An Axiomatic Approach to Firewall Rule Update

Richard Booth and Wijittra Noisanguan
Mahasarakham University
Faculty of Informatics
Mahasarakham 44150, Thailand
{richard.b,wijittra.n} @msu.ac.th

Abstract—A firewall administrator often needs to update a given
firewall, to take account of evolving security requirements or to
correct a wrongly classified packet. We look at the problem of firewall
update, mainly from an axiomatic viewpoint. An axiom for firewall
update is a property which any reasonable method of updating should
Sfulfill. We propose a number of such axioms. We also give some simple
examples of firewall update algorithms and check them against the
axioms.

Index Terms—Firewalls, firewall rule update, network security

I. INTRODUCTION

Firewalls are major elements in network security policies
[1]. A firewall implements the security policy via a sequence
of rules which controls incoming and outgoing traffic passing
though it. Many studies on firewalls have been focused on
the question “What makes a “good” firewall?”. For example
a good firewall is usually considered to be one which is
complete, and which reaches fast decisions over whether to
accept or deny the packets passing through. These studies
usually take a static viewpoint, in that the security policy is
fixed and does not change.

However, since the packets flowing in the internet have
various network characteristics [2], the studies must also inves-
tigate the dynamic viewpoint. Dynamics is very important. A
firewall administrator (FA) must sometimes change or update a
firewall to allow or deny certain packets. Consider for example
the mini firewall in Table 1. Suppose the FA finds out source ip
address 102.197.137.5 is a hacker. Then the firewall needs to
be changed so it denies all packets from this address. We need
some method of automatic firewall update. Note firewalls may
be very large in practice, consisting of thousands of rules.

There are two different approaches we can take with this
problem. The first is a botfom-up approach, in which we
directly specify algorithms for firewall update. The second
is a top-down approach in which we write down some re-
quirements, or axioms, which we expect any useful update
method to have. The benefit of the top-down approach is that
the axioms help to focus direction on what we really expect
from a good update method, and provide a checklist against
which future-designed update algorithms can be tested. This
axiomatic approach has been fruitfully applied in other fields,
especially in the general field of belief revision [3], which is
concerned with how a knowledge base should be revised to
include new knowledge. In this paper we will use the top-down
approach, giving an axiomatic approach to firewall update.

The plan of this paper is as follows. In Section II we review
basic firewall notations. Then in Section III we focus on some
commonly accepted static properties of firewalls, which we
introduce as static axioms. This leads to our defined notion of
an X-optimised firewall, which is just a firewall which satisfies
all the axioms in the group of static axioms X. In Section
IV we turn to firewall dynamics. We formally define firewall
updater and state some desirable properties for such updaters
via a number of axioms for firewall update. We give some
example firewall updaters and check them against the axioms.
We will see all of these example updaters fail to satisfy at least
one axiom. In particular none are guaranteed to output an X'-
optimised firewall. As a potential remedy to this we look in
Section V at the idea of X-optimised updaters, which build-in
a post-processing optimisation step to the update process. We
will see that this approach too will not satisfy the axioms in
all cases. Related work is mentioned in Section VI before we
conclude in Section VII

II. FIREWALL BASICS

We follow roughly the same notation as Liu et al (see, e.g.,
[4]). We assume a number of network fields Fi, ..., Fy (e.g.,
Source ip, Destination port, etc). Each field has a domain
D(F}), which we assume is a finite interval of non-negative
integers. (This representation is different from that used in
“real-life” firewalls, which normally use the “prefix” notation
as in Table I. It is more convenient for describing examples.
However this interval notation is interconvertible with the
prefix notation. For e.g., the domain of Source ip can be
written as [0,232 —1].) A packet p = (p1,...,pa) is a d-tuple
such that p; € D(F;) foreach j =1,...,d.

