
Finding Maximally Satisfiable Terminologies for the Description Logic ALC

Thomas Meyer and Kevin Lee ∗

National ICT Australia and
University of New South Wales

Kensington, 2052, Australia
{tmeyer,kevinl}@cse.unsw.edu.au

Richard Booth
Faculty of Informatics

Mahasarakham University
Mahasarakham 44150, Thailand

richard.b@msu.ac.th

Jeff Z. Pan
Department of Computing Science

The University of Aberdeen
jpan@csd.abdn.ac.uk

Abstract

For ontologies represented as Description Logic Tboxes, op-
timised DL reasoners are able to detect logical errors, but
there is comparatively limited support for resolving such
problems. One possible remedy is to weaken the available in-
formation to the extent that the errors disappear, but to limit
the weakening process as much as possible. The most obvi-
ous way to do so is to remove just enough Tbox sentences
to eliminate the errors. In this paper we propose a tableau-
like procedure for finding maximally concept-satisfiable ter-
minologies represented in the description logic ALC. We
discuss some optimisation techniques, and report on prelimi-
nary, but encouraging, experimental results.

Introduction
Description Logics (DLs) are widely accepted as an appro-
priate class of knowledge representation lanaguages to rep-
resent and reason about ontologies. Reasoners that perform
satisfiability and consistency checking have grown increas-
ingly powerful and sophisticated in the last decade. Opti-
mised reasoners such as RACER (Haarslev & Möller 2001),
FaCT (Horrocks 1998) and FaCT++ (Tsarkov & Horrocks
2004) are able to handle reasonably large and complex on-
tologies. However, there is comparatively little research ef-
fort that has gone into resolving logical errors in ontologies.
Clearly the development of debugging tools to help rectify
such errors will greatly facilitate the construction of high-
quality ontologies.

Approaches to resolving such errors can roughly be di-
vided into two categories. One approach is to identify pos-
sible sources of the problem and then leave it up to the mod-
eller to rectify them. This approach typically involves the
pinpointing of the possible problematic statements. Exam-
ples of this include the work of (Kalyanpur, Parsia, & Sirin
2005; Kalyanpur et al. 2005) and (Schlobach & Cornet

∗National ICT Australia is funded by the Australia Govern-
ment’s Department of Communications, Information and Technol-
ogy and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence pro-
gram. It is supported by its members the Australian National Uni-
versity, University of NSW, ACT Government, NSW Government
and affiliate partner University of Sydney.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2003). A second, more proactive approach is to suggest pos-
sible resolutions to the problem, obtained by weakening the
available information to the extent that the errors are elim-
inated. The most obvious way to do this is to remove just
enough sentences to eliminate all errors. Examples of this
include the work of (Baader & Hollunder 1995), as well as
(Schlobach 2005) which is based on model-based diagnosis
(Reiter 1987), and that of (Meyer, Lee, & Booth 2005).

The approach we follow in this paper falls into the
second category. We propose a basic tableau-like algo-
rithm for identifying the maximally concept-satisfiable sub-
terminologies of an unfoldable terminology represented in
the description logic ALC. We discuss some optimisations
and report on preliminary, but encouraging, experimental re-
sults.

Description Logics
The logic of interest to us in this paper is the well-known
DL ALC (Schmidt-Schauß & Smolka 1991). We don’t pro-
vide a formal introduction to DLs, but rather point the reader
to (Baader & Nutt 2003). A DL knowledge base (Γ,Ω)
consists of two finite and mutually disjoint sets. A Tbox
Γ which introduces the terminology, and an Abox Ω which
contains facts about particular objects in the application do-
main. Tbox statements have the form C =̇ D (equalities)
where C and D are (possibly complex) concept descriptions.
The Abox contains statements of the form a:C where C is
a concept and a is an individual name, and role assertions
which we don’t need to elaborate on in this paper. A DL
interpretation I contains a domain and a mapping which in-
terprets a concept C as a subset CI of the domain. An inter-
pretation I is a model of a Tbox axiom C =̇ D iff CI = DI .
Given a Tbox Γ and a concept name A, Γ is A-satisfiable
iff there is a model I of Γ such that AI 6= ∅. Γ is concept-
satisfiable iff it is A-satisfiable for every concept name A
occurring in Γ. Γ is unfoldable iff the left-hand side of every
γ ∈ Γ contains a concept name A, there are no other γs with
A on the left-hand side, and the right-hand side of γ contains
no direct or indirect references to A (i.e. there are no cyclic
definitions).

