcg_lexicon([succeeds],verb,transitive~minus..mode~finite..number~singular,
succeed) .

dcg_lexicon( [to,succeed] ,verb,transitive~minus..mode~to-infinitive,succeed).

dcg_lexicon([succeed],verb,Features,succeed) :-

Features = transitive~minus,

( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([holds],verb,transitive~minus. .mode~finite. .number~singular,hold).
dcg_lexicon([to,hold],verb,transitive~minus. .mode~to-infinitive,hold).
dcg_lexicon([hold],verb,Features,hold) :-

Features = transitive~minus,

( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([does] ,verb,transitive~minus..mode~finite..number~singular,do).
dcg_lexicon([to,do],verb,transitive~minus..mode~to-infinitive,do).
dcg_lexicon([do],verb,Features,do) :-

Features = transitive~minus,

( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([goes] ,verb,transitive~minus..mode~finite..number~singular,go).
dcg_lexicon([to,go],verb,transitive~minus..mode~to-infinitive,go).
dcg_lexicon([go],verb,Features,go) :-

Features = transitive~minus,

( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([lies],verb,transitive~minus..mode~finite..number~singular,lie).
dcg_lexicon([to,lie] ,verb,transitive~minus..mode~to-infinitive,lie).
dcg_lexicon([lie],verb,Features,lie) :-

Features = transitive~minus,

( Features = mode~infinitive; Features = number~plural..mode~finite ).

dcg_lexicon( [contains],verb,transitive~plus..mode~finite. .number~singular,
contain) .
dcg_lexicon([to,contain] ,,verb,transitive~plus..mode~to-infinitive,contain).
dcg_lexicon([contain] ,verb,Features,contain) :-
Features = transitive~plus,
( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon( [belongs ,to] ,verb,transitive~plus. .mode~finite. .number~singular,

’A\in’).
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dcg_lexicon([to,belong,to] ,verb,transitive~plus..mode~to-infinitive,’\\in’).
dcg_lexicon([belong,to],verb,Features,’\\in’) :-
Features = transitive~plus,
( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([divides],verb,transitive~plus..mode~finite..number~singular,
divide).
dcg_lexicon([to,divide],verb,transitive~plus..mode~to-infinitive,divide).
dcg_lexicon([divide] ,verb,Features,divide) :-
Features = transitive~plus,
( Features = mode~infinitive; Features = number~plural..mode~finite ).
dcg_lexicon([intersects],verb,transitive~plus..mode~finite..number~singular,
intersect).
dcg_lexicon( [to,intersect],verb ,transitive~plus..mode~to-infinitive,intersect).
dcg_lexicon([intersect] ,verb,Features,intersect) :-
Features = transitive~plus,
( Features = mode~infinitive; Features = number~plural..mode~finite ).

dcg_lexicon( [is] ,verb,transitive~copula..mode~finite..number~singular,be) .
dcg_lexicon([are],verb,transitive~copula..mode~finite..number~plural,be).
dcg_lexicon([be] ,verb,transitive~copula..mode~infinitive,be).
dcg_lexicon([to,be] ,verb,transitive~copula..mode~to-infinitive,be).

% "to be the center of" as a predicate that does not trigger presuppositions:
dcg_lexicon([is, the, center, of],verb,
transitive~plus. .mode~finite..number~singular,center) .
dcg_lexicon([to, be, the, center, of],verb,
transitive~plus..mode~to-infinitive,center).
dcg_lexicon([are, centers, of],verb,
transitive~plus..mode~finite..number~plural,center) .
dcg_lexicon([be, the, center, of],verb,
transitive~plus. .mode~infinitive,center).

dcg_lexicon([in] ,preposition,alt_copulas~[],grouped~mno,’\\in’).

dcg_lexicon([on,the,same,side,of],preposition,alt_copulas~[lie],grouped~1,
on_the_same_side_of).

dcg_lexicon([on] ,preposition,alt_copulas~[lie] ,grouped~no,on).

dcg_lexicon([inside] ,preposition,alt_copulas~[lie],grouped~no,inside).

dcg_lexicon([through] ,preposition,alt_copulas~ [go],grouped~no,through).

dcg_lexicon([between] ,preposition,alt_copulas~[lie],grouped~2,between) .
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dcg_lexicon([no],specifier,specifier_type~negative..empty~mno) .

dcg_lexicon([every],specifier,
specifier_type~universal..number~singular..empty~mno) .

dcg_lexicon([all],specifier,
specifier_type~universal..number~plural..empty~no).

dcg_lexicon([precisely,one],specifier,
specifier_type~one..number~singular. .empty~mno) .

dcg_lexicon([the],specifier,
specifier_type~definite..empty~no..number~singular).

dcg_lexicon([a],specifier,
specifier_type~indefinite..number~singular..empty~no) .
dcg_lexicon([an],specifier,
specifier_type~indefinite..number~singular..empty~no) .
dcg_lexicon([some] ,specifier,specifier_type~indefinite..empty~no).
dcg_lexicon([],specifier,
specifier_type~indefinite..number~plural..empty~yes) .

dcg_lexicon([for,every],quantifier,typ~universal..number~singular) .
dcg_lexicon([for,all] ,quantifier,typ~universal..number~plural).

dcg_lexicon([there,is],quantifier,
typ~existential..mode~finite..number~singular).
dcg_lexicon([there,are] ,quantifier,
typ~existential..mode~finite..number~plural).
dcg_lexicon([there,exists],quantifier,
typ~existential..mode~finite..number~singular).
dcg_lexicon([there,exist] ,quantifier,
typ~existential..mode~finite..number~plural).
dcg_lexicon([there,be] ,quantifier,typ~existential..mode~infinitive).
dcg_lexicon([there,exist] ,quantifier,typ~existential..mode~infinitive).
dcg_lexicon([there,to,bel] ,quantifier,typ~existential..mode~to-infinitive).
dcg_lexicon([there,to,exist],quantifier,typ~existential..mode~to-infinitive).

dcg_lexicon([there,is,at,most,one] ,quantifier,
typ~at_most_one..mode~finite..number~singular).

dcg_lexicon([there,be,at,most,one] ,quantifier,
typ~at_most_one..mode~infinite..number~singular).

dcg_lexicon([there,to,be,at,most,one],quantifier,
typ~at_most_one..mode~to-infinite..number~singular).
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dcg_lexicon([there,is,precisely,one],quantifier,
typ~precisely_one..mode~finite..number~singular).

dcg_lexicon([there,be,precisely,one],quantifier,
typ~precisely_one..mode~infinite..number~singular) .

dcg_lexicon([there,to,be,precisely,onel] ,quantifier,
typ~precisely_one..mode~to-infinite. .number~singular) .

dcg_lexicon( [it,is,false] ,sentence_init, typ~negative..mode~finite).
dcg_lexicon([it,be,false] ,sentence_init,typ~negative..mode~infinitive).
dcg_lexicon([it,to,be,false],sentence_init,
typ~negative..mode~to-infinitive).
dcg_lexicon([it,is,not,the,case],sentence_init,
typ~negative..mode~finite).
dcg_lexicon([it,not,be,the,case] ,sentence_init,
typ~negative. .mode~infinitive).
dcg_lexicon([it,not,to,be,the,case],sentence_init,
typ~negative..mode~to-infinitive).
dcg_lexicon([it,is,the,case],sentence_init,
typ~affirmative..mode~finite).
dcg_lexicon([it,be,the,case] ,sentence_init,
typ~affirmative. .mode~infinitive).
dcg_lexicon([it,to,be,the,case] ,sentence_init,
typ~affirmative..mode~to-infinitive).

dcg_lexicon([then] ,trigger,typ~assertion..comma~no) .

dcg_lexicon(X,trigger,typ~assertion..comma~Comnma) : -
( Type = all; Type = ie; Type = conjunction; Type = conseq ),
dcg_lexicon(X,trigger,typ~Type. .comma~Comma) .

dcg_lexicon(X,trigger,typ~conseq_conjunct..comma~Comma) : -
( Type = all; Type = conseq ),
dcg_lexicon(X,trigger,typ~Type..comma~Comma),

\+ X = [].

dcg_lexicon([hence] ,trigger,typ~all..comma~optional) .
dcg_lexicon([therefore] ,trigger,typ~all..comma~optional).
dcg_lexicon([recall,that] ,trigger,typ~all..comma~no) .
dcg_lexicon([now,recall,that],trigger,typ~all..comma~no) .
dcg_lexicon([now,observe,that],trigger,typ~all..comma~no) .
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dcg_lexicon([now] ,trigger,typ~all..comma~optional) .
dcg_lexicon([now,this,implies,that],trigger,typ~all..comma~no) .
dcg_lexicon([now,this,in,turn,implies,that] ,trigger,typ~all..comma~no) .
dcg_lexicon([now,this,implies],trigger,typ~all..comma~no) .
dcg_lexicon([now,this,in,turn,implies],trigger,typ~all..comma~no).
dcg_lexicon([so],trigger,typ~all..comma~no) .

dcg_lexicon([clearly],trigger,typ~conseq..comma~optional) .
dcg_lexicon([trivially],trigger,typ~conseq..comma~optional).
dcg_lexicon([obviously],trigger,typ~conseq..comma~optional).
dcg_lexicon([in,particular],trigger,typ~conseq. .comma~optional) .
dcg_lexicon([observe,that],trigger,typ~conseq. .comma~no) .
dcg_lexicon([furthermore] ,trigger,typ~conseq..comma~optional) .
dcg_lexicon([this,implies,that],trigger,typ~conseq. .comma~no) .
dcg_lexicon([this,in,turn,implies,that],trigger,typ~conseq. .comma~no) .
dcg_lexicon([this,implies],trigger,typ~conseq. .comma~no) .
dcg_lexicon([this,in,turn,implies],trigger,typ~conseq..comma~no) .
dcg_lexicon([finally],trigger,typ~conseq..comma~optional) .
dcg_lexicon([also] ,trigger,typ~conseq. .comma~optional) .
dcg_lexicon([],trigger,typ~conseq. .comma~no) .

dcg_lexicon([’i.e.’],trigger,typ~ie..comma~no).
dcg_lexicon([so],trigger,typ~ie..comma~no) .

dcg_lexicon([and],trigger,typ~conjunction. .comma~no) .
dcg_lexicon([but],trigger,typ~conjunction. .comma~no) .

dcg_lexicon([’,’],trigger,typ~conjunction_or_comma. .comma~no) .
dcg_lexicon(X,trigger,typ~conjunction_or_comma..comma~Comma) :-
dcg_lexicon(X,trigger,typ~conjunction. .comma~Comma) .

