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Abstract

In this paper we present a brief overview of belief change, a research area concerned with the question of how a
rational agent ought to change its mind in the face of new, possibly conflicting, information. We limit ourselves to
logic-based belief change, with a particular emphasis on classical propositional logic as the underlying logic in which
beliefs are to be represented. Our intention is to provide the reader with a basic introduction to the work done in this
area over the past 30 years. In doing so we hope to sketch the main historical results, provide appropriate pointers
to further references, and discuss some current developments. We trust that this will spur on the interested reader to
learn more about the topic, and perhaps to join us in the further development of this exciting field of research.

1 Introduction
Consider the situation in which an agent has just encountered a bird: let’s call it Tweety. Part of the agent’s beliefs
about the world is that birds fly. Being a logical agent, it therefore believes that Tweety flies. On closer inspection,
though, the agent learns that Tweety is an ostrich. Since the agent also believes that ostriches don’t fly, it is now faced
with a dilemma: Can Tweety fly, or can’t it?

The simple scenario above aptly illustrates the central topic of this paper—that a rational intelligent agent is
sometimes forced to adjust its current beliefs in some appropriate fashion when confronted with new information. The
investigation of the reasoning patterns involved in such a task is known as the study of belief change.

The approach to the problem of belief change that we discuss in this paper is logic-based. Both the beliefs of an
agent and new information presented to it will be represented in a logic language with a strong emphasis on the case
where the underlying logic is a classical propositional logic. Although much of the early work on belief change has a
somewhat weaker assumption about the underlying logic, requiring simply that it be a logic equipped with a Tarskian
consequence relation and satisfying Compactness, the usual assumption in practice was to use a propositional logic.
However, as we shall soon see, propositional logic on its own is not enough to obtain unique answers to the problems
of belief change. The primary principle we shall use to guide us is known as the Principle of Minimal Change. The
idea is simple and intuitive. Information is hard to come by and if an agent has gone to the trouble of incorporating
a piece of information into its set of beliefs, it has presumably done so for a good reason. It should therefore give up
any beliefs it has only if it is forced to do so. That is, any changes to its current stock of beliefs should be minimal.

Traditionally, approaches to belief change have followed one of two trajectories, with the differences centred
around the question of whether beliefs should be represent as belief bases (arbitrary sets of sentences) or logically
closed theories. The AGM approach to belief change [1, 28] (named after its originators Alchourrón, Gärdenfors and
Makinson), perhaps the most influential voice within this field of research, is based on the assumption that beliefs need
to be represented as theories. The idea here is that we are interested in belief change on the knowledge level and that
the particular syntactic formulation that we choose for representing the beliefs of an agent is largely irrelevant. On the
other hand, the case made for the use of belief bases, which originated with the work of Sven Ove Hansson [36], is
that the sentences chosen to represent the beliefs of an agent are somehow more basic than those that merely follow
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logically from these basic sentences. Although these two approaches start off with different, seemingly conflicting
basic assumptions, we shall see that they actually have much in common. In fact, one of the assumptions underlying
both approaches is the necessity of introducing additional structure to the representation of beliefs in order to obtain
unique results to specific problems in belief change. In much of the work on this topic the additional structure is not
represented in the underlying logic itself, but is viewed as meta-information of some kind, and our work here strongly
emphasises that approach. Having said that, it is important to note that there is a growing body of work in which
information such as this is incorporated into the logic itself—a topic which we touch on in Section 8.

Our intention in this paper is to provide the reader with a basic introduction to the work done in the area of belief
change over the past 30 years. In doing so we hope to sketch the main historical results, provide appropriate pointers to
further references, and discuss some current developments. Of course, it is impossible to present a truly comprehensive
account of a research area in a paper such as this and our perspective on matters will invariably be subjective, to some
extent. The reader is urged to keep this in mind when going through the paper.

On to more concrete matters, then. We commence with a discussion of the formal preliminaries needed to digest the
rest of the paper in Section 2. This is followed in Sections 3 and 4 by accounts of the two basic operators investigated
in belief change: belief contraction and belief revision. In Section 5 we take a closer look at the semantic methods
for constructing belief change operators before we use this approach to consider iterated belief revision in Section 6.
Section 7 discusses the links between belief change and the area of nonmonotonic reasoning, while Section 8 considers
approaches to belief change using epistemic logics. Finally, Section 9 takes a brief look at recent developments in belief
change before we conclude in Section 10.

2 Preliminaries
First the logical framework. We start with a quite abstract formulation (L,Cn), where we just have a set L whose
elements are the sentences, together with a consequence operator Cn which takes sets of sentences B ⊆ L to sets of
sentences Cn(B) which intuitively represents all the sentences which are entailed by B. Cn is assumed to be a compact
Tarskian consequence operator (after Alfred Tarski), i.e., it satisfies the following four properties for all B, B1, B2 ⊆ L:

• B ⊆ Cn(B) (Reflexivity)
• B1 ⊆ B2 implies Cn(B1) ⊆ Cn(B2) (Monotony)
• Cn(Cn(B)) = Cn(B) (Idempotence)
• If φ ∈ Cn(B) then φ ∈ Cn(B′) for some finite B′ ⊆ B (Compactness)

We call any arbitrary set B ⊆ L a belief base, but if B = Cn(B), i.e., B is closed under Cn, then we call B a theory.
Following the tradition of the AGM approach, we will use K rather than B to denote theories. α ∈ L is a tautology iff
α ∈ Cn(∅). From Cn we can define a notion of consistency. A set B of sentences is Cn-consistent iff Cn(B) , L. We
will just say consistent if the consequence operator is clear from the context.

Definition 1. An abstract deduction system is a pair (L,Cn) as above.

This logical setup, although very general, is surprisingly already rich enough to explore many interesting issues
in belief change. However, traditionally researchers (including AGM) have worked within more specific background
logical systems. In particular the machinery of propositional logic is usually taken as minimum. We may take L = LP,
consisting of all sentences built up from some set of propositional variables using the connectives ¬,∧,∨,→,↔. The
classical propositional consequence operator is denoted by Cn0. We call a supraclassical deduction system a pair
(LP,Cn) where in addition to the four properties mentioned above, Cn is assumed to satisfy

• Cn0(B) ⊆ Cn(B) (Supraclassicality)
• φ ∈ Cn(B ∪ {θ}) iff (θ → φ) ∈ Cn(B) (Deduction)

For supraclassical deduction systems we have B ∪ {α} is consistent iff ¬α < Cn(B). In particular α is consistent iff
¬α < Cn(∅).
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2.1 The problem formalised
We are now ready to state formally the problem of belief revision:

Assume some fixed abstract deduction system (L,Cn) as background. Then given an initial belief base
B ⊆ L and some new information represented as a sentence α ∈ L, find a new belief base B ∗ α which
includes α and is consistent.

The requirement that B ∗ α be consistent is crucial here. Without it we might as well just add α set-theoretically to B
and stop there. But if B∪ {α} is inconsistent then entailment is trivialised, since by definition of inconsistency then all
sentences are entailed by B ∪ {α}, rendering it useless. So how should we approach this problem?

One influential idea, which comes from Isaac Levi [50] is to decompose the operation into two main steps. First,
B is altered if necessary so as to “make room” for, i.e., become consistent with, the incoming sentence α. This is
achieved by making B deductively weaker. This is known as contraction. Here we should adhere to the principle of
minimal change, according to which this weakening should be made as “small” as possible. (See [64] for a discussion
of this principle.) In the second, trivial step, the new formula is then simply joined on to the result (this is known as
expansion). Clearly the difficult step is the first one. So in order to answer the problem of revision we first need to
address the problem of contraction. We turn to this in the next section.

3 Belief contraction
Note that for the purposes of revision we just need to make B consistent with α. In the case where the background
deduction system is supraclassical this is the same as ensuring ¬α < Cn(B). But in general (for instance if negation
is not available in the language) these two things will be different. So in general there are two kinds of contraction
operator: the first is inconsistency-based and the second is entailment-based.1 We will focus on entailment-based
contraction here. We denote the result of contracting B so that it no longer entails a given sentence α by B−α. We will
first deal with the case where B is an arbitrary belief base. Later we will look at the special case where it is a theory.

3.1 Partial meet base contraction
One of the best-known approaches to contraction is partial meet contraction [1, 39]. Here the idea is to calculate
contraction in three steps:

1. Focus for the first step on those subsets of B which do not entail α and which are maximal with this property.
We denote this set by B⊥α.