A firewall rule r; takes the form P; — a; where P; and a;
are resp. the predicate and action of the rule. Each predicate
takes the form (S1 A ... A Sg), where S; C D(F}) for j =
1,...,d, and a; € {accept,deny}. (Note other actions are
possible in practice, e.g, accept with logging etc, but we will
stay with just two possible actions for simplicity.) We say a
packet p = (p1,...,pq) matches a predicate P = (S1 A ... A
Sq) if and only if (iff) p; € S; for j = 1,...,d, and we
say p matches the rule r = P — a whenever p matches the
predicate P of r. Two predicates P; and P, overlap iff there
is some packet which matches both of them, otherwise they
are disjoint. Two rules 11 = P; — a1 and ro = P» — ag
conflict iff (i) their predicates overlap and (ii) a; # as. In
other words they lead to different actions for some packets.

[Rule [Source ip address | Destination ip address | Source port [Destination port | Protocol [Action]

r1 *.ok Lk Lk 116.197.137.% * 80 TCP accept
T2 102.197.137.5 *.ok Lk Lk * 25 TCP accept
T3 102.198.226.% ®.ok Lk Lk * 80 TCP deny

Table I
EXAMPLE OF FIREWALL.

A firewall f may then be defined as a finite sequence of
rules f = (r1,...,7m,). A firewall f returns a unique action
f(p) for each possible packet p. This gives the semantics or
output of f. We simply have

Fp) = a;, where r; is the 15 rule in f which p matches
b undecided, if p matches no rule in f

Two firewalls f; and fy are equivalent, written f1 = fo, iff
f1(p) = fa(p) for all packets p, i.e., they decide all packets
in the same way. In other words, f; could be replaced by fs
(and vice versa) and we would still get the same action for
every packet.

Example 1: As an example of a firewall in this nota-
tion consider (rq,r9,73) below, where fields Fj-F5 cor-
respond to those used in Table I. For simplicity, in our
examples only, we assume the fields’ domains are [0,12]
for source and destination ip address, [0,6] for source and
destination port, and [0,1] for {TCP,UDP} protocol. We
use these small numbers because they are easier to under-
stand and are enough to illustrate the ideas in this paper.

ri: o ([0,12] A 7,9 A[0,6] A[4]A[l]) — accept
ro: ([6)A[5,12) A[0,6) A[2] A[1]) — accept
rg: ([B, 7JA[0,12) A[0,6] A[4]A[1]) — deny

If p; is the packet (6,8,6,4,1) then p; matches rules
r1 and r3. These rules have different actions, but since 7
is the first rule in f which p; matches we have f(p1)
equals the action of rq, i.e., f(p1) = accept. However the
packet po = (3,5,2,2,1) does not match any rule in f, so
f(p2) = undecided.

IITI. STATIC AXIOMS: WHAT MAKES A GOOD FIREWALL?

In this section we give a small sample of the main properties
which have been proposed as being necessary for a firewall to
qualify as being “good”. We call them static axioms. “Static”
because they apply to a general firewall f ar one particular
snapshot in time. Given a specific firewall fy, we will say
fo satisfies a particular axiom if substituting fy for f in that
axiom results in a true statement.

A first basic requirement is that for any packet p pass-
ing through the firewall, there should be a definite decision
accept or deny. A firewall is called complete iff f(p) #
undecided for all packets p. Thus our first axiom is:

Axiom 1 (C): f is complete.

Firewalls usually enforce the C axiom by including a default
rule, r,4+1 as the last rule in f, i.e., a rule whose predicate
Poi1is (D(F1) ND(F2) A ... AD(Fy)). The effect of this is
that any packet p which fails to match any rule r1,...,r, in f

will then match 7,41 and will be given the action a, 4 of the
default rule. Although this is an easy way to enforce C, some
authors (see [5]) view this solution as unsatisfactory because
the default deny rule contributes heavily to the operational cost
of the firewall.

