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Abstract Most belief change operators in the AGM tradition assume an
underlying plausibility ordering over the possible worlds which is transitive and
complete. A unifying structure for these operators, based on supplementing
the plausibility ordering with a second, guiding, relation over the worlds was
presented in Booth et al. (Artif Intell 174:1339-1368, 2010). However it is not
always reasonable to assume completeness of the underlying ordering. In this
paper we generalise the structure of Booth et al. (Artif Intell 174:1339-1368,
2010) to allow incomparabilities between worlds. We axiomatise the resulting
class of belief removal functions, and show that it includes an important family
of removal functions based on finite prioritised belief bases.
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1 Introduction

The problem of belief removal [1, 7, 23], i.e., the problem of what an agent,
hereafter A, should believe after being directed to remove some sentence
from his stock of beliefs, has been well studied in philosophy and in Al
over the last 25 years. During that time many different families of removal
functions have been studied. A great many of them are based on constructions
employing total preorders over the set of possible worlds which is meant to
stand for some notion < of relative plausibility [14]. A unifying construction
for these families was given in [7], in which a general construction was
proposed which involved supplementing the relation < with a second, guiding,
relation < which formed a subset of <. By varying the conditions on <
and its interaction with < many of the different families can be captured as
instances.

The construction in [7] achieves a high level of generality, but one can
argue it fails to be general enough in one important respect: the underlying
plausibility order < is always assumed to be a total preorder which by
definition implies it is complete, i.e., for any two worlds x, y, we have either
x <y or y <x. This implies that agent A is always able to decide which
of x, y is more plausible. This is not always realistic, as already argued by
Katsuno and Mendelzon [14] who show that a number of intuitively appealing
constructions for belief revision do not make use of total preorders. Given
the strong link between belief removal and belief revision, the same argu-
ment applies to belief removal as well. It therefore seems desirable to study
belief removal based on plausibility orderings which allow incomparabilities.
Some work has been done on this ([2, 5, 11, 14, 21], and especially the
choice-theoretic approach to belief change advocated in [22]) but not much.
This is in contrast to work in nonmonotonic reasoning (NMR), the research
area which is so often referred to as the “other side of the coin” to belief
change. In NMR, semantic models based on incomplete orderings are the
norm, with work dating back to the seminal papers on preferential models
of [15, 24]. Our aim in this paper is to relax the completeness assumption
from [7] and to investigate the resulting, even more general class of removal
functions.

The plan of this paper is as follows. In Section 2 we give our gener-
alised definition of the construction from [7], which we call (semi-modular)
contexts. We describe their associated removal functions, as well as men-
tion the characterisation from [7]. Then in Section 3 we present an ax-
iomatic characterisation of the family of removal functions generated by
semi-modular contexts. Then, in Section 4 we mention a couple of further
restrictions on contexts, leading to two corresponding extra postulates. In
Section 5 we mention an important subfamily of the general family, i.e., those
removals which may be generated by a finite prioritised base of defaults,
before moving on to AGM style removal in Section 6. We conclude in
Section 7.
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1.1 Preliminaries

We work in a finitely-generated propositional language L. The set of non-
tautologous sentences in L is denoted by L,. The set of propositional
worlds/models is W. For any set of sentences X C L, the set of worlds which
satisfy every sentence in X is denoted by [X]. Classical logical consequence
and equivalence are denoted by  and = respectively. As above, we let
A denote some agent whose beliefs are subject to change. A belief set for
A is represented by a single sentence which is meant to stand for all its
logical consequences. Given that we work in a finitely generated setting, this
is a reasonable representation, and one that is frequently adopted.! A belief
removal function (hereafter just removal function) belonging to A is a unary
function % which takes any non-tautologous sentence A € L, as input and
returns a new belief set x (1) for A such that % (1) ¥ A. For any removal
function % we can always derive an associated belief set. It is just the belief
set obtained by removing the contradiction, i.e., % (L).

The following definitions about orderings will be useful in what follows. A
binary relation R over W is:

reflexive iff Vx : x Rx

transitive iff Vx, y, z : xRy & yRz — xRz
complete iff Vx, y : xRy v yRx

a preorder iff it is reflexive and transitive

a total preorder iff it is a complete preorder

The above notions are used generally when talking of “weak” orderings, where
xRy is meant to stand for something like “x is at least as good as y”. However
in this paper, following the lead of [21], we will find it more natural to work
under a strict reading, where x Ry denotes “x is strictly better than y”. In this
setting, the following notions will naturally arise. R is:

irreflexive iff Vx : not(x Rx)

modular iff Vx, y, 7 : xRy — (xRz V ZRY)

a strict partial order (spo) iff it is both irreflexive and transitive

the strict part of another relation R’ iff Vx, y : xRy < (xR'y & not(yR'x))
the converse complement of R’ iff Vx, y : xRy <> not (yR/x)

We have that R is a modular spo iff it is the strict part of a total preorder [18].
So in terms of strict relations, much of the previous work on belief removal,
including [7], assumes an underlying strict order which is a modular spo. It is
precisely the modularity condition which we want to relax in this paper.

1E.g., this is the representation used by Katsuno and Mendelzon [14].
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Given any ordering R and x € W, let Vg (x) = {z € W | zRx} be the set of
all worlds below x in R. Then we may define a new binary relation C® from R
by setting x =R y iff Vi (x) € Vg (y). That is, x £R y iff every element below
x in R is also below y in R. It is easy to check that if R is a modular spo then
x CR yiff not (y Rx), i.e., CR is just the converse complement of R.

2 Contexts, Modular Contexts and Removals

In this section we set up our generalised definition of a context, show how
each such context yields a removal function and vice versa, and recap the main
results from [7].

2.1 Contexts

We assume our agent A has in his mind two binary relations (<, <) over the
set W. The relation < is a strict plausibility relation which forms the basis for
A’s actionable beliefs, i.e., x < y means that, to .A’s mind, and on the basis of
all available evidence, world x is strictly more plausible than y. We assume <
is a strict partial order. In addition to this there is a second binary relation <.
This relation is open to several different interpretations, but the one we attach
is as follows: x < y means “A has an explicit reason to hold x more plausible
than y (or to treat x more favourably than y)”. We will use < to denote the
converse complement of <, i.e., x < yiff y £ x. Thus x < y iff A has no reason
to treat y more favourably than x. Note < and < are interdefinable, and we
find it convenient to switch between them freely.