2. Then, a certain number of the elements of this set are somehow selected as the “best” or “most preferred” by
means of a selection function γ: γ(B⊥α) ⊆ B⊥α.

3. Finally, the intersection of these best elements is taken:
⋂
γ(B⊥α)

Let’s formalise all this, starting with the set B⊥α in step 1.

Definition 2. Let B ⊆ L and α ∈ L. Then B⊥ α is the set of subsets X ⊆ L such that X ∈ B⊥ α iff (i). X ⊆ B, (ii).
α < Cn(X), (iii). For all X′ ⊆ B, if X ⊂ X′ then α ∈ Cn(X′). We call B⊥α the set of α-remainders of B

If α is a tautology then B⊥α = ∅, but this is the only case for which B⊥α = ∅. This is a result of the following
fact, the proof of which requires Monotony and Compactness of Cn as well as Zorn’s Lemma.

Fact 3 ([2]). If α < Cn(Y) and Y ⊆ B then there exists X ∈ B⊥α such that Y ⊆ X.

In other words, every non-α-implying subset of B may be extended to a maximal non-α-implying subset of B.
Next comes the definition of selection function.

1See also Section 9.
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Definition 4. Let B ⊆ L. A selection function for B is a function γ such that for all α ∈ L, (i) if B ⊥ α , ∅ then
∅ , γ(B⊥α) ⊆ B⊥α, and (ii) if B⊥α = ∅ then γ(B⊥α) = {B}.

Finally we can use a selection function for B to define a contraction operator −γ for B:

B −γ α =
⋂

γ(B⊥α).

Definition 5. If − can be defined via some selection function γ for B as above then − is a partial meet base contraction
operator (for B).

Two special cases of partial meet contraction deserve mention. If the selection function picks a single element of
B⊥α, it is called a maxichoice contraction. If it picks the whole of B⊥α, it is called a full meet contraction. Observe
that full meet contraction is unique, whereas there are many different maxichoice contractions: one for each element
of B⊥α.

Partial meet base contraction may be characterised as follows.

Theorem 6 ([38]). − is a partial meet base contraction operator for B iff it satisfies the following properties:

• If α < Cn(∅) then α < Cn(B − α) (Success)
• B − α ⊆ B (Inclusion)
• If β ∈ B \ B − α then there exists B′ such that B − α ⊆ B′ ⊆ B, α < Cn(B′) and α ∈ Cn(B′ ∪ {β}) (Relevance)
• If for all B′ ⊆ B we have α ∈ Cn(B′) iff β ∈ Cn(B′) then B − α = B − β (Uniformity)

The above properties may be explained as follows. Success says the sentence to be removed is actually removed,
i.e., is no longer a consequence of the base2 and Inclusion states that no new beliefs may be added in the course of
removing α.3 Relevance seeks to avoid unnecessary loss of information. It says that a sentence β should be given
up only if it contributes to the fact that B, and not B − α, entails α. Uniformity states that if two sentences are
indistinguishable from the viewpoint of B, in that every subset of B which implies one also implies the other, then the
results of contracting by them should be the same. As was noted in [42], the only properties of Cn which are actually
used in the proof of Theorem 6 are Monotony and Compactness.

The following two reasonable properties can be shown to follow from those in Theorem 6 (see [36]), and thus are
satisfied by any partial meet base contraction operator.

• If α < Cn(B) then B − α = B (Vacuity)
• If Cn(α) = Cn(β) then B − α = B − β (Preservation)

Vacuity says that if α is not entailed by B to begin with, then nothing needs to be changed. It can be shown to be
a consequence of Relevance and Inclusion. Preservation says that if two sentences are equivalent under logical
consequence then contracting by them should give the same results. It can be shown to follow from Uniformity, while
in the special case when B is a theory, it is actually equivalent to Uniformity in the presence of Vacuity.

3.2 Partial meet theory contraction
The preceding construction works equally well when B is taken to be a theory K. But in this case, since the input to
contraction is a theory, we should expect the output to be a theory too. This is ensured because in this case the elements
of K ⊥ α are themselves theories, and the intersection of any family of theories is again a theory. When applied to a
theory K we will refer to the above construction as partial meet theory contraction.

In this case we obtain a different representation theorem, which was one of the main results of AGM.4

Theorem 7 ( [1]). Assume we work with a supraclassical deduction system (LP,Cn), and let K be a theory. Then −
is a partial meet theory contraction operator for K iff it satisfies Success, Inclusion, Vacuity, Preservation and the
following properties:

2But see [25] for a discussion on why this is not always desirable.
3See [10] for an argument against this postulate.
4Note that, historically, partial meet theory contraction actually pre-dates the more general version for arbitrary bases given above.

4



• K − α = Cn(K − α) (Closure)
• K ⊆ Cn((K − α) ∪ {α}) (Recovery)

Note that this result requires the assumption of a supraclassical deduction system as background. It may not hold
for general abstract deduction systems (see [26] for discussion on this).

The postulates listed in the above theorem are collectively known as the basic AGM contraction postulates. Clo-
sure says that the result of theory contraction is another theory, while Recovery says that if one removes α and then
simply adds it again (and then closes under logical consequence) then one should get back all the initial beliefs K.
Recovery has been by far the most controversial of the AGM contraction postulates, with many authors calling it into
question (see [36, pp. 72-74]). It should be noted that this postulate is specific to the theory version of partial meet
contraction, i.e., it does not hold in general for partial meet base contraction, where B is allowed to be an arbitrary
base. For supraclassical deduction systems, in the presence of Closure, Inclusion and Vacuity it is equivalent to
Relevance [27].

3.3 The supplementary postulates
In partial meet contraction, when selecting the remainder sets via γ, what we have is an instance of a choice situation.
We have a number of alternatives up for selection, namely B⊥α, and some of them are singled out as being in some
sense more preferred. So we make some crossover into the realm of rational choice. How can this choice be made?
We can assume it is made on the basis of a binary preference relation v over the set of all possible remainder sets for
B, i.e., the set {X | X ∈ B⊥α for some α ∈ L}. For any two possible remainder sets X,Y , we write X v Y to mean that
Y is at least as preferred as X, and use @ to denote the strict part of v, i.e., X @ Y iff both X v Y and Y @ X. Then v
can be used as the basis for a selection function γv by setting, in the principal case in which B⊥α , ∅,

γv(B⊥α) = {X ∈ B⊥α | Y v X for all Y ∈ B⊥α}.

That is, γv(B⊥ α) consists of those elements of B⊥ α which are at least as preferred as all other elements of B⊥ α.
If a selection function γ for B is generated from some relation v in this way then we say γ is a relational selection
function, and a partial meet contraction operator −γ which can be generated from some relational selection function γ
will be called a relational partial meet contraction operator.

By putting some mild constraints on the relation v, we can constrain the behaviour of the resulting relational partial
meet contraction operator in interesting ways. Consider the following two properties:

• X v Y and Y v Z implies X v Z (Transitivity)
• If X ⊂ Y then X @ Y (Maximising)

The first property is a standard requirement for a relation of preference. The second is motivated by minimal change
considerations: when contracting B it is always preferable to retain as much of B as possible, so a given subset Y
of B should always be strictly more preferred to any of its strict subsets. If γ is generated from some v satisfying
Transitivity then we say −γ is a transitively relational partial meet contraction operator, while if it generated from
some v satisfying, in addition, Maximising then −γ is a transitively, maximisingly relational partial meet contraction.
Note that, if B is a theory, then these two collapse into the same thing, in the sense that −γ is transitively relational iff
it is transitively, maximisingly relational [35].

We obtain the following results, both of which assume we work in a supraclassical deduction system:

Theorem 8 ([39]). Assume a supraclassical deduction system as background. Let B be a belief base and suppose −
is a transitively, maximisingly relational partial meet base contraction operator for B. Then − satisfies the following
property:

• (B − α) ∩ (B − β) ⊆ B − (α ∧ β) (Conjunctive Overlap)

For the case of relational partial meet theory contraction we can say more:

Theorem 9 ([1]). Assume a supraclassical deduction system as background. Let K be a theory and − an operator for
K. Then − is a transitively relational partial meet theory contraction operator for K iff it satisfies all the basic AGM
contraction postulates (see Theorem 7) plus Conjunctive Overlap and the following property:
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• If α < K − (α ∧ β) then K − (α ∧ β) ⊆ K − α (Conjunctive Inclusion)

The postulates Conjunctive Overlap and Conjunctive Inclusion are known as the AGM supplementary contrac-
tion postulates. They go a step beyond the basic postulates, in that they relate the results of contracting by conjunctions
α∧ β with the result of contracting by the individual conjuncts. We refer the interested reader to [1, 36] for discussion
on these postulates.