Since firewalls must process very large amounts of network
traffic in real-time, they need to be optimally configured so as
to minimise their required processing-time. They should also
not be wasteful in their use of space. The next two axioms
are motivated by such considerations. Given a firewall f =
(ri,...,rn) and i € {1,...,n}, we write f~* to denote the
firewall which is the same as f, but with rule ; removed. Then
we say r; is redundant in f iff f = f%. In other words it is
possible to remove r; from f without changing the action on
any packet. A redundant rule unnecessarily takes up valuable
space in the firewall. Thus our second static axiom is:

Axiom 2 (R): f contains no redundant rules

R here stands for “Non-Redundancy”. Our next axiom goes
further than this. It says a firewall should contain the fewest
number of rules possible to implement its policy. Here, for
any firewall f’, |f’| denotes the number of rules in f’.

Axiom 3 (M): For any firewall f', if f' = f then |f| < |f’|

M stands for “Minimisation”. It is a stronger axiom than
R, in that any firewall which satisfies M also satisfies R.
Other axioms to minimise a firewall’s processing time can be
considered. For example [6], [7] suggest to use probabilistic
considerations to minimise the average length of the path a
packet must make through the firewall before it finds its first
matching rule.

Our final static axiom is a syntactic constraint. A predicate
S1A...ASq is called simple iff each S; is a single unbroken
interval. A rule r; is simple iff its predicate P; is simple. E.g.,
all the rules in Example 1 are simple, but if we replaced, say,
“[5,7]” with “[0,1]U[5,7]” in r3 then r3 would not be simple
because there is a “gap” in this interval (2, 3,4 are missing).
Most firewall implementations (e.g. [8]) work only with simple
rules, so we might require:

Axiom 4 (S): f contains only simple rules.

Given all this, we make the following definition:

Definition 1: Let X be a (non-empty) subset of
{C.RM,S}. A firewall is X-optimised iff it satisfies
the axioms in X.

So for example, a firewall is CS-optimised iff it satisfies the
axioms C and S, i.e., is complete and contains only simple
rules.

A. Firewall Optimisation

A typical firewall may fail to satisfy one or several of the
static axioms. Much research has been devoted to developing
efficient algorithms which can correct any given firewall into
an equivalent firewall which does satisfy the axioms. We make
the following general definition.

Definition 2: Let X be a (non-empty) subset of {C,R,M,S}.
A firewall X-optimiser is any function Opt which, given
any firewall f, returns an X-optimised firewall Opt(f) such

that [Opt(f)](p) = f(p) for all packets p such that f(p) #
undecided.

Many algorithms for optimising firewalls have been pro-
posed in the literature. R-optimisers are presented in [9], [10],
(see also [11]), while [4] gives an S-optimiser. The authors
of [12] provide an M-optimiser for one-dimensional firewalls
only (i.e., involving only one field F}). For general multi-
dimensional firewalls their algorithm generates near-optimal
results. It was noted already in [13] that the M-optimisation
problem is NP-hard for the 2-dimensional case. Note that C-
optimisation has been less well-addressed, since most authors
tend to assume completeness is already given.

IV. FIREWALL UPDATE

We now move on to firewall update. In this paper we are
interested in the following problem:

Update Problem Given a firewall f, predicate P
and action a, compute a new firewall f’ such that
f'(p) = a for all packets p matching P.

Note we do not make the assumption P is a simple predicate.
The Update Problem above mentions only one given f, P and
a. But actually what we need is a single method (hopefully
efficiently implementable) which can be applied to any given
input f, P and a and will return a new firewall. Formally we
make the following definition.

Definition 3: A firewall updater is any function * which,
given any firewall f, predicate P and action a, returns a new
firewall f x (P, a).

Note there may be a number of different ways to modify f
so that every packet matching P gets action a, and we do not
necessarily assume that there will be a new rule added.

