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Abstract

Most approaches toiterated belief revisionare accompanied
by some motivation for the use of the proposed revision op-
erator (or family of operators), and typically encode enough
information for uniquely determining one-step revision. But
in those approaches describing a family of operators, there
is usually little indication of how to proceed uniquely after
the first revision step. In this paper we take a step towards
addressing that deficiency by providing a formal framework
which goes beyond the first revision step. The framework
is obtained by enriching the preference information starting
from the following intuitive idea: we associate to each world
x two abstract objectsx+ andx

−, with the intuition thatx+

representsx “on a good day”, whilex
− representsx “on

a bad day”, and we assume that,in addition topreferences
over the set of worlds, we are given preferences over this
set of objects as well. The latter can be considered as meta-
information which enables us to go beyond the first revision
step of the revision operator being applied.

Introduction
Total preorders (hereaftertpos) are used to represent prefer-
ences in many contexts. In particular they are a common tool
in belief revision(Grove 1988; Katsuno & Mendelzon 1991;
Rott 2001). In that setting they are taken to stand for plau-
sibility orderings on the set of propositional worlds, which
are used to encode thedispositionsfor change, or thecondi-
tional beliefsof an agent. The associatedbelief setis taken to
be the set of those sentences true in all the minimal worlds.
When new evidenceα comes in, the plausibility ordering is
used to calculate the new belief set, usually by setting it to
be the set of those sentences true in all the minimal mod-
els ofα. This ensures a unique new belief set, but does not
provide enough information to obtain a new tpo, which may
then serve as the target for thenextrevision input. Thus the
question of modelling the dynamics oftposis of critical im-
portance to the problem ofiterated belief revision.

The past ten years has seen a flurry of activity in this
area, with (Darwiche & Pearl 1997) and (Nayak, Pagnucco,
& Peppas 2003) being representative examples. Most ap-
proaches devote considerable effort to motivating the use
of their proposed revision operator (or family of operators).
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But in those approaches describing a family of operators,
there is usually little (or no) indication of how to choose
among the available operators. In this paper we make a con-
tribution towards overcoming that deficiency by providing a
formal framework which obtains a uniquetpo following one
revision step, thereby going beyond just the belief set re-
sulting from the revision input. The framework is obtained
by enriching the preference information encoded in the tpo
starting from the following intuitive idea: when we com-
pare two different worldsx andy according to preference,
often we are able to imagine different contingencies, accord-
ing to whether all goes well inx andy or not. For example,
given a choice between spending the day surfing at the beach
and spending it in the office, we might think that even a bad
day surfing is preferable to a good day working. Our idea
is to associate to each worldx two abstract objectsx+ and
x−, with the intuition thatx+ representsx “on a good day”,
while x− representsx “on a bad day”, and we assume that,
in addition tothe given tpo≤ over the set of worlds, we are
given a tpo� over this set of objects.

This meta-information allows us to uniquely determine
the new tpo: when new evidenceα comes in it casts a more
favourable light on those worlds in whichα holds. Thus the
evidence signals a “good day” for all those worlds satisfying
α, and a “bad day” for the¬α-worlds. The revised tpo≤∗

α is
obtained by settingx ≤∗

α y iff xǫ � yδ, whereǫ, δ ∈ {+,−}
depending on whetherx, y satisfyα or not.

As we will see, one commonly assumed rule from belief
revision which will not generally hold for our revision op-
erators is that the inputα is necessarily an element of the
belief setassociated to≤∗

α. Thus, at the belief set level, we
are in the realm of so-callednon-prioritisedrevision (Hans-
son 1999; Hanssonet al. 2001).

The plan of the paper is as follows. We begin in the next
section by describing our enriched preference state. Then
we show how to use this enrichment to define a unique tpo-
revision operator, and we axiomatically characterise the re-
sulting family of operators. Initially we describe the proper-
ties of this family on asemanticlevel, i.e., in terms of how
the ordering of individual worldsx, y undergo change. In the
following section we give an alternative,sententialformula-
tion in terms ofconditional beliefs, and introduce the notion
of what it means for one sentence tooverruleanother in the
context of a tpo-revision operator. After this we study some



notions of strict preference which can be extracted from�
and show how these are closely related to the ‘overrules’ re-
lation. Next we examine two known special cases of our
family and give an example which shows how rigid use of
either of these can sometimes lead to counter-intuitive re-
sults. In the penultimate section we describe and axiomatise
an interesting sub-class of our family which remains general
enough to include the two special cases, before concluding.