Note the equivalence “x < y iff both x < y and y £ x” holds only if < is
asymmetric, which might not hold in general, since it is perfectly possible for
A to have one explicit reason to hold x more plausible than y, and another
to hold y more plausible than x. In this case both these reasons will compete
with each other, with at most one of the pairs (x, y) or (y, x) making it into A’s
plausibility relation <.

What are the properties of <? We assume only two things, at least to begin
with: (1) an agent can never possess a reason to hold a world strictly more
plausible than itself, and (2) an agent does not hold a world x to be more
plausible than another world y, i.e., x < y, without being in possession of some
reason for doing so. (Note this latter property lends a certain “foundationalist”
flavour to our construction.) All this is formalised in the following definition:

Definition 2.1 A context C is a pair of binary relations (<, <) over W such
that:

(C1) < is astrict partial order

(C2) < isirreflexive
(C3) <C<
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If < is modular then we call C a modular context. We will later have grounds
for strengthening (C3).

Example 2.2 Assume L = {p, q} and let the four valuations of L be W =
{00, 11, 01, 10}, where the first and second numbers denote the truth-values
of p, g respectively. Then a possible context C = (<, <) could be specified as
follows:

< = {(00, 10), (01, 11)}
< =< U{(00,11), (01, 00), (10, 00), (10, 11), (11, 10), (11, 00), (11, 01)}

How does A use his context C to construct a removal function %¢? In terms
of models, the set [%¢ ()] of models of his new belief set, when removing
a sentence A, must include some —A-worlds. Following the usual practice in
belief revision, he should take the most plausible ones according to <, i.e., the
<-minimal ones. But which, if any, of the A-worlds should be included? The
following principle was proposed by Rott and Pagnucco [23]:

Principle of Weak Preference
If one object is held in equal or higher regard than another, the former
should be treated no worse than the latter.

Rott and Pagnucco use this principle to argue that the new set of worlds
following removal should contain all worlds x which are not less plausible than
a <-minimal —A-world y, i.e., y £ x. We propose to apply a tempered version
of this principle using the second ordering <. We include x if there is no explicit
reason to believe that y is more plausible than x, i.e., if y £ x.

Definition 2.3 (x from C) Given a context C we define the removal function
% by setting, for each A € L., [%¢c(W)] = U {V<(») | y € min_ ((=AD}.

Example 2.2 (contd.) Let C = (<, <) be the context given in Example 2.2, and
consider the world 00. For x € W we have x € V<(00) iff x < 00 iff 00 £ x.
Thus V- (00) = {00, 01}. Similarly we obtain V_(11) = {11}, V~(01) = {10, 01},
and V<(10) = {10, 01}. Now suppose, for example, we want to remove —p A
g using %¢. Then min_([—(—=p A q)]) = {00, 11}, so [%c(—=p A q)] = V<(00) U
V<(11) = {00, 01, 11}. Note that the set of models of the belief set associated
to x¢, i.e., ¥¢ (1), is given by [*¢(L)] = V<(00) U V<(01) = {00, 01, 10}.

It can be shown that different contexts give rise to different removal
functions, i.e., the mapping C — ¢ is injective. The case of modular contexts
was the one which was studied in detail in [7], where it was shown how, by
placing various restrictions on the interaction between < and <, this family
captures a wide range of removal operations which have been previously
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studied, for example both AGM contraction and AGM revision [1],> severe
withdrawal [23], systematic withdrawal [19] and belief liberation [6]. For the
general family in that paper the following representation result was proved.

Theorem 2.4 [7, 8] Let C be a modular context. Then ¢ satisfies the following
rules:

(1) x\)FA

(%2) If)\l = A, then %(11) = *(A2)

(%3) Ifx(AY)bExthenx(AAx AY)E x
(x%4) Ifx(AA )b xthen x(A A x) F %)
(%5) (A x) = x@) Vv x(x)

(%6) Ifx(AA x) ¥ Athen x(X) E %A A x)

Furthermore if x is any removal function satisfying the above six rules, there
exists a unique modular context C such that % = .

All these rules are familiar from the belief removal literature. (31) is the
Success postulate which says the sentence to be removed is no longer implied
by the new belief set, while (%2) is a syntax-irrelevance property. (%3) is
sometimes known as Conjunctive Trisection [13, 21]. A slight reformulation
of it can be found already in [1] under the name Partial Antitony. It says if x is
believed after removing the conjunction A A x, then it should also be believed
when removing the longer conjunction A A x A . Rule (%4) is closely-related
to the rule Cut from the area of non-monotonic reasoning [15], while (x5) and
(6) are the two AGM supplementary postulates for contraction [1]. Note we
can give (%3) an equivalent formulation:

Proposition 2.5 In the presence of (x2), rule (x3) is equivalent to

(x3) —xAxAA )00

Proof To show (%3) and (%2) imply (%3'), first, we know %(x) F (—=x —
%(x)). Since x = (—x — %(x)) A x this means %(x) = %((—x — *(x)) A x)
by (%2) and so we obtain %((—x — %(x)) A x) F (—=x — %(x)). Applying
(%3) to this we may deduce x((—x — *(x)) A x AA) F (—x — %(x)). But
(=x = *(X) AxAA=ALAx. Hence by (%2) we get x(A A x)F (—x —
%(x)), equivalently —x A (L A x) F %(x) as required.

To show (%3') and (%2) imply (%3), suppose *(A A x) F x. Now, (x3)
(with a little help from (%2)) tells us =(A A x) A %A A x AY) E %A A ).
Hence using this with the assumption % (A A x) b x yields =(A A x) A x(A A
x AN¥) F x. By classical logic this is equivalent to the desired (A A xA

V) x. o

2The fact that basic removal also covers AGM revision is what motivated our choice of the
contraction-revision “hybrid” symbol 3 to denote removal functions.
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As a special case of (%3) (putting A = L) we get —x A x (L) = % (x), i.e.,
the set of sentences believed after removing y is a subset of the set of sentences
believed after expanding (i.e., conjoining) the initial belief set with —y. (We
remark that the preceding proposition was proved, using different notation, in
[7]. We include its proof here for completeness.)

Given the prominence of AGM contraction in the literature [1], it is worth
noting that this list does not include the AGM contraction postulates Vacuity
(3 (L) ¥ & implies % (1) = % (L)), Inclusion (x (L) F % (1)) and Recovery
(3% (M) A A % (L)), none of which are valid in general for removal functions
generated from modular contexts. Vacuity has been argued against as a general
principle of belief removal in [7, 8]. Inclusion has been questioned in [6], while
Recovery has long been regarded as controversial (see, e.g., [12]). Nevertheless
we will see in Section 6 how each of these three rules may be captured within
our general framework.