dcg_lexicon([we,have] ,trigger,typ~formula..mode~Mode. .comma~no) :-
\+ Mode = infinitive.

dcg_lexicon([we,get] ,trigger,typ~formula..mode~finite..comma~no) .

dcg_lexicon([],trigger,typ~formula..comma~no) .

dcg_lexicon([assume],trigger,typ~ass..mode~finite..comma~no).
dcg_lexicon([suppose] ,trigger,typ~ass..mode~finite..comma~no) .
dcg_lexicon([assume,that] ,trigger,typ~ass..mode~finite..comma~no) .
dcg_lexicon([suppose,that],trigger,typ~ass..mode~finite..comma~no) .
dcg_lexicon([assume,for,a,contradiction,that],
trigger,typ~ass..mode~finite..comma~no).
dcg_lexicon([now,assume] ,trigger,typ~ass..mode~finite..comma~no) .
dcg_lexicon([now,suppose] ,trigger,typ~ass..mode~finite..comma~no) .
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dcg_lexicon([now,assume,that] ,trigger,typ~ass..mode~finite..comma~no) .

dcg_lexicon([now,suppose,that],trigger,typ~ass..mode~finite..comma~no) .

dcg_lexicon([now,assume,for,a,contradiction,that],
trigger,typ~ass..mode~finite..comma~no) .

dcg_lexicon([let],trigger,typ~ass..mode~infinitive..comma~no) .
dcg_lexicon([now,let] ,trigger,typ~ass..mode~infinitive..comma~no).

dcg_lexicon([consider],trigger,typ~ass..mode~to-infinitive..comma~no) .
dcg_lexicon([now,consider],trigger,typ~ass..mode~to-infinitive..comma~no) .

dcg_lexicon([consider] ,trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([consider,arbitrary] ,trigger,typ~variable_declaration. .comma~no) .
dcg_lexicon([fix],trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([fix,arbitrary],trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([now,consider],trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([now,consider,arbitrary],trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([now,fix],trigger,typ~variable_declaration..comma~no) .
dcg_lexicon([now,fix,arbitraryl],trigger,typ~variable_declaration..comma~no) .

dcg_lexicon([thus],trigger,typ~ass_closing..comma~no).

dcg_lexicon([in,all,cases],trigger,typ~case_closing..comma~optional).
dcg_lexicon([in,both,cases],trigger,typ~case_closing..comma~optional).

% enumerations
dcg_lexicon([’A’],enumeration,typ~capital).
dcg_lexicon([’B’],enumeration,typ~capital).
dcg_lexicon([’C’],enumeration,typ~capital) .
dcg_lexicon([’D’],enumeration,typ~capital).
dcg_lexicon([’E’],enumeration,typ~capital).
dcg_lexicon([’a’],enumeration,typ~latin).
dcg_lexicon([’b’],enumeration,typ~latin).
dcg_lexicon([’c’],enumeration,typ~latin).
dcg_lexicon([’d’],enumeration,typ~latin).
dcg_lexicon([’e’],enumeration,typ~latin).
dcg_lexicon([’1’],enumeration,typ~number) .
dcg_lexicon([’2’],enumeration,typ~number) .
dcg_lexicon([’3’],enumeration,typ~number) .
dcg_lexicon([’4’],enumeration,typ~number) .
dcg_lexicon([’5’],enumeration,typ~number) .
dcg_lexicon([’i’],enumeration,typ~roman) .
dcg_lexicon([’ii’],enumeration,typ~roman) .
dcg_lexicon([’iii’],enumeration,typ~roman) .
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dcg_lexicon([’iv’],enumeration,typ~roman) .
dcg_lexicon([’v’],enumeration,typ~roman) .
dcg_lexicon([_],enumeration,typ~unknown) .

A.3 Quantterm grammar

The formal quantterm grammar presented below also shows how the notational
types of its components and the name of a circumfix function are determined.
This information is important for the better_reading algorithm defined below.

%% quantterm(+Accessibles,-NotationalType)

quantterm(Acc, [classical|NT]) -->
quantterm(Acc,NT),
0el,
variable_list(Acc),

1.

quantterm(Acc,NT) -->
variable(Acc),
quantterm(Acc, [infix|NT]),
variable(Acc).

quantterm(Acc,NT) -->
quantterm(Acc, [prefix|NT]),
variable(Acc).

quantterm(Acc,NT) -->
variable(Acc),

quantterm(Acc, [suffix|NT]) .

quantterm(Acc,NT) -->
new_circumfix_term(Acc,Name, [circumfix|NT]).

quantterm(_,_) -->
new_variable.

new_variable(Tree) -->

[Var],

{
atom(Var),
Var \= ’(’,
Var \= ’)’,
Var \= ’,’,

Var \= "7,
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Var \= ’{’,

Var \= ’}’,

Var \= ’\mapsto’
}.

new_circumfix_term(Acc, [S|NameTaill,_) -->
[s],

circumfix_term_tail (Acc,NameTail).

circumfix_term_tail (Acc,Name) -->
new_circumfix_term(Acc,Name,_).

circumfix_term_tail (Acc, [[arg] |Name]) -->
variable(Acc,VarTree),
new_circumfix_term(Acc,Name,_).

circumfix_term_tail(_,[]) -->

1.

variable(Acc) -—>
[Var],
{
member (Var,Acc)

}.

variable_list(Acc) -—>
variable(Acc),
0,1,

variable_list(Acc).

variable_list(Acc) -—>
variable(Acc).

As explained in section a quantterm often has multiple readings, and
there is an algorithm for determining which one is the best reading. What
follows is the Prolog code that formally defines this algorithm, which was only
sketched in section The quantterm readings are presented as feature
structures with the features nt (notational type), name (name of a circumfix
function) and head (the head of a quantterm consisting of a function applied to
some arguments is just that function without its arguments).

%% better_reading(+Readingl,+Reading2,-BetterReading)

)

% BetterReading is instantiated to either Readingl or Reading2 depending
% on which one of them is to be preferred.

better_reading(Readingl,Reading2,Readingl) :-
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Readingl = nt~[NT|_],

\+ NT == circumfix,

Reading2 = nt~[Circumfix]|_],
Circumfix == circumfix.

better_reading(Readingl,Reading2,Reading2) :-
Reading2 = nt~[NT|_],
\+ NT == circumfix,
Readingl = nt~[Circumfix|_],
Circumfix == circumfix.

% Two circumfix readings are compared by comparing their names:
better_reading(Readingl,Reading2,BetterReading) :-
Readingl = nt~[Circumfix1|_]..name~Namel,
Circumfixl == circumfix,
Reading?2 = nt~[Circumfix2|_]..name~Name2,
Circumfix2 == circumfix,
( name_better(Namel,Name2) ->
BetterReading = Readingl
( name_better (Name2,Namel) ->
BetterReading = Reading?2

% infix readings are always prefered over prefix and suffix readings:
better_reading(Readingl,Reading2,Readingl) :-
Readingl = nt~[Infix|_],

Infix == infix,
Reading? = nt~[PrefixOrSuffix|_],
( PrefixQOrSuffix == prefix ; PrefixOrSuffix == suffix ).

better_reading(Readingl,Reading2,Reading2) :-
Reading2 = nt~[Infix]|_],

Infix == infix,
Readingl = nt~[PrefixOrSuffix|_],
( PrefixOrSuffix == prefix ; PrefixOrSuffix == suffix ).

% The following rule identifies the prefered reading of a quantterm of the
% form f’(x): Here we want ’ to be a suffix function making f’ classical
% rather than ’ being a classical function making ’(x) a suffix. This is
% generalised to the rule that a reading that had "classical" in the second
% position of the notational type list is prefered over one that doesn’t.
better_reading(Readingl,Reading2,Readingl) :-

Readingl = nt~[_,NT1|_],
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NT1 == classical,
Reading2 = nt~[_,NT2|_],
\+ var(NT2),

NT2 \= classical.

better_reading(Readingl,Reading2,Reading2) :-
Reading2 = nt~[_,NT1]_],
NT1 == classical,
Readingl = nt~[_,NT2]|_],
\+ var (NT2),
NT2 \= classical.

% When none of the above rules decides which reading is better, we
% recursively check which head function is prefered by those rules.
better_reading(Readingl,Reading?,BetterReading) :-

Readingl = head~Headl,

\+ var (Headl),

Reading2 = head~Head2,

\+ var(Head2),

better_reading(Headl,Head2,BetterHead),

( BetterHead = Headl ->

BetterReading = Readingl

BetterReading = Reading2

% Finally, if none of the above rules decides which reading is better,

% we call Readingl better. (The only known case where this is needed is
% when an infix reading is the best reading, but a prefix and a suffix

% reading are compared before comparing any of the two to the infix

% reading. No matter which of the two readings is called better, it will
% in the end be worse than the infix reading.)
better_reading(Readingl,_,Readingl).

% A circumfix name with an [arg] in the position where another circumfix
% name has a symbol is prefered:
name_better (Namel,Name2) :-
make_args_to_vars(Namel,NamelWithVars),
make_args_to_vars(Name2,Name2WithVars),
\+ NamelWithVars == Name2WithVars,
subsumes (NamelWithVars,Name2WithVars) .

make_args_to_vars([[arg] [TailIn], [_|TailOut]) :-
!

L

make_args_to_vars(Tailln,TailOut).
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make_args_to_vars([Head|TaillIn], [Head|TailOut]) :-
make_args_to_vars(Tailln,TailOut).

make_args_to_vars([],[]).

A.4 Term grammar

Below we describe the grammar semi-formally by first listing (in a formal
DCG-notation) a list of simplified grammar rules that any term must obey
and then providing an informally described list of additional comnstraints
that any term must satisfy in order to be actually parsed by the formula
grammar. The constituent "term" used in the DCG-rules below, has two
features: One is the notational type (a list of basic notational types),
and the other one describes the complexity of the term. We distinguish
four complexities:

1. simple: Any term that either is bracketed or has a classical

or circumfix function as its head.

2. prefix_simple: Any term consisting of a prefix or quantifier

function and its argument(s).

3. semisimple: Any term consisting of a suffix function and its

argument.

4. complex: Any term consisting of an infix function and its

arguments.