A. Axioms for Firewall Update

We now go through our axioms for firewall update. Each
one is a requirement on a general firewall updater x. We will
sometimes call these dynamic axioms. In contrast to the static
firewall axioms, they are concerned with how a firewall is
changing over time. To say that a specific firewall updater x/
satisfies a particular axiom means that substituting x’ for x in
that axiom results in a true statement.

In the Update Problem it was assumed that the FA wants a
new firewall in which all packets matching P receive action

a. Our first, fundamental, property says that a firewall updater
* should be “successful”, in that after applying it all packets
matching P do indeed get action a. We emphasise that this
and the rest of our axioms are meant to hold for any f and
any (P, a) etc.

Axiom 5 (Success): For all packets p, if p matches P then

[f % (P a)](p) = a.

The Success axiom specifies what should be the action in
f * (P,a) for all packets matching P. But what about those
packets which don’t match P? What should be the action in
f*(P,a) for them? Here, we adopt a principle which is well-
known from the area of belief revision known as the minimal-
change principle [3]. Roughly, it says that when updating any
knowledge base to accept new information, the changes in the
knowledge base should be kept as small as possible. In our
setting this may be expressed by the following axiom, which
says that for packets which don’t match P, the action in the
new, updated firewall should be the same as in the original f.

Axiom 6 (Preservation): For all packets p, if p does not
match P and f(p) # undecided then [f x (P,a)](p) = f(p).

The reader may notice that Preservation does not say that the
actions for all packets not matching P should be preserved,
but only for those such that f(p) # undecided (we do
not assume the initial firewall f is complete). If we had
f(p) = undecided and [f x (P,a)](p) = f(p) then that
would mean [f x (P, a)](p) = undecided and so f x (P,a)
would fail to satisfy axiom C from Section III. But as we have
seen, C is a desirable property for firewalls. This brings us to
our next group of axioms. Let X be a (non-empty) subset of
{C.R,M,S}.

Axiom 7 (X-Optimisation): f x (P,a) is an X-optimised
firewall (see Definition 1).

Note X'-Optimisation is really not just one axiom but rather
a group of axioms - one for each possible X. Thus there is
R-Optimisation (f * (P, a) contains no redundant rules), CS-
Optimisation (fx(P, a) is always a complete, simple firewall),
etc. X-Optimisation gives the link between the static axioms
and the dynamic ones. It just says that a firewall updater should
always return a “good” firewall (i.e., satisfying all the static
axioms in X’). However, as we mentioned after Definition 2,
in practice M-Optimisation will be difficult to satisfy due to
computational limits. It is expecting foo much to be able to
find a updater which satisfies it. Instead we may try to replace
it with less demanding axioms.

Axiom 8 (M-Containment): |f x (P,a)| < |f|+1

This axiom places a limit on the amount by which a firewall
is allowed to grow after updating. It says the number of rules
in the firewall after updating should not increase by more than

Algorithm 1 InsertLast

Algorithm 2 AddRule2

Input: firewall f = (r1,...,7r,), rule P — a
Output: firewall InsertLast(f, P — a)
Insertlast(f,P — a) < (r,...,m, (P — a))

one. In other words we should allow space in the firewall for
at most one extra rule to bring in the new information (P, a).
This axiom seems to be more realistic than M-Optimisation.

Now suppose the FA desires X -Optimisation for some
particular subset X of {C,R,M,S}. Suppose the initial firewall
f is already X -optimised and it already gives action a to every
packet matching P. In this case it seems there is nothing that
needs to be done — f already behaves the way the FA wants,
so updating should leave f unchanged:

Axiom 9 (X-Vacuity): If f is X-optimised and f(p) = a
for all packets p matching P, then f x (P, a) = f.

Again note that this is really a set of axioms - one for each X.
X-Vacuity can be seen as another application of the minimal
change principle to firewall update.

B. Some Example Firewall Updaters

We now describe some example firewall updaters. In what
follows we assume f = (ry,...,7r,).