Calculating A-MSSs and MCSSs
In this section we describe a specialised tableau-like algo-
rithm for finding the maximally A-satisfiable subsets (A-

MSSs) of an unfoldable terminology Γ represented in ALC,
for any concept name A occurring in Γ. A subset Γ′ of Γ
is an A-MSS of Γ iff it is A-satisfiable, and every Γ′′ such
that Γ′ ⊂ Γ′′ ⊆ Γ is A-unsatisfiable. The algorithm gen-
erates a tree T in much the same style as classical ALC
tableau algorithms, and with similar expansion rules. But
instead of closing a branch when it detects a clash in a leaf
node, it employs an additional non-deterministic expansion
rule which breaks clashes by excluding axioms involved in
the clash. As a result, we can show that the set of Tbox
axioms not excluded in the process of getting to a fully ex-
panded (and hence clash-free) leaf node is A-satisfiable, and
indeed, that every A-MSS of Γ can be obtained from some
fully expanded leaf node in this way. The algorithm can
also be used to find the maximally concept-satisfiable sub-
sets (MCSSs) of Γ. A subset Γ′ of Γ is an MCSS of Γ iff it
is concept-satisfiable, and every Γ′′ such that Γ′ ⊂ Γ′′ ⊆ Γ
is concept-unsatisfiable.

We assume that Γ contains the defined concept names
A1, . . . , An with n ≥ 1 (those concept names occurring on
the left-hand sides of the axioms), and that it contains the
primitive concept names B1, . . . , Bm, with m ≥ 1 (those
concept names occurring only on the right-hand sides of
the axioms). It is easily established that Γ is Bi-satisfiable
for i = 1, . . . ,m. For the rest of the paper we let Γ =
{ax1, . . . , axn}, with axi referring to the axiom Ai =̇ Ci

for i = 1, . . . , n. We assume that, during expansion, all
concepts are converted to negation normal form. As is the
case for some classical tableau algorithms, every node x of
the tree T is labelled with a set of concept assertions. Addi-
tionally, we also associate with every such concept assertion
a:C a set of integers I in the range 1, . . . , n, called an index-
set. The purpose of I is to maintain information about the
axioms that were used in order for a:C to be associated with
the node x. So, each x is labelled with a set L(x) contain-
ing elements of the form (a:C, I), where C is a concept, a
is an individual name, and I is an index-set. We frequently
abuse notation by referring to elements of the form (a:C, I)
as concept assertions. We associate with each node x an
exclusion-set E(x) containing indices in the range 1, . . . , n.
E(x) contains the indices of the axioms that are excluded
when applying the additional clash-breaking expansion rule
mentioned above. It is from the information contained in the
exclusion-sets of the leaf nodes of T that we will construct
the Ai-MSSs of Γ.

Let us now assume that we want to determine the Aj-
MSSs of Γ for some j = 1, . . . , n. The first step is to create
a root node r for T , with L(r) = {(a:Aj , ∅)} and E(r) = ∅.
We shall refer to T as a tree for the DL knowledge base
(Γ, {a:Aj}). Then we repeatedly expand the tree T by ap-
plying the six rules in Figure 1 to the leaf nodes. A node is
fully expanded when none of the rules can be applied to it.
The tree T is fully expanded when all of its leaf nodes are
fully expanded.

The rules need some explanation and clarification. Rules
1 and 2 perform lazy unfolding. The D+-rule adds the def-
inition Ci of a defined concept name Ai, as prescribed by
the axiom Ai =̇ Ci, then adds i to the index-set of Ci to in-
dicate that this occurrence of Ci is due to an application of

1. D+-rule If (a:Ai, I) is in L(x) and has not been tagged, then
Tag (a:Ai, I) and let L(x) := L(x) ∪ {(a:Ci, I ∪ {i})}

2. D−-rule If (a:¬Ai, I) is in L(x) and has not been tagged, then
Tag (a:¬Ai, I) and let L(x) := L(x) ∪ {(a:¬Ci, I ∪ {i})}

3. u-rule If (a:C u D, I) ∈ L(x) then
L(x) := L(x) \ {(a:C u D, I)} ∪ {(a:C, I), (a:D, I)}

4. t-rule If (a:C t D, I) ∈ L(x) then
Create two children y and z of x;
L(y) := L(x) \ {(a:C t D, I)} ∪ {(a:C, I)};
L(z) := L(x) \ {(a:C t D, I)} ∪ {(a:D, I)};
E(y) := E(x); E(z) := E(x)

5. ∃-rule If (a:∃R.C, I) ∈ L(x) and rules 1-4 can’t be applied then
X := {(b:C, I)} ∪ {(b:D, I ∪ J) | (a:∀R.D, J) ∈ L(x)}
(b is a new unique individual name not used before)
L(x) := (L(x) \ {(a:∃R.C, I)}) ∪ X;

6. ⊥-rule If (a:A, I) ∈ L(x) and (a:¬A, J) ∈ L(x) then
For every i ∈ I ∪ J do:

Create a new child y of x;
L(y) := L(x) \ {(b:D, K) | i ∈ K};
E(y) := E(x) ∪ {i}

Figure 1: The six expansion rules of our algorithm.

axiom i, and then tags Ai to indicate that the D+-rule has
already been applied to it. The D−-rule is involved in the
same type of replacement, but is applied to the concept ¬Ai

to add ¬Ci.
Rules 3 and 4 are similar to the classical u- and t-rules

for ALC. The main difference is that our rules allow for du-
plicate concept assertions (with different associated index-
sets) to occur. This is necessary to ensure the completeness
of the algorithm (i.e. that all Aj-MSSs will be identified) as
demonstrated in Example 1.