When we use CamelCase names in the position of the complexity feature,

these describe semi-formally which complexities are allowed at that place
(e.g. "NotSimple" means any complexity apart from "simple" is allowed) .
SIMPLIFIED GRAMMAR RULES:

term(NT,simple) --> term([classicallNT],_), [’>(’], term_list, [’)’].
term(NT,semisimple) --> term(_,SimpleOrSemisimple), term([suffix|NT],simple).
term(NT,prefix_simple) --> term([prefix|NT],_), term(_,_).
term(NT,prefix_simple) --> term([quantifier|NT],_), variable_list, term(_,_).
term(NT,complex) --> term(_,_), term([infix|NT],semisimple), term(_,_).

term(NT,simple) --> cimrcumfix_term(NT,_).
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term(NT,simple) --> [’(’], term(NT,NotSimple), [’)°’].
term(NT,simple) --> variable(NT).

term_list --> term(_,_), [’,’], term_list.

term_list --> term(_,_).

variable_list --> quantified_variable, [’,’], variable_list.
variable_list --> quantified_variable

quantified_variable --> [_].
variable([infix]) --> [\rightarrow].
variable([infix]) --> [\leftrightarrow].
variable([infix]) --> [\wedgel.
variable([infix]) --> [\vee].
variable([prefix]) --> [\neg].
variable([quantifier]) --> [\foralll].
variable([quantifier]) --> [\exists].
variable([infix]) --> [=].
variable([infix]) --> [\neq].
variable(_) --> simple_variable, variable_tail.

simple_variable([]) --> [_].
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variable_tail --> [].

variable_tail --> [(v], digits, Dv].
digits --> digit, digits.

digits --> digit.

digit --> [0]; [11; [21; [31; [41; [51; [61; [71; [8]; [9].

For every accessible variable V of type NT, we add a rule of the
following form to the grammar:

variable(NT) --> V.

For every accessible circumfix function of type NT and with name
[Symi1,...,Syminl, [arg] ,Sym21,...,Sym2n2, [arg], ..., [arg] ,Symml,...,Symmnm]
adds a rule of the following form to the grammar:

circumfix_term(NT) --> [Sym11], ..., [Symini], term(_,_), [Sym21], ..., [Sym2n2],
term(_,_), ..., term(_,_), [Symm1], ..., [Symmnm].

ADDITIONAL CONSTRAINTS:
1. Types:

* Every variable and circumfix function has a type. In the first
five rules, the type of the function term has to be of the form

[t1,...,tn]=>t, the types of the arguments have to be of the form
tl,...,tn, and the type of the resulting term is t. The type of
a circumfix function also has to be of the form [t1,...,tn]=>t,

and the arguments in the added circumfix_term rules have to be of
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type tl,...,tn; the circumfix_term then gets type t.

* We may not use the "variable(_) --> simple_variable, variable_tail."
rule to parse a variable of type o. When we parse a variable V
according to this rule, we add a rule of the following form to the
grammar (where the variable in this added rule must be of the same
type as the V we just parsed):

variable(_) -—> V.

* A term of type var(t,X) is parsed as a quantified_variable. For
parsing any term of type X-t’ later on, we add the following
additional rule to the grammar (where V is the term parsed as
quantified_variable, the type of this variable is t and NT has to
take the same value whenever this rule is used):

variable(NT) --> V.

The predefined variables have the following types:
* \rightarrow, \leftrightarrow, \wedge and \vee: [0,0]=>o
\neg: [o]=>0
\forall: [var(_,X),X-o]=>0
\exists: [var(_,X),X-ol=>0
=: [T,T]=>0 (i.e. its two arguments must be of the same type)

* ¥ ¥ ¥ *

\neq: [_,_]1=>0 ( i.e. its arguments may be of different type)

2. Priorities in the case of ambiguous variables:

We distinguish different kinds of variables:
* Predefined logical variables parsed by one of the first nine
variable rules in the grammar.
* Variables parsed according to a rule added when parsing a
quantified_variable (see the third part of constraint 1), i.e.
bound variables.
* Variables parsed according to a rule of the form
"variable([]) --> V." added according to the second part of
constraint 1, i.e. variables implicitely introduced earlier in
the formula and reused at this point.
* Accessible variables whose antecedent is in the same sentence
as the formula that is being parsed.
* Accessible variables whose antecedent is before the sentence
of the formula being parsed.
* Variables parsed according to the
"variable(_) --> simple_variable, variable_tail." rule , i.e.
implicitely introduced new variables.
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When trying to parse a variable, we always first try to parse it according
to a variable kind higher up in the above list before trying the kinds
lower down in the list. Once a variable has been parsed in one way, it

may no longer be parsed in such a way as to be of a kind that is mentioned
later in the above list than the kind that it has already been assigned.
(This means for example that if "x" is accessible and we parse "\exists x
x+x=x", then all instances of "x" in this formula are bound by the
existential quantifier; none of the instances of "x" refers to the
accessible variable.)

A non-empty variable_tail may only be parsed after a simple_variable, if
that simple_variable followed by (v, a term of type i and )v cannot be
parsed as a term without the use of non-empty variable tails. (This means
for example that x_1 canot be used as a variable name, if we have defined
a two-place function (x,y) |--> x_y for individuals x, y.)

3. Operator priorities (OP) have to be obeyed:
* The OP of a complex term is the OP of its head function. The left
argument of an infix function must have OP less than or equal to the
OP of the infix function, and the function’s right argument must have
OP strictly less than the functions OP.

* The operator priorities of +, -, \rightarrow and \leftrightarrow
are 3; all other operator priorities are 2.

* Prefix functions are treated as if they had operator priority 2.5:

After a prefix function and after a quantifier and its variable list,
there must be a term with OP =< 2. And the left argument of an infix

function may not be prefix_simple.

4. Special treatment of formulae (i.e. terms of type o0):
* Atomic formulae are generally treated like simple terms with OP O.

* A complex argument to a prefix, suffix or infix function may only
be of type o if the corresponding argument type of the function was
predefined to be of type o. For example, "a = b \neq c" may not be
parsed as "(a = b) \neq c", even though "\neq"’s first argument may
in general be of any type, because "a = b" is complex and of type
o and "\neq"’s first argument was not predefined to be of type o.

* Infix relation symbols (i.e. function symbols with type of the form
[_,_1=>0) may be used for chained formulae, e.g. tl = t2 = t3 = t4. In this
case the tree we produce for the formula is the same as if the formula

had been t1 = t2 \wedge t2 = t3 \wedge t3 = t4.
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5. Notational types other than "classical" have to be predefined:
* In the second to fifth rule, as well as in the
"variable(_) --> simple_variable, variable_tail." rule, the sytactic
type of a term may not be instantiated to prefix, quantifier,
suffix or circumfix and may only be instantiated to infix if
it is a prefered infix function symbol (\cdot, +, -, *, ., \circ,
/, \in, <, >, \leq, \geq); for example, the requirement of the
final term to have "suffix" as notational type in the second rule
means that this notational type must already be in the term when parsing it
and may not be attached to the term afterwards. (In practice, this
constraint means that when you are quantifying over a function, this
function may be used with classical notational type or, if a prefered
infix function symbol is used, with infix notational type, but not
with prefix, suffix or quantifier notational type. So "\exists f f(a)=0"
and "\exists * x*x=x" are allowed, but "\exists z xzx=x",
"\exists f fa=0" and "\exists g ag=0" (with "z" read as an infix,
"f" as a prefix and "g" as a suffix function symbol) are not allowed.)

* If the notational type of an infix function symbol is instantiated
to "infix", then the arguments of this infix function may not be
complex formulae. (Thus "\exists * x*x=x" may not be read as
"\exists * x*(x=x)".)

6. The variables parsed by variable_list must be distinct.



Appendix B

Chapter 1 of Landau’s

Grundlagen in the
Naproche CNL

This appendix contains the reformulation of the first chapter of Landau’s Grund-
lagen der Analysis in the Controlled Natural Language of Naproche. This re-
formulation can be parsed by Naproche 0.52. The proof checking has some lim-
itation: Up to theorem 8, the limitations are only due to the fact that premise
selection is currently not supported. Additionally, some problems in the imple-
mentation of the proof checking of proofs by cases cause problems in the proof
of theorem 9.

The reformulation is based on a previous reformulation of the first chapter
of Landau’s Grundlagen for the CNL of Naproche 0.3 and 0.4. This previous
text was joint work by Merlin Carl, Daniel Kiihlwein and this thesis’ author.
The previous text was in a number of points less faithful to the original than
the current text:

e No talk about sets was possible: The induction axiom (Axiom 5) could not
be formulated and was replaced by a proof-by-induction principle included
in the system. The proofs by induction thus also avoided talk about sets.

e Since there was only one domain of discourse (namely the natural numbers,
and not also set of natural numbers as in the original text and the current
reformulation), there was no need for the predicate “natural number” to be
used. The sentence “Small latin letters will stand throughout for natural
numbers.” that is now used in a similar way as a corresponding sentence
in the original text (“Kleine lateinische Buchstaben bedeuten in diesem
Buch, wenn nichts anderes gesagt wird, durchweg natiirliche Zahlen.”)
was hence not needed (and would not have been accepted by the CNLs of
Naproche 0.3 and 0.4).

e Quantification over functions was not possible, so theorem 4 could not
be stated as in the original text and in this reformulation. (The proof of
theorem 4 without talk about sets would not have worked at any rate.
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Instead, the CNL allowed for recursive definitions, which were treatde by
the proof-checking module in a special way.)

e It was not possible to omit the multiplication sign.

e Since there were no inbuilt operator priorities additional brackets has to
be added in formulae containing both multiplication and addition.

All adaptations made to that previous reformulation for making the text more
faithful to the original were made by this thesis’ author.

For readability, the text is presented here not as the I#TEX code that actually
serves as input to the Naproche system, but in the typeset form that KXTEX
produces out of this IMTEX code.

Assume that there is a set of objects called natural numbers.
Small Latin letters will stand throughout for natural numbers.
Axiom 1: 1 is a natural number.

Axiom 2: For every z, there is a natural number z’.

Axiom 3: For every z, 2’ # 1.

Axiom 4: If 2’ =3/, then z = v.

Axiom 5: Suppose 9 is a set of natural numbers satisfying the following prop-
erties:

Property 1: 1 belongs to 9.

Property 2: If x belongs to M, then z’ belongs to M.

Then 91 contains all natural numbers.

Theorem 1: If x # y then 2’ # y/.
Proof:
Assume that x # y and 2’ = y'. Then by Axiom 4, z = y. Qed.

Theorem 2: For all x =’ # x.

Proof:

Let 21 be the set of  such that ' # .

By Axiom 1 and axiom 3, 1’ # 1, i.e. 1 belongs to 9.

If 2 belongs to M, then z’ # x, i.e. by Theorem 1 (')’ # 2/, i.e. 2’ belongs to
M.