3.4 Kernel contraction
The partial meet approach to contraction focusses on maximal subsets of B which do not imply the sentence α to be
removed. Another approach is instead to single out the minimal subsets which do entail α, and then to make sure
at least one sentence is removed from each. This is the idea behind Hansson’s operation of kernel contraction [40],
which is a generalisation of the safe contraction of Alchourrón and Makinson [3].

Definition 10. Let B be a belief base and α ∈ L. Then B y α is the set of sets X such that (i). X ⊆ B, (ii). α ∈ Cn(X),
(iii). If X′ ⊂ X then α < Cn(X′). We call the elements of B y α the α-kernels of B.

To remove α, it is necessary and sufficient to remove at least one sentence from every α-kernel. To this end, we
assume the existence of a function which makes an “incision” into every such set, returning the sentences which must
be discarded.

Definition 11. σ is an incision function for B if (i). σ(B y α) ⊆
⋃

B y α, and (ii). ∅ , X ∈ B y α implies σ (B y α) ∩ X , ∅.

Every incision function σ then yields a contraction operator by setting B −σ α = B \ σ (B y α).

Definition 12. Let − be an operator for B. If − equals −σ for some incision function σ for B then it is called a kernel
base contraction operator (for B).

Kernel base contraction may be characterised in the following way:

Theorem 13 ([40]). − is a kernel base contraction operator for B iff it satisfies Success, Inclusion, Uniformity and
the following property:

• If β ∈ B \ B − α then there exists B′ such that B′ ⊆ B, α < Cn(B′) and α ∈ Cn(B′ ∪ {β}) (Core retainment)

As with Theorem 6, it was noted in [42] that the only properties required to prove this result are Monotony and
Compactness. Note that Core retainment is weaker than Relevance and so we see that every partial meet base
contraction operator is a kernel base contraction operator. The converse, however, does not hold, i.e., there exist kernel
base contraction operators which are not partial meet base contraction operators (see [36, p91]) for a counterexample,
and [24] for more on the relation between partial meet and kernel base contraction).

The above discussion was about kernel base contraction. It is also possible to employ the construction in the case
when B is a theory except, since K −σ α is not guaranteed to be a theory (even when K is), it is necessary to add a
post-processing step of closing under Cn. That is, a kernel theory contraction operator for K is any operator of the form
K ≈σ α = Cn(K −σ α), where σ is an incision function for K and −σ is defined from σ as for kernel base contraction.
However, in this case (at least for supraclassical deduction systems), the distinction between kernel theory contraction
and partial meet theory contraction disappears, in that every kernel theory contraction operator is a partial meet theory
contraction operator, and vice versa [40].

4 Belief Revision
As stated earlier, once we have a contraction operation for a belief base B, we can use it to define a revision operator
via the Levi Identity. The Levi Identity comes in two flavours, according to whether we want the result of revision to be
a theory or not. In the former case we take B∗α = (B−¬α)∪{α}, in the latter case we take K ∗α = Cn((K−¬α)∪{α}).
We call the former the non-closing Levi Identity, and the latter the closing Levi Identity. Whenever we talk of the Levi
Identity in connection with an arbitrary belief base B we shall implicitly assume it is the non-closing version we are
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using, while if we use it in connection with a theory K, we shall assume the closing version.5 Throughout this section
we shall assume, for simplicity, that we work in a supraclassical deduction system.

First we deal with arbitrary belief bases, where the result is not expected to be logically closed.

Definition 14. Let B be a belief base. If ∗ can be defined from some partial meet base contraction operator for B using
the (non-closing) Levi Identity then it is a partial meet base revision operator for B.

Partial meet base revision may be characterised as follows:

Theorem 15 ([39]). ∗ is an operation of partial meet base revision for B iff it satisfies the following properties:

• α ∈ B ∗ α (Success)
• If α is consistent then B ∗ α is consistent (Consistency)
• B ∗ α ⊆ B ∪ {α} (Inclusion)
• If β ∈ B \ B ∗ α then there exists B′ such that B ∗ α ⊆ B′ ⊆ B ∪ {α}, B′ is consistent and B′ ∪ {β} is inconsistent.

(Relevance)
• If, for all B′ ⊆ B, we have B′ ∪ {α} is consistent iff B′ ∪ {β} is consistent, then B ∩ (B ∗ α) = B ∩ (B ∗ β)

(Uniformity)

Success and Consistency are taken as fundamental requirements here.6 Inclusion places an upper-bound on the
result of revision. It says the result should not contain any sentence not included in B, apart from the new information
α. Relevance and Uniformity are similar to their namesakes in the list of base contraction postulates.

Let us move on to theory revision.

Definition 16. Let K be a theory. If ∗ can be defined from some partial meet theory contraction operator for K via the
(closing) Levi Identity, then ∗ is a partial meet theory revision operator for K.

The following result is the AGM characterisation of partial meet theory revision.

Theorem 17 ([1]). ∗ is a partial meet theory revision operator for a theory K iff it satisfies Success, Consistency and
the following basic AGM postulates for theory revision:
• K ∗ α = Cn(K ∗ α) (Closure)
• K ∗ α ⊆ Cn(K ∪ {α}) (Inclusion)
• If K ∪ {α} is consistent then K ∗ α = Cn(K ∪ {α}) (Vacuity)
• If Cn(α) = Cn(β) then K ∗ α = K ∗ β (Preservation)

Furthermore, ∗ is a transitively relational partial meet theory revision operator (i.e, is defined via the Levi Identity
from some transitively relational partial meet contraction operator) iff it satisfies, in addition, the following two
supplementary AGM revision postulates:

• K ∗ (α ∧ β) ⊆ Cn ((K ∗ α) ∪ {β}) (Subexpansion)
• If (K ∗ α) ∪ {β} is consistent then Cn ((K ∗ α) ∪ {β}) ⊆ K ∗ (α ∧ β) (Superexpansion)

Observe that, for the remainder of this paper we will take AGM revision to mean transitively relational partial meet
revision.

It is also possible to use the Levi Identity to define revision from kernel contraction, leading to kernel revision
operators. Axiomatic characterisations are given in [42], and we refer the reader to that paper for details.

Finally in this section, while the Levi Identity deals with how to define revision in terms of contraction, it is also
possible to go the other way and define contraction in terms of revision by using the Harper Identity [43]:

B − α = B ∩ (B ∗ ¬α).

The Levi and Harper identities can be thought of as inverses to each other. They ensure a very tight connection between
contraction and revision.

5The Levi Identity breaks revision by α into two steps: contraction (by ¬α) and expansion (by α), in that order. Another possibiity is to reverse
this order and do the expansion (by α) first, followed by the contraction (by ¬α). This possibility is explored in [39].

6Although Success is not beyond controversy, since one can certainly imagine situations in which new information is not accepted. See [41, 37]
for studies of revision operators which don’t satisfy it.
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5 On the semantic side
The previous sections have been developed against the background of some given, fixed abstract (sometimes supra-
classical) deduction system (L,Cn), which represents the background logic we work in. These systems can be said to
be syntactical, in the sense that they simply declare (via Cn) which sentences are entailed by which sentences. There
is, of course, usually another side to logic which is the semantical side. It is the semantics of a logic which tells us
what are the objects, or possible worlds, or models which the sentences in L are actually talking about. In this section
we investigate belief change from a more semantical viewpoint. The ideas behind this approach originate in a famous
paper by Adam Grove [33]. For this and the next section we make a number of simplifying assumptions: (i) we assume
that we are working in a supraclassical deduction system (LP,Cn), (ii) we furthermore assume LP is generated by only
finitely many propositional atoms, and (iii) we will focus only on theory revision and contraction.

What are the models in a supraclassical deduction system? One way to define them is as the set of maximally
consistent theories of LP.

W
def
=

{
M ⊆ LP | M is a Cn-consistent theory and for no Cn-consistent theoryM′ ⊆ L do we have M ⊂ M′

}
.

Given M ∈ W and B ⊆ LP, we say M is a model of B iff B ⊆ M. Then the set of models of B is denoted by [B].
The setW defines a consequence relation CnW by setting, for any B ⊆ LP, CnW(B) =

⋂
[B], i.e., a sentence is

entailed by B iff it is contained in all models of B. ThenW provides a semantics which is sound and complete with
respect to (LP,Cn), in the sense that, for any B ⊆ LP, the identity CnW(B) = Cn(B) holds.