The second part of Theorem 2.4 was proved using the following
construction.

Definition 2.6 (C from %) Given any removal function % we define the context
C(x) = (<, <) as follows: x < y iff y & [3*(—x A —y)] (equivalently, x(—x A
—y) F =y)and x < yiff y & [ (—x)] (equivalently, % (—=x) - —y).3

Booth et al. [7] showed that if x satisfies (¢1)-(x6) then C () is a modular
context and % = ¢ (x).

3 Characterising the General Family

Now we want to drop the assumption that < is modular and assume only it is
a strict partial order. How can we characterise the resulting class of removal
functions? This is the question we pose in this section, and we provide an
answer at the end of the section. To start with, we focus first on establishing
which of the postulates from Theorem 2.4 are sound for the general family,
modifying our initial construction as and when necessary. Clearly we cannot
expect that all the rules remain sound. In particular rule (x6) is known to
depend on the modularity of < and so might be expected to be the first to
go. However we might hope to retain weaker versions of it, for instance:

(x6a) Ifx(A A x)F xthen x(A) F %A A x)
(x6b) x(A) Ax(x)E % Ax)

These two rules appear respectively as (—8c) and (—8r) in [22] (see also [2]).
(¢6b) follows from (6) given (3¢1).

3When a world appears in the scope of a propositional connective, it should be understood as
denoting any sentence which has that world as its only model.
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Proposition 3.1 IfC is a general context then ¢ satisfies (1), (x2), (x4), (x5)
and (x6a).

Proof (%1) holds because [%¢(})] picks up at least one —A-world. (%2) holds
because the result depends only on [—A].

To show (x4) suppose xc¢(A A x) F x. Suppose x € [x*c¢(A A x)]. We must
show x € [%¢(M)]. Butif x € [%*¢(A A x)] then x < y for some y € min_([—(A A
x)]). It suffices to show y € min_([—A]). First we need to show y € [-A].
Since min_ ([—(A A x)]) € [%c (M A x)] by reflexivity of < we know y € [3*¢(A A
x)] and so, from the assumption *¢(A A x)F x, ¥y € [x]. Now since y €
min_([—(A A x)]) we also know y € [=(A A x)] and so from this and y € [x] we
may deduce y € [—A] as required. Now if it were the case that y &€ min_ ([—A])
then we would have z < y for some z € [—\]. But since in this case also z €
[— (X A x)], this would contradict y € min_([—(A A x)]). Hence y € min_([—A])
as required.

(%5) holds because of the property min_([—XV —x]) € (min_([-A]) U
min_([—x])) (which, incidentally, as with the proof of (¢4), doesn’t depend
on any property of <).

For (x6a) suppose *¢(A A x) F x and let x € [*¢(A)]. We must show x €
[3c(X A x)]. Since x € [%¢(1)] there exists y € min_([—A]) such that x < y.
If we can show y € min_([—(A A x)]) then we are done. So suppose for
contradiction y ¢ min_([—(A A x)]). Then there exists z € [-(A A x)] such that
Z < y. By transitivity of < we may assume z € min.([—(: A x)]) Then using
the assumption %¢(A A x) F x we deduce z € [x], which together with the
fact z € [-(X A x)] implies z € [—A]. But z € [-A] and z < y contradicts y €
min_ ([—-A]). Hence y € min_ ([—~(X A x)]) as required. O

(x6b) (and hence (x6)) does not hold (if L contains more than two
propositional variables), as the following counterexample shows:

Example 3.2 Suppose L = {p, q,r}. We assume each of the eight valuations
of L may be represented as a sequence abc where each of a, b and c
is an element of {0, 1} denoting the truth-value of p, g, r respectively. Let
<= {(101, 010), (011, 100)} and let < = {(111, 010), (111, 100)} (strictly speak-
ing the reflexive closure of this). Recalling that < is the converse comple-
ment of <, one may verify that (<, <) so defined forms a context accord-
ing to Definition 2.1. Then 010 € min.([—p]) so 111 € [*¢(p)]. Also 100
min_([—g]) so 111 € [%*¢(q)]. Hence 111 € [x¢(p) A %¢(q)]. If (x6b) holds
then we would conclude 111 € [*¢(p A ¢))]. But since 010 and 100 are the only
two elements x such that 111 < x this would imply either 010 € min_([—(p A
q)]) or 100 € min_ ([—~(p A ¢)]). But 010 and 100 are <-dominated in [—(p A q)]
by 101 and 011 respectively. Hence 111 & [%¢(p A g))] and so (6b) cannot
hold.
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Given the more general scenario in which we now find ourselves, we also
lose (%3), equivalently (%3'), as the following counterexample shows:

Example 3.3 Assume L = {p, q} and let the four valuations of L be W =
{00, 11, 01, 10}, where the first and second numbers denote the truth-values
of p, g respectively. Let < = {(00, 10)} and let < = {(10, 01)} (strictly speaking
the reflexive closure of this). Again one can verify that (<, <) forms a legal
context. We have [x¢(p A g)] = {00, 10,01} and [%¢(g)] = {00}. Hence 10 €
[—g A *c(p Aq@)]but 10 & [xc(q)].

This leaves us with a problem, since whereas (56) is to be considered some-
what dispensible, (3) is a very reasonable property for removal functions.
Is there some way we can capture it? It turns out we can capture it if we
strengthen the basic property (C3) to:

(C3a) =<crC=*

In other words if z < x and x < y then z < y. (C3a) is a coherence condition
between < and <. It is saying that if there is a world z which A judges
to be more plausible than x but not to y then A has a reason to treat y
more favourably than x. Note that for modular contexts (C3) and (C3a) are
equivalent, but in general they are not.

Proposition 3.4 If C satisfies (C3a) then x¢ satisfies (x3).

