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ABSTRACT
An argumentation framework can be seen as expressing, in
an abstract way, the conflicting information of an under-
lying logical knowledge base. This conflicting information
often allows for the presence of more than one possible rea-
sonable position (extension/labelling) which one can take.
A relevant question, therefore, is how much these positions
differ from each other. In the current paper, we will examine
the issue of how to define meaningful measures of distance
between the (complete) labellings of a given argumentation
framework. We provide concrete distance measures based
on argument-wise label difference, as well as based on the
notion of critical sets, and examine their properties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Measurement, Theory

Keywords
argumentation, distance measures, complete labellings, ag-
gregation, belief revision

1. INTRODUCTION
Given a conflicting logical theory, an agent is faced with

the problem of deciding what it could reasonably believe.
As advocated in various nonmonotonic inference formalisms
such as default logic [24], it is often possible to identify
multiple reasonable positions, or so-called extensions. This
idea has been adopted in abstract argumentation theory
[14], which attempts to analyze possible extensions while
abstracting away from the underlying logic. In particular,
this theory views logical derivations as abstract arguments
(nodes in a graph), and conflicts as defeat relations (directed
arcs) over these arguments.

The presence of multiple reasonable positions raises a fun-
damental question: how different are two given evaluations
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of a conflicting logical theory? We attempt to answer this
question in the context of abstract argumentation theory.

This question is relevant to two fundamental problems.
The first problem is argument-based belief revision. Sup-
pose a diplomat receives instructions to switch his position
on one particular argument (see Section 3 for an example).
To maintain a consistent viewpoint, the diplomat must re-
vise his evaluation of other related arguments. Faced with
multiple possibilities, the diplomat may wish to choose the
one that differs the least from his initial position (e.g. to
maintain credibility).

The issue of distance is also relevant to the problem of
judgement aggregation over how a given set of arguments
should be evaluated collectively by a group of agents with
different opinions [11, 12, 23]. For instance it is very well
possible that the members of a jury in a criminal trial all
share the same information on the case (and hence have
the same argumentation framework) but still have different
opinions on what the verdict should be. Hence, these dif-
ferences of opinion are consequences not of differences in
the knowledge base but of the nature of nonmonotonic rea-
soning, which allows for various reasonable positions (exten-
sions). In the context of judgement aggregation one may ex-
amine the extent to which the collective position differs from
the various positions of the individual participants. Ideally,
one would like to have a collective position that is closest
to the collection of individual positions, for example such
that the sum of its distance to each individual position is
minimal.

In this paper, we examine a number of possible candidates
for measuring the distance between different labellings (eval-
uations) of an argumentation graph. The paper advances the
state-of-the-art in argument-based reasoning in three ways:
(1) We provide the first systematic investigation of quanti-
fying the distance between two evaluations of an argument
graph; (2) We examine a number of intuitive measures and
show that they fail to satisfy basic desirable postulates; (3)
we come up with a measure that satisfies them all. In addi-
tion to providing many answers, our paper also raises many
interesting questions to the community at the intersection
between argumentation and social choice.

2. ABSTRACT ARGUMENTATION
In this section, we briefly restate some preliminaries re-

garding argumentation theory. For simplicity, we only con-
sider finite argumentation frameworks.

Definition 1. An argumentation framework (AF for short)
is a pair A = (Ar,⇀), where Ar is a finite set of arguments



and ⇀⊆ Ar ×Ar.

We say that argument A attacks argument B iff (A,B) ∈⇀.
An AF can be represented as a directed graph in which the
arguments are represented as nodes and the attack relation
is represented as arrows.

In the current paper, we follow the approach of [6, 10] in
which the semantics of abstract argumentation is expressed
in terms of argument labellings. The idea is to distinguish
between the arguments that one accepts (that are labelled
in), the arguments that one rejects (that are labelled out)
and the arguments which one abstains from having an opin-
ion about (that are labelled undec for “undecided”).

Definition 2. Given an AF A = (Ar,⇀), a labelling for
A is a function L : Ar → {in, out, undec}.

Since a labelling is a function, it can be represented as a
set of pairs, each consisting of an argument and a label (in,
out, or undec). We are now ready to state the concept of
complete labelling [6, 10].

Definition 3. Let L be a labelling for AF A = (Ar,⇀). L
is a complete labelling (over A) iff for each A ∈ Ar it holds
that:

1. L(A) = in iff ∀B ∈ Ar : (B ⇀ A ⊃ L(B) = out)

2. L(A) = out iff ∃B ∈ Ar : (B ⇀ A ∧ L(B) = in).

We denote the set of all complete labellings of A by CompA.

As stated in [6, 10], complete labellings coincide with com-
plete extensions in the sense of [14]. Moreover, the relation-
ship between them is one-to-one. In essence, a complete ex-
tension is simply the in-labelled part of a complete labelling
[6, 10].