Rule 5 is similar to a combination of the classical ∃- and
∀-rules for ALC. Given the concept assertion (a:∃R.C, I),
it removes (a:∃R.C, I) from L(x) and creates a new concept
assertion (b:C, I) where b is a new individual name. In ad-
dition, for every concept assertion of the form (a:∀R.D, J),
it creates a new concept assertion (b:D, I∪J). Note that the
index-set J associated with every such b:D is enlarged to
contain the index set I associated with ∃R.C as well. This
is necessary to ensure that all Aj-MSSs are found. It is in-
cluded to deal with cases where, for example, a node con-
tains the concept assertions a:∀R.D, a:∃R.C and a:∀R.¬D,
where a direct clash will be detected only between the two
∀-concept assertions, even though it is because of the pres-
ence of the ∃-concept assertion that the clash occurs at all.
Example 2 provides more details about such cases.

Observe that rule 5 may only be applied when rules 1-4
cannot be applied. This is to avoid situations where a con-
cept assertion of the form (a:∀R.D, J) appears in L(x) only
after the rule has been applied to a concept assertion of the
form (a:∃R.C, I). For example, suppose that L(x) contains
(a:∃R.C, I) and (a:(∀R.D) u E, J). If the ∃-rule is now
applied before the u-rule, the set X calculated as part of the
rule will not include (b:D, I∪J), as it should. Note that it is
only rules 1-4, and not rule 6, that have to be applied before
the ∃-rule. So it is permissible to apply rule 5 even if rule 6
is applicable at the same time.

Rule 6 is the new non-deterministic rule added to break

clashes. The intended use of the rule is easy to understand.
Whenever a clash is detected in a node x (i.e. a concept
assertion (a:A, I) and its negation (a:¬A, J) both occur in
L(x)), the idea is to branch by first excluding (a:A, I) and
then excluding (a:¬A, J), thereby resolving the clash. The
exclusion of a concept assertion actually amounts to the ex-
clusion of the Tbox axiom responsible for the concept as-
sertion being in L(x). The index-set I associated with a:A
contains the information of which axiom is responsible for
a:A being in L(x). In general, more than one axiom may
bear this responsibility. This is reflected by the fact that I
is an index-set. We therefore have to branch on each of the
indices in I . The same argument goes for (a:¬A, J) as well.
So, what the ⊥-rule does is to create a new child y of x
for every index i occurring in one of I or J . In line with
the understanding that node y corresponds to the case where
axiom i is excluded, y is labelled only with the concept as-
sertions in L(x) whose index-sets do not contain i, and the
exclusion-set E(y) is obtained by adding the index i to the
indices in E(x).

We can obtain the Aj-MSSs of Γ from the leaf nodes of
a fully expanded T as follows. For any set of indices X ,
let Γ(X) = {Ai =̇ Ci ∈ Γ | i ∈ X}. So Γ(X) contains
those axioms in Γ whose indices occur in X . For every leaf
node x, let ∆x = {1, . . . , n} \ E(x), and ∆T = {∆x | x
is a leaf node of T }. So Γ(∆x) contains the Tbox axioms
not identified for exclusion in x. We abuse notation slightly
to let Γ(∆T) denote the set {Γ(∆x) | ∆x ∈ ∆T }. The
maximal elements of Γ(∆T) are the Aj-MSSs of Γ.

Examples
The first example demonstrates a simple application of the
rules, and shows why it is necessary to maintain duplicate
concept assertions with different associated index-sets.