Proof To see this suppose xc¢(A A x) F x and let x € [%c(A A x AY)]. We
must show x € [x]. If x € [A A x] then clearly we are done, so suppose x €
[=(A A x)]. We will show x € min_([—(A A x)]), from which we can then de-
duce x € [x] from %¢(A A x) F x. Suppose for contradiction x & min_([—(A A
x)1). Then there exists z € [=(A A x)] such that z < x. Now since x € [%¢(A A
X A ¥)] there exists y € min_([—(X A x A ¥)]) such that x < y. From (C3a)
this gives z < y, but this contradicts the minimality of y, giving the required
contradiction. O

Thus (C3a) seems necessary. And in fact without it we don’t get the
following important technical result, which provides the means to describe <-
minimal A-worlds purely in terms of the removal function:

Proposition 3.5 Let C = (<, <) be any context which satisfies (C3a). Then for
all A such that =\ € L, we have [%¢ (—=A) A A] = min_ ([A]).

4Recall from Section 1.1 that C< is defined as: x C< yiff Vo (x) € Vo ().
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Proof The right-to-left inclusion follows from the reflexivity of <. For the
left—-to-right inclusion suppose x € [%¢(—X) A A]. Then x € [A] and x < y for
some y € min. ([A]). If there were some z € [A] such that z < x then we would
have z < y from (C3a)—contradiction. Hence x € min_([A]) as required. O

Example 3.3 provides a counterexample showing this might not be possi-
ble in general, for there we have [%¢ (p A q) A= (p A g)] = {00, 10,01} but
min_ ([=(p A ¢)]) = {00,01}. Note that rule (C3a) may also be interpreted
as a restricted form of modularity for <, since it may be re-written as
Vx,y,2(z <x— (y <xVz<y)).For this reason we consider the following
definition:

Definition 3.6 A semi-modular context is any context C satisfying (C3a).

In the rest of the paper we will work only with semi-modular contexts.
Example 3.2 shows that s still fails in general to satisfy (¢6b) even for semi-
modular contexts.

So far we have a list of sound properties for the removal functions defined
from semi-modular contexts. They are the same as the rules which characterise
modular removal, but with (6) replaced by the weaker (s¢6a). It might be
hoped that this list is complete, i.e., that any removal function % satisfying
these six rules is equal to ¢ for some semi-modular context C. Indeed we
might expect to be able to show x = x¢(x), where C () is the context defined
via Definition 2.6. The following result gives us a good start.

Proposition 3.7 Let x be any removal function satisfying (31)-(%5) and (x6a).
Then C (x) is a context, i.e., satisfies (C1)—(C3).

Proof (Outline) < is a strict partial order from (1), (%2), (%3) and (x6a).
< is irreflexive from (x1), and (C3) is satisfied via the following consequence
of (x6a):

(x6¢) If (A A x)F xthenx(L)F x
Note the antecedent of this rule corresponds to the usual reading of “x is
strictly more entrenched than 1.”. Thus a possible reading of (s¢6¢) is “x can
never be excluded by removing a strictly less entrenched sentence”. O
However to get (C3a) it seems an extra property is needed:
(%xC) If %x(A) A=A x(x) A=y then %) F x(x)

We can rephrase this using the Levi Identity [17]. Given any removal function
% we may define a revision function %R by setting, for each consistent sentence
L€ L, %R(L) = %(=1) A A. Then rule (C) may be equivalently written as:

(%xC)  If xR(=2) F %R(=y) then x(1) F %(x)
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Thus (xC') is effectively saying that if revising by —A leads to a stronger belief
set than revising by —x, then removing A leads to a stronger belief set than
removing x. The next result confirms that this rule is sound for the removal
functions generated by semi-modular contexts, and that this property is enough
to show that C (x) satisfies (C3a).

Proposition 3.8 Let C be a semi-modular context. Then . satisfies (xC).
Furthermore if x is any removal function satisfying (xC), (31), (x3) and (6a)
then the context C(x) satisfies (C3a).

Proof To show ¢ satisfies (xC), suppose x¢(X) A =A b x¢(x) A —x. Then by
Proposition 3.5 min_ ([—1]) € min_([—x]). Soif x < y for some y € min_ ([—A])
then x < y for some y € min_ ([—x]). Hence [x¢ ()] C [*¢(x)] as required.
Now let % be a removal function satisfying (%C). We will show that if
z<xandz # ytheny < x.Sosuppose z < xand z £ y,i.e.,x & [%(—z A —x)]
and y € [%(—z A —y)]. We must show x & [%(—y)]. We know by (x1) that
y € [%(—y)]. Using this together with y € [%(—z A —y)] allows us to deduce
*(—y) Ay E x(—=z A —y) A =(—z A —y) and so, using (xC), we get x(—y) -
%(—z A —y). Hence if we can show %(—z A —y) - —x then our desired con-
clusion x ¢ [%(—y)] will follow. But from the assumption x ¢ [%(—z A —x)] we
know % (—z A —x) i —x and so from this and (%3) we have x(—z A =x A —y) b
—x. From this and (x6a) we get x(—z A —y) F %(—z A =x A —y) and so the
transitivity of - gives the required %(—z A —y) F —x. o

Rule (%C) is actually quite strong. In the presence of (x%3) it can be shown
to imply (¢4). This means that, in the axiomatisation of % we can replace
(4) with (xC). To show that the list of rules is complete, it remains to prove
% = % (x). It turns out that here we need the following weakening of (sx6b):

*E) = A X)) Ax@A)Ax00 F %G A X)

This rule may be reformulated as “x (A) A % (x) F (A A x) V % (A A x)”. In this
reformulation, the right hand side of the turnstile may be thought of as standing
for all those consequences of the conjunction A A x which are believed upon
its removal. The rule is saying that any such surviving consequence must be
derivable from the combination of % (1) and x ().

Proposition 3.9 Let C be a semi-modular context. Then ¢ satisfies (¥E).

Proof Suppose x € [~(A A x) A *%c(X) A %c(x)]. We must show x € [%c(h A
x)]. Since x € [*¢(A)] we know x < y; for some y; € min_([—A]). Similarly
since x € [%¢(x)] we know x < y, for some y, € min_([—x]). We will show
the existence of yj, y, implies x € min_([—(» A x)]), which will be enough
to show x € [%¢(A A x)] by Proposition 3.5. Suppose for contradiction x ¢
min_([—(A A x)]). Then there exists z < x such that z € [=(A A x)]. Clearly
either z € [—A] or z € [—x]. In the former case we get z < x < y; andso z < y;
by (C3)—contradicting the minimality of y;. Similarly in the latter case we
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obtain z < y,, contradicting the minimality of y,. Hence x € min_([—(A A x)])
as required. O

Lemma 3.10 Any removal function x satisfying (%2) and (xE) also satisfies
the following rule.
(*E) If Y Ex(AY)A%(x AY) then = = %A A x AY).