The labelling approach has also been defined for other se-
mantics, such as grounded, preferred, stable and semi-stable
semantics, as well as for ideal semantics (see the overview
article [2] for details). In this paper, however, we will focus
on the case of complete semantics and the associated com-
plete labellings, not only because of their relative simplicity,
but also because complete labellings serve as the basis for
defining labellings for various other semantics [10]. That
is, semantics like grounded [14], preferred [14], stable [14],
semi-stable [9], ideal [15] and eager [7] in essence select sub-
sets of the set of all complete labellings (see [2]). Since the
approach in the current paper is to compare any arbitrary
pair of complete labellings, our results are directly applica-
ble also to the aforementioned semantics.1

Example 1. Consider a simple argumentation framework
A = (Ar,⇀) with Ar = {A,B,C} and ⇀= {(A,B), (B,A),
(B,C)}. Then CompA = {L1,L2,L3}, where each Li may
be visualised in Fig. 1. In this and subsequent diagrams, a
node with a solid line indicates an in label, a dotted line
indicates out and a grey node indicates undec. Thus for
example the first labelling L1 = {(A, in), (B, out), (C, in)}.

1Another point to mention is that it has been proved that
complete-based semantics (that is, semantics whose sets of
extensions/labellings are subsets of the set of all complete
extensions/labellings), when used for the purpose of logical
inference, tend to produce fully instantiated argumentation
formalisms that satisfy reasonable properties in the sense of
[8, 22].

Figure 1: Three possible complete labellings L1,L2

and L3

Figure 2: The AF A1 and its four possible complete
labellings L1-L4

3. BELIEF REVISION AND JUDGEMENT
AGGREGATION

Consider three arguments about global warming, each one
grounded in some scientific evidence, with the following as-
sociated conclusions:

• A: Global warming is mainly caused by volcanic ac-
tivity.

• B: Global warming is mainly caused by natural varia-
tion in solar radiation.

• C: Global warming is a human-induced phenomenon.

Clearly, it is not possible to subscribe to both arguments A
and B, since they attribute global warming to different ma-
jor causes. However, both these arguments attack argument
C, which attributes global warming to human activity. This
situation can be modelled with the AF A1 shown in Fig.2.
Here there are four possible complete labellings L1-L4, which
are also depicted.

Suppose a diplomat was initially adopting the position
corresponding to labelling L3 in Fig. 2, which focusses on
human activity (argument C) as the main cause of global
warming.

However, recent elections in his home country gave rise
to a new climate-sceptical government, which requires the
diplomat to change his position in order to no longer ac-
cept argument C (that is: to revise his complete labelling
to one in which C is no longer labelled in). He is now faced
with two possible revisions of his original position L3. On
one hand, he can switch to labelling L1 or L2, citing the
alternative theory. On the other hand, he could switch to
labelling L4, admitting that the matter cannot be decided.

Let us assume that politicians like to maintain a repu-
tation of being generally consistent. Therefore, when they
switch their points of view, they like to minimize the extent
to which they deviate from their original positions. In the



above example, it is far from obvious which revision of the
original position L3 is less dramatic. On one hand, switch-
ing to the alternative theories L1 or L2 keeps the status of
at least one argument the same, while switching to labelling
L4 requires changing the status of all arguments involved.
On the other hand, switching the status of argument C from
being fully accepted to being completely rejected (as in L1

or L2) seems more severe than simply moving to a position
of indecision (as in L4).

Following up on the example above, suppose we have a
panel consisting of three scientists, with two supporting po-
sition L1, and one supporting position L2. Suppose the sci-
entists want to reach a collective position that is closest to
their respective individual positions, in order to minimize
the degree to which they individually deviate from their orig-
inal positions. To achieve this, should all of them concede to
the third undecided position L4, as is suggested in [11]? Or
should the third scientist individually concede to position
L1, ensuring the first two stick to their view? The answer to
this question relies crucially on how we quantify the distance
between the different positions.

The examples above highlight the need for a systematic
approach to identifying the extent to which two positions
differ, ideally creating a reliable quantitative measure of dis-
tance between different complete labellings.

4. DISTANCE BETWEEN LABELLINGS
The problem we are interested is the following:

Given an AFA, and given two complete labellings
S (the source labelling) and T (the target la-
belling) over A, how can we quantify the distance
from S to T , denoted d(S, T )?

Of course we don’t just want a method which applies to
only one AF, we want a method to be able to do this for
any given A.

Definition 4. A labelling distance (for AF A) is a function
d : CompA × CompA → N. A labelling distance method is
a function which assigns to every AF A a labelling distance
for A.

In the following sections we will provide a few concrete
definitions of distance functions. But first, are there any
properties which we should expect such a function to satisfy?