Example 1 Let Γ = {A1=̇ A2uA3u¬A, A2=̇ A,A3=̇ A}.
To check for A1-satisfiability we create the root node r
with L(r) = {(a:A1, ∅)}. An application of the D+-
rule to (a:A1, ∅), followed by two applications of the u-
rule give L(r) = {(a:A1, ∅), (a:A2, {1}), (a:A3, {1}),
(a:¬A, {1})}. Applications of the D+-rule to (a:A2, {1})
and (a:A3, {1}) give L(r) = {(a:A1, ∅), (a:A2, {1}),
(a:A3, {1}), (a:A, {1, 2}), (a:A, {1, 3}), (a:¬A, {1})}. An
application of the ⊥-rule creates two children y and z of r
with L(y) = {(a:A1, ∅)}, E(y) = {1}, L(z) = {(a:A1, ∅),
(a:A2, {1}), (a:A3, {1}), (a:A, {1, 3}), (a:¬A, {1})}, and
E(z) = {2}. Another application of the ⊥-rule, to z, cre-
ates two children z1 and z2 of z, with L(z1) = {(a:A1, ∅)},
E(z1) = {1, 2}, L(z2) = L(z) \ {(a:A, {1, 3})}, and
E(z2) = {2, 3}. From the exclusion-sets of y, z1 and z2 we
see that ∆T = {{2, 3}, {3}, {1}}. Observe that only two of
these, {2, 3} and {1}, are maximal, and so the A1-MSSs of
Γ are {A2=̇ A,A3=̇ A} and {A1=̇ A2 uA3 u ¬A}.

Our algorithm currently does not guarantee that every leaf
node corresponds to an A-MSS, as is clearly demonstrated
in Example 1, where one of the leaf nodes corresponds to
the A1-satisfiable subset {A3=̇ A} which is not maximal.

The next example demonstrates why the ∃-rule enlarges
the associated index-sets of concept assertions of the form

b:∀R.D to include the indices in I .

Example 2 Let Γ = {A1=̇ A2 u A3 u A4, A2=̇ ∀R.D,
A3=̇ ∃R.C, A4=̇ ∀R.¬D}. To check for A1-satisfiability
we create the root node r with L(r) = {(a:A1, ∅)}. An ap-
plication of the D+-rule to (a:A1, ∅), followed by two appli-
cations of the u-rule give L(r) = {(a:A1, ∅), (a:A2, {1}),
(a:A3, {1}), (a:A4, {1})}. Three applications of the
D+-rule, one to (a:A2, {1}), one to (a:A3, {1}),
and one to (a:A4, {1}), give L(r) = {(a:A1, ∅),
(a:A2, {1}), (a:A3, {1}), (a:A4, {1}), (a:∀R.D, {1, 2}),
(a:∃R.C, {1, 3}), (a:∀R.¬D, {1, 4})}. Now suppose that
we apply the ∃-rule, but do not enlarge the index-sets of
the ∀-concept assertions. Firstly, this adds (b:D, {1, 2}),
(b:C, {1, 3}), and (b:¬D, {1, 4}) to L(r). An application
of the ⊥-rule now creates three children, x, y, and z,
of r, with L(x) = {(a:A1, ∅), (a:A2, {1}), (a:A3, {1}),
(a:A4, {1}), (b:D, {1, 2}), (b:C, {1, 3})}, E(x) = {4},
L(y) = {(a:A1, ∅)}, E(y) = {1}, L(z) = {(a:A1, ∅),
(a:A2, {1}), (a:A3, {1}), (a:A4, {1}), (b:¬D, {1, 4}),
(b:C, {1, 3})}, and E(z) = {2}. From the exclusion-sets of
x, y and z we see that ∆T = {{2, 3, 4}, {1, 3, 4}, {1, 2, 3}}
which all happen to be maximal. So, according to this
version these are the sets of indices of all the A1-MSSs
of Γ. But note that {A1=̇ A2 u A3 u A4, A2=̇ ∀R.D,
A4=̇ ∀R.¬D} is also an A1-MSS.

Now consider the correct application of the ∃-rule in
which the index-sets of the ∀-concept assertions are en-
larged. The indexed concept assertions now added to L(r)
are (b:D, {1, 2, 3}), (b:C, {1, 3}), and (b:¬D, {1, 3, 4}).
And the application of the ⊥-rule now creates four children,
x, y, z, and v of r with with L(x) = {(a:A1, ∅), (a:A2, {1}),
(a:A3, {1}), (a:A4, {1}), (b:D, {1, 2, 3}), (b:C, {1, 3})},
E(x) = {4}, L(y) = {(a:A1, ∅)}, E(y) = {1},
L(z) = {(a:A1, ∅), (a:A2, {1}), (a:A3, {1}), (a:A4, {1}),
(b:¬D, {1, 3, 4}), (b:C, {1, 3})}, E(z) = {2}, L(v) =
{(a:A1, ∅), (a:A2, {1}), (a:A3, {1}), (a:A4, {1})}, and
E(v) = {3}. That is, the ⊥-rule now produces a fourth leaf
node v with 3 as the only element in its exclusion-set, which
means that ∆v = {1, 2, 4} and that Γ(∆v) is the missing
A1-MSS.

Correctness and Complexity
Checking for satisfiability in ALC is PSPACE-complete.
However, the maintenance of the index-sets associated with
concepts means that our algorithm yields EXP-TIME as up-
per bound.