Preliminaries: We work in a propositional languageL
generated by finitely many propositional variables. We use
⊢ and≡ to denote classical logical consequence and classi-
cal logical equivalence respectively. We sometimes also use
Cn to denote the operation of closure under classical logical
consequence.W is the set of propositional worlds. Given
α ∈ L, we denote the set of worlds which satisfyα by [α].
Given any setS ⊆ W of worlds,Th(S) will denote the set
of sentences true in all the worlds inS. A tpo is a binary
relation≤ which is both transitive and connected (for any
x, y eitherx ≤ y or y ≤ x). In what follows we assume a
fixed but arbitrary initial tpo≤ overW which we wish to re-
vise.< will denote the strict part of≤, and∼ the symmetric
closure of≤ (i.e. x ∼ y iff both x ≤ y andy ≤ x). We are
interested in functions∗ which, for eachα ∈ L, return a new
ordering≤∗

α, and we will refer to any such∗ asa revision
operator for≤.

Enriching the preference state
We letW± = {xǫ | x ∈ W andǫ ∈ {+,−}}. We assume
xǫ = yδ only if both x = y andǫ = δ. We suppose, along
with ≤, we are given some relation� overW±. We expect
some basic conditions on� and its interrelations with≤:

(�1) � is a tpo overW±

(�2) x+ � y+ iff x ≤ y

(�3) x− � y− iff x ≤ y

(�4) x+ ≺ x−

(�2) and (�3) say that the choice between two worlds both
on a good day, resp. both on a bad day, should be precisely
the same as that dictated by≤. (�4) just says that given
the choice betweenx on a good day andx on a bad day, we
should choosex on a good day.

Definition 1 Let�⊆ W± × W±. If � satisfies (�1)–(�4)
we say� is a≤-faithful tpo (overW±).

A ≤-faithful tpo � can be given a useful graphical rep-
resentation. First recall that any tpo≤′ can be equivalently
represented as its linearly ordered set ofranks. The ranks
of ≤′ are the equivalence classes[[x]]∼′ modulo the sym-
metric closure∼′ of ≤′, and they are ordered by the relation
[[x]] ≤′ [[y]] iff x ≤′ y. By (�2), resp. (�3), if x andy are two
worlds in the same≤-rank, thenx+ andy+, resp.x− and
y−, are in the same�-rank. Thus ifR1 < · · · < Rm are the
ranks of≤ we can represent� as a2 × m table of numbers
whoseith column corresponds to rankRi, and whose top
and bottom rows correspond to+ and− respectively. Then
xǫ � yδ iff the entry in(ǫ, [[x]]) is less than or equal to the en-
try in cell (δ, [[y]]). By (�2) and (�3) the numbers increase
strictly monotonically from left to right, while (�4) decrees

they increase strictly monotonically from top to bottom. An
example assuming just three≤-ranks is shown below:

1 2 3

3 4 5

R1 R2 R3

+

−

Figure 1: A graphical representation of�.

As this example shows, there is nothing to stop the same
number appearing inboth a cell in the “+” row and a cell
in the “−” row. So in the above we see that if the rank of
world x is R1 and the rank of worldy is R3 thenx− andy+

appear in thesame�-rank. In other words,x on a bad day
is equally preferredto y on a good day.

Revision operators defined from�
Now given a≤-faithful tpo� overW± we want to use the
information given by� to define a revision operator∗ = ∗�
for≤. The idea is that the evidenceα casts a favourable light
on those worlds satisfyingα. In other words, we consider
worlds satisfyingα to be having a “good day”, with those
worlds inconsistent with the evidence having a “bad day”.
We set, for anyα ∈ L andx ∈ W :

rα(x) =

{

x+ if x ∈ [α]
x− if x ∈ [¬α]

The revised tpo≤∗
α is defined by setting, for eachx, y ∈ W ,

x ≤∗
α y iff rα(x) � rα(y).

Definition 2 For each≤-faithful tpo� over W±, we call
∗� as defined above the revision operatorgenerated by�.

Example 1 Consider the propositional language generated
by the atomsp andq. We represent worlds as sequences of
0s and 1s, representing the valuations ofp andq respectively
(thus01 represents a world wherep is false andq is true).
Let≤ be the ordering on worlds depicted in the following:

00

0110 11

Let � be the≤-faithful tpo depicted in Figure 1. Revision
by q can be represented pictorially as follows:

00

00
01

01 10

10

1111

In the table on the left, worlds satisfyingq are placed in the
top row, with those not satisfyingq placed in the bottom row.



The resulting ordering≤∗
q, shown on the right, is obtained

by reading the ranks from the corresponding cell in Figure
1. The resulting belief set, i.e., the set of sentences true in
all the≤∗

q-minimal worlds, isCn(p ∧ q). The revision of≤
by¬p ∧ q can be similarly represented as follows:

00
00

01

01
10

10

11

11

This time the resulting belief set associated with≤∗
¬p∧q is

Cn(p ↔ ¬q). Since¬p ∧ q 6∈ Cn(p ↔ ¬q), this exam-
ple shows that new evidence is not always in the belief set
associated to the new tpo.