4.1 Properties for distance methods
In mathematics, when formalising the notion of distance

it is common to require that d be a metric. In our present
setting that means that the following hold for all complete
labellings S, T ,U over a given AF A:

(dm1) d(S,S) = 0
(dm2) d(S, T ) > 0 if S 6= T
(dm3) d(S, T ) = d(T ,S) (Symmetry)
(dm4) d(S, T ) ≤ d(S,U) + d(U , T ) (Triangle inequality)

Also, let’s define the following binary relation over CompA,
given a fixed source complete labelling S:

T1 ≤S T2 iff ∀A (T1(A) = S(A) ∨ T2(A) = T1(A))

T1 ≤S T2 means that every argument that T1 labels differ-
ently from S, is labelled equally differently by T2. Thus T2

differs from S at least as much as T1 does. It can be shown
that ≤S is a partial order over CompA with minimum ele-
ment S, i.e., S ≤S T for all T ∈ CompA. Let <S denote
the strict version of ≤S , i.e., T1 <S T2 iff both T1 ≤S T2 and
T2 6≤S T1. Thus the following might seem to be a reasonable
requirement on a distance function d:

(dm5) If T1 <S T2 then d(S, T1) < d(S, T2)
(Disagreement monotonicity)

To see why this might be reasonable, note that T1 <S T2
means that for every argument on which T1 disagrees with
S, the labelling T2 disagrees with S in exactly the same way,
but that there exists at least one argument on which T2 dis-
agrees with S, but for which T1 and S agree. In this case
it seems as though T2 is making strictly more changes to S
than T1 is, and so d should also endorse this conclusion. It
is not difficult to show that if d satisfies both (dm1) and
(dm5) then it satisfies (dm2).

We can also describe a postulate which is stronger than
(dm5). To express this property we first define the follow-
ing ordering over CompA, given any source labelling S and
target labellings T1, T2:

T1 ≤b
S T2 iff ∀A

(
T1(A) = S(A) ∨ T1(A) = T2(A)
∨[T1(A) = undec ∧ S(A) 6= T2(A)]

)
Like ≤S , the ordering ≤b

S forms a partial order with mini-
mum element S. The superscript “b” on ≤b

S may be thought
of as standing for “between”, since T1 ≤b

S T2 is merely ex-
pressing that, for all A ∈ Ar, T1(A) lies on a path be-
tween S(A) and T2(A), assuming the neighbourhood graph
in− undec− out over the labels. We may then propose the
following:

(dm5+) If T1 <b
S T2 then d(S, T1) < d(S, T2)

(Betweenness monotonicity)

where <b
S is the strict part of the relation ≤b

S . Since clearly
T1 <S T2 implies T1 <b

S T2 we have that (dm5+) is indeed
a strengthening of (dm5).

5. SUM-BASED DISTANCE
Our first family of distance functions is about simply find-

ing the raw quantity of disagreement between two complete
labellings. We can do this in terms of difference between
labels, that is, we assume we have some measure of disagree-
ment diff (x, y) for any x, y ∈ {in, out, undec} between the
different labels, and then obtain the distance between two
labellings by summing the differences between all arguments
in the AF (Ar,⇀) under consideration, i.e., take

d(S, T ) =
∑

A∈Ar

diff (S(A), T (A)). (1)

Definition 5. If the function d can be defined from some
function diff : {in, out, undec}2 → N as in (1) then we say
d is a simple diff-based distance method.

It turns out that the results in this paper depend only on
a few fundamental requirements on diff , encapsulated in the
following definition:

Definition 6. A basic label difference measure is a function
diff : {in, out, undec}2 → N which satisfies the following
properties, for all x, y ∈ {in, out, undec}:



(diff 1) diff (x, x) = 0
(diff 2) diff (x, y) = diff (y, x)
(diff 3) diff (in, out) > 0
(diff 4) diff (in, undec) = diff (out, undec)

Note that this means, in effect, any simple diff-based mea-
sure based on a basic label difference measure is completely
specified by 2 quantities: diff (in, undec) and diff (in, out),
which may respectively be thought of as the costs attached
to a soft and hard conflict. From now on any unspecified
diff -measure will be assumed to satisfy (diff 1)-(diff 4).

Proposition 1. If d is a simple diff-based distance method
defined via a basic label difference measure then d satisfies
(dm1) and (dm3).

(We remark that Propositions 1-4 in this section actually all
follow as corollaries of a more general result, Theorem 1, in
Section 6.1). As we will see below, the remaining distance
properties from the previous section can easily be captured
by placing further, optional, constraints on diff . Let us take
in a few concrete examples.