To prove the algorithm is correct we need to show that: (1)
The algorithm always terminates; (2) For every leaf node x
of a fully expanded T , Γ(∆x) is Aj-satisfiable; (3) Every
Aj-MSS of Γ is equal to Γ(∆x) for some leaf node x of a
fully expanded T for (Γ, a:Aj). Below we provide outlines
of how to do so. Note firstly that the order in which rules are
applied (other than the requirement specified in the ∃-rule)
does not affect the leaf nodes of a fully expanded tree.

For (1), it suffices to show that T will be fully expanded
after a finite number of steps. This follows from the fol-
lowing observations: (i) The D+- and D−-rules can only be
applied a finite number of times; (ii) The u-, t- and ∃-rules

can only be applied once to a concept assertion; (iii) The u-,
t- and ∃-rules all create a finite number of new concept as-
sertions that are strictly smaller than the concept assertions
they were applied to; (iv) The ⊥-rule creates a finite number
of new leaf nodes, all with fewer concept assertions than the
node it was applied to.

The key point is that rules 1-5 will only add concept as-
sertions to T and there can only be a finite number of ex-
pansions if we restrict ourselves to these rules. The addi-
tional ⊥-rule, unlike rules 1-5, will only remove concept as-
sertions. However, this does not mean the same concept as-
sertion can be added and removed indefinitely (i.e. the yoyo
effect cannot occur). To avoid this problem, we have em-
ployed two book-keeping techniques (i.e. tagging for rules
1-2 and removal of triggering source for rules 3-5). Both of
these techniques will ensure expansion of a particular con-
cept assertion can only happen once, regardless of whether
any concept assertion is removed at a later stage.

For (2), observe firstly that Aj-satisfiability is equivalent
to the DL knowledge base K = (Γ, {a:Aj}) being satisfi-
able. Let T be a fully expanded tree for (Γ, {a:Aj}) ob-
tained by applying the ⊥-rule only after all other rules have
been exhausted, and let x be any leaf node of T .1 We show
that K ′ = (Γ(∆x), {a:Aj}) is satisfiable. To do so, it is suf-
ficient to show that a fully expanded tree T ′ for K ′ contains
a clash-free leaf node y. The path from the root node of T ′

to y can be constructed from the path from the root node of
T to x as follows. Let ρ1, . . . , ρn be the sequence of rule ap-
plications to obtain the path with x as leaf node. Remove all
those rule applications involving any of the axioms with in-
dices in E(x). It follows readily that the remaining rules in
the sequence can be used to generate the required path from
the root node of T ′ to y. Node y has to be clash-free since
we have removed the axioms responsible for the clashes en-
countered on the path to x, and so the ⊥-rule cannot be ap-
plied to it. Also, all other rules appearing in ρ1, . . . , ρn, and
not involving any axioms with indices in E(x) will still be
applied, which means that y has to be a leaf node of T ′.

For (3), consider again the case where the ⊥-rule is ap-
plied only after all other rules have been exhausted. Now
consider the clashes contained in the leaf nodes of the tree
obtained before we start applying the ⊥-rule. It can be
shown that every possible source of Aj-unsatisfiability cor-
respond to one of these clashes (even though some clashes
need not correspond to any source of Aj-unsatisfiability).
Observe furthermore that the ⊥-rule branches by resolving
one clash at a time, and therefore, excluding one axiom at a
time. From this it can be shown that every Aj-MSS of Γ is
equal to Γ(∆x) for some leaf node x of the tree obtained by
applying the ⊥-rule until it is fully expanded.

Calculating MCSSs
Calculating MCSSs can be done in two ways, using the al-
gorithm described above. The first method is to first cal-
culate the set of Aj-MSSs for j = 1, . . . , n. From this,
the set of MCSSs can be calculated in the following way.

1The choice of applying the ⊥-rule only after all other rules is
useful in this context, but note that this is not a general requirement.

Denote by Mj the set of Aj-MSSs, for j = 1, . . . , n.
Then the set of MCSSs are the maximal elements of the
set

{⋂i≤n
i=1 Xi | Xi ∈ Mi for i = 1, . . . n

}
. But MCSSs can

also be calculated directly using the algorithm above. Set
(L(r) = {ai:Aj , ∅) | i = 1, . . . , n} where r is the root
node of the tree and the ais are all distinct individual names,
and then expand the tree exactly as before. The maximal
elements of Γ(∆T) are precisely the MCSSs of Γ. Us-
ing the algorithm in this way makes use of the fact that
concept-satisfiability is equivalent to the DL knowledge base
K = (Γ, {(ai:Ai) | i = 1, . . . , n}) being satisfiable.