1) First updater *1: In our first operator we simply add
P — a into the last position in f using the InsertLast
algorithm given in Algorithm 1. That is, we define for each
f,Pa,

f*1 (P,a) := InsertLast(f, P — a).

The updater x; is not really suitable as a useful firewall
updater, because it can be shown to satisfy the following
unwanted axiom:

Axiom 10 (Strong Preservation): If f(p) # undecided
then [f x (P, a)|(p) = f(p).

This axiom expresses that information in the original fire-
wall f always has priority over the new information (P, a). It
says the actions for all packets not undecided in f should stay
the same after updating. This is like the opposite of Success,
which says new information should have priority over the old
firewall. This axiom implies Preservation (hence its name),
so we see x; satisfies Preservation. However, as might be
expected, *; does not satisfy Success. This means there is
some f, P and a, and some packet p matching P such that
[f *1 (P, a)](p) # a. (For example, given any predicate-action
pair (P, a) let f be any firewall whose first rule is 1y = P — b,
where b # a. Then [f x1 (P, a)](p) = b # a for all p matching
P)

2) Second updater *5: With x5 we add a rule-deletion step
prior to x;. First we delete all rules v, = P; — a; which
conflict with P — a, and then add P — a to the end. This
procedure is described by the AddRule?2 algorithm (Algorithm
2). Then

f *2 (P,a) := AddRule2(f, P — a).

Input: firewall f = (rq,...,7,), rule (P — a)
Output: firewall AddRule2(f, P — a)
for each rule v; in f do

if r; and the rule P — a conflict then

delete 7;
end
end
f/ <~ <Tk177"k2; - 7Tk5>
/* the undeleted rules of f */

AddRule2(f, P — a) < InsertLast(f’,P — a)

Algorithm 3 AddRule3
Input: firewall f = (rq,...,r,), rule P — a
Output: firewall AddRule3(f, P — a)
for each rule v; in f do
if r; and (P — a) conflict and P; # P then
[Ti} = ((Pl N P) — ay, (13z n PC) — ai)
else
[ri] < (1:)
end
end
AddRule3(f, P — a) < AddRule2({[r], ...

ral), P —a)

The operator o does satisfy Success, but suffers from a
different problem: It fails to satisfy Preservation as the next
example shows.

Example 2: Let f be the firewall from Example 1 in Section
I, let P = ([7,12] A[7,9] A[0,6] A [4] A [1]) and let a =
deny. Then f %2 (P,a) = (rq,r3,(P — a)). Consider the
packet p; = (6,8,6,4,1). This packet does not match P,
but we have f(p;) = accept (because pjmatches) and

[f %2 (P,a)](p1) = deny.

3) Third updater %3: To fix the problem with xo, a further
rule-splitting step may be introduced prior to %o. If a rule r;
in f conflicts with P — a and is such that P; # P then
we split r; into the two disjoint rules (P; N P) — a; and
(P; N P¢) — a;. (Here “\” and “-” resp. denote component-
wise set intersection and complement.) This “separates out”
that part of r; which is conflicting with P — a, to ensure the
part which doesn’t conflict is kept. We then perform Addrule?2
on the resulting firewall. The process is described by the
algorithm AddRule3 (Algorithm 3). We define:

f*3 (P,a) := AddRule3(f, P — a).

Example 3: Let f, P, a be the same as in Example 2. Then
f*s(P,a) = (ry,ra,r3, (P — a)), where r; = ([0, 6] A[7,9]A
[0,6] A [4] A [1]) — accept.

4) Fourth updater x4: Finally a fourth operator, defined by
simply putting P — a to the front of f using the simple
InsertFirst algorithm (Algorithm 4).

f *4 (P,a) := InsertFirst(f, P — a).