Proof By (%¥E) we know =(AA X AY)AXAAY)AX(XAY)E XA XA
¥). Since =y = —=(A A x A ) and =y E % (A A ) A %(x A ) by assumption,
this gives the required conclusion. O

Theorem 3.11 Let % be any removal function satisfying (1), (x2), (%¢3), (xC),
(%5), (x6a) and (xE). Then x¢x) = *.

Proof Let L€ L,. We need to show [%(A)]={x|x =<y forsome ye
min_ ([—A])}.

For the left-to-right inclusion, suppose x € [%(A)]. Let min_([—-1]) =
{vi,..., vk} and [-A] \ min_([—A]) = {z1, ..., z;}. We will show that x(1) -
>:e(/\l/-‘=1 —y;). If we can show this then x (%) \/ff:1 s (—y;) will follow from
(%5), and then from x € [%(%)] we can deduce x € [%(—y;)] for some i, i.e.,
x <Xy for some y € min_([—A]) as required. So, to show % (1) %(Ale =y;)
first note that A = (/\f“:1 =y A (/\f:1 —z;), hence what we need to show is:

(A=) (4)) -+ (A)

This will follow by (x4), provided we can show

A=) )

Let m e {1,...,1}. Since z,, ¢ min_([—A]) we know there must be some j e
{1,...,k}suchthat y; < z,,,1.e., %(—=y; A =2,») F —2,,. But then by (x3)

(A=) ()=

Since this holds for each m =1, ..., [ we obtain Eq. 1 as required.

To show the right-to—left inclusion, suppose x < y for some y € min_ ([—A]).
Then %(—y) ¥ —x and x(—y A —z) ¥ —y for all z € [-1]. We want to show
% (A) ¥ —x. This will be proved if we can show x(—y) - x(1). By (%C) this will
be proved if we can show y A x(—y) F —=A A %(A) which, since y - x(—y) (by
(1)) and y € [—A], is equivalent to showing y F (). We know y - %(—y A
—z) for all z € [-A]. By repeated use of (%E’) we obtain y se(/\ze[ﬁ” —2). By
(%?2) this is equivalent to the required y  x(1).
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Thus, to summarise, the family of removal functions defined from semi-
modular contexts is completely characterised by the following rules:

(x1)  x(\)FA

(%2) If 1y = A, then %x(A) = x%(X;)

(%3) Ifx(AAx)bFxthenx(AAxAY)F x
(%C)  Ifx() A=A x%(x) A=y then x(\) F x%(x)
(%5) %A x)ExQ) Vv x(x)

(x6a) Ifx(A A x)F xthen (1) F % A x)

(%E) = A x) Ax() A %) B (A X)

In the next section we will later look at a few more reasonable postulates which
are not covered by the above list.

4 Transitivity and Priority

In this section we look at imposing an extra couple of properties on semi-
modular contexts C = (<, <), both of which were investigated in the case
of modular contexts in [7]. There it was shown how the resulting classes of
removal functions still remain general enough to include a great many of
the classes which have been previously proposed in the context of modular
removal.

The first property is the transitivity of <, thus making < a preorder. (Recall
< is the converse complement of <, so this is equivalent to making < modular.)
According to our above interpretation of < this means if there is no reason to
treat y more favourably than x, and no reason to treat z more favourably than y
then there is no reason to treat 7 more favourably than x.

Proposition 4.1
(1) If < is transitive then > satisfies the following strengthening of (3C):
(%C+)  If x(A) A —=h b x(x) then %) b x(x)

(2) If x satisfies (xC+) and (1) then the relation < in C(x) is transitive.

Proof (1) Suppose %¢(X) A=A F %¢c(x) and let x € [%*¢(A)]. We must show
x € [%¢c(x)]. But from x € [%¢(A)] we know x <y for some ye€
min_ ([—-A]). By Proposition 3.5, y € [%¢ (%) A —A]. From the assumption
%c(M) A=A F xc(x) we deduce y € [%¢(x)], i.e.,, y < z for some z €
min_ ([—x]). Then by transitivity of < we getalsox < zandso x € [%¢(x)]
as required.

(2) Suppose x € [*(—y)] and y € [*(—z)]. We must show x € [%(—z)]. But
from y € [%(—z)] and y - %(=y) ((¥1)) we know x(—=y) A y F %(—2).
Applying (xC+) to this yields % (—y) - %(—z) from which we obtain the
required x € [%(—z)] from x € [%(—y)]. O
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This property is a notational variant of the property (called (BTran) there)
which was used to characterise transitivity of < in the modular context in [7].
It can be re-written as: If xR(=1) F s(x) then (1) F x(x). It says that if the
belief set following removal of x is contained in the belief set following the
revision by —A, then it must be contained also in the belief set following the
removal of A. This seems like a reasonable property.

Corollary 4.2 For any removal function x, the following are equivalent:

(1) x is generated by a semi-modular context C = (<, <) such that < is
transitive.

(2) x satisfies the list of rules given at the end of Section 3, with (xC) replaced
by (%C+).

Now consider the following property of a context C = (<, <):
(CP) Ifx<yandy Axthenx <y

This, too, looks reasonable: if .4 has an explicit reason to hold x more plausible
than y, but not vice versa, then in the final reckoning he should hold x to
be strictly more plausible than y. Consider the following property of removal
functions:

(x%xP) Ifx()F xand x(x) ¥ Athen x(A A x) F x

This property is briefly mentioned as Priority in [5], and is also briefly men-
tioned right at the end of [10]. It can be read as saying that if A is excluded
following removal of x, but not vice versa, then yx is strictly more entrenched
than A. For the case of modular removal, we can obtain the following exact
correspondence between (CP) and (%P) (note this result was proved, in a
different notational setting, in [7], where (xP) is known as (BPriority). We
again include the proof for completeness.):

Proposition 4.3
(1) IfC is a modular context satisfying (CP) then ¢ satisfies (xP).
(2) If x satisfies (%P) then C(x) satisfies (CP).