By Axiom 5 9t contains all natural numbers, i.e. for every = x’ # z. Qed.

Theorem 3: If z # 1 then there is a u such that z = v’.

Proof:

Let 91 be the set of x such that x = 1 or there is a u such that x = /.
1 belongs to 1.
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Suppose x belongs to M. Now if u = x then 2’ = /. So 2’ belongs to M.
Thus by Axiom 5, 91 contains all natural numbers. Hence for every x such that
2 # 1, there is a u such that z = u’. Qed.

Theorem 4: There is precisely one function x,y — x + y such that for all x, vy,
2 4y is a natural number and x + 1 =2" and z + ¢ = (z + y)".

Proof:

A) Fix z. Suppose that there are functions y +— a, and y — b, such that a; = 2’
and by = 2’ and for all y, a, = (a,)" and by = (b,)’.

Let 9 be the set of y such that a, = b,.

a1 = x' = by, so 1 belongs to M.

If y belongs to 9, then a, = b, i.e. by Axiom 2 (a,)" = (by)’, i.e. ayy = (ay)" =
(by) = by, i.e. ¥ belongs to M.

So 9 contains all natural numbers. Thus for all y, a, = b,.

Thus there is at most one function y — x + y such that z + 1 = z’ and for all
v oty =(x+y)

B) Now let 9t be the set of 2 such that there is a function y — x + y such that
for all y, 4+ y is a natural number and z + 1 =2" and x + ¢’ = (x + y)".
Suppose x = 1. Define z + y to be y'. Then z +1 = 1’ = 2/, and for all
y,x+vy = (y') = (x+y)". Thus 1 belongs to M.

Let x belong to 1. Then there is a function y — = + y such that for all y, x4y
is a natural number and z + 1 = 2’ and z + ¢’ = (x + y)’. For defining + at 2/,
define 2’ + y to be (z +y)'.

Then 2’ +1=(z+1) = (¢/) and for all y, 2’ + ¢/ = (x +¢') = ((x + y)') =
(@' +y)

So 7’ belongs to M.

Thus 91 contains all z. So for every x, there is a function y — = + y such that
for all y, z 4+ y is a natural number and z + 1 =2’ and z + ¢’ = (z + y)’. Qed.

Theorem 5: For all , y, z, (x +y) + 2z =z + (y + 2).

Proof:

Fix z, y. Let 91 be the set of z such that (x +y) + 2 =z + (y + 2).

A (z+y)+1l=(@x+y) =z+y =z+ (y+1), so 1 belongs to M.

B) Let z belong to M. Then (x+y)+2 =z + (y+ 2), so (z +y) + 2 =
((x+y)+2) =(@+y+2) =z+@W+z) =x+ (y+2'), so 2 belongs to M.
Thus 99t contains all z. Qed.

Lemma 4a: Forally, 1 +y=1v'.

Proof:

Let 901 be the set of y such that 1 +y =1v/.

By Theorem 4, 1 + 1 =1', so 1 belongs to 1.

Let y belong to M. Then 1+ y = y’. Then by Theorem 4, 1 +¢' = (1+y)’". So
1+ = (v'). So 3 belongs to M.

Thus 9 contains all y. Therefore for all y 1+ y = 3’. Qed.

Lemma 4b: For all z,y, ' +y = (z + y)'.

Proof:

Fix z. Let 9 be the set of y such that 2’ +y = (x + y)’. Then by Theorem 4
' +1=(a") = (x+ 1), so 1 belongs to M.

Let y belong to M. Then 2’ + y = (z + y)’. Then by Theorem 4 2’ + ¢’ =
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(' +y) =(z+y)) =(x+1vy). Soy belongs to M.
Thus for all y 2’ +y = (x + y)’. Qed.

Theorem 6: For all y, z, v +y =y + .

Proof:

Fix y. Let 91 be the set of = such that x +y =y + z.

A)y+1=1y and by lemma 4a 1+y =19, s0 1+y =y—+1 and 1 belongs to M.
B) If = belongs to M, then z +y =y +z,s0 (x +y) = (y+z) =y+ 2.

By lemma 4b o’ +y = (x +y)’, so ' +y =y + ', so 2’ belongs to M.

Thus for all z 2 +y = y + 2. Qed.

Theorem 7: For all z, y, y # x + y.

Proof:

Fix x. Let 9 be the set of y such that y # = + y.

A)1#£4a'ie. 1#x+1, so 1 belongs to M.

B) If y belongs to M, then y x4+ y, s0y’ # (x +y), ie. ¥y Zx+7vy, soy
belongs to M. Thus for all y y # = + y. Qed.

Theorem &: If y # z, then for all x « + y # = + =.

Proof:

Assume y # z. Let 9 be the set of x such that z +y # = + 2.

A)y #£2 ie 14+y#1+ 2z s0 1 belongs to 9.

B) If « belongs to M, then (z+vy) # (z+2), i.e. ' +y # 2’ + z, so 2’ belongs
to M.

Thus for all z x +y # = + z. Qed.

Theorem 9: Fix x, y. Then precisely one of the following cases holds:

Case 1: x =y.

Case 2: There is a u such that x =y 4 u.

Case 3: There is a v such that y = x + v.

Proof:

A) Case 1 and case 2 are inconsistent and case 1 and case 3 are inconsistent.
Suppose case 2 and case 3 hold. Thenz =y+u=(z+v)+u=a+ (v+u) =
(v+u)+ .

Contradiction. Thus case 2 and case 3 are inconsistent. So at most one of case
1, case 2 and case 3 holds.

B) Fix . Let 91 be the set of y such that precisely one of case 1, case 2 and
case 3 holds.

I) If y =1, then by Theorem 3z =1=yorz=v"=14+u=y+u.

Thus 1 belongs to 91.

IT) Let y belong to M. Then there are three cases:

Case 1: z =y.

Then ¢’ =y + 1=z +1, i.e. ¥’ belongs to M.

Case 2: x =y + u.

Ifu=1,thenz=y+1=1, ie. y belongs to M.

Fu#l thenu=w=14w,soz=y+1+w)=(wy+1)+w=y +w. So
1y’ belongs to M.

Case 3: y =z +v.

Then ¢ = (x +v) =z + v/, i.e. 3 belongs to M.

So in all cases y’ belongs to 9.

Thus for all y, case 1 or case 2 or case 3 holds. Qed.
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Definition 2:
Define x > y iff there is a u such that x = y 4 u.

Definition 3:
Define x < y iff there is a v such that y =z 4+ v.

Theorem 10: Let x, y be given. Then precisely one of the following cases holds:
Case 1: x =y.

Case 2: x > y.

Case 3: z < y.

Proof: By Theorem 9, definition 2 and definition 3. Qed.

Theorem 11: x > y implies y < x.

Proof: For all x,y, we have x > y iff there is a u such that © = y + u. Further-
more, we have y < x iff there is a w such that x =y +u. So for all z, y, x >y
implies y < . Qed.

Theorem 12: x < y implies y > x.
Proof: We have x < y iff there is a v such that y = z +v. Furthermore, we have
y > x iff there is a v such that y =z + v. So z < y implies y > z. Qed.

Definition 4:
Define x > y iff x > y or x = 4.

Definition 5:
Define x <y iff z <y or z = y.

Theorem 13: z > y implies y < z.
Proof:
By Theorem 11. Qed.

Theorem 14: x <y implies y > .
Proof:
By Theorem 12. Qed.

Theorem 15: If x < y and y < z then z < z.

Proof: Assume z < y and y < z. Then there is a v such that y = = + v. Fur-
thermore, there is a u such that z =y +w. Then z = (x +v) +u =z + (v+ u).
So there is a w such that z = +w. So z < z. Qed.

Theorem 16: Let x, y, z be given. If x <y and y < z or z < y and y < z then
T < z.

Proof:

By Theorem 15. Qed.

Theorem 17: If z <y and y < z then = < z.
Proof:
By Theorem 16. Qed.
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Theorem 18: For all z,y, z +y > «.
Proof: For all z,y we have x +y =z + y. Qed.

Theorem 19: Let z, y, z be given. Then x > y implies x +z >y+ 2, z =y
implies t + z =y + z and z < y implies * + z < y + 2.

Proof:

Let z be given.

Ifz>y, thenz=y+usox+z=UY+u+z=@u+y)+z=u+(y+z) =
(y+2)+tu,ie z+z>y+ 2z

If x = y then clearly x + z = y + 2.

Ifx<y,theny >z, ie y+z>x+2ie. z4+2<y+z Qed.

Theorem 20: Let x, y, z be given. Then x4z > y+z impliesx >y, z+2 =y+=2
implies x =y and x + 2z < y + z implies z < y.

Proof:

By Theorem 19. Qed.

Theorem 21: If x > y and z > u then x + 2z > y + w.

Proof:

Assume x > y and z > w. Then by Theorem 19 x + z > y + z. Then
y+z=z4+y>ut+y=y+u Sox+z>y+u Qed

Theorem 22: Let x, y, z, uw be given. If z > yand z >uworxz >y and z > u
then x + 2z >y + u.

Proof:

By Theorem 19 and theorem 21. Qed.

Theorem 23: If z > y and z > u then x + z > y + u.
Proof:
Trivial. Qed.

Theorem 24: For all z, we have x > 1.
Proof:
Fixz. Thenz=1lorz=v =u+1>1. Qed.

Theorem 25: y > x implies y > = + 1.
Proof:
Assume y > x. Theny =z +u. u>1,ie. y > ax+ 1. Qed.

Theorem 26: y < x + 1 implies y < x.

Proof:

Assume for a contradiction that y < z + 1 and -y < x. Then y > z. So by
Theorem 25 y > x + 1. Contradiction. Qed.

Theorem 28: There is a function z,y +— x - y such that for all z, y, x -y is a
natural number and z- 1=z and z -y = (z - y) + z.

Note: Instead of = - y we also write zy.

Proof:

A) Fix x. Suppose that there are functions y — a, and y — b, such that a; = 2’
and by = 2’ and for all y, a,y = (ay) + x and by = (by) + 2.
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Let 9 be the set of y such that a, = b,.

a; = x = by, so 1 belongs to M.

If y belongs to M, then a, = by, i.e. ay = (ay) + 2 = (by) +x = by, ie. ¥
belongs to M. So M contains all natural numbers. Thus for all y, a, = b,.
Thus there is at most one function y +— = - y such that x - 1 = = and for all vy,
xy = a2y + x.

B) Now let 9t be the set of x such that there is a function y — « - y such that
z+-1=ux and for all y, vy’ = 2y + =.