Modifications and Optimisations
Since the tableau procedure described above is an exten-
sion of standard tableau procedures, it is possible to incor-
porate into it some standard optimisation techniques (Hor-
rocks 1997) such as normalisation, encoding, caching and
ordering heuristics. However, our purpose in this section
is to focus on a modification and an optimisation technique
specific to the finding of Aj-MSSs. The optimisation tech-
nique is based on the observation that the duplication of con-
cept assertions (with differing associated index-sets) in the
same node may lead to inefficient behaviour. This can be
illustrated by considering Example 1 again. Observe that
the first application of the ⊥-rule in Example 1 involves
the detection of a clash involving a:A and a:¬A. But note
that there are two such clashes; one between (a:A, {1, 2})
and (a:¬A, {1}), and another between (a:A, {1, 3}) and
(a:¬A, {1}). In the example, the ⊥-rule is applied to the
first of these two clashes, and after branching on the index
2, the clash between (a:A, {1, 3}) and (a:¬A, {1}) still re-
mains, and the ⊥-rule has to be applied again. It would
clearly be more efficient if these two applications of the ⊥-
rule can be rolled into one.

To do so, it is useful to introduce a more parsimo-
nious representation of the duplicated concept assertions
in which each concept assertion in a node is associated
with a set of index-sets. For example, in Example 1,
just before the applications of the ⊥-rule, we would have
(a:A, {{1, 2}, {1, 3}}) replace the two concept assertions
(a:A, {1, 2}) and (a:A, {1, 3}). To do so, we need to make
a number of modifications to the algorithm. We replace the
initial concept assertion (a:Aj , ∅) to be added to L(r) with
(a:Aj , {∅}), and assume that every application of a rule is
followed by a consolidation phase in which any duplicate
concept assertions (a:C, I1),. . . ,(a:C, Im) are replaced with
a single concept assertion (a:C,∪i≤m

i=1 Ii). Below we’ll see
that the consolidation phase also has to remove concept as-
sertions of the form (a:C, ∅).

We also need to make some changes to the six rules.
Firstly, in every one one of the six rules, replace every index-
set I and J with the set of index-sets I and J respectively.
Next, in the D+-rule we replace the second line with:

L(x) := L(x) ∪ {(a:Ci, {I ∪ {i} | I ∈ I})}
(where I is the set of index-sets associated with a:Ai). The
change to the D−-rule is similar. We replace the second line
with:

L(x) := L(x) ∪ {(a:¬Ci, {I ∪ {i} | I ∈ I})}
Thus, the index i is simply added to every index-set occur-
ring in I.

In the ∃-rule the second line is changed to the following:

X := {(b:C, I)} ∪ {(b:D,KD) | (a:∀R.D,J) ∈ L(x)}
where KD = {I ∪ J | I ∈ I & J ∈ J }. This simply en-
sures that we associate with the concept assertion b:D those
index-sets constructed by combining every index-set in I
with every index-set in J .

This brings us to the ⊥-rule, where the optimisation tech-
nique takes its effect. We give the modified rule and then
explain it.

6. ⊥-rule If (a:A, I) ∈ L(x) and (a:¬A,J) ∈ L(x) then
For every K ∈ (MH(I) ∪ MH(J)) do:

Create a new child y of x;
L(y) :=

˘
(b:D, IK) | (b:D, I′) ∈ L(x)

¯
;

E(y) := E(x) ∪ K

Observe that we define IK as {I ∈ I ′ | K ∩ I = ∅},
while MH(K) denotes the minimal hitting sets of the set of
index-sets K. A hitting set of K is an index-set H ⊆ ∪K
such that, for every K ∈ K, |H ∩K| = 1.

Now for the explanation. Recall that the ⊥-rule is ap-
plicable when there is a clash between two concept asser-
tions of the form (a:A, I)) and (a:¬A,J), both occurring
in L(x). In order to remove the clash, it is necessary to have
two branches. One in which a:A is removed, and one in
which a:¬A is removed. To ensure the removal of all du-
plicates of a:A, we have to exclude, simultaneously, one of
the axioms in each of index-sets occurring in I. That is the
same as excluding a hitting set. But since we are interested
in removing as few axioms as possible, we only need to ex-
clude the minimal hitting sets of I. And similarly, we need
to exclude the minimal hitting sets of J . All in all then,
we need to branch on each index-set K occurring in either
MH(I) or MH(J).