Proof

(1) Suppose %c(M) F x, *c(x) ¥ A and, for contradiction, ¢ (A A x) V/ x.
Then from x¢(x) /¥ A we know there exist x, y such that x € [-A], x <
y and y € min_([—x]), while from x¢(A A x) I/ x we know there exist
z, w such that z € [-x], z < w and w € min_([—~(2 A x)]). We have the
following chain of inequalities:

XAwALZLY £x ()

To see this, note that x # w follows from x € [-A] and the minimality
of w while z £ y follows from z € [—x] and the minimality of y. The
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other two inequalities w # z and y # x come respectively from z < w
and x < y and the fact <C<. Since < is modular, which equivalently
means #£ is transitive, this chain of inequalities yields x # y. Using this
with x < y and (CP) yields y < x. Now, Eq. 2 above also gives w #£ x,
which using the minimality of w and the modularity of < is enough
to show x € min_([—A]). Hence y € [%¢(1)]. But y € [—x], contradicting
*xc(M) F x.

(2) Wewill show x < yand y £ ximplies x < y. Sosuppose x < yand y % x,
1.e., by definition of C(x), %(—y) I/ =x and %(—x) - —y. Then applying
(xP) to this gives x(—x A —y) F =y, i.e., x < y as required. O

The proof of Proposition 4.3(1) makes critical use of the modularity of <. It
turns out that (P) is not sound for general semi-modular contexts, even if we
insist on (CP).

Example 4.4 Suppose L = {p, q} and that <= {(01, 11)} while <= {(01, 11)}
(strictly speaking the reflexive closure of this). One can verify that C is a semi-
modular context and that (CP) is satisfied. Now let A = p vV —q and x = —p.
Then [x%¢(A)] = {01}, [*c(x)] = {11, 01, 10} and [*¢ (X2 A x)] = {01, 10} and we
have x%c(A) F x, %c(x) ¥ A, and %¢c(A A x) I x. Hence (xP) is not satisfied.

The question now is, which postulate corresponds to (CP) for general semi-
modular contexts? Here is the answer:

Proposition 4.5

(1) If C is a semi-modular context which satisfies (CP), then ¢ satisfies the
following rule:

(%P If % (\) F x and % (x) = % (A A x) then % (x) F A
(2) If x satisfies (xP), plus (xC) and (x1), then C (x) satisfies (CP).

Proof

(1) Suppose for contradiction %¢ (1) F x, %¢c (x) F %¢c (A A x) and x¢ (x) ¥
A. Then from x¢ (x) ¥ A we know there exists x € [%¢ (x) A —A]. Since
*c (x) F *c¢ (A A x) this gives x € [%¢ (A A x) A —A], which in turn gives
x € [*¢ (M) A —A] using (%3). Hence x € min_ ([—A]) by Proposition
3.5. Now since x € [*¢ (x)] there exists y € min_ ([—x]) such that x <
y. Since y € min. ([—x]) we have y € [%¢ (x) A —x] by Proposition
3.5. Then, since x¢ (x) F %¢ (A A x) and —x = = (A A x) this gives y €
[%c A A x) A= (XA x)landso also y € min. ([— (2 A x)]) by Proposition
3.5.If y £ x then x < y by (a), contradicting the minimality of y. Hence
y Xxs0y € [%*¢ (A)]. But y € [~x], contradicting %¢ (1) - x as required.
(2) Suppose x <y and y A x. Then x(—y) ¥ —x and % (—x) F —y. We
must show x (—x A —y) F =y, equivalently y ¥ %(—x A —y). But from
% (—y) ¥ —x and x (—x) - —y we obtain x (—y) ¥ x(—x A —y) using
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(%P"). From this and (%C) we get x%(—y) A y ¥ %(—x A—y) A (X V y).
Since y F x(—y) via (1) this is equivalent to y ¥ x(—=x A =y) A (x V y).
Since obviously y - (x Vv y) we must have y ¥ x(—x A —y) as required.

]

It is straightforward to see (xP’) is weaker than (xP) given (1), while it
implies (xP) given (x6).

5 Finite Base-Generated Removal

In this section we mention a concrete and important subfamily of our general
family of removal functions, the ideas behind which can be seen already
throughout the literature on nonmonotonic reasoning and belief change (see
in particular [5] for a general treatment in a belief removal context). Given
any, possibly inconsistent, set ¥ of sentences, let cons (¥) denote the set of all
consistent subsets of . We assume agent A is in possession of a finite set X
of sentences which are possible assumptions or defaults, together with a strict
preference ordering @ on cons (¥) (with sets “higher” in the ordering assumed
more preferred). We assume the following two properties of &:

(1) @ isa strict partial order
(¥2) IfAc Bthen A& B

(¥2) is a monotonicity requirement stating a given set of defaults is strictly
preferred to all its proper subsets.

Definition 5.1 If ¥ C L is a finite set of sentences and @ is a binary relation
over cons (X) satisfying (X£1) and (¥2). Then we call } = (X, @) a prioritised
default base. 1f in addition @ is modular then we call } a modular prioritised
default base.

Lemma 5.2

(a) IfA> Band B® Cthen A ® C.
(b) If A® Band B2 Cthen A » C.

Proof For (a),if A = B then it’s obvious. Otherwise if A D B then A » B by
(2£1) and we conclude using the transitivity of ®. (b) is proved similarly. O

In practice we might expect the ordering @ over cons(X) to itself be
generated from some (not necessarily total) preorder = over over the indi-
vidual sentences in ¥ (again we equate “higher” with “more preferred”). Let
Ey, ..., Ex be the equivalence classes of cons (X) under such a 3, themselves
ordered in the natural way by 3, i.e., E; 3 E, iff « 3 B for some « € E; and

@ Springer



A General Family of Preferential Belief Removal Operators

B € E,. Then to give but two prominent examples from the literature (where
< is the strict part of 3):

Inclusion-Based [9] A @ Biffdist. EENAC E;NBandVj
st. E;<Ej, EENB=E;NA

Generalised-Lexicographic [25] A & Biff Vi,if |E; N B| < |E; N A| then
djs.t. E; < Ejand |E;N Al < |E;N B|. Then
@gi is the strict part of @&g.

We remark that the inclusion-based preference usually assumes the under-
lying order 3 over X is total. For the generalised-lexicographic example,
note if the preorder 3 over X is total then @y becomes modular and the
generalised-lexicographic example reduces to the standard lexicographic case
familiar from [3, 16].

Proposition 5.3 Let X be a finite set of sentences equipped with some preorder
= over its elements, and let G, and Gg be relations over cons (X) defined
from 3 as above. Then G satisfies (X1) and (X2), while if 3 is total then so
does Gp.