Suppose x = 1. Definez-ytobey. Thenz-1=1=zandxy =y =y+1=
zy + x. Thus 1 belongs to M.

Let x belong to 9. Then there is a function y +— x - y such that -1 = = and
for all y, 2y’ = zy + z. For defining - at 2’ define 2’ - y to be (zy) + /.
Then2'-1=2-141 =241 =2" and for all y, 2’y = 2/ +v' = (xy+2)+y’ and
(zy+a)+y =ay+(z+y) =zy+(z+y) and 2y + (x+y) =ay+ (2" +y) =
zy+(y+a')and zy + (y +2') = (zy +y) + 2’ =2’y + 2’

So 2’ belongs to 9.

Thus 91 contains all x. Qed.

Lemma 28a: For all y, 1 -y =y.

Proof:

Let 91 be the set of y such that 1-y =1y’.

By Theorem 28, 1-1 =1, so 1 belongs to 9.

Let y belong to M. Then 1y =y. Then by Theorem 28, 1-¢y' = (1-y) +1 =
y+1=1". Soy belongs to M.

Thus for all y 1 -y = y. Qed.

Lemma 28b: For all z,y, 2’y = zy + v.

Proof:

Fix z. Let 91 be the set of y such that 2’ + y = (x + y)’. Then by Theorem 28
'-1l=a"=(x-1)=(x-1)+1,so 1 belongs to M.

Let y belong to 9. Then x'y = zy +y. Then by Theorem 28 z'y’ = 2’y + 2’ =
(zy+y)+2’ and (zy+y)+2a’ = zy+(y+2a') = zy+ (2’ +y) and zy+ (2’ +y) =
zy+(z+y) =ay+@+y)anday+(@+y) = (zy+z)+y = (zy)+y" So
y’ belongs to M.

Thus for all y 2’y = zy + y. Qed.

Theorem 29: For all z, y, vy = yx.

Proof:

Fix y. Let 9 be the set of x such that zy = yu.

I) y-1 =y, and by lemma 28a, 1-y =y, soy-1=1-y. Hence 1 belongs to M.
IT) Suppose x belongs to M. Then xy = yx, ie. 2y +y = yr+y = yz’. By
lemma 28b, x'y = xy + vy, so ¥’y = yz', i.e. =’ belongs to M.

Thus for all x xy = yx. Qed.

Theorem 30: For all z, y, z, z(y + z) = 2y + z=.

Proof:

Fixz,y. x(y+1)=ay =2zy+x=2y+ (x-1).

Now suppose z(y + 2) = xy +zz. Then z(y+2') = z((y +2)") = (z(y +2)) + =
and (z(y+2))+x = (xy+(xz))+2x and (vy+(z2))+a = zy+(zz+2z) = zy+az’.
Thus by induction, for all z z(y + z) = zy + zz. Qed.
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Theorem 31: For all z, y, z, (zy)z = z(yz2).

Proof:

Fix x, y. Then (2y) -1 =zy =z(y- 1).

Now suppose (zy)z = x(yz). Then by Theorem 30, (zy)z’ = ((xy)z) + (zy) =
(2(y2)) + (2y) and (a(y2)) + (o) = 2((y2) + 1) = 2(2").

Thus by induction, for all z (zy)z = z(yz). Qed.

Theorem 32: For all z, > y implies zz > yz, x = y implies 2z = yz and x < y
implies xz < yz.

Proof:

Let z be given.

If x >y, then x =y +u, ie. vz = (y+u)z = (yz) + (uz) > yz.

If x = y, then clearly zz = yz.

If x <y, then y > x, ie. yz > xz, ie xz <yz. Qed.

Theorem 33: xz > yz implies x > y, vz = yz implies * = y and xz < yz implies
T <y.

Proof:

By Theorem 32 and theorem 10. Qed.

Theorem 34: If z > y and z > u, then xz > yu.

Proof:

Suppose x > y and z > u. By Theorem 32, zz > yz and yz = 2y > uy = yu,
ie. zz > yu. Qed.

Theorem 35: For all x, y, z, u,if x >y, z >wor x >y, z > u, then zz > yu.
Proof:
By Theorem 32 and theorem 34. Qed.

Theorem 36: If z > y and z > u, then xz > yu.
Proof:
By Theorem 35. Qed.



Appendix C

Differences between the
presented theory and the
implementation

In this appendix we briefly discuss the main differences between the theory
described in this thesis and what is implemented in the the Naproche system,
version 0.52.

C.1 Proof Representation Structures

As already mentioned in the introduction, the main difference between the pre-
sented theory and the implementation is that where we used the formalism PTL
in the presented theory, we used Proof Representation Structures (PRSs) in the
implementation. Just as PTL is an extension of Dynamic Predicate Logic, PRSs
are an extension of Discourse Representation Structure (DRSs) (see (see |Kamp
& Reyle) [1993)). And just as Dynamic Predicate Logic, DRSs were developed
for modelling the dynamic nature of natural language quantification.

So in the implemented system, the Naproche CNL input is translated into a
PRS, and the proof checking algorithm is defined on a PRS input.

We now describe the syntax and semantics of PRSs[l] at the same time
comparing PRSs to PTL.

A PRS has five constituents: An identification number, a list of discourse
referents, a list of mathematical referents, a list of textual referents and an
ordered list of conditionsﬂ Similar to DRSs, we can display PRSs as “boxes”
(Figure [C.1).

Mathematical referents are the parse trees of the terms and formulae which
appear in the text. As in DRSs, discourse referents are used to identify objects
in the domain of the discourse. The discourse referents correspond directly to
PTL variables. Mathematical referents do not have a direct correspondent in

IThe description of PRS syntax is partly taken over from |Cramer, Fisseni, et al.| (2010).
2The order of the conditions in a PRS reflects the argument structure of a proof and is
relevant to the PRS semantics. This was in part inspired by ASHER’s SDRT (Asher} |1993)
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dl,...,dm miy, ..., Mnp
C1

C

7'1,...,7“17

Figure C.1: A PRS with identification number i, discourse referents dy, ..., d,,
mathematical referents mgq,..my, conditions ci,...,¢; and textual referents
T1,-.Tp-

PTL: They are used to keep track of the link between discourse referents and
certain symbols in the input text, in order to implement the anaphoric resolution
of symbolic expressions in the Naproche-CNL-to-PRS translation.

The textual referents correspond to the IDs in PTL syntax, i.e. their function
is to model intratextual references.

PRSs have identification numbers, so that we can refer to them from other
points in the discourse. The textual referents indicate the intratextual and
intertextual references.

Just as in the case of DRSs, PRSs and PRS conditions are defined recursively:
Let A, B, By,...,B, be PRSs, d,dy,...,d, discourse referents, t a parse tree of
a term of formula, T" a list of term or formula parse trees, Id a PRS ID and 1 a
theorem type (“theorem” or “lemma”). Then

e for any n-ary predicate p (expressed by an adjectives, noun, verb or prepo-
sition in the Naproche CNL), predicate(ds,...,d,,p) is a condition, ex-
pressing that the tuple (dy,...,d,) satisfies the predicate p;

e holds(t,T) is a condition, representing the claim that the formula whose
possible parse trees are listed in T" and whose actual parse tree is ¢ is true;

e math_id(d,¢,T) is a condition which links the discourse referent d to a
symbolic term, whose possible parse trees are listed in 7" and whose actual
parse tree is t;

e A is a condition;
e —A is a condition, representing a negation;

e A = B is a condition, representing an assumption (A) and the set of
claims made inside the scope of this assumption (B);

e A < B is a condition, representing a logical equivalence;

e A < B is a condition, representing a material implication in the reversed
order;

e AV B is a condition, representing an inclusive disjunction;
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e >< (4,...,4,) is a condition, representing an exclusive disjunction, i.e.
the claim that precisely one of Aq,..., A, holds;

e <> (Ay,...,A,) is a condition, representing the claim that at most one
of Ay,..., A, holds;

e the(d, A) is a condition, representing a definite description;

e static(A) is a condition, representing an assertion with static quantifiers
(i.e. the discourse referents introduced in A cannot bind discourse referent
outside static(A); this corresponds to a formula of the form ¢¢ in PTL);

e at_most_one(d, A) is a condition, representing a quantification of the form
“at most one object has a given property”;

e holds_prs(Id) is a condition, representing the truth of the PRS with ID Id.

e theorem(d, A, B) is a condition, representing a theorem or lemma and its
proof;

e contradiction is a condition, representing a contradiction.

Furthermore, there are three PRS conditions that are used for the prelim-
inary translation of the CNL input to PRSs, but which get eliminated by the
plural interpretation algorithm (in the first two cases) or by algorithm for in-
terpreting cataphoric meta-NPs (in the third case):

e plural dref(d, [dy, ..., d,]), which links a plural discourse referent d to a list
of discourse referent [dy,...,d,] (this corresponds to the plural variables
with a list of PTL terms as subscript in the extension of PTL introduced
for the plural interpretation algorithm in section .

e plural(n, A), corresponding to formulae of the form plural(z, ¢) in the PTL
extension of section [7.6.4]

e followings, used for preliminarily translating cataphoric meta-NPs.

The semantics of the various PRS conditions is already alluded to in the
above list of possible PRS conditions. In order to precisely define the semantics
of PRSs, we define a translation from PRSs to PTL texts. Given that we have
defined a semantics for PTL texts in section [5.2.2} such a translation fixes the
semantics of PRSs. The three temporary PRS conditions do not need to be
given a semantics.

Before we define this translation, we need to point out that in PRSs there
is no distinction analogous to the distinction between A and & in PTL: The
only way to express a conjunction in PRS is by including more than one PRS
condition in a PRS; in that case the PRS conditions will be interpreted as
conjuncted. Recall that in the model-theoretic definition of PTL semantics,
A and & were at any rate indistinguishable. In the proof checking they were
treated differently, and the concatenation of PRS condition is treated in the same
way as &. But recall that in PTL, & may only appear in certain positions, since
it may not appear in PTL formulae. In order to ensure that the PTL texts in
the translation sketched below are always well-formed, we therefore use A rather
than & for translating the concatenation of PRS conditions.
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A future version of the Naproche system should implement the distinction
that PTL makes between A and & in the PRS formalism. But at any rate it
is not a big problem that this distinction is so far not implemented. Sentences
where is would make a difference are at any rate considered bad style in the
language of mathematics. One example of such a sentence is :

(1) Some prime p divides N, and A contains p? — 1.