Now suppose we have a theory K representing our initial beliefs. This corresponds to the belief that the actual
“true” world is one of the worlds in [K]. It turns out that performing transitively relational partial meet theory contrac-
tion on K is equivalent to choosing, on the basis of some total preorder over the setW, some countermodels of (i,e,
models of the negation of) the sentence to be contracted, and adding them to [K]. To be more precise, let ≤ be a total
preorder7, or tpo for short, overW. For M1,M2 ∈ W, M1 ≤ M2 may be informally read as “M1 is at least as plausible
(as a candidate to be the real world) as M2”.8 Given any subset T ⊆ W, we denote by min≤(T ) the minimal elements
of T under ≤, i.e., min≤(T ) = {t ∈ T | t ≤ t′ for all t′ ∈ T }. We assume ≤ is anchored on [K], i.e., [K] = min≤(W).
Then we may use ≤ to define a contraction operator for K as follows:

K −≤ α =

K if α ∈ Cn(∅)
K ∩

⋂
min≤ ([¬α]) otherwise.

In other words, the models of the new theory are obtained by taking the minimal models of ¬α and adding them to the
models of K.

Theorem 18 ([33]). − is a transitively relational partial meet theory contraction operator for a theory K iff − equals
−≤ for some tpo overW which is anchored on [K].

This is not the only way we could use a plausibility order to define a contraction operator. Rott and Pagnucco
introduced and axiomatically characterised the operation of severe withdrawal [66].

K − α =

K if α ∈ Cn(∅)⋂
{M ∈ W | M ≤ M′ for some M′ ∈ min≤([¬α])} otherwise.

Here, the models of the new theory are obtained by taking all models which are at least as plausible as the ≤-minimal
¬α-models. This operation was independently proposed, using a different construction, by Isaac Levi under the name
mild contraction [51]. Unlike partial meet theory contraction, severe withdrawal does not satisfy Recovery. Yet

7A binary relation ≤ over a set S is a total preorder iff it is (i) reflexive, i.e., s ≤ s for all s ∈ S , (ii) transitive, and (iii) connected, i.e., either
s ≤ t or t ≤ s for all s, t ∈ S .

8Note the direction of the inequality. Here, “lower” means “more plausible”. Although somewhat counterintuitive, this is the convention in the
area.
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another possibility was explored by Meyer et al. [52]. Systematic withdrawal is just like severe withdrawal except we
add to [K] not only the most plausible ¬α-models, but all models which are strictly more plausible than them.

K − α =

K if α ∈ Cn(∅)
K ∩

⋂
{M ∈ W | M < M′ for some M′ ∈ min≤(¬α)} ∩

⋂
min≤([¬α]) otherwise.

What about defining revision from a plausibility order ≤? We may just apply the Levi Identity to each of the three
families of contraction operator above. It turns out we get the same revision operator in each case, viz.

K ∗≤ α =

L if ¬α ∈ Cn(∅)⋂
min≤ ([α]) otherwise

In other words the models of the new theory which results from revising by α are exactly ≤-minimal α-models.

Theorem 19 ([33]). ∗ is a transitively relational partial meet theory revision operator for a theory K iff ∗ equals ∗≤
for some tpo overW which is anchored on [K].

In the theory case, we have that the AGM postulates are equivalent to total preorders over the set of models. There
is a third way of characterising AGM theory contraction, namely as an ordering of entrenchment among the sentences
of the language [56, 57]. The best-known version of such entrenchment orderings is the epistemic entrenchment
orderings put forward by Gärdenfors and Makinson [28, 29]. We do not consider these in details here, but rather refer
the interested reader to the references provided.

5.1 A general framework for semantic theory contraction
Although AGM theory contraction is acknowledged as central to the endeavour of belief contraction, we have seen that
there are other important versions of theory contraction as well. In Section 5 above we discussed, in addition to AGM
transitively relational partial meet theory contraction, also the severe withdrawal operators of Rott and Pagnucco [66]
and the systematic withdrawal operators of Meyer et al. [52]. In a recent paper Booth et al. [11] provide a general
framework from which these, and a number of other well-known theory contraction operators, can be generated. In
addition to the tpo ≤ overW, they assume a second binary relation E onW. Together, ≤ and E provide the context in
which an agent makes changes to its current beliefs. Intuitively, E is intended to serve as an aid to ≤ in the provision
of context. Its role is to relate relevant worlds to one another.

Formally, given a theory K, (≤,E) is defined as a K-context iff ≤ is a tpo (on W) anchored on [K] and E is a
reflexive sub-relation of ≤ (i.e. E is reflexive and if M1 E M2 then M1 ≤ M2). The K-context (≤,E) can then be used
to define a contraction operator −(≤,E) as follows:9

K −(≤,E) α =
⋂
{M1 | M1 E M2 for some M2 ∈ min≤[¬α]}.

That is, the models of the theory resulting from a contraction by α are obtained by locating all the ≤-best models of
¬α and adding to those all worlds that are at least as E-plausible (i.e. at least as low down in E).

Booth et al. proceed to show that imposing a variety of constraints on E allows us to recover a number of different
contraction (and related) operators proposed in the literature. For our purposes here, the most important results are the
ones repeated below.

Consider the following two properties on E:

(a) If M1 ∈ min≤(W) then M1 E M2 for all M2 ∈ W

(b) If M1 E M2 then M1 = M2 or M1 ∈ min≤(W)

Property (a) states that the ≤-minimal worlds are also the E-minimal worlds, while (b) requires that, apart from itself,
nothing but ≤-minimal worlds may be below any world in E.

9Booth et al. [11] assume that the pathological case of trying to remove a tautology does not occur.
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Theorem 20 ([11]). − is a transitively relational partial meet theory contraction operator for a theory K iff − is equal
to −(≤,E) for some K-context (≤,E) which satisfies (a) and (b).

So, by insisting on properties (a) and (b) we recover exactly the AGM transitively relational partial meet contraction
operators.

Now, consider the following properties on E:

(c) If M1 ≤ M2, M2 ≤ M1, and M3 E M1 then M3 E M2

(d) If M1 < M2 then M1 E M2

Property (c) says that whether or not a world M3 is below M1 according to E depends only on the ≤-plausibility rank
of M1. In the case of property (d), two worlds M1 and M2 are required to be E-connected if M1 is strictly more
≤-plausible than M2. In such a case, since E is a sub-relation of ≤, it has to be the case that M1 E M2.

Theorem 21 ([11]). − is a severe withdrawal operator for a theory K iff − is equal to −(≤,E) for some K-context (≤,E)
which satisfies (c) and (d).

In this case, by requiring that properties (c) and (d) hold, we are able to recover exactly the severe withdrawal
operators.

Next, consider the following properties:

(e) If M1,M2 ∈ min≤(W) then M1 E M2

(f) If M1 E M2 then M1 < M2, M1 = M2, or M1 ∈ min≤(W)

Property (e) forces all ≤-minimal worlds (i.e., all elements of [K]) to be E-connected, while (f) allows the models of
K to be connected according to E, although it does not force them to be.

Theorem 22 ([11]). − is a systematic withdrawal operator for a theory K iff − is equal to −(≤,E) for some K-context
(≤,E) which satisfies (d), (e) and (f).

This result shows that the insistence on properties (d), (e) and (f) allows us to recover exactly the systematic
withdrawal operators.

To conclude this section we note that the framework of Booth et al. can also be used to recover AGM transitively
relational partial meet theory revision.

Theorem 23 ([11]). ∗ is an AGM transitively relational partial meet theory revision for a theory K iff there is a
K-context (≤,E) where E is the identity relation, such that K ∗ α = K −(≤,E) ¬α for every α ∈ LP.

6 Iterated theory revision as revising tpos
Everything in the preceding sections has been about “one-shot” belief change. There is an initial theory, there is some
new input and then there is a new theory. However, in realistic settings, a rational agent does not simply “shut down”
after incorporating this input, but must be ready to receive the next input, followed by further inputs after that. That
is to say, belief change is an iterative process, and any theory of belief change worthy of the name should be able to
account for this. The question is, then, does the theory sketched in the previous sections adequately handle iterated
changes? The answer, as researchers began to realise in the mid 1990s, is “no”.