Measuring incompatibility
The property (diff 3) ensures that a hard conflict always
contributes a strictly positive value. But note we do not
require a soft conflict to do the same. That is, we do not
insist on the following strengthening of (diff 3):

(diff 3+) diff (x, y) > 0 for x 6= y

In this way we allow diff -measures such as the following,
which is inspired by the work of [11]. A labelling L1 is
compatible with labelling L2 (written as L1 ≈ L2) iff there is
no argument A such that either [L1(A) = in and L2(A) =
out] or [L1(A) = out and L2(A) = in]. The idea behind
compatibility is to give a rough impression of how difficult it
is to publicly defend a position (labelling) that is not one’s
own. Although it might be possible to publicly accept or
reject an argument which one privately has no opinion about
(undec), or to remain silent about an argument that one
privately accepts or rejects, it is significantly more difficult
to publicly accept an argument which one privately rejects
(and vice versa). Our first concrete measure of distance
makes the distance zero if the two labellings are compatible,
and measures the “degree of incompatibility” if they are not.

diff ≈(in, out) = 1, diff ≈(in, undec) = 0.

This leads to a function d≈ (defined using diff ≈ via (1))
which is more like a “measure of conflict” between S and T .
Measure d≈ fails to satisfy (dm2), as can be seen in Fig. 1,
where d≈(L1,L3) = 0. If we do insist on (diff 3+) then we
ensure not only (dm2) but also (dm5):

Proposition 2. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3+) then d satisfies (dm5) (and hence also (dm2)).

Hamming distance
A very simple example of a diff -measure satisfying (diff 3+)
is as follows:

diff H(in, out) = diff H(in, undec) = 1.

Then the distance between S and T boils down to the num-
ber of arguments on which S and T differ, i.e., the Hamming

distance between S and T . Let dH denote the distance de-
fined using diff H . Consider for instance the results for Fig.
1, where we see that dH(L1,L2) = 3 = dH(L1,L3). Thus,
according to dH , labellings L2 and L3 are equidistant from
L1. However it might be thought that the change between
L1 and L2 is more “drastic” than that between L1 and L3,
since it involves a complete swing in the status of its ar-
guments from in (resp. out) to out (resp. in). This ex-
ample demonstrates that dH fails to satisfy (dm5+), since
L3 <b

L1
L2 but dH(L1,L3) ≮ dH(L1,L2). Shouldn’t the

difference between in and out be strictly greater than the
difference between in (or out) to undec? In other words we
might expect:

(diff 5) diff (in, out) > diff (in, undec)

Proposition 3. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3+) and (diff 5) then d satisfies (dm5+).

Refined Hamming distance
An easy way to define a basic label difference measure which
satisfies both (diff 3+) and (diff 5) is to set:

diff rh(in, out) = 2, diff rh(in, undec) = 1,

where rh stands for “refined Hamming”. Note diff rh(x, y)
may be thought of as the length of the shortest path be-
tween x and y in the neighbourhood graph in−undec−out

over the labels. We denote by drh the distance obtained
by plugging diff rh into (1). Going back to Fig. 1, we have
drh(L1,L2) = 3× diff rh(in, out) = 6 and drh(L1,L3) = 3×
diff rh(in, undec) = 3, yielding the expected drh(L1,L3) <
drh(L1,L3). Propositions 1-3 aready tell us drh satisfies all
the distance properties from the previous section. The only
one which remains is the triangle inequality (dm4). But in
fact this too is satisfied, owing to the fact that diff rh sat-
isfies the following (which implies (diff 3+) for basic label
difference measures):

(diff 3++) 2× diff (in, undec) ≥ diff (in, out)

This property actually ensures that diff itself satisfies the
triangle inequality over the set of labels.

Proposition 4. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3++) then d satisfies (dm4).

Since diff H obviously satisfies (diff 3++) this means we
also get that dH satisfies (dm4). The incompatibility dis-
tance d≈, however, does not satisfy (dm4), as can be seen in
Fig. 1, where d≈(L1,L2) = 3 > 0 = d≈(L1,L3)+d≈(L3,L2).

6. CRITICAL SETS APPROACHES
Suppose we have the complete labelling S shown at the top

of Fig. 3 over an AF containing eight arguments {A,B,C,D,
E, F,G,H}. As usual a node with a solid line denotes the
argument is in, while a dotted line denotes out. Now con-
sider the two target labellings T1 and T2 shown below it.
T1 is obtained from S by leaving the labels of A,B,C,D
as they are and inverting the labels of the four arguments
E,F,G,H. For T2 we leave E,F,G,H untouched and invert
the labels of the four arguments A,B,C,D. The question
is: which of T1, T2 is closer to S? Or are they both equally
close?



Figure 3: Source labelling S and 2 target labellings
T1, T2

Let’s consider what a simple diff-based distance function
d has to say about this. One can see that we will get
d(S, T1) = 4 × diff (in, out) = d(S, T2). Thus any simple
diff-based distance will judge T1 and T2 as equidistant from
S.

However, on reflection it seems we can be more reasonable
and say that T2 is closer to S. Intuitively the reason is
based on the observation that disagreement between S and
T2 involves a higher degree of“contagion”. If two agents only
differ in their opinions on argument C (or only on D), this
would suffice to determine their disagreement over all other
arguments in that connected component (namely A,B,C,
and D). On the other hand, when comparing S with T1,
two agents would have to at least disagree (fundamentally
let’s say) on two arguments in order for this emerge.2

How can we make this intuition precise? We now inves-
tigate two possible ways in which the simple diff-based ap-
proach can be refined in order to take this into account. We
will see that the first one, although intuitive, is flawed.