Proof Turning first to @, it is obviously irreflexive, while by Proposition 1
of [25] (the first bullet point in this result) we know &, is a preorder and in
particular is transitive. From this it is easy to see @g is transitive, and so Gy
forms a strict partial order, i.e., (X1) is satisfied. As for (X2), suppose A C B.
We know already by Proposition 1 of [25] that A &, B whenever A C B, so
it remains to show B &, A. But since A C B we know |E; N A| < |E; N B
for all i, with strict inequality for at least one i. Let E; be maximal under <
such that |E; N A| < |E; N B|. Then |E; N A| < |E; N B| for all E; such that
E; < E;. This is enough to show B &, A.

Now turning to G, assume 3 is a total preorder. Then it is easy to show
(1) and (X2). We remark that if = is not total, then &; will be irreflexive
but not transitive in general. Indeed it will not be assymetric (e.g., take ¥ to
consist only of two incomparable elements «, 8 and set A = {«} and B = {8}.
Then both A &3 Band B @; A). O

How does the agent use a prioritised default base Y = (X, @) to remove

beliefs? For ¥ C L and A € L, let cons (X, 1) & {§ € cons ()| S ¥ A}. Then
from ) we may define a removal function xy by setting, for each A € L.,

%X()\):\/{/\SWSem@axcons(E,k)}.

In other words, after removing A, A will believe precisely those sentences
which are consequences of all maximally preferred subsets of ¥ which do not
imply A.
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We will now show how the family of removal functions generated from

prioritised default bases fits into our general family. From a given ) =

(¥, @) we may define a context C (}) = (<, <) as follows. Let sents (x) def

{e € ¥ | x € [a]}. Then

o x < yiff sents (y) @ sents (x)
o x < yiffsents (x) € sents (y)

Thus we define x to be more plausible than y iff the set of sentences in ¥
satisfied by x is more preferred than the set of sentences in ¥ satisfied by y.
Meanwhile we have the natural interpretation for < that 4 has a reason to
hold x to be more plausible than y precisely when one of the sentences in X is
satisfied by x but not y.

Theorem 5.4

(1) C(Y) defined above forms a semi-modular context (which is modular if @
is modular).
(2) = is transitive and the condition (CP) from Section 4 holds.

() *x = %)
Proof

(1) (C1). First we have to show < is irreflexive and transitive. This follows
from the irreflexivity and transitivity of .
(C2). Irrefexivity of <, i.e., reflexivity of <, is immediate from reflexivity
of D.
(C3a). We need to show if sents (x) D sents (y) and sentyx (z) ® sents (x)
then senty, (z) ® sents (y). This follows from Lemma 5.2(b).

(2) Transitivity of <. Immediate from the transitivity of D.
(CP). Follows from condition (X1).

(3) Leti e L, andC = C(}). We must show [¢ (1)] =[5y (V)].

For the left-to-right inclusion let x € [%¢ (A)]. Then x < y, i.e., sents (x) 2
sents, (y), for some y € min. ([=1]). To show x € [#y (1)] it suffices to show
x € [S] for some S € maxs cons (£, ). We put S = sents (y). The fact x €
[S] follows from sents (x) 2 sents (y). Since y € [-A]N[S] we have Se
cons (X, ). It remains to show T # S for all T € cons (X, 1). But suppose
it were the case that T € cons(X,)) and T » S. Since T ¥ A there exists
z € [TIN[—A]. Clearly we have sents (z) 2 T, so combining this with 7 ® S
gives sents, (z) ® S, i.e., sents (z) D sents (y) by Lemma 5.2(a) and so z < y.
But this contradicts the minimality of y. Hence T # S for all T € cons (£, 1)
as required.

For the right—to-left inclusion let x € [%y (M)], i.e., x € [S] for some S €
maxs cons (X, A). We must find some y € min. ([—A]) such that sents (x) 2
sents, (y). Since S € cons (£, ) we know S¥ A and so there exists y € [S] N
[—A]. Since y € [S] we know sents (y) 2 S. We claim in fact sents (y) = S.
For if senty (y) O S then sents (y) ® § and then by the maximality of S we
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get y = A—contradiction. Hence sents (y) = S and so, since x € [S], we know
senty (x) 2 sentys (y). It remains to show y € min_ ([—-A]). But if z < y for
some z € [—A], i.e., sents (z) ® sents (y) and so again using the maximality of
S = senty (y) we obtain senty (z) - A, contradicting z € [—A]. O

Thus we have shown that every removal function generated by a prioritised
default base may always be generated by a semi-modular context which
furthermore satisfies the two conditions on contexts mentioned in the previous
section. By the results of the previous section, this means we automatically
obtain a list of sound postulates for the default base-generated removals.

Corollary 5.5 Let Y be any prioritised default base. Then sy satisfies all the
rules listed at the end of Section 3, as well as (xC+) and (xP’) from the last
section.

Note we have shown how every prioritised default base gives rise to a
semi-modular context satisfying <-transitivity and (CP). An open question is
whether every such context arises in this way.

6 AGM Preferential Removal

Recall that three of the basic AGM postulates for contraction do not hold in
general for the removal functions generated by semi-modular contexts, namely
Inclusion, Recovery and Vacuity. Given the influence of AGM contraction on
work in this area, it is a worthwhile exercise to see if it is possible to capture all
the AGM postulates in our proposed framework.

In this section we show how each of these rules can be captured. In [7] it was
shown already how they may be captured within the class of modular context-
generated removal. It turns out that more or less the same constructions can
be used for the wider class considered here, although some complications arise
regarding Vacuity.

6.1 Inclusion

The Inclusion rule is written in our setting as follows:
(xI) x(L)F %)

To capture (xI) for any removal generated from any semi-modular context
C = (<, <), we need only to require the following condition on C:

(CI) min. (W) C min_ (W)

According to our interpretation of <, (CI) is stating that, for any world x, if A
has some explicit reason to favour some world y over x (i.e., y < x) then in the
final reckoning .A must hold some world z (not necessarily the same as y) more
plausible than x (i.e., z < x).
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Proposition 6.1

(1) IfC satisfies (CI) then ¢ satisfies (x1).
(2) If % satisfies (1) then C(x) satisfies (CI).

Proof

(1) Suppose x € [¥¢(L)] = [*¢c(L) A T]. Then x € min_([T]) = min- (W) by
Proposition 3.5. Then by (CI) for any » we have x <y for all y e
min_ ([—A]) and so x € [%¢()1)] as required.

(2) Suppose x € min_(W). Then x € [%(L)] as in part (i) by Proposition 3.5.
By (xI) we know (L) - x(—y), so we get x € [%(—y)], i.e.,, x X y as
required. O

Given any removal function % we can always obtain a removal function
which satisfies (1) by taking the incarceration x' of x [6]:

ST Lven).