What does the theory described until now have to say about iterated belief change? Notice that the extra structure
required to carry out revision, be it incision functions, selection functions, or total preorders over models is always
defined relative to the theory which is being changed. Thus, for example, when using the tpo construction, there is a
fixed total preorder ≤K associated to each different theory K. So, to revise a theory K by a sentence φ, we can use the
total preorder ≤K associated to K to compute the result K ∗ φ. If we then want to further revise this new theory by ψ,
then we use the tpo ≤K∗φ associated to it to compute (K ∗ φ) ∗ ψ. There are three, interrelated problems with this:

1. There need be hardly any relation between the successive tpos ≤K and ≤K∗φ, where intuitively we might expect
some.
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2. Some intuitively plausible properties of iterated revision may be violated (see below).
3. This method totally disregards the role that “revision history” may play in determining results of belief change.

What researchers realised in the mid 1990s is that, to address these shortcomings, the theory of belief change should
be widened so that it deals not only with change on the level of theories, but that it should address change in the very
structure used to change those theories. A contraction or revision operator should tell us not only what the new theory
should be, but should also provide us with a new selection function/incision function/tpo over models which is then
the target for the next input. In fact most of the best-known approaches to iterated change deal with tpos rather than
the other ways of modelling the extra-structure. Furthermore the focus in this area tends to be more on revision than
contraction (but see [21, 19, 20, 59, 44]) so in the following we focus on iterated theory revision as a problem of
revising tpos.

6.1 Revising total preorders
So given K and a total preorder ≤ associated to K, the result of revision should be a new theory K ∗ φ together with
a new associated tpo ≤K∗φ. However we can simplify a bit, since the tpo associated to any theory contains enough
information to recapture the theory anyway (since [K] = min≤(W)). So, our new revision problem may be formulated
as follows:

Given an initial tpo ≤ overW, and revision input α, determine a new tpo ≤∗α overW.

The theory should extend the foregoing theory of single-step revision , which means the new belief set K(≤∗α) should
be derived from the initial tpo and α using the partial meet revision recipe from Theorem 19. This means that the new
lowest level min≤∗α (W) in the new tpo is determined already - it is equal to min≤ ([α]). But what about the rest of the
ordering? The most obvious thing to do, if we want to be motivated by the principle of minimal change, is to simply
leave the rest of the ordering untouched, and sure enough, this was one of the first proposals for tpo revision. Boutilier
called it Natural Revision [17, 18], though the idea dates back to [71]. Formally it is defined as follows:

M1 ≤
∗B
α M2 iff

either M1 ∈ min≤ ([α])
or M1,M2 < min≤ ([α]) and M1 ≤ M2.

The problem with natural revision is that it makes too few changes. This was recognised by Darwiche and Pearl, who
proposed four postulates for regulating tpo revision [22]:

(CR1) If M1,M2 ∈ [α] then M1 ≤
∗
α M2 iff M1 ≤ M2

(CR2) If M1,M2 ∈ [¬α] then M1 ≤
∗
α M2 iff M1 ≤ M2

(CR3) If M1 ∈ [α] and M2 ∈ [¬α] and M1 ≤ M2 then M1 ≤
∗
α M2

(CR4) If M1 ∈ [α] and M2 ∈ [¬α] and M1 < M2 then M1 <
∗
α M2

(CR1) and (CR2) say that, when revising ≤ by α, the relative ordering of models within [α], respectively within [¬α],
should remain unchanged. (CR3) and (CR4) say that if a given α-model was judged to be at least as (respectively
strictly more) plausible as a given ¬α-model before revising by α, then that relation should be preserved after the
revision. Essentially revising by α should not cause any degradation in plausibility of any α-model with respect to the
¬α-models.

As noted by Darwiche and Pearl themselves, the above postulates do not rule out natural revision as a sensible
approach to tpo revision, because ∗B satisfies all these postulates. However ∗B does not satisfy the following strength-
ening of (CR3) and (CR4), which was suggested independently in [12, 47]:

(CR5) If M1 ∈ [α] and M2 ∈ [¬α] and M1 ≤ M2 then M1 <
∗
α M2

(CR5) forces there to be a strict increase in plausibility of the α-models in relation to the ¬α-models which were not
deemed more plausible to begin with.

The above postulates can be repackaged as postulates constraining the theory following a double revision:
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(C1) If α ∈ Cn(β) then K
((
≤∗α

)∗
β

)
= K

(
≤∗β

)
(C2) If ¬α ∈ Cn(β) then K

((
≤∗α

)∗
β

)
= K

(
≤∗β

)
(C3) If α ∈ K

(
≤∗β

)
then α ∈ K

((
≤∗α

)∗
β

)
(C4) If ¬α < K

(
≤∗β

)
then ¬α < K

((
≤∗α

)∗
β

)
(C5) If ¬α < K

(
≤∗β

)
then α ∈ K

((
≤∗α

)∗
β

)
(C1) says if two inputs arrive, the second entailing the first, then the first can be ignored when calculating the resulting
theory. (C2) says if two contradictory inputs arrive, then the effects of the first are cancelled out. (C3) and (C4) say
that if α would be believed, resp. not rejected, after receiving β alone, then this should not change if β were to be
preceded by an input α. Finally (C5) postulates a condition under which belief in an input α is guaranteed to survive
the arrival of a subsequent input β.

Theorem 24 ([12, 22, 47]). Let ∗ be a tpo revision operator such that always K(≤∗α) =
⋂

min≤([α]). Then, for each
i = 1, 2, 3, 4, 5, ∗ satisfies (CRi) iff it satisfies (Ci).

A few concrete tpo revision operators have been proposed which satisfy all of the above postulates. For example
in lexicographic revision [58, 71] the new tpo following input α is determined by placing all α-models strictly below
all ¬α-models while leaving the relative ordering within the sets [α] and [¬α] unchanged. This is a most radical form
of tpo revision, where the new information α is given total priority over the initial ordering ≤. At the opposite end
of the spectrum is restrained revision [12], in which the strict part of the initial ordering is preserved (apart from the
minimal α-models, which become strictly more plausible than all the other models), with α-models being promoted
only ahead of the ¬α-models which were on the same plausibility “level” (see also [65]).

6.2 Supplementary postulates for tpo revision
A closer inspection of the postulates (CR1)-(CR5) reveals that they all deal only with revising a tpo by a single
sentence α. In this respect they can be viewed analogously to the set of basic AGM postulates for one-step theory
revision (see Theorem 17). As we have seen in Section 3.3, a richer and more compelling account of theory change
emerges once we move to consider postulates such as the supplementary ones, which relate the outcomes of revising
by different sentences. Can any such rules be conceived of in the case of tpo revision? In [13] the following were
considered:

(CR6) If M1 ∈ [α], M2 ∈ [¬α] and M2 ≤
∗
α M1 then M2 ≤

∗
γ M1

(CR7) If M1 ∈ [α], M2 ∈ [¬α] and M2 <
∗
α M1 then M2 <

∗
γ M1

(CR6) says that if a model M2 is considered at least as plausible as another model M1 even after receiving evidence
α which clearly points more to M1 being the actual “true” state of the world than it does to M2, then there can be no
evidence γ which will lead M1 to become strictly more plausible than M2. Postulate (CR7) is similar.

The class of tpo revision operators satisfying (CR1)-(CR7) (along with the postulate stating that the result ≤∗α is
again a tpo) was characterised in [13]. The characterisation assumes that to each model M we can associate two distinct
objects M+ and M− which can be thought of intuitively as representing M in positive and negative circumstances,
respectively. It is then assumed that the set W± collecting all of these objects for each possible model itself comes
equipped with a total preorder F satisfying the following conditions for all M1,M2 ∈ W, where ≤ is the given tpo
overW which we wish to revise (and where D is the strict part of F):

(F1) M+
1 F M+

2 iff M1 ≤ M2

(F2) M−1 F M−2 iff M1 ≤ M2

(F3) M+
1 D M−1
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Each possible tpo F over W± satisfying the above conditions determines a tpo revision operator for ≤ as follows.
Given revision input α we just define the new tpo ≤∗α by setting, for each M1,M2 ∈ W,

M1 ≤
∗
α M2 iff rα(M1) F rα(M2),

where for any γ and M, rγ(M) = M+ if M ∈
[
γ
]
, and rγ(M) = M− if M ∈

[
¬γ

]
. That is, the new tpo ≤∗α is read off

from F, with each model M assuming the mantle of its positive instance M+ if it satisfies the new evidence, and that
of its negative instance M− if it falsifies it.

Theorem 25 ([13]). Let ∗ be an operator for ≤ which, given any sentence α as input, returns a new tpo ≤∗α overW.
Then ∗ satisfies (CR1)-(CR7) iff it may be generated as above from some tpo F overW± satisfying (F1)-(F3).