This brings us to the elements to be assigned to L(y) for
each of the newly created nodes y. Line 4 of the new ⊥-
rule labels node y with exactly the concept assertions oc-
curring in L(x), but retains only those index-sets which do
not intersect K (the index-set to be excluded). Put differ-
ently, every concept assertion (b:D, I ′) in L(x) is added
to L(y) after I ′ is modified so that it retains only those
index-sets which do not intersect K. Observe that L(y)
might end up with elements of the form (b:D, ∅). Such
elements indicate that all the axioms accounting for the
presence of b:D in L(y) have been excluded using appli-
cations of the ⊥-rule, which means that these elements
have to be removed from L(y). This accounts for the
part of the consolidation phase described above which re-
moves elements of precisely this kind after the application
of each rule. Consider again Example 1 just before the
two applications of the ⊥-rule. With the modified rules we
have L(r) = {(a:A1, {∅}), (a:A2, {{1}}), (a:A3, {{1}}),
(a:A, {{1, 2}, {1, 3}}), (a:¬A, {{1}})}. An application of
the new ⊥-rule now creates two children y and z of r, with
L(y) = {(a:A1, {∅})}, E(y) = {1}, L(z) = L(r) \

{(a:A, {{1, 2}, {1, 3}})}, and E(z) = {2, 3}. It is easily
established that this modication and optimisation do not af-
fect the correctness and termination conditions of the algo-
rithm.

Related Work
Most of the work on dealing with the debugging of termi-
nologies have focused on concept-unsatisfiability. These
approaches frequently focus on identifying the possible
sources of the unsatisfiability. This includes the work of
(Kalyanpur, Parsia, & Sirin 2005; Kalyanpur et al. 2005)
and (Schlobach & Cornet 2003). The approach closest
to ours is the work of Sclobach (Schlobach 2005) which
applies techniques from model-based diagnosis to find A-
MSSs and MCSSs, and we shall consider this in some de-
tail. The idea here is to first find the minimal unsatisfia-
bility preserving sub-terminologies for a concept name A
(or A-MUPSs) of a Tbox Γ. A subset Γ′ of Γ is an A-
MUPS iff Γ′ is A-unsatisfiable, and every strict subset of Γ′
is A-satisfiable. He uses a specialised algorithm described
in (Schlobach & Cornet 2003) to find the A-MUPSs of an
ALC TBox, and then applies Reiter’s hitting set algorithm
(Reiter 1987) to find the minimal hitting sets of the set of
A-MUPSs. The subsets of Γ obtained by excluding the
minimal hitting sets are precisely the A-MSSs of Γ. For
example, for the Tbox in Example 1, the A1-MUPSs are
{ax1, ax2} and {ax1, ax3}, and the minimal hitting sets are
{ax1} and {ax2, ax3}. The first five of our rules are very
similar to the rules described in (Schlobach & Cornet 2003).
Indeed, if we removed the ⊥-rule, we would have an algo-
rithm which identifies all the sources of A-unsatisfiability, in
a way that is very similar to the algorithm in (Schlobach &
Cornet 2003). The introduction of the ⊥-rule thus replaces
the need for computing the A-MUPSs from the sources of
A-unsatisfiability as is done in (Schlobach & Cornet 2003),
as well as for applying the hitting set algorithm, as is done
in (Schlobach 2005).

Some more related work which predates that of Schlobach
can be found in (Risch & Schwind 1994) and (Baader &
Hollunder 1995). The latter investigates the problem of find-
ing the maximally satisfiable subsets of Abox assertions.
They attach a propositional formula to each of the sentences
in the Abox and propagate these formulas to other sentences
while completing the Abox with the expansion rules. The
complete Aboxes (with labelled concept assertions) are then
used to construct a propositional formula called the clash
formula. Each model of the clash formula corresponds to an
unsatisfiable subset of the original Abox assertions and with
each minimal model corresponds to a minimally unsatisfi-
able subset of the original Abox assertions.

Experimental Results
We have implemented the algorithm without the suggested
optimisations in the previous section, and have performed
some preliminary experiments. It was run on three ontolo-
gies: the Camera ontology with 12 axioms and 14 con-
cepts, the Koala ontology with 29 concepts and 19 axioms,
and a simplified version of the DICE terminology with 527

concepts and 536 axioms, and with the 21 disjointness ax-
ioms disabled.2 In each case the task was to find the A-
MSSs for every concept name occurring in the ontology
Tests were performed on a standard Linux (Debian) machine
with a 2.53GHz Intel Pentium 4 processor, 512KB cache
and 512MB of physical memory. Our implementation was
developed in Java (JDK 1.5.0) without using any of the ex-
isting reasoners. The algorithm is optimised using only or-
dering heuristics. The order in which expansion rules are
applied can be defined manually by the user, and this can
have significant effects on the performance. For the purpose
of this paper, all experiments were done based on the fol-
lowing fixed ordering of expansion: (1) u-rule; (2) D+- and
D−-rules; (3) t-rule; (4) ∃-rule; (5) ⊥-rule.