Or alternatively we can modify a given context C = (<, <) into C' = (<, <'),
where x <! y iff either x < y or x € min_ (W). It is easy to check C' = C (x').

6.2 Recovery

The Recovery rule is written as follows:

(*R) %) AAEx%(L)

The corresponding property on contexts C = (<, <) is:

(CR) Ify¢min. (W)andx # ythenx <y

Thus the only worlds V< (x) contains, other than x itself, are worlds in
min_ (W).

Proposition 6.2

(1) IfC satisfies (CR) then ¢ satisfies (%R).

(2) If x satisfies (%R) then C(x¢) satisfies (CR).

Proof

(1) Suppose x € [*%¢(A) A L]. Then x < y for some y € min_([-A]). f x =y
then x € [-A]—contradiction. Hence by (CR) we get x € min_(W), i.e.,
x € [¥*c(L)]

(2) Suppose x < y, i.e., x € [*(—y)]. If x = y we are done so assume x # y.
Then x € [—y]. Then from x € [*(—y) A —y] we get x € [*(L)] by (*R).
This is equivalent to the desired x € min_(W). O
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Note the combination of (CI) and (CR) specifies <, equivalently <, uniquely
in terms of <, viz. x <m y iff x =y orx € min_ (W), and we obtain the
removal recipe of AGM contraction, in which removal of A boils down to just
adding the <-minimal —A-worlds to the <-minimal worlds:

[%agm ] = min (W) U min ([—=A]).

It is easy to check that the resulting context C satisfies condition (C3a) and thus
forms a semi-modular context. It is also easy to check (CP) is satisfied and that
the above-defined <y, is transitive. Thus the above x4y, also satisfies (xC+)
and (xP’) from Section 4. It can also be shown to satisfy (5¢6b).

6.3 Vacuity

The Vacuity rule is written as follows:
(xV) If x(L) ¥ A then () = %(L)

Unlike in the modular case, where Vacuity is known to follow from Inclusion
for modular removal functions [7], (V) does not even hold in general for the
above preferential AGM contraction ,,y. This was essentially noticed, in a
revision context, in [4].

Example 6.3 Let L ={p,q} and <= {(11,01)}. So [3agm (L)] = {00, 11, 10}.
Let A = p. Then we have uom (L) ¥ A (because 00 € [#,gm (L)]), but min_
([=A1) = {00, 01}, 50 [agm ()] = min_ (W) Umin_ ([=4]) = W # [agm (L)]-

In order to ensure 3,4y satisfies (V) it is necessary, as is done in [14], to
enforce the following property on <.
(<V) Vx,y((x emin. (W) Ay ¢ min. (W)) - x <y).

In other words all <-minimal worlds can be compared with, and are below,
every world which is not <-minimal. For general semi-modular contexts C =
(<, <) we also require the following condition, which is weaker than (CI):

(CV) Ifx,y emin_(W)thenx £y

This property says that for any two of his <-minimal worlds, .4 will not have
explicit reason to hold one to be more plausible than the other.
For basic removal [7] the following direction of Vacuity is always valid:

(%Vy) If x(L) ¥ Athen %) F x(L)

Proposition 6.4 (V) is not valid for x¢, even if C satisfies (CV).

Proof For the counterexample, assume L = {p,q} and let <= {(01,11),
(10, 00)} and <= {(01, 10), (10, 01)} (plus reflexivity). Then [*¢(L)] = {01, 10},

so C clearly satisfies (CV). Let A = p. Clearly %¢(L) t# p, while [x*¢(p)] =
{01, 10,00} £ [*c(L)]. g
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But if we insist on (< V) as well as (CV) then we get it:

Proposition 6.5

(1) If C satisfies (CV) and (< V) then x¢ satisfies (xV).
(2) If x satisfies (V) then C(x¢) satisfies (CV).

Proof

(1) Suppose x¢(L) I/ A. Then there exists xg € [%¢(L) A =A]. By (%3) we
know ¢ (L) A=A F %c(A) so xg € [*c(A) A=Al
To show x¢(L) F x¢(A) suppose y € [%¢(L)]. Then y € min. (W). Since
also x¢ € [*¢(L)] we know also xy € min_ (W) and so y < x, by (CV). But
from x¢ € [3%¢(X) A —A] we get xo € min. ([—X]) by Proposition 3.5 which
gives y € [%¢())] as required.
To show x¢ (L) F x¢ (L) it suffices by (xC) to show ¢ (1) A =A F x¢(L).
So let y € [*%¢(X) A —=A]. Then y € min.([—A]) by Proposition 3.5. We
must show y € [x¢(L)], i.e., y € min_(W). Butif y € min_(W) then xy <
y using (< V). But since xy € [—A] this contradicts y € min_([—1]). Hence
y € min. (W) as required.

(2) If x € min_(W) then x - %(L1) and so %(L) I/ —x. Then appling (V)
to this gives x(—x) = %(L). So if both x, y € min_(W) then x(—x) =
% (L) = %(—y). Hence %(—y) I/ —x by (1), i.e., x < y as required to
show (CV). O

7 Conclusion

In this paper we introduced a family of removal functions, generalising the one
given in [7] to allow for incomparabilities in the plausibility relation < between
possible worlds. Removal is carried out using the plausibility relation in combi-
nation with a second relation < which can be thought of as indicating “reasons”
for holding one world to be more plausible than another. We axiomatically
characterised this general family as well as certain subclasses, and we showed
how this family includes some important and natural families of belief removal,
specifically those which may be generated from prioritised default bases and
the preferential counterpart of AGM contraction. Our results show the central
construct used in this paper, i.e., semi-modular contexts, to be a very useful tool
in the study of belief removal functions.

For future work we would like to locate further subclasses of interest, for
example the counterparts in this setting of systematic withdrawal [19] and
severe withdrawal [23]. We would also like to employ semi-modular contexts
in the setting of social belief removal [8], in which there are several agents,
each assumed to have their own removal function, and in which all agents must
remove some belief to become consistent with each other. Booth and Meyer
[8] showed that, under the assumption that each agent uses a removal function
generated from a modular context, certain equilibrium points in the social
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removal process are guaranteed to exist. An interesting question would be
whether these results generalise to the semi-modular case. Since semi-modular
contexts are built from strict partial orders, this question should also be of
some relevance to the problem of aggregating strict partial orders [20].
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