It should be noted that the family of tpo revision operators characterised in the above theorem departs from tradi-
tional AGM-style theory revision in one major respect, namely - recalling that each tpo has an associated theory given
by K(≤) = min≤(W) - we are not always guaranteed to get α ∈ K(≤∗α). That is, the new input might not actually be
believed after receiving it as input. For a simple counterexample suppose LP is generated from a single propositional
variable p, yieldingW = {Mp,M¬p}, where Mp = Cn0(p) and M¬p = Cn0(¬p). Suppose the initial tpo ≤ is such that
Mp < M¬p and that we revise ≤ using the order overW± specified by

M+
p D M−p D M+

¬p D M−¬p.

Then we can see in fact that for any sentence α we will have ≤∗α=≤, i.e., the original tpo ≤ will be left undisturbed. In
particular we get ¬p < K(≤∗¬p) = K(≤) = Cn0(p).

In [13] it is shown how this general scheme for revising tpos is able to capture as instances several revision
operators previously described in the literature. For example the lexicographic revision mentioned at the end of the
previous subsection forms one such instance (although the other operator mentioned there - restrained revision - does
not). For a detailed treatment of this topic the reader is referred to [13].

7 Belief revision and nonmonotonic reasoning
In this section we discuss the connections between belief revision and the work done in the nonmonotonic reasoning
community. A logic is said to be nonmonotonic if its associated entailment relation |∼ need not satisfy the following
monotonicity property: if A |∼β then A ∪ {α} |∼β. With |∼ seen as a relation of plausible consequence, there are
many examples to show that monotonicity is an undesirable property. Perhaps the one most deeply entrenched in
the nonmonotonic reasoning literature is the Tweety example (the example we used in the introduction). Given that
Tweety is a bird, it seems plausible to infer that Tweety can fly. But given the additional evidence that Tweety is an
ostrich, we should abandon our conclusion about Tweety’s flying capabilities.

While there are many approaches to nonmonotonic reasoning (see e.g., [63, 55]), we consider here the influential
framework proposed by Kraus, Lehmann, and Magidor [49] and show that it has a strong connection with AGM belief
revision. Formally, Kraus et al. take |∼ to be a binary relation on sentences of a propositional logic where α |∼β is to
be read as “β follows plausibly from α”. For example, if we represent the information that Tweety is a bird by the
atom b, and that Tweety can fly by the atom f , the statement b |∼ f is to be read as “from the fact that Tweety is a bird
it follows plausibly that Tweety can fly”. Kraus et al. define |∼ as a rational consequence relation iff it satisfies the
properties Ref, LLE, RW, And, Or, CM, and RM given below.

(Ref) α |∼α (Reflexivity)
(LLE) If Cn(α) = Cn(β) and α |∼γ then β |∼γ (Left Logical Equivalence)
(RW) If γ ∈ Cn(β) and α |∼β then α |∼γ (Right Weakening)
(And) If α |∼β and α |∼γ then α |∼β ∧ γ
(Or) If α |∼γ and β |∼γ then α ∨ β |∼γ
(CM) If α |∼β and α |∼γ then α ∧ β |∼γ (Cautious Monotonicity)
(RM) If α |∼γ then either α ∧ β |∼γ or α |∼¬β (Rational Monotonicity)
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We do not discuss these properties in detail here. Instead, the interested reader is referred to the paper of Kraus et al.
[49]. To make the connection with AGM belief revision, we need to go one step further. Gärdenfors and Makinson
[30] define |∼ as an expectation based consequence relation iff it is a rational consequence relation which also satisfies
the property CP given below.

(CP) If α |∼⊥ then α is Cn-inconsistent (Consistency Preservation)

(where ⊥ is any truth-functional contradiction, e.g., p ∧ ¬p). The underlying intuition provided by Gärdenfors and
Makinson is that the reasoning of an agent is guided by its expectations. Every expectation based consequence relation
|∼ is based on a set of expectations E, playing a role that is analogous to that of a belief set K in theory change.
Intuitively, E is the “current” set of expectations of the agent, and the plausible consequences of a sentence α are
those sentences β for which α |∼β holds. The set of expectations E is not explicitly mentioned in the definition of an
expectation based consequence relation |∼ , but a suitable E can be recovered from |∼ as follows: E = {α | >|∼α}. That
is, E is taken as the set of plausible consequences of a tautology.

This places us in a position to define a method for translating between belief revision and expectation based
consequence relations. Given a consequence relation |∼ , we take the set of expectations E associated with |∼ as the
theory K to be revised, and we define K ∗ α as {β | α |∼β}. Conversely, given a theory K and a revision operator ∗, we
define a nonmonotonic consequence relation |∼ as follows: α |∼β iff β ∈ K ∗ α. The main result, linking belief revision
to nonmonotonic reasoning is the following theorem by Gärdenfors and Makinson [30] proving that these definitions
allow us to show that AGM revision and expectation based nonmonotonic consequence coincide:

Theorem 26. Let |∼ be an expectation based consequence relation and let E = {β | >|∼β}. Then E = Cn(E) (i.e.
E is a theory). Furthermore, the revision operator ∗ for E, defined in terms of |∼ as follows: E ∗ α = {β | α |∼β}, is
an AGM revision operator. Conversely, consider a theory K, and let ∗ be an AGM revision operator for K. Then the
consequence relation |∼ defined as follows: α |∼β iff β ∈ K ∗ α, is an expectation based consequence relation.

8 Information change in epistemic logic
In the work on belief change we have described thus far we have avoided discussion on its most fundamental notion:
that of belief itself. Since the seminal book of Hintikka [45] this question is traditionally explored in the context
of modal logic within doxastic and epistemic logics.10 In these logics belief is studied within the object language
as a modal operator. Although the initial work in this area was concerned purely with static notions of belief and
knowledge, in more recent times there has been much interest in bringing dynamics into the picture, and studying how
beliefs change in response to various learning events.

In a language for epistemic logic the sentences are built up from propositional variables using the usual proposi-
tional connectives, but now also an explicit modality for belief, so that whenever α is a sentence then so is Bα. The
latter sentence has the intuitive reading that the agent believes α. Semantics is provided by a (single-agent) epistemic
modelM = (S ,R, v), where S is a set of states, R is a binary accessibility relation over S , and v is a function which
assigns a truth-value to every propositional variable at every state. For each s ∈ S , the set R(s) of all states t which are
accessible from s, i.e., such that R(s, t) holds, intuitively represents those states which are consistent with the agent’s
information at state s. Evaluation of sentences is made with respect to a model-state pair (M, s), where s ∈ S , with
the crucial clause for Bα being as follows:

(M, s) � Bα iff (M, t) � α for all t ∈ S s.t. R(s, t).

By putting various restrictions on the accessibility relation R we can obtain different properties for the B-operator. For
example by assuming that R is serial, transitive and Euclidean11 we obtain the most common modal logic of belief,
known as KD45, which is the axiomatic system with inference rules Modus Ponens (if α and α → β are theorems
then so is β) and Necessitation (if α is a theorem then so is Bα) and which has as axioms all instances of propositional
tautologies together with the following:

10Strictly speaking, since we deal here with belief rather than knowledge, the adjective doxastic (rather than epistemic) is the appropriate one.
However, since the use of the latter is widespread we shall use it in the rest of this section.

11R is serial iff for every s there exists some t such that R(s, t). It is Euclidean iff R(t, u) whenever both R(s, t) and R(s, u).
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K B(α→ β)→ (Bα→ Bβ) (Distribution)
D Bα→ ¬B¬α (Consistency)
4 Bα→ BBα (Positive Introspection)
5 ¬Bα→ B¬Bα (Negative Introspection)

As can be seen in axioms 4 and 5 above, epistemic logics afford us the possibility to express higher-order beliefs,
or beliefs about beliefs, directly in the object language. Moreover, in multi-agent extensions of epistemic logic, in
which we have a number of different agents {1, . . . , n}, to each of which we assign its own accessibility relation Ri, we
can also have sentences of the form BiB jα, expressing what one agent i believes about the beliefs of another agent j.