6.1 Critical subsets approach
The first idea comes from a concept introduced by Gabbay

[16]. Instead of looking at all arguments, one specifically
focuses on the critical subsets.

Definition 7. Given an AF A = (Ar,⇀), a subset X ⊆
Ar is critical iff for any L1, L2 ∈ CompA we get L1 = L2

whenever L1 and L2 agree on the arguments in X. We
denote the set of critical subsets for A by crit(A).

In other words a critical subset for A is a set of arguments
whose status is enough to determine the status of all the
arguments in Ar. Clearly at least one critical subset will
always exist, for Ar is obviously critical. We are interested
in the minimal critical subsets.

2A similar intuition to this can be found in [5] in the context
of reasoning about action and belief update. The idea there
is that there might exist some causal links between the value
of one literal and that of another, which should be taken into
account when calculating how much one possible world, i.e.,
conjunction of literals, differs from another. If the change
in value of one literal is caused by another, then this change
should not count towards calculating the difference.

Definition 8. We denote the collection of set-theoretically
minimal subsets of crit(A) by mincrit(A), i.e.,

mincrit(A)
def
= {X ∈ crit(A) | @Y (Y ∈ crit(A) ∧ Y ⊂ X)}.

If we look at the AF of Fig. 3 one can check that one
critical subset is X1 = {C,E,G}, since, the label of E (re-
spectively G) determines the label of F (respectively H),
while the label of C determines the labels of A,B and D.
Indeed if C is in then A,B and D must all be out, if C is
out then A,B,D must all be in, while if C is undec then
A,B,D must all be undec too.

So, the first idea would be, given a basic label difference
measure diff , to pick some minimal critical subset X and
then just define, for all S, T ∈ CompA, d′(S, T ) = dX(S, T ),
where

dX(S, T )
def
=
∑
A∈X

diff (S(A), T (A)). (2)

Formally, the critical sets distance method cd is defined via a
function C which selects for eachA an element of mincrit(A)
and then sets cd(S, T ) = dC(A)(S, T ) for any S, T ∈ CompA.

Example 2. Taking the complete labellings S and T1, T2
in Fig. 3, and taking C(A) = {C,E,G} we get cd(S, T1) =
2 × diff (in, out) and cd(S, T2) = diff (in, out). Thus T2 is
deemed closer to S than T1 is.

The distance function dX in (2) actually fares rather well
when measured against the properties for distance functions
from earlier, provided diff is sufficiently well-behaved:

Theorem 1. Let X ∈ crit(A) and let dX be defined from
diff as in (2). Then dX satisfies (dm1) and (dm3). Fur-
thermore:
(i). If diff satisfies (diff 3+) then dX satisfies (dm5) (and
hence also (dm2)).
(ii). If diff satisfies (diff 3+) and (diff 5) then dX satisfies
(dm5+).
(iii). If diff satisfies (diff 3++) then dX satisfies (dm4).

Proof. (Outline) (dm1) and (dm3) follow immediately
from (diff 1) and (diff 3) respectively.
(i). First it is easy to check that if T1 ≤S T2 then, for all
A ∈ X (in fact for all A ∈ Ar),

diff (S(A), T1(A)) ≤ diff (S(A), T2(A)) (3)

(since either the left-hand side equals 0 or both sides are
equal). If moreover T1 <S T2 then T1 6= T2 and so, since X
is critical, there exists A∗ ∈ X such that T1(A∗) 6= T2(A∗).
From this and T1 ≤S T2 we know T1(A∗) = S(A∗), hence
diff (S(A∗), T1(A∗)) = 0 < diff (S(A∗), T2(A∗)) (the last
inequality following from (diff 3+)). Hence the inequal-
ity (3) is strict for at least one argument in X and thus
dX(S, T1) < dX(S, T2).
(ii). If T1 ≤b

S T2 then, for all A ∈ X (in fact all A ∈ Ar),
either (a) T1(A) = S(A), or (b) T1(A) = T2(A), or (c)
T1(A) = undec and [(S(A) = in and T2(A) = out) or vice
versa]. In cases (a), (b) inequality (3) holds as in part (i)
above, while in (c) we get a strict inequality due to (diff
5). If T1 <b

S T2 then T1 6= T2 so, since X is critical there is
some A∗ ∈ X such that T1(A∗) 6= T2(A∗). Then either we
are in the same situation as in (i) above, or case (c) obtains.
Either way the inequality (3) will be strict for A∗ and so
dX(S, T1) < dX(S, T2).



(iii). Follows from the fact that (diff 3++) ensures diff
itself satisfies the triangle inequality, which lifts straightfor-
wardly to dX .