*4 also satisfies Success and Preservation. In fact one can
check that for all f, P,a we have f x3 (P,a) = f x4 (P, a),

Algorithm 4 InsertFirst

Input: firewall f = (ry,...,7,), rule (P — a)
Output: firewall InsertFirst(f, P — a)

s
InsertFirst(f,P —a) < (P — a),r1,...,)

l [#1 [2 [43 [%4 |
Success X v v v
Preservation v X v v
X -Optimisation X X X X
M-Containment v v v v
X -Vacuity X X X X
Table II

SHOWING WHICH UPDATERS SATISFY WHICH AXIOMS

i.e., updating using %4 results in a new firewall which gives
to every packet the same action we would get if we updated
using 3 instead.

Theorem 1: The satisfaction of the dynamic axioms by the
firewall updaters %;-x4 is summarised in Table II.

In the rows for X'-Optimisation and X’-Vacuity, X stands
for any (non-empty) subset of {C,R,M,S}, because in fact
each of *;-x4 fails to satisfy those axioms for all possible
choices of X. In the case of X'-Vacuity this is because, when
updating with (P, a), all of these updaters always insert the
rule P — a, even if f is optimised and f(p) = a already for
all packets p matching P.

In the case of X-Optimisation some of the optimisation
axioms are satisfied by some of x;-x4 in special cases, but
certainly not in all. For example all except x5 will satisfy C-
Optimisation in the special case when the original firewall f is
already complete, and all except 3 satisfy S-Optimisation if
f is already S-optimised and P is a simple predicate. (x3 fails
this because the rule-splitting step may fragment a simple rule
into non-simple parts.) However none of the updaters satisfy
R-Optimisation even in the special case when f already
contains no redundant rules, because the insertion of new rule
P — a might itself be redundant or might cause some other
rules in f to become redundant. We give examples here for
*3 and *y4:

Example 4: Assume for simplicity there is just one field F}
with domain [0, 10], and let the initial firewall be

f ={([0,5] — accept), ([5,10] — deny)).

Clearly neither of these 2 rules is redundant in f, so f
is R-Optimised. Then f x3 ([5],accept) = (([0,5] —
accept), ([6,10] — deny), ([5] — accept)). The last rule
here is clearly redundant, because the only packet matching
it, i.e., (5), matches an earlier rule, so it will never be used.
This shows x5 fails to satisfy R-Optimisation. For x, we
havef x4 ([6,10],deny) = {(([6,10] — deny),([0,5] —
accept), ([5,10] — deny)). Here, the insertion of the new
rule at the start of f cause the last rule to be redundant, thus
showing %4 fails R-Optimisation too.

How to define an updater which satisfies X'-Optimisation in
all cases? The next section explores one idea.

V. OPTIMISED UPDATERS

At first glance, it seems there is a simple way we can modify
a given firewall updater to ensure X'-Optimisation is satisfied.
We just add an X-optimisation step, i.e., we use the following
two steps: (1) Update f using an updater like the ones defined
on the previous subsection to get new firewall f * (P, a), then
(2) pass f x (P,a) on to an X-optimiser (see Definition 1).
Formally we make the following definition:

Definition 4: Let X be a (non-empty) subset of { C,R,M,S}
and let Opt be a firewall X-optimiser. For any firewall
updater x the X'-optimised version of * (using Opt) is the
firewall updater +“P* defined by setting, for any firewall f and
predicate-action pair (P, a), f x°P (P, a) := Opt(f * (P, a)).

Note that given any updater and optimiser Opt, x°P* is still

a firewall updater according to Definition 3, so we can ask if
it satisfies the dynamic axioms of Section IV-A. By Definition
1, if Opt is an X-optimiser then Opt(f x (P, a)) is an X-
optimised firewall for any %, so *?P! definitely satisfies X'-
Optimisation. Also by Definition 1 we know Opt(f * (P,a))
gives the same action as f x (P, a) for all packets p such that
f*(P,a) # undecided. Hence we also have:

Proposition 1: Let x be any firewall updater and +“P* an

X-optimised version. If x satisfies Success and Preservation,
then xOP* satisfies them too.