So far our description of epistemic logic only deals with static belief. In order to build dynamics into this frame-
work one may introduce dynamic modalities. This is what is done in Dynamic Epistemic Logic (DEL) [75]. Full DEL
comes with a rich typology of different belief-changing events, up to (different varieties of) private announcements
and complex forms of epistemic action in which different agents can have different perspectives on the learning event.
We will just mention here the prototypical kind of event, namely public announcement [31, 60] in which all agents
in the scenario being modelled simultaneously learn that φ is true. In public announcement logic (PAL) we introduce
new dynamic modalities [!φ], where φ can be any sentence (including one containing belief modalities). The crucial
semantic clause is as follows:

(M, s) � [!φ]α iff if (M, s) � φ then (M|φ, t) � α,

where M | φ is the epistemic model obtained from M by eliminating all states s′ for which (M, s′) 2 φ, with the
accessibility relations and valuation functions restricted accordingly. Note that a public announcement of φ represents
hard information that φ is true. As such it is more in the spirit of belief expansion than revision (but see [4, 74]). Some
interesting things happen if we try to reformulate the AGM revision postulates in terms of PAL. For one thing, the
natural translation of the Success postulate does not hold, i.e., the sentence [!φ]Bφ need not be valid for all choices
of φ. The best known counterexample is if we take φ to be a Moore-type sentence such as p ∧ ¬Bp, where p is a
propositional variable (“p is true, but I don’t believe it”). While it may well be the case that (M, s) � p ∧ ¬Bp,
the sentence B(p ∧ ¬Bp) is inconsistent (i.e., true in no state). Thus although a Moore sentence may be truthfully
announced, it can never be believed after the announcement.

The above considerations give rise to a distinction in the epistemic logic literature between static and dynamic
belief revision. In static belief revision the result of revision expresses what an agent comes to believe about what was
the case before the actual learning event took place. Dynamic revision deals with what the agent now comes to believe
after the learning. The distinction only comes into effect when revising by higher-order beliefs such as with the Moore
sentence above. When dealing with factual beliefs as with AGM the two notions coincide.

One way to model static belief revision which has been explored is via doxastic conditionals. This involves
allowing sentences of the form Bαφ into the language, expressing the hypothetical belief that if the agent learned
α then he would believe that φ was true before the learning. Roughly-speaking, the semantical structures for this
language are obtained by replacing an agent’s set of accessible states from each state by binary plausibility relations
(total preorders) over states [7, 9]. Then the doxastic conditional Bαφ evaluates to true iff (M, s′) � φ for all the
minimal states s′ in the ordering such that (M, s′) � α. Within this framework one can define dynamic modalities
for learning events of soft information, unlike the hard information of public announcement. These events have the
effect of modifying the agents’ plausibility relations rather than eliminating states from the picture completely. Van
Benthem [73] studies modalities for two such events: lexicographic upgrade [⇑ φ] and conservative upgrade [↑ φ],
which essentially correspond respectively to the lexicographic tpo revision method and to Natural revision described
in Section 6.1 of the present paper.

For more details on belief change in epistemic logics we refer the interested reader to the survey articles [32] and
[8]. Section 7 of the latter also includes a detailed comparison with AGM belief revision.

9 Current developments: belief change for other logics
From the work discussed so far it is clear that belief change has come a long way in the past 30 years. However, a look
back at the work done over this period reveals an interesting tendency. Although the original aims were phrased in
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terms of a broad class of logic—all those with Tarskian consequence relation and satisfying Compactness—most of
the work done in the area is actually based on the assumption of an underlying propositional logic, whether finitely or
infinitely generated. In this section we consider a departure from this trend, and discuss recent developments in belief
change expressed in two logics other than full propositional logic: propositional Horn logic and description logics.

9.1 Propositional Horn contraction
One of the main reasons for considering belief change for Horn logic is that it has found extensive use in artificial
intelligence and database theory, in areas where belief change is an issue to consider, such as logic programming, truth
maintenance systems, and deductive databases. Delgrande [23] was the first to point this out and to investigate the
contraction of theories for propositional Horn logic.

A Horn clause is a sentence of the form p1∧ p2∧ . . .∧ pn → pn+1 where n ≥ 0, and where the pis are propositional
atoms or one of ⊥ or >. A Horn sentence is a conjunction of Horn clauses. A Horn set is a set of Horn sentences.
Given a propositional language LP, the Horn language LH generated from LP is simply the Horn sentences occurring
in LP. The Horn logic obtained from LH has the same semantics as the propositional logic obtained from LP, but just
restricted to Horn sentences. A Horn theory is a Horn set closed under logical consequence, but containing only Horn
sentences. We denote Horn consequence by CnH(.).

Delgrande’s main contributions were threefold. Firstly, he showed that the move to Horn logic leads to two
different types of contraction which coincide in the full propositional case. Given a Horn theory H, the entailment-
based contraction, or e-contraction, of a sentence α should result in a new Horn belief H−eα of which α is not a logical
consequence: H −e α 2 α. On the other hand, the inconsistency-based contraction, or i-contraction, of a sentence α
should result in a new Horn belief H −i α which is such that adding α to it does not result in an inconsistency:
H −i α ∪ {α} 2 ⊥. In full propositional logic, a way to express i-contraction in terms of e-contraction would be to
require that H −e ¬α ∪ {α} 2 ⊥. This cannot be expressed in Horn logic, though, because it is not possible to express
the negation of the Horn sentence α (see also Section 3). Below we consider only e-contraction. Similar results have
been obtained for i-contraction as well.

Delgrande’s second contribution was to show that e-contraction for Horn theories should not satisfy the controver-
sial Recovery postulate. As an example of the failure of Recovery for e-contraction, take H = CnH({p→ r}) and let
α = p ∧ q → r. Then any reasonable version of e-contraction will yield H −e α = CnH(∅). So CnH(H −e α ∪ {α}) =

CnH({p ∧ q→ r}) and therefore H * CnH(H ∪ {α}).
Delgrande’s third contribution was to base the construction of Horn contraction operators on partial meet contrac-

tion. The definitions of remainder sets, selection functions, and partial meet contraction, as well as maxichoice and
full meet contraction all carry over directly to e-contraction and we will not repeat them here. We refer to these as
e-remainder sets (denoted by H⊥eα), e-selection functions, partial meet e-contraction, maxichoice e-contraction and
full meet e-contraction respectively. As in the full propositional case, it is easy to verify that all e-remainder sets are
also Horn theories, and that all partial meet e-contractions (and therefore the maxichoice e-contractions, as well as full
meet e-contraction) produce Horn theories.

In two subsequent papers, Booth et al. [15, 16] extended Delgrande’s work in a number of interesting ways.
They show that while Delgrande’s partial meet constructions are all appropriate choices for e-contraction in Horn
logic, they do not constitute all the appropriate forms of e-contraction. For example, let H = CnH({p→ q, q→ r}).
It can be verified that, for the e-contraction of p → r, maxichoice yields either H1

mc = CnH({p→ q}) or H2
mc =

CnH({q→ r, p ∧ r → q}), that full meet yields H f m = CnH({p ∧ r → q}), and that these are the only three partial meet
e-contractions. Now consider the Horn theory H′ = CnH({p ∧ q→ r, p ∧ r → q}). It is clear that H f m ⊆ H′ ⊆ H2

mc.
But observe that H′ is not a partial meet e-contraction. Booth et al. argue that H′ ought to be regarded as an appropriate
candidate for e-contraction and, more generally, that every Horn theory between full meet and some maxichoice e-
contraction ought to be seen as an appropriate candidate for e-contraction.

Definition 27. For Horn theories H and H′, H′ ∈ H ↓eα iff there is some H′′ ∈ H⊥eα s.t. (
⋂

H⊥eα) ⊆ H′ ⊆ H′′. We
refer to the elements of H ↓eα as the infra e-remainder sets of H wrt α.

Definition 28. Let H be a Horn theory. An infra e-selection function is a function τ such that for every α ∈ LH ,
τ(H ↓eα) = H whenever H ↓eα = ∅, and τ(H ↓eα) ∈ H ↓eα otherwise. We use an infra e-selection function τ to define
an infra e-contraction as H −τ α = τ(H ↓eα).
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Booth et al. show that infra e-contraction is captured precisely by the AGM postulates for theory contraction, except
that Recovery is replaced by the Core retainment postulate we encountered earlier in the context of defining kernel
contraction in Section 3.4.

Theorem 29 ([16]). Every infra e-contraction satisfies Closure, Inclusion, Success, Extensionality, and Core re-
tainment. Conversely, every e-contraction which satisfies Closure, Inclusion, Success, Extensionality, and Core
retainment is an infra e-contraction.

It is possible to define a version of kernel contraction for Horn logic, simply by closing under Horn consequence the
results obtained from kernel contraction for bases.

Definition 30. Given a Horn theory H and an incision function σ for H, the kernel e-contraction for H is defined as
H ≈e

σ α = CnH(H −σ α), where −σ is the base kernel contraction for H obtained from σ.