Note the above result holds taking X to be any critical sub-
set, not only the minimal ones. By taking X = Ar we thus
obtain Propositions 1-4 from Section 5 as corollaries.

One problem is that more than one minimal critical sub-
set may exist. For example in the above example one can
check that another minimal critical subset can be obtained
by exchanging A for D to obtain X2 = {A,E,G}. Indeed
one can exchange any argument in the leftmost component.
One could also replace E by F or G by H. We would like the
distance (or at least the similarity ordering induced by it) to
be independent of the particular minimal critical subset we
use. Is it possible that we might get dX1(S, T1) 6= dX2(S, T2)
for different minimal critical subsets X1, X2? In the above
example the answer is no, but unfortunately this does not
always hold in general, as the next example shows.

Example 3. Let us return to the AF A1 depicted in Fig.
2. It is not the case that by knowing the label of one ar-
gument we know the full complete labelling, however, one
can check that if we know the label of any pair of argu-
ments, we automatically know the label of the third. Thus
we have mincrit(A1) =

{
{A,B}, {A,C}, {B,C}

}
. We have

d{A,B}(L1,L2) = 2 × diff (in, out) and d{A,B}(L1,L3) =
diff (in, out). Thus if we focus on the critical subset {A,B}
we obtain that L3 is closer to L1 than L2 is. But if in-
stead we focus on critical subset {A,C} we obtain the op-
posite conclusion, for d{A,C}(L1,L2) = diff (in, out) and
d{A,C}(L1,L3) = 2× diff (in, out).

This sensitivity to the choice of critical subset is somewhat
undesirable. Furthermore, as we will see next, even though
cd can easily be made to satisfy all the distance properties
we have presented thus far, there are some other, highly
intuitive, postulates that it fails to validate.

6.2 Symmetry properties
The next distance properties we propose come from sym-

metry considerations. The idea is that applying the distance
measure over AFs which are in some sense equivalent should
yield equivalent results. In the context of argumentation se-
mantics, such a property has been referred to as the language
independence principle [3]. We are interested in describing
a similar property in the context of distance measures. We
begin with the common idea of graph-isomorphism, applied
to argumentation frameworks.

Definition 9. LetA1 = (Ar1,⇀1) andA2 = (Ar2,⇀2) be
two AFs. An isomorphism from A1 to A2 is any bijection
g : Ar1 → Ar2 such that, for all A,B ∈ Ar1, A ⇀1 B iff
g(A) ⇀2 g(B). In the special case when A1 = A2 we call g
an automorphism.

So basically an isomorphism just changes the names of ar-
guments – or in the case of automorphism permutes them
– while preserving the attack structure. Of course if g is
an isomorphism from A1 to A2 then g−1 is an isomorphism
from A2 to A1.

If g is an isomorphism from A1 to A2 then we can extend
g to a function which converts any labelling S for A1 into
a labelling g(S) for A2. We define labelling g(S) simply by
taking [g(S)](A) = S(g−1(A)) for all A ∈ Ar2.

Proposition 5. Let g be an isomorphism from A1 to A2.
If S ∈ CompA1

then g(S) ∈ CompA2
.

The following property says that the distance should be
the same for isomorphic AFs. This is in line with the in-
tuition that an argument is characterised completely by its
interactions with the other arguments.

(Iso) If g is an isomorphism from A1 to A2 then
dA1(S, T ) = dA2(g(S), g(T ))

Note that this property differs from our previous distance
properties in that whereas they dealt with a fixed AF A as
given, this rule relates distance between labellings over dif-
ferent, but related, argumentation frameworks. Technically
speaking, while all the previous rules are properties of the
labelling distance dA for fixed A, (Iso) is a property of the
distance method, i.e., the mapping A 7→ dA (Definition 4).
In the case of automorphism we get the special case:

(Auto) If g is an automorphism on A then
dA(S, T ) = dA(g(S), g(T ))

The distance measure cd fails even to satisfy (Auto), as the
following example shows:

Example 4. Consider A1 in Fig. 2 and consider the map-
ping g such that g(A) = B, g(B) = C and g(C) = A. It
is easy to see that g is an automorphism on A1. Assume
C(A1) = {A,B}. Recall L1 = {(A, in), (B, out), (C, out)}
and L3 = {(A, out), (B, out), (C, in)}. So g(L1) = {(A, out),
(B, in), (C, out)} and g(L3) = {(A, in), (B, out), (C, out)}.
Then if (Auto) were satisfied we would expect cd(L1,L3) =
d{A,B}(L1,L3) = d{A,B}(g(L1), g(L3)), but d{A,B}(L1,L3) =
diff (in, out) 6= 2 × diff (in, out) = d{A,B}(g(L1), g(L3)).
Note this example assumes C(A1) = {A,B}, but it should
be clear that counterexamples can also be found if either of
the other two elements of mincrit(A1) were selected.