From this result, since we know %3 and x4 satisfy Success and
Preservation from the previous subsection, we can be sure
their X-optimised versions 5" and 57" will too. However,
any X-optimised version xy” " of %, still does not satisfy
Success, and any A’-optimised version *201’ " of x5 still does

not satisfy Preservation.

A. Checking X-Vacuity: a Special Case

An interesting question is whether a particular X'-optimised
version of x satisfies AX'-Vacuity. In general this will depend
on the particular optimiser Opt and updater x being used.
To give just an example we will focus in this subsection on
the case X =R. Furthermore we will use the algorithm for
R-optimisation of Liu et al, described in [9] (and its more
efficient version in [10]), which we call RemoveRedundant.
We refer the reader to those papers for details. The basic idea
is that the algorithm works its way backwards through the
input firewall f, checking each rule for redundancy with the
rules which have not yet been deleted. If it is redundant it
is removed, and then the next rule is checked. Let us define
Opt®(f) := RemoveRedundant(f).

For each ¢ we may now ask the question “Does *iOp ¢ satisfy
R-Vacuity when Opt = OptR?” Well, in this case +<7*
satisfies R-Vacuity because the only change *; makes to f
is to add P — a to the end of f, and if f(p) = a already
for all p matching P then P — q is redundant and will be
removed in the first step of RemoveRedundant(f %1 (P, a)).
To see 57" and "' fail to satisfy R-Vacuity in this case
consider the following continuation of Example 4.

Example 5: Let f be the R-optimised firewall from Exam-
ple 4. Note that f(5) = accept, but passing the result of
f*s3 ([5], accept) to Opt® gives f+57" (Py,a1) = (([0,5] —

[07 [[57 [57]
Success X v v v
Preservation v X v v
R-Optimisation v v v v
M-Containment v v v v
R-Vacuity v X X X
Table III

SHOWING WHICH R-OPTIMISED UPDATERS SATISFY WHICH AXIOMS

accept), ([6,10] — deny)) # f. Although the first rule in
f is unchanged, the second rule is changed even though what
happens after the first rule in f is not relevant to the new infor-
mation ([5],accept). Also note f(p) = deny for all packets
matching [6, 10], but passing f*4([6, 10], deny) to Opt® gives
f {7 (P, az) = (([6,10] — deny), ([0, 5] — accept)) # f.

Theorem 2: The satisfaction of the dynamic axioms by
* P OPE (when X =R and Opt = Opt®) is shown in Table
111

Thus we see that even though adding an optimisation step
takes care of the X'-Optimisation axioms it is unable to handle
X-Vacuity in general. From this negative result we suggest
that, if we want some method which fulfills all the axioms,
it will be necessary to perform update and optimisation in a
single integrated step rather than split these into two distinct
steps. This is the subject of our ongoing work.

VI. RELATED WORK

As we said earlier, most previous work on firewalls has
focused on static properties of a firewall f and on algorithms
for repairing firewalls which fail to meet some static require-
ments (see [4],[9],[11],[14],[15],[16],[17]). In these works,
the authors define error discovery, rule optimisation and rule
analysis, and packet filtering which is different from the
problem of correct firewall rule update. However, there has
been some research on dynamic f, where which comes from
any new information (P,a) outside f (see [18]). They add a
new rule into f, then they fix problems inside f.

One work which is quite related to ours is [19], which gives
an algorithm to compute the impact on f of any proposed
change to f. The change can be the insertion or deletion
or modification of a rule in a pre-specified position, and
the impact is measured as the number of packets which get
mapped to a different action, before and after the change.
This work is complementary to ours, in that we are trying
to automatically find the correct position to add/delete/modify
rules in order to minimise the impact of a firewall policy
change.

Finally there is a vast body of work in philosophy and
knowledge representation on knowledge update, aka belief
revision. A leading textbook in the area is [3].