Booth et al. prove that kernel e-contraction corresponds exactly to infra e-contraction. From these results it seems that
the contraction of Horn theories exhibits a kind of “hybrid” behaviour, somewhere between classical base contraction
and classical theory contraction. As evidence for this, recall firstly that in the classical case, partial meet contraction
and kernel contraction coincide for theories, but that kernel contraction is more general than partial meet contraction
when dealing with the contraction of bases. Furthermore, Horn e-contraction for theories does not satisfy the Re-
covery postulate, unlike classical contraction for theories, but similar to classical base contraction. And finally, the
set of postulates provided by Booth et al. to characterise infra e-contraction (and kernel e-contraction) bears a close
resemblance to the postulates for characterising Horn contraction for bases in the classical case.

To summarise, these recent investigations into Horn contraction have highlighted the fact that a move away from
propositional logic as the underlying logic for belief change can yield interesting and unexpected results. Interestingly
enough, although the motivation for initiating research on Horn contraction was partially motivated by an interest in
Horn logic in its own right, another reason for doing so is that propositional Horn logic forms the backbone of a group
of description logics, the class of logics to which we turn to next.

9.2 Belief change for description logics
Description Logics (or DLs for short) are a well-known family of logics used for knowledge representation [6]. They
have become the formalism of choice for representing formal ontologies [46]. DLs are decidable fragments of first-
order logic, mainly characterised by constructors that allow complex concepts (unary predicates) and roles (binary
predicates) to be built from atomic ones. We provide a brief description of two well-known DLs referred to as ALC
and EL, and show how they relate to belief change.

In the description logic ALC [69], concept descriptions are built from concept names using the constructors
disjunction (C t D), conjunction (C u D), negation (¬C), existential restriction (∃R.C) and value restriction (∀R.C),
where C,D stand for concepts and R for a role name. To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations over this domain. An interpretation I
consists of a non-empty set ∆I (the domain of I) and a function ·I (the interpretation function of I) which maps every
concept name A to a subset AI of ∆I , and every role name R to a subset RI of ∆I × ∆I . The interpretation function
is extended to arbitrary concept descriptions as follows. Let C,D be concept descriptions and R a role name, and
assume that CI and DI are already defined. Then (¬C)I = ∆I \ CI , (C t D)I = CI ∪ DI , (C u D)I = CI ∩ DI ,
(∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI and y ∈ CI}, and (∀R.C)I = {x | ∀y, (x, y) ∈ RI implies y ∈ CI}. The distinguished
concept name > is always interpreted as >I = ∆I . Similarly, the dinstinguished concept name ⊥ is always interpreted
as ⊥I = ∅. A DL Tbox contains statements of the form C v D (inclusions) where C and D are (possibly complex)
concept descriptions. Tboxes are used to represent the terminology part of ontologies in different application areas.
The semantics of Tbox statements is as follows: an interpretation I satisfies C v D iff CI ⊆ DI . I is a model of a Tbox
iff it satisfies every statement in it. A Tbox statement φ is a logical consequence of a Tbox T , written as T � φ, iff
every model of T is a model of φ.

A concept name A is concept-satisfiable wrt to a Tbox T iff there is a model, say I, of T in which AI , ∅. This
turns out to be an important property for ontology construction—if some concept names are concept-unsatisfiable wrt
a Tbox T it is usually an indication of modelling errors made during the construction of T . For example, Schlobach et
al. [68] show the following part of a Tbox for the DICE medical terminology:
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brain v CentralNervousSystem
brain v BodyPart
CentralNervousSystem v NervousSystem
NervousSystem v ¬BodyPart

According to this, a brain is a body part as well as a central nervous system, while the latter is a type of nervous system,
which, in turn, is not a body part. Formally, the concept brain is concept-unsatisfiable wrt the Tbox. Checking for
concept-satisfiability is closely related to checking for logical consequence. Indeed, for many DLs, including ALC,
checking for concept-satisfiablity can be reduced to checking for logical consequence. DL reasoners such as RACER
[34] and FaCT++ [72] are able to detect concept-unsatisfiability quite efficiently.

The link with belief change comes in with attempts to deal with concept-unsatisfiability in appropriate ways.
Ontology debugging [48, 68] is concerned with determining the cause of concept-unsatisfiability in a Tbox T , while
ontology repair [67, 54] aims to modify T in such a way that all concept names beome concept-satisfiable. It turns
out that the techniques used for ontology debugging are closely related to the special case of kernel contraction for
belief bases known as safe contraction, which was mentioned in Section 3. Recall that the α-kernels of a base B are
the minimal subsets of B implying α. Similarly, techniques for ontology debugging identify the minimal subsets of a
Tbox T with respect to which at least one concept name is concept-unsatisfiable.

In ontology debugging the Tbox T isn’t modified automatically. Instead, the ontology engineer, when pre-
sented with the “kernels” of Tbox statements, is expected to use this information to modify T manually in order
achieve concept-satisfiability. In contrast, the aim of ontology repair is to modify T automatically to ensure concept-
satisfiability. This is achieved by removing exactly one element from each of the “kernels” of Tbox statements, an
approach that can be seen as safe contraction applied to concept-satisfiability. Ontology repair, in this sense, has more
in common with belief base contraction than with theory contraction, since it is the Tbox statements occurring ex-
plicitly in the Tbox that are used to obtain the TBox “kernels”, and not statements in the theory obtained from the the
Tbox.

A different application of belief contraction, this time one that is more closely related to theory contraction, occurs
in ontologies represented in one of the EL family of DLs [5]. In EL itself, the basic member of this DL family,
concept descriptions are built up from concept names using just conjunction (CuD) and existential restriction (∃R.C).
As in ALC, Tbox statements have the form C v D, where C and D are (possibly) complex concepts. The lack of
expressivity in EL is made up for by the efficiency of reasoning algorithms for it. In particular, the task of computing
the subsumption hierarchy for an EL Tbox T (determining whether T � A v B for all concept names A and B) has
polynomial complexity (in the size of the Tbox). Moreover, it turns out that a member of the EL family is sufficiently
expressive to represent a number of biomedical ontologies, including the widely used medical ontology SNOMED
[70].

As withALC, the application of belief change to EL is also related to the construction of ontologies. In this case,
however, it does not address concept-unsatisfiability. Indeed, since EL does not have negation, concept-unsatisfiability
can only occur if the bottom concept ⊥ is used explicitly. Instead, it relates to a different method for testing the
quality of a constructed ontology: asking a domain expert to inspect and verify the computed subsumption hierarchy.
Correcting such errors involves the expert pointing out that certain subsumptions are missing from the subsumption
hierarchy, while others currently occurring in the subsumption hierarchy ought not to be there. A concrete example of
this involves the medical ontology SNOMED [70] which erroneously classified the concept Amputation-of-Finger
as being subsumed by the concept Amputation-of-Arm. Finding a solution to problems such as these can be seen
as an instance of theory contraction, in this case by the statement Amputation-of-Finger v Amputation-of-Arm.
The scenario also illustrates why we are concerned with contraction of theories and not bases. In general, ontologies are
not constructed by writing down DL axioms, but rather using ontology editing tools such as SWOOP12 or Protégé13,
from which the axioms are generated automatically. Because of this, it is the theory obtained from a Tbox that is
important, not the axioms from which the theory is generated.

It is only recently that researchers have started to pay attention to theory contraction for EL [14]. Indeed, much
of the work relevant to this topic does not address the EL family of DLs directly at all. In particular, the work on

12http://code.google.com/p/swoop
13http://protege.stanford.edu
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propositional Horn contraction is of importance in this context. Horn clauses correspond closely to subsumption
statements in DLs, since both Horn logic and the EL family lack full negation and disjunction. In this respect, there is
still much work to be done before a claim can be made that belief contraction for EL has been addressed properly.

Finally, in this section we have focused on recent work related to belief contraction for descriptions logics, but it
must be pointed out that there has also been some recent work on belief revision and related questions [53, 61, 62, 76].

10 Conclusion
In conclusion, we hope that this brief overview of belief change has convinced the reader that research in this area has
come a long way over the past 30 years, with the fundamentals of the topic now firmly in place. The main challenge
ahead is to build on the established fundamentals and extend the work that has been done to new application areas. As
we have seen in Section 9, this is already taking place. And although much remains to be done in this regard with, for
example, different underlying logics raising interesting and unexpected questions, it seems clear that the existing body
of work provides an appropriate springboard for finding solutions to those new issues that are cropping up.
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