Summarising this section so far, we have managed to find
a distance method cd which respects the intuitions of the
example of Fig. 3, but at the expense of violating what seem
to be a highly desirable postulates ((Iso) and (Auto)) for
distance methods. Is there a distance method which can
satisfy all our desiderata? We shall now see that the answer
is yes.

6.3 Distance via issue-wise label difference
We want to capture the idea that the labels of two ar-

guments are “tied together”. For example in a simple 2-
argument AF consisting of two arguments A and B mutu-
ally attacking each other, there may be two arguments but
to all intents and purposes there is really only one “issue”
at stake, and that is whether A or B (or neither) should be
accepted. We want to isolate these different issues which
are being argued over. Given an AF A = (Ar,⇀), let us
define the following two binary relations over Ar. For any
A,B ∈ Ar:

• A ≡1 B iff ∀L ∈ CompA : L(A) = L(B)

• A ≡2 B iff ∀L ∈ CompA : (L(A) = in ⇔ L(B) =
out) ∧ (L(A) = out⇔ L(B) = in).

A ≡1 B means that the labels assigned to A and B are
exactly the same in all complete labellings, i.e., that A and
B are in a sense logically equivalent, while A ≡2 B means



that A and B always receive “opposite” labels: whenever A
is labelled in then B is labelled out, and vice versa. It is
easy to see that if A ≡2 B then we also have L(A) = undec

iff L(B) = undec. From these two relations we define

A ≡ B iff (A ≡1 B ∨A ≡2 B).

Thus if A ≡ B then intuitively the labels of A and B are “in
sync”, in that the label of one cannot be changed without
causing a change of equal magnitude to the label of the other.

Proposition 6. ≡ is an equivalence relation over Ar.

Proof. (Outline). Reflexivity holds since ≡1 is reflex-
ive. Symmetry holds since both ≡1 and ≡2 are symmet-
ric, and transitivity holds because of the following com-
position properties: (≡1 ◦ ≡1) = (≡2 ◦ ≡2) = ≡1 and
(≡1 ◦ ≡2) = (≡2 ◦ ≡1) = ≡2.

Within each ≡-equivalence class, there are at most 3 possible
labellings which can occur: either (i) all its elements are
labelled undec, or (ii) all its elements are set to in or out,
or (iii) the “inverse” labelling to (ii) occurs, in which those
arguments labelled in become out and those labelled out are
now in. Essentially each equivalence class acts as a single
3-valued argument. We call each such class an issue of the
given AF.

Definition 10. Given an AF A = (Ar,⇀), the set I(A) of
issues of A is defined as I(A) = Ar/ ≡. For A ∈ Ar we will
denote the ≡-equivalence class of A by [A].

For example, it can be checked that the issues for the AF in
Fig. 3 are {A,B,C,D}, {E,F} and {G,H}. In the AF of
Fig. 2, however, there are 3 issues {A}, {B} and {C}. Note
that in the former case the issues coincide exactly with the
strongly connected components [4] of the graph, whereas this
is not true of the latter case.

Now, rather than calculate distance via argument-wise la-
bel difference as we did in Section 5, we can instead do it
via issue-wise label difference. For this we need to define
the measure of disagreement DIFF (S, T , [A]) between two
labellings S and T on a single issue [A]. We do this using a
basic label difference measure diff :

DIFF (S, T , [A])
def
= diff (S(A), T (A)).

Proposition 7. DIFF is well-defined, i.e., if [A] = [B]
then diff (S(A), T (A)) = diff (S(B), T (B)).

Proof. (Outline) If [A] = [B] then either A ≡1 B or
A ≡2 B. In the former case the result is clear. In the latter
case one may simply check for each of the 9 possibile com-
binations of labels for S(A), T (A). E.g., if S(A) = in and
T (A) = undec then, from A ≡2 B we know S(B) = out and
T (B) = undec. Thus diff (S(A), T (A)) = diff (S(B), T (B))
since diff by (diff 4).

Note that this result depends on the assumptions that diff
satisfies (diff 1), (diff 2) and (diff 4).

Finally the issue-based distance measure id is defined by
setting, for any S, T ∈ CompA,

id(S, T ) =
∑

[A]∈I(A)

DIFF (S, T , [A])

In the example in Fig. 3 we have id(S, T1) = 2×diff (in, out)
and id(S, T2) = diff (in, out), as with the critical subsets

approach of Section 6.1. For the example in Fig. 2 we get
id(L1,L2) = 2× diff (in, out) = id(L1,L3). So according to
the issue-based distance L2 and L3 are equidistant from L1.

The issue-wise distance measure can be related to the pre-
ceding critical subsets approach. Clearly we have id(S, T ) =
dX(S, T ) (see equation (2) in Section 6.1), where X is any
set formed by taking a representative of each ≡-equivalence
class. It turns out that we have the following:

Proposition 8. Let X be any set obtained by taking one
element of each issue in I(A). Then X ∈ crit(A).