VII. CONCLUSION AND FUTURE WORK

We looked at the problem of firewall update, mainly from
axiomatic viewpoint. We proposed several axioms for firewall
update, which are meant to express some requirements which
any reasonable method of update should fulfill, and which can

be thought of as a checklist against which any specifically
proposed update algorithm should be checked. We gave some
simple examples of firewall updaters and showed that none of
them was able to satisfy all the axioms simultaneously.

For future work the most important next step will be to
find and implement an efficient algorithm for firewall update
which satisfies all of the axioms. Also, in this paper we took
the Success axiom as a fundamental axiom which is never to
be broken. However this axiom is not entirely unquestionable -
maybe we don’t always want new information to have priority
over the old. We will look at firewall update in the context
where this axiom is left out. Finally we will look at also at the
related problem of automatically merging different firewalls
coming from different FAs into a single firewall.

ACKNOWLEDGEMENTS

Thanks are due to Dr Somnuk Puangpronpitag and the
ISAN group, Faculty of Informatics, MSU for their support
and helpful comments.

REFERENCES

[11 E. D. Zwicky, S. Cooper, and D. B. Chapman, Building Internet
Firewalls. O’Reilly, 2000.

[2] C. M. Kozierok, The TCP/IP Guide : a comprehensive, illustrated
internet protocols reference. William Pollock, 2005.

[3]1 S. O. Hansson, A Textbook of Belief Dynamics.
Publishers, 1999.

[4] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106-1120, 2007.

[5] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg, “Traffic-aware
firewall optimization strategies,” Communications, 2006. ICC '06. IEEE
International Conference on, vol. 5, pp. 2225-2230, June 2006.

[6] E. W. Fulp, “Optimization of firewall policies using directed acyclical
graphs,” in Proceedings of the IEEE Internet Management Conference,
2005.

[7]1 H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in ASIACCS, pp. 332-342, 2006.

[8] ipchains, “http://tldp.org/howto/ipchains-howto.html,”

[91 A. X. Liu and M. G. Gouda, “Complete redundancy detection in

firewalls,” in DBSec, pp. 193-206, 2005.

A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete

redundancy removal for packet classifiers in TCAMs,” in Proceedings

of the 27th Annual IEEE Conference on Computer Communications

(Infocom), (Phoenix, Arizona), April 2008.

T. Chomsiri and C. Pornavalai, “Firewall rules analysis,” in Security and

Management, pp. 213-219, 2006.

A. X. Liu, E. Torng, and C. Meiners, “Firewall compressor: An al-

gorithm for minimizing firewall policies,” in Proceedings of the 27th

Annual IEEE Conference on Computer Communications (Infocom),

(Phoenix, Arizona), April 2008.

D. Applegate, G. Calinescu, D. S. Johnson, H. J. Karloff, K. Ligett,

and J. Wang, “Compressing rectilinear pictures and minimizing access

control lists,” in SODA, pp. 1066—-1075, 2007.

A. X. Liu and M. G. Gouda, “Diverse firewall design,” in DSN, pp. 595-

604, 2004.

S. P. Hidalgo, R. Ceballos, and R. M. Gasca, “Fast algorithms for

consistency-based diagnosis of firewall rule sets,” in ARES, pp. 229-

236, 2008.

H. Adiseshu, S. Suri, and G. M. Parulkar, “Detecting and resolving

packet filter conflicts,” in INFOCOM, pp. 1203-1212, 2000.

S. Khummanee, J. Tungmondee, and P. Daraboot, “Applied variable-

length subnet mask(vlsm) with matching firewall,” in International Joint

Conference Computer Science and Software Engineering, 2008.

S. Khummanee, J. Tungmondee, and P. Daraboot, “Auto-optimized

firewall policy management,” in The National Conference on Computing

and Information Technology, 2008.

A. X. Liu, “Change-impact analysis of firewall policies,” in ESORICS,

pp. 155-170, 2007.

Kluwer Academic

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