In the Naproche-CNL-to- PTL translation, (1)) gets translated as Jp divide(p, N)A
p? —1 € A. Proof-checking this sentence involves checking a proof obligation
with conjecture 3p # u (divide(p, N) A p* —1 € A) (note the different brack-
eting in the PTL formula and this conjecture). If we had translated by
Jp divide(p, N) & p*> — 1 € A instead, proof-checking the sentence would involve
checking two proof obligations: First one with conjecture Ip # u divide(p, N),
and secondly a proof obligation with p # u and divide(p, N) as additional
premises and p? — 1 € A as conjecture. In the second case, the proof-checking
could only be successful if for every prime divisor p of N, p? — 1 € A, whereas
in the first case it is sufficient if for some prime divisor p of N, p> —1 € A. It is
probably this ambiguity which makes mathematicians usually avoid sentences
like .

For defining the PRS-to- PT'L translation, we identify the supply of discourse
referents with the supply of PTL variables and the supply of textual references
with the supply of IDs in PTL syntax. Now the PTL translation t(A) of a PRS
A with discourse referents dy, ..., d,, conditions ¢y, ..., ¢ and textual referents
T1,...,7p 18 3dy ... 3dy, ref((r1,...,1p),t(c1) A ... At(cy)), where t(c;) is the
PTL translation of the PRS condition ¢;. If p = 0, i.e. A contains no textual
referents, t(A) is 3dy ... 3dy, (t(c1)A...At(c,)) instead. The translation of PRS
conditions to PTL is shown in the following tableEI

predicate(dy, . ..,dn,p) | p(di,...,dy)

holds(t, T) t

math_id(d, ¢, T) T

1 B(A)

—A —t(4)

= OETIG)

AioD S(6(A) = £(B)) A OE(B) = t(A))

A<D S(6(B) > t(A)

AV B t(A4) Vt(B)

< (A 4) (A v 6(A2)) A (OHAT) A Ot (A3))
(A VE(AL) VE(A3)) A (CE(AL) A SE(AD) A

>< (A1, Az A3) ~(O(A1) A OE(A)) A ~(Ot(Ar) A Ot(A))

<> .7 'ﬁgOtEil; A A= (OR A Ot
(<Ot N Ot A —(Ot A <t A

<> (A1, 42, 43) _(Ob(An) A St(Az)) ' ’

3Here we identify parse trees of symbolic terms and formulae with their PTL translations

as specified in section [7.5.2] and natural language predicated with their PTL translations as
specified in section
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the(d, A) td t(A)

static(A) Ot(A)

at_most_one(d, A) —(3d 3d’ (t(A) At(A)L))
holds_prs(Id) t(A), where A is the PRS with ID Id.
theorem(d, A, B) thm(9,t(A), t(B))

The Naproche CNL input text is translated into one big PRS. This PRS
contains inter alia one sub-PRS for every statement of the input text. But note
that it is not the case that the Naproche-CNL-to-PRS translation is completed
for the total input text before the proof checking starts. Instead, the Naproche-
CNL-to-PRS translation and the proof checking alternate: The input text is
processed sentence by sentence; after translating a statement (i.e. a content-
full sentence) to a PRS, the PRS of this statement is proof-checked before the
Naproche-CNL-to-PRS translation is continued.

This alternation is done for enabling the usage of presupposition fulfilment as
a criterion for disambiguation symbolic expressions as described in section [7.4.4}
When a symbolic expression has more than one reading, the PRS constructed
will contain PRS conditions of the form holds(¢,T") and/or math_id(d, ¢, T') with
the list T" of possible readings containing more than one element. In the position
of ¢t there will be an uninstantiated Prolog variable, which after the disambigua-
tion gets instantiated to the chosen reading. The order of possible readings
in T already indicates which reading should be preferred in case not precisely
one of the readings fulfils its presuppositions. During the proof checking, the
presuppositions of each of the reading in T" are checked in turn. Once the pre-
suppositions of one reading are fulfilled, ¢ is instantiated to that reading. If for
no reading in T the presuppositions can be fulfilled, ¢ is instantiated to the first
element of T.

Similarly to the accessibility relation usually defined on DRSs, one can define
an accessibility relation on PRSs which specifies for each PRS conditions in a
PRS (possibly embedded into a larger PRS) which discourse referents and which
math_id conditions are accessible from that PRS condition.

Additionally to the five constituents of PRSs mentioned above, the imple-
mentation contains three further PRS constituents, which only serve the goal of
simplifying the implementation: T'wo constituents keep track of which discourse
referents and math_id conditions are accessible at the beginning and at the end
of the PRS. The final constituent is a list of links between discourse referents
and PRS conditions which keep track of the fact that a certain PRS condi-
tion results from the same indefinite noun phrase as a given discourse referent.
This information is used in the implementation of the algorithm for interpreting
bi-implications and reversed implications described in section [7.5.9}

C.2 Background theory

In the theory presented in this thesis, CMTN was used as a mathematical back-
ground theory. The function-theoretic part of CMTN made it possible to treat
implicit function introduction in a way that does not involve the paradoxes of
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unrestricted function comprehension discussed in section but is neverthe-
less more flexible than a type-theoretic approach. Furthermore, the set-theoretic
part of CMTN ensured that the natural linguistic constructions for talking about
sets (e.g. “the set of 2 such that ...”) can be used to model usual set-theoretic
constructions found in mathematical texts up to the strength of what is possible
in ZFC. On the other hand, in order to make good usage of this background
theory, the input text has to contain the technical term “limited” corresponding
to the symbol L of CMTN in the right positions; given that CMTN is a theory
developed in the course of the work conducted for this thesis and not a “natu-
ral” theory used by ordinary mathematicians, the obligation to sensibly use the
technical term “limited” in the input text can be seen as an unnatural element
of the system.

In the actual system, on the other hand, we have not implemented CMTN.
For the consistent treatment of functions, the type system that is used for dis-
ambiguating symbolic expressions (see section is imposed throughout on
all terms. In other words, the paradoxes of unrestricted function comprehen-
sion are actually avoided in a type-theoretic way. The set-theoretic paradoxes
on the other hand are not avoided in a type-theoretic way. Instead, the only set
theory built into the system are implicit applications of the Axiom of Separa-
tion and the Axiom of Extensionality in the proof checking of presuppositions
requiring the existence and uniqueness of a set with certain elements: For a
PRS of the form the(d, A), for which A gets translated to a PL formula of the
form set(d) AVz (x € d < ¥(z)), we replace the two proof obligations with
conjectures and , which would normally have to be checked for check-
ing the existence and uniqueness presuppositions of the(d, A), by a single proof
obligation with conjecture :

(2) 3d (set(d) AVz (x € d + U(x)))
(3) Vd,d' (set(d)AVz (x € d <> ¥(x))Aset(d)AVz (x € d' < V(z)) > d=4d)
(4) 3d (set(d) AVx (¥(x) = x € d))

This minimal implicit set theory is enough for the first chapter of Landau’s
Grundlagen der Analysis.
No theory of tuples or natural numbers is included in Naproche 0.52.

C.3 Quantifier restriction

In the definition of the proof checking algorithm in chapter [6] we used restricted
quantifiers of the form 3z # u and Vz # u for translating the PTL quantifier 3x
to PL. Of course, PRSs with discourse referents in the discourse referent slot
should similarly be translated to PL using quantifiers thus restricted by “# u”.
But in the current implementation, they are translated using quantifiers not
restricted in this way.

In most cases in which we use quantification in the language of mathematics,
we restrict the domain of quantification using some expression corresponding to
an atomic formula. For example, we write things like “for every natural number
n such that ...” or “there is some x € A such that ...”  where the domain of
quantification is restricted by “natural number(n)” and “z € A” respectively.
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In such cases, the fact that we do not restrict quantifiers by “# u” cannot cause
any problems, because the atomic formula can at any rate not be satisfied by
the undefinedness object u. So when we do implement the missing quantifier
restriction in the Naproche system, it is desirable to make it explicit only in
the few cases in which the quantification is not already restricted in such a way
by an atomic formula, since otherwise the PL formulae used as conjectures and
premises in the proof obligations will be complicated in an unnecessary manner.
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Appendix D

Concise manual of the
Naproche system

In this appendix we briefly explain how to install and use the Naproche system,
version 0.52.

D.1 System requirementd]]

The Naproche system only works on Linux systems. The tested and recom-
mended distribution is Ubuntu 10.04 or newer. For smooth operation at least
1GB of RAM is required and a reasonably new processor (from 2008 or later)
is recommended. The Java Runtime Environment (JRE) has to be installed on
the system.

D.2 Download and installation?

The installation package for Naproche 0.52 can be found on the website
of the Naproche project, http://www.naproche.netl There are separate
versions for 32 bit systems (naproche052-i686.tgz) and for 64 bit systems
(naproche052-1686.tgz).

For installing the system, you first need to unpack the installation package.
Next you need to add a line of the form

check_src(’/home/naproche’) .

to the user.pl file in the Naproche base directory, where /home/naproche
should be replaced by the absolute path of the Naproche base directory on your
system.

If the system does not work as described below, please refer to the Trou-
bleshooting section of the README file located in the base directory.

IThis section is largely based on the README file of the Naproche system, which was
written mainly by Julian Schléder and partially by the author of this thesis.

2This section is partly based on the README file of the Naproche system written by
Julian Schléder and the author of this thesis.
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D.3 Usage of the Naproche system

In order to start the GUI (graphical user interface) of the Naproche system,
you need to run the shell script naproche.sh located in the Naproche base
directory. naproche.sh will provide debugging output (partially in German,
though) if run from a shell.

The GUI provides two text fields: The large text field above is for the input
text (written in the Naproche CNL described in chapter ; the smaller text
field below provides some feedback to the user.

Having input an input text into the above text field, you can press the Check
button for letting the system parse and proof-check the input text. The input
text will get coloured during the runtime of the system:

e Sentences that do not trigger any proof obligations are coloured grey.

e Sentences all of whose proof obligations are successfully checked by the
Automated Theorem Prover (ATP) are coloured green.

e If at least one of the proof obligations triggered by a sentence cannot be
successfully checked by the ATP, the sentence will be coloured red.

e Additionally, sentences may be coloured orange: This indicated that even
though all of the sentence’s proof obligations were successfully checked by
the ATP, some of them were checked without usage of the conjecture of
the proof obligation, which means that the premises were inconsistent. If
sentences are coloured orange outside proofs by contradiction, this may
indicate that the axioms stated in the input text are inconsistent.