Proof. (Outline) Let L1, L2 ∈ CompA be 2 complete
labellings which agree on X. We must show L1(A) = L2(A)
for all A ∈ Ar. Let A∗ ∈ X be the chosen representative of
[A] in X, so A∗ ≡ A. We know L1(A∗) = L2(A∗). Denote
this common label by x. If A∗ ≡1 A then both L1(A) and
L2(A) are equal to x as required. Suppose A∗ ≡2 A. If
x = in then both L1(A) and L2(A) are out. If x = out then
both L1(A) and L2(A) are in. Finally if x = undec then
both L1(A) and L2(A) are undec.

Thus id can be thought of as a critical-set based distance
which chooses from among a particular class of critical sets,
viz. those which contain one argument from each issue. Fur-
thermore, unlike the critical-set based distance the precise
choice of these elements is irrelevant. However the critical
set chosen need not be a minimal one, i.e., an element of
mincrit(A), as can be seen already in the AF of Fig. 2. We
may deduce from all this and Theorem 1 the following:

Theorem 2. id satisfies (dm1) and (dm3). Further-
more:
(i). If diff satisfies (diff 3+) then id satisfies (dm5) (and
hence also (dm2)).
(ii). If diff satisfies (diff 3+) and (diff 5) then id satisfies
(dm5+).
(iii). If diff satisfies (diff 3++) then id satisfies (dm4).

In addition, we have the following:

Theorem 3. The distance method A 7→ idA satisfies (Iso)
(and hence also (Auto)).

Proof. (Outline.) LetA1, A2 be 2 AFs connected by iso-
morphism g and let S, T ∈ CompA1

. To show idA1(S, T ) =
idA2(g(S), g(T )) we show that the summands on each side
of this identity match up in pairs. More precisley we show
there is a bijection h : I(A1) → I(A2) such that, for each
[A] ∈ I(A1), DIFF (S, T , [A]) = DIFF (g(S), g(T ), h([A])).
Indeed we can just define h([A]) = [g(A)]. The facts that h
is well-defined and injective are both proved using the prop-
erty that, for any A,B ∈ Ar1, A and B belong to the same
issue in I(A1) iff g(A) and g(B) belong to the same issue in
I(A2). h is clearly surjective since, given any [Z] ∈ I(A2) we
have [Z] = h([g−1(Z)]). Finally DIFF (g(S), g(T ), h([A])) =
DIFF (g(S), g(T ), [g(A)]) = diff ([g(S)](g(A)), [g(T )](g(A))).
Since [g(S)](g(A)) = S(g−1(g(A))) = S(A) by definition of
g(S) (and similarly for T ), this equals diff (S(A), T (A)) =
DIFF (S, T , [A]) as required.

7. RELATED WORK AND CONCLUSION
We have initiated the investigation of the notion of dis-

tance between two reasonable evaluations of an argument
graph. While this issue has been investigated in non-argument
based accounts of both belief revision [18, 20], in judgement



aggregation [19, 21], and in abstract preferences [1], to our
knowledge we are the first to study it in the context of formal
argumentation theory.

We presented several different distance functions, all de-
fined on top of a difference function on the space of possible
labels {in, out, undec}. These functions fall into two groups:
those which sum the difference between the labels of all ar-
guments Ar in the framework, and those which single out
various subsets of Ar as being in some sense the critical
ones. We gave some postulates for such distance functions,
even though we saw that many simple and straightforward
candidates for distance measures suffer from some problem
or another, and we developed some intuitions via several
examples about what a distance function between complete
labellings should be like.

For future work we would like to investigate more closely
the issue-based distance method id. Specifically we are look-
ing for other properties that it satisfies, perhaps leading to
an axiomatic characterisation. We also want to apply these
new distances to the problems of revision and judgement ag-
gregation in argumentation. In revision we want to choose
the closest labelling to the current one which extends an
input new partial labelling. In questions of judgement ag-
gregation we want to choose the labellings which are closest
to the group as a whole. Similar considerations have been
applied in propositional contexts (e.g. [13, 17]), while a first
exploration of the use of Hamming-like distances (see Sec-
tion 5) in labelling-aggregation has been carried out by Cam-
inada et al. in [12], where it is used to check the manipulabil-
ity and Pareto optimality of certain aggregation operators.
They assume each member of a group of agents provides a
complete labelling, and that each agent’s preference relation
over the set of all complete labellings is given by Hamming
set or Hamming distance from its given labelling.

It would also be interesting to see if the issue-based method-
ology of Section 6.3 can be used to refine the distance-based
approaches already existing in general judgement aggrega-
tion. Finally, here we focused on complete labellings. This is
reasonable since they correspond to rational, coherent stand-
points. But the definitions will work for other families of
labellings too, like preferred, stable [14], and semi-stable [9].
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