Parsing the Camera ontology took 83ms, and so did find-
ing the A-MSSs. Three of the 14 concepts are unsatisfi-
able, with all three excluding just a single axiom. Parsing
the Koala ontology took 86ms and finding the A-MSSs took
131 ms. Three of the 29 concepts were unsatisfiable, with
all three excluding just a single axiom. Parsing the DICE
ontology took 282 ms and finding all MSSs 7.017 seconds.
Of the 527 concepts, 109 were unsatisfiable, with all of them
excluding no more than two axioms.

Compare this with the use of FACT++ as a black box
for finding the A-MSSs of DICE. It takes 527 satisfiability
checks to determine that 109 concepts are satisfiable, then
another 109 × 515 checks to determine all A-MSSs for all
concepts in which exactly one axiom is excluded, and then
2 × (515 × 514/2) to find the A-MSSs in which two ax-
ioms are excluded. All in all, this gives 321372 satisfiability
checks. It takes about 0.2ms for FACT++, implemented on
the same machine as our algorithm, to perform a satisfiabil-
ity check for one of the DICE concepts. This means it takes
FACT++ 64.274 seconds to find all A-MSSs, but without a
guarantee that all A-MSSs have been found.

At this stage it is too early to draw any meaningful con-
clusions, but the results obtained so far merit a more detailed
investigation.

Conclusion and Future Work
We have described a specialised algorithm for finding the
maximally A-concept satisfiable sub-terminologies of a ter-
minology represented in the description logicALC. We also
showed that the same algorithm can be applied to identify
the maximally concept-satisfiable subsets of an ALC termi-
nology, and discussed some ways of making the algorithm
more efficient. We have obtained some promising but pre-
liminary experimental results. For future work we plan to
conduct a more detailed experimental evaluation of the im-
plementation.

At present the algorithm can only handle unfoldable ter-
minologies. We are currently working on a tableau-based al-
gorithm for computing maximally satisfiable terminologies
inALC with cyclic definitions, using a refined blocking con-

2The Camera and Koala ontologies were obtained from
http://protege.stanford.edu/plugins/owl/owl-library/index.html.
We are indebted to Stefan Schlobach for providing us with an
anonomised version of DICE.

dition which ensures that termination is achieved at the right
point during the expansion process. A topic for further re-
search is to extend the algorithm in order to deal with more
expressive description logics as well.

As mentioned in the section on related work, our algo-
rithm with the ⊥-rule removed identifies the sources of A-
concept unsatisfiability. This information can be used to find
the minimally unsatisfiable sub-terminologies. We plan to
incorporate this into the algorithm and compare this experi-
mentally with the algorithm in (Schlobach & Cornet 2003).

References
Baader, F., and Hollunder, B. 1995. Embedding De-
faults into Terminological Knowledge Representational
Formalisms. Journal of Automated Reasoning 14:149–180.
Baader, F., and Nutt, W. 2003. Basic description logics.
In Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P., eds., The Description Logic Hand-
book: Theory, Implementation, and Applications. Cam-
bridge University Press.
Haarslev, V., and Möller, R. 2001. Racer system descrip-
tion. In Goré, R.; Leitsch, A.; and Nipkow, T., eds., IJCAR
2001, volume LNAI 2100.
Horrocks, I. 1997. Optimising Tableaux Decision Proce-
dures for Description Logics. Ph.D. Dissertation, Univer-
sity of Manchester.
Horrocks, I. 1998. The FaCT system. In de Swart, H., ed.,
Tableaux ’98, volume LNAI 1397, 307–312.
Kalyanpur, A.; Parsia, B.; Sirin, E.; and Hendler, J. 2005.
Debugging unsatisfiable classes in OWL ontologies. In
Journal of Web Semantics - Special Issue of the Semantic
Web Track of WWW2005. (To Appear).
Kalyanpur, A.; Parsia, B.; and Sirin, E. 2005. Black box
techniques for debugging unsatisfiable concepts. In Inter-
national Workshop on Description Logics.
Meyer, T.; Lee, K.; and Booth, R. 2005. Knowledge inte-
gration for description logics. In Proceedings of AAAI05,
645–650.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Risch, V., and Schwind, C. 1994. Tableaux-Based Charac-
terization and Theorem Proving for Default Logic. Journal
of Automated Reasoning 13(2):223–242.
Schlobach, S., and Cornet, R. 2003. Non-standard reason-
ing services for the debugging of description logic termi-
nologies. In Proceedings of IJCAI 2003, 355–360. Morgan
Kaufmann.
Schlobach, S. 2005. Diagnosing terminologies. In Pro-
ceedings of AAAI05, 670–675.
Schmidt-Schauß, M., and Smolka, G. 1991. Attributive
concept descriptions with complements. Artificial Intelli-
gence 48:1–26.
Tsarkov, D., and Horrocks, I. 2004. Efficient reasoning
with range and domain constraints. In Proceedings of the
Description Logics Workshop (DL2004), 41–50. Available
from ceur-ws.org.