The parsing and proof-checking functions like an incremental parser: One
can add text to an already checked text or modify an already checked text,
and the parsing and proof checking will restart from the first sentence that is
different from the previously checked text. When editing an already checked
text, all sentences starting from the first modified sentence are coloured blue.

Below the Check button is a Show PRS button for displaying the Proof Rep-
resentation Structure (PRS) that represents the content of the input text in the
default browser of the system.

When one saves a checked Naproche text using the Save function in the File
menu, the system does not only save the input text, but also all data produced
by the proof checking. Hence one can make use of the incremental parsing and
checking across sessions. Using the Open function in the File menu, one can
also open the example texts found in the examples directory.

Between the two text fields, there is a button which shows whether the
debug mode is switched on or off. When starting the interface, it is switched
off. Switching it on provides two further buttons, which are mainly of use
for debugging, but which may also be of interest for an inquisitive user: The
Prolog-Input button shows the tokenized and preprocessed version of the input
text that is used by the formal grammar described in appendix [A] The Clear
Tmp button deletes the data used for the incremental incremental parsing and
proof checking, thus making it possible to recheck a text from the beginning.

When a text not adhering to the rules of the Naproche CNL is entered, the
system gives an error message and marks the first word of the input text that
could not be parsed. When rechecking a text after correcting such a parsing
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error, a bug in the GUI implementation causes the error message to be displayed
again in the lower text field, even if the parsing and proof checking is now
successful. In order to make an error message not appear again, one currently
has to restart the system [

It is also possible to see the proof obligations that are given to the ATP.
For this, one has to open the tmp directory in the base directory. Note that
the sentences of the input text are consecutively numbered. To avoid manual
counting in the case of a long input text, you can open the text.nap file for
seeing the tokenized and preprocessed input, where you can easily read of the
sentence number of any from the input text. For every sentence that triggered
at least one proof obligation, there is a subdirectory in tmp named according
to the sentence number. For every proof obligation triggered by the sentence,
the sentence directory contains four files with the file endings . input, .output,
.proofsummary and .result and the same file name in front of these endings.
The .input file contains the proof obligation in TPTP syntax (see [Sutcliffe
& Suttner) [1998)). The .output file contains the output of the prover, and the
.proofsummary file contains data extracted from the .output file by an external
program called Proof Summary (see Sutcliffe, [2009). Finally, the .result file
lists the results of the proof checking relevant for the Naproche system: After the
absolute path of the corresponding .input file, it lists two Booleans separated
by a semicolon. The first indicates whether the proof obligation was successfully
checked by the ATP. The second indicates whether the the premises were shown
to be inconsistent. So what corresponds to the green colour in the GUI is the
sequence true;false.

One can also use Naproche from the command line. For this, start a shell
and ensure that you are located in the base directory of Naproche. Enter swipl
for starting SWI Prolog. Now enter [’naproche.qlf’]. for compiling the
Naproche code. Now you can run Naproche by using the ternary Prolog predi-
cate naproche. The first argument should be the input text as a Prolog atom,
i.e. placed between two apostrophes. The second and third arguments should
be entered as uninstantiated Prolog variables (e.g. capital letters), as they are
output arguments. Here is an example of how to run Naproche on a short
two-sentence input text:

naproche(’Let $a=b$. Then $b=a$.’,X,Y).

After executing this query, Prolog will return the following instantiations of the
output arguments:

X = [sentence(1, [let, math([a, =, bl)]),
sentence(2, [then, math([b, =, al)1)],
Y = complete_text .

The first output argument is the tokenized and preprocessed version of the
input text. The second output argument indicates whether the input text is
a complete text: Because the parsing and proof-checking can be performed
incrementally (also when using Naproche from the command line), it can make
sense to enter an incomplete text, e.g. a theorem followed by an incomplete proof
not yet ended with the keyword “Qed” that marks the end of a proof in the

3Since the implementation of the GUI was delegated to a member no longer active in the
Naproche project, the debugging of the GUI has been paused.
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Naproche CNL. In this case, the second output argument would be instantiated
to incomplete_proof. But is as in the above example the input text is a
complete Naproche CNL text, it will be instantiated to complete_text.

Note that BTEX commands including backslashes, e.g. \neq, have to be
entered with a double backslash, e.g. \\neq. when using Naproche from the
command line. When a long input text is entered directly on the command line,
Prolog will throw an error indicating that the input line is too long. In order to
avoid this, one has to save the input text in aseparate file, say a.txt, and then
read in this file from Prolog and call the naproche predicate as follows:

read_file_to_codes(’a.txt’,C, []),atom_chars(A,C) ,naproche(A,X,Y).

For seeing whether the proof checking was successful when using Naproche
from the command line, one has to look into the .result files in the sentence
directories. Note that when using Naproche from the command line, the sen-
tence directories are found in a directory called output_folder instead of in the
directory tmp.

For displaying the PRS that represents the content of the input text, you
need to execute the Prolog query make_super_prs., which will produce a
prs.html file in the tmp directory, which you can open with any modern web
browser.
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Index of symbols

Symbolic expressions are listed in the order of their first occurrence in the thesis.
Note that combined symbolic-textual expressions like “®-map” are listed in the
general index and not in this index of symbols.
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make_function, 140
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Combined symbolic-textual expressions like “®-map” are listed in this index
according to their usual verbalization, e.g. “®-map” under “Phi-map”.

accessibility, 7, 180-181, 203, 209

accommodation, see presupposition
accommodation

Ackermann set theory, 46-57

Ackermann-like Function Theory, 47,
57-62

active quantifier, 39, 87, 181, 209

active quantifier at position, 40, 89

adaptivity, 4, 6, 25

admittance, 42

AFT, see Ackermann-like function
theory, see Ackermann-like
Function Theory

AFTB, 58, 75

alternative notation specification, 182,
197

ambiguity, 3, 5, 239-241

anaphora, 3, 5, 180-181, 209, 254

anaphoric accessibility, see accessibil-
ity

anaphoric antecedent, 180, 231-232

anaphoric definite noun phrase, 5, 41,
254

anaphoric meta-NP, 190, 231

anaphoric pronoun, 3, 5, 180, 254

argument filler, 77, 81, 102

arithmetization of analysis, 11

Arity Axiom, 65

Arity Uniqueness Axiom, 64, 65

assertion, 7, 182, 191, 226

assertion trigger, 184, 191

assignment, 37, 76

assumption, 3, 179, 182, 191, 226, 251,
255

retraction, 3, 179, 255
assumption trigger, 191

assumption-consequences block, 183

Attempto Controlled English, 9, 27,
179, 254, 256

automated theorem prover, 20-21, 27,
93

Automath, 15-17

axiom block, 183, 226, 227
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Axiom of Foundation, 48

Axiom of Global Choice, 48

Axiom of Infinity, 12, 53

axiom-consequences block, 226

axiomatic proof system, 13

axiomatics, 10
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basic notational type, 198

bi-implication, 28, 233-236

bi-implicational definition,
224-225

binding, 39-40

binding pair, 39, 87

Boolean, 74

Boolean axioms, 65

bound variable, 203, see also free vari-
able

195-196,

Cantor, Georg, 11

case distinction, 184, 227, 251

case distinction block, 184, 227

cataphoric meta-NP, see cataphoric
metalinguistic noun phrase

cataphoric metalinguistic noun phrase,
184, 185, 188, 190, 232

Cauchy, Augustin-Louis, 11

checked proof obligation, 165

365



366

circumfix function, 18, 199

class, see set/class dichotomy

class (interpreted in AFT), 58

Class Comprehension Axiom Schema,
47, 49, 63, 105, 171

Class Extensionality Axiom, 63

Class-Map-Tuple Theory, see CMT

Class-Map-Tuple-Number Theory, see
CMTN

classical notational type, 5

classical notational type, 199, 201-
202

Classness Axiom, 49, 63

CMT, 68, 257

CMTN, 62-72, 82, 105-106, 164, 349

CMTN_,, 164

collection complement, 187, 220, 228

collective reading, 240

completeness, 13, 150-176

complex noun phrase, 186-187, 239-
247

complex variable, 202

computational linguistics, 8

concatenation, 197, 199

conservative, 68

conservative extension, 50

constant, 202

context, 42, 98

context change potential, 42

controlled natural language, 1, 9

of Naproche, see Naproche CNL
copula definition, 195-196, 223-225

Coq, 20
coreference, 180
cumulative hierarchy of CMTN-

encodings, 66
cumulative hierarchy of functions, 60
cumulative hierarchy of sets, 13
Curry-Howard correspondence, 16
currying, 73, 105, 276, 278

de Bruijn, Nicolas Govert, 15
Dedekind cut, 11

Dedekind, Richard, 11

deep natural language processing, 8
definable structure, 49
definiendum, 195

definiens, 195

definite clause grammar, 200, 283
definite description, 74, 238, 270

INDEX

definite descriptions, 41
definite noun phrase, 40, 41, 254
definition, 4, 6, 16, 25, 41, 182, 195—
196, 214, 251, 277
bi-implicational, 195-196
copula definition, 196
semantics, 222-225
definition block, 184
definition quantterm, 196, 210-212
dependent quantterm, 210, 228-230,
275, 276
deskolemization, 175
determiner non phrase, 187
disambiguation, 9, 25, 28, 192-194,
197-198, 204-209, 212, 213,
231, 241, 243, 253, 254
Discourse Representation Structure,
27, 345
Discourse Representation Theory, 22,
27, 181
distributive reading, 240
Domain of nth Axiom, 64
domain of implicitly introduced func-
tion, 45, 102
Domain of s Axiom, 65
donkey sentence, 233
DPL, see Dynamic Predicate Logic
DPL formula, 36
DPL term, 36
Dynamic Predicate Logic, 35-40
proof checking algorithm, see
proof checking algorithm for
DPL
semantics, 37-39
structure, 37
syntax, 36
dynamic quantification, 14, 35-36, 96,
223

Element Axiom, 48, 49, 63
Element Axiom Schema, 58, 64
Element Definedness Axiom, 63
FElements, see Euclid’s Elements
ellipsis, 252

empty assignment, 89
g/d-method, 11

Euclid’s FElements, 10, 28, 179
Evidence Algorithm, 2225
existential presupposition, 41
Extensionality Axiom, 12, 47, 49



Extensionality Axiom Schema, 57

finite sequence, 33

first-order logic, 12, 33, 257

formal calculus, see proof calculus

formal linguistics, 8

formal mathematics, 12, 15-21

formal semantics, 8

formula, 5, 186, see also symbolic
mathematics, DPL formula,
HODPL formula, PTL for-
mula

ForTheL, 22-25

forward reasoning, 19

foundations of mathematics, 12

free term, 87, 114

free variable, 39

Frege, Gottlob, 11, 13

function comprehension, 46

function symbol, 36, 40, 81-82

function-head subterm, 102

function/map dichotomy, 47

functional, 14, 59

Functionality Axiom Schema, 58, 64,

102, 105, 172
I'-skolem-assignment, see  skolem-
assignment
Ganesalingam, Mohan, 4, 5, 25-26,
198, 212

generic reading, 234

Gentzen, Gerhard, 13

global accommodation, 43, 44

global use of word, 215, 225-226

goal-oriented proving, 254, 275

grammatical number, 185-187, 189,
190

ground term, 89

Grundlagen der Analysis, 2, 16, 179,
257-278, 337-344

heading, 183

Heim, Irene, 41-43

hereditarily free term, 89

Higher-Order = Dynamic
Logic, see HODPL

higher-order logic, 12, 19, 74

Hilbert system, 13

Hilbert, David, 11, 13

HODPL, 73-82

Predicate
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semantics, 75-81

syntax, 74-75
HODPL formula, 74
HODPL term, 74
HOL, 1920

1D, 215

implicit dynamic function introduc-
tion, 1, 30, 45-46, 74, 101-
104, 261, 263-265, 277

implicitly introduced variable, 203, 222

independent PTL terms, 90

Induction Axiom, 65, 257

Induction Axiom Schema, 257

infinitesimal calculus, 11

infinitive, 189, 192

infix function, 5, 18, 198, 202, 253

information change potential, 36

interpretability, 50

interpretation function, 37, 77, 84

intratextual reference, see reference

t-free term, 74

Isabelle, 20

Jagkowski, Stanistaw, 13
keyword, 17, 26

Ls-expansion of Ly, 68

labelled text block, 185

lambda calculus, 216

Landau, Edmund, 2, 16, 179, 257, 337

language of mathematics, 2-7, 21-26,
179

ETEX, 180, 182, 284

Leibniz, Gottfried, 11

lexicon, 6, 187, 318-327

limited, 57, 75, 102

Limited Tuples Axiom Schema, 64

Limitedness of Numbers, 65

Limitedness of Urelements, 65

list, 33

list of the terms in ® ordered by term
construction, 152

local accommodation, 43, 44, 236-239

logic, 11

macro-grammar, 225-227,
284-291

manual checking, 15

manual formalization, 15

map, see function/map dichotomy

182-186,
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Map Comprehension Axiom Schema,
57, 64, 105, 172

Map Extensionality Axiom Schema,
64, 277

Mapness Axiom Schema, 64

mathematical content, 4

mathematical expression, see symbolic
mathematics

mathematical formula, see symbolic
mathematics, formula

mathematical reasoning, 9-26

mathematical term, see symbolic
mathematics, term

maximal hereditarily free term, 89, 114

Méray, Charles, 11

meta-NP, see metalinguistic noun
phrase

meta-VP, see metalinguistic verb
phrase

metalanguage, 76

metalinguistic expression, 186, 190,

230-233
metalinguistic noun phrase, 186, 190
metalinguistic verb phrase, 186, 190
metamathematical content, 4
metasentence, 186
MHF term, see maximal hereditarily
free term
Mizar, 17-19

N, 219
n-place argument filler, see argument
filler
Naproche 0.52, 29, 30, 179, 345, 353
Naproche CNL, 27, 28, 30, 179-256
formal grammar, 283-336
quantterm grammar, 207-212,
327-331
semantics, 213-247
term grammar, 200-204, 331-336
text structure, 182-186, 284-291
textual syntax, 186-197, 291-327
Naproche project, 26-29
Naproche system, 1, 26-29, 345, 353~
356
natural deduction, 13, 151
presuppositional, 158
natural numbers, 11
negation, 189
Newton, Isaac, 11

INDEX

nice PTL text, 90
non-comprehension axioms, 105
non-presuppositional premise, 266
non-presuppositional proof obligation,
166

notational type, 198-200

basic, 198
note block, 185
noun phrase, 186-188, 219
NP, see noun phrase
NP-VP-sentence, 186, 220
Nthchecker, 21

w-model, 69, 149

operator precedence, 193, 201
ordered pair, 53

ordinal, 12, 13, 54-55

ordinal number, 12, 13, 54, 55

pairwise independence, 90

pairwise interpretation of collective
plurals, 241

parameter, 48

paraphrase, 256

partial function, 45, 57, 159

Pasch, Moritz, 10

Peano axioms, 65, 257266

®-function, 60

$-map, 60

d-transitive, 60

PL, see first-order logic

plural, 28, 239-247

plural complex noun phrase, 242

plural interpretation algorithm, 243

plural variable, 244

position in DPL formula, 40

position in PTL text, 89

postfix function, 18

potentially natural controlled
guage, 24

pragmatics, 8

predefined, 201

predefined variable, 202-203

prefix function, 5, 18, 199

premise, 20, 93, 99, 104

prepositional phrase, 220

presupposition, 14, 28, 40-44, 74, 98—
101, 115, 204, 236-239

presupposition accommodation,
236-239

lan-

41,



presupposition projection, 40
presupposition trigger, 40
presuppositional natural deduction,
158
presuppositional phrase, 188
presuppositional premise, 99, 266
presuppositional proof obligation, 166,
262, 265, 266
Principia Mathematica, 12
projected presupposition, 157-158
Prolog, 26, 94, 200
pronoun, 3, 5, 180, 254
proof block, 183
proof calculus, 13
proof checking algorithm for DPL, 93—
97
formal definition, 95-96
soundness, 96-97
proof checking algorithm for Naproche
CNL, 30
proof checking algorithm for PTL,
30, 93-178, 238-239, 262-
266, 269-271, 277278
completeness, 150-176
with respect to PL semantics,
152
with respect to PTL semantics,
156, 173
formal definition, 107-113, 238-
239
soundness, 113-150, 239
with respect to PL semantics,
149
with respect to PTL semantics,
113, 147
proof obligation, 20, 94, 104
proof plan, 22
Proof Representation Structure, 27,
345-349
proof status value, 94, 98
proof system, see proof calculus
proof text, 7
Proof Text Logic, see PTL

proof-classes-as-types interpretation,
16

ProofML, 27

propositions-as-types interpretation,
16

prover, 93, 94, 104

P-element, 66
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P-limited, 66
W-object, 66
W-transitive, 66
PTL, 73, 82-91, 213, 238, 244
proof checking algorithm, see
proof checking algorithm for
PTL
semantics, 84-86
syntax, 83-84
PTL formula, 83, 84
PTLg; symbol, 114
PTL term, 83
PTL text, 82, 83
PTL-PL term, 107
pure class, 55
pure W-object, 66
pure set, 55

quantifiable PTL term, 83, 180
quantifible PTL term, 207
quantified sentence, 186,
220-221
quantifier, 12, 14, 35-38, 74, 75, 84, 87,
180-181, 198-199, 209, 213—
214, 216, 241, 254
quantifier notational type, 199
quantterm, 180-181, 187, 200, 207-

190-191,

212, 253
quantterm for the function t; depen-
dent on ty,...,t,, 209

ramified type theory, 12

rank, 56

Ranta, Aarne, 21-22

real numbers, 11

reasoning, see mathematical reasoning
reference, 4, 104, 191, 221
Reflection Theorem Schema, 51
relative clause, 253

relativization, 50

retraction of assumption, 3, 179, 255
reversed implication, 28, 233-236
rule-based methods, 8

Russell’s paradox, 12, 30, 46
Russell, Bertrand, 12

SAD, 22-25, 29

satisfying-phrase, 188

scope, 39, 87
ambiguity, 241
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semi-nice PTL text, 90

sentence, 7

sentential connective, 191-193, 221

set, see set/class dichotomy

set (interpreted in AFT), 58

set comprehension, 46

Set Comprehension Axiom Schema,
48, 49, 63, 105, 172

set theory, 11, 12

set/class dichotomy, 47

shallow natural language processing, 8

o-defined, 77

simple declarative sentence, 182

simple noun phrase, 186, 187

simple type theory, 12

simple variable, 202

skolem-assignment, 113

Skolemization, 96, 100

Sort Disjointness Axiom, 65

soundness, 13, 96-97, 113-150, 239

statement, 7

statement list block, 184

statistical methods, 8

structure, see text structure, 37

Subfunction Axiom Schema, 58, 64

Subset Axiom, 48, 49, 63

substitution list, 107, 110

such-that clause, 188, 219

sufficiently strong prover, 150, 170

suffix function, 5, 199

symbol, see symbolic mathematics

symbolic expression, see symbolic
mathematics

symbolic mathematics, 3-6, 28, 180,
197-212, 215

symbolic term, see term

Ti-definable Lo-structure, see defin-
able structure

tautology, 39

term, 5, 187, 200-204, see also
symbolic mathematics, DPL
term, HODPL term, PTL
term

term with binding capability, 89

terms in ¢ ordered by term construc-
tion, 152

text, 182

text structure, 4, 182-186

textual mathematics, 5, 186-197
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textual part, see textual mathematics
theorem block, 183
theorem-proof block,
183, 269
thesis, see goal-oriented proving
transitive adjective, 187, 189, 250
collective usage, 240
transitive usage, 240
transitive noun, 250, 252
Trybulec, Andrzej, 17
Tuple Element Axiom Schema, 64
Tuple Identity Axiom Schema, 64
Tuple Undefinedness Axiom Schema,
64
Tuple-Length Uniqueness Axiom, 65
Tupleness Axiom Schema, 64
type dependency graph, 205-207
type theory, 12, 16, 20, 22, 26, 74, 198,
350

104-105, 179,

uncurrying, 73, 105, 278
undefinedness, 115, 159
undefinedness object, 57, 62, 101
Undefinedness Axiom Schema, 58, 64
uniqueness presupposition, 41
Unlimitedness of Undefinedness, 65
unrestricted function comprehension,
46
unrestricted set comprehension, 46
update function, 94, 100, 177
urelement, 47, 48, 57, 63, 70, 74, 75

vagueness, 8
validity, 86

absolute, 89
variable, 5, 180, 181, 202, 214-215
variable type declaration, 261
variable type specification, 182, 196,

227-228

verb phrase, 186, 189, 220
verifies, 115
Vip, 22
VP, see verb phrase

Weierstrass, Karl, 11

Zermelo-Fraenkel set theory, see ZFC
ZFC, 13, 46, 51-53, 58-59

ZF(C with urelements, 70

ZFCU, see ZFC with urelements
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