What are the properties of∗�? Consider the following list:

(∗1) ≤∗
α is a tpo overW

(∗2) α ≡ γ implies≤∗
α=≤∗

γ

(∗3) If x, y ∈ [α] thenx ≤∗
α y iff x ≤ y

(∗4) If x, y ∈ [¬α] thenx ≤∗
α y iff x ≤ y

(∗5) If x ∈ [α], y ∈ [¬α] andx ≤ y thenx <∗
α y

(∗6) If x ∈ [α], y ∈ [¬α] andy ≤∗
α x theny ≤∗

γ x

(∗7) If x ∈ [α], y ∈ [¬α] andy <∗
α x theny <∗

γ x

(∗1) just says revising a tpo overW should result in another
tpo overW , while (∗2) is a syntax-irrelevance property. The
next three rules are all familiar from the literature on iterated
belief change. (∗3) and (∗4) appear respectively as (CR1)
and (CR2) in Darwiche and Pearl’s (1997) well-known list
of four postulates. They say that after revising byα, the rel-
ative ordering betweenα-worlds, respectively¬α-worlds,
remains unchanged. (∗5) was proposed independently by
Booth & Meyer (2006) and Jin & Thielscher (2005). It is
easily seen to be stronger than the other two rules in the
Darwiche-Pearl list (which can be obtained by replacing≤
by < (CR3) and<∗

α by ≤∗
α (CR4) respectively). It says if

anα-world x was considered at least as preferred as a¬α-
world y beforereceivingα, then after revision it should be
consideredstrictly more preferred. These three rules were
considered characteristic of a family of operators calledad-
missiblerevision operators (Booth & Meyer 2006).

So far each of our rules mention onlyone revision in-
put sentenceα (modulo logical equivalence). By analogy
with the AGM postulates forbelief setrevision (Alchourrón,
Gärdenfors, & Makinson 1985), we might consider them as
the set ofbasicpostulates for tpo-revision. One thing largely
missing from the literature on iterated belief change is a seri-
ous study ofsupplementaryrationality properties which be-
stow a certain amount ofcoherenceon the results of revising
≤ by differentsentences. The last couple of properties do
this. First, suppose evidenceα is received, and letx ∈ [α],
y ∈ [¬α], but supposey ≤∗

α x. We propose that ifx is not
more preferred thany, even afterreceiving evidence which
clearly points more tox being the case than it does toy,
then there can beno evidence which will lead tox being
more preferred toy. This is expressed by (∗6). Similarly

(∗7) says ifx is deemedstrictly less preferred thany after
receivingα thenx must be strictly less preferred after re-
ceivinganyinput.

It turns out that these properties provide an exact charac-
terisation of the revision operators we consider.

Theorem 1 Let∗ be any revision operator for≤. Then∗ is
generated from some≤-faithful tpo� overW± iff ∗ satisfies
(∗1)–(∗7).

To show the completeness part of Theorem 1, starting
from any revision operator∗ for≤ we can define an ordering
�∗ overW± as follows. Letx, y ∈ W andδ, ǫ ∈ {+,−}.
If δ = ǫ then we set

xδ �∗ yδ iff x ≤ y.

This obviously ensures�∗ complies with (�2) and (�3).
Now supposeδ 6= ǫ. If x = y then we simply setx+ ≺∗ x−,
to ensure compliance with (�4). Otherwise we set

x+ �∗ y− iff x ≤∗
x y, x− �∗ y+ iff x ≤∗

y y.

Here, when we use a worldx as a subscript in≤∗
x, we are

using it to denote any sentenceα such that[α] = {x} (note
that if ∗ satisfies (∗2) the precise choice ofα is irrelevant).
Then if ∗ satisfies (∗1)–(∗7) then�∗ is a≤-faithful tpo and
the revision operator generated from�∗ is precisely∗.

Some social choice-like conditions
In this subsection we discuss some more properties satis-
fied by our revision operators. These properties are recog-
nisable as versions of properties familiar from the theory
of social choice, or preference aggregation(Arrow 1963).
The problem of preference aggregation is the problem of
finding some functionf which, given any list of tpos (over
some given setX of alternatives) ≤1, . . . ,≤n, with the≤is
representing the preferences overX of the individualsin a
group, will return a new single orderingf(≤1, . . . ,≤n) over
X which adequately represents the preferences of thegroup
as a whole. Now, we can think of our problem of deter-
mining≤∗

α as a highly specialised case of this problem. To
do this we need to repackage the new evidenceα ∈ L into
tpo-form. The simplest way to do this is as follows.

Definition 3 For anyα ∈ L, the tpo≤α generated byα is
the tpo overW given byx ≤α y iff x ∈ [α] or y ∈ [¬α].

In other words≤α is the tpo overW consisting of (at most)
two ranks: the lower one containing all theα-worlds and the
upper one containing all the¬α-worlds. Then we can think
of revision of≤ by α as an aggregation of≤ with ≤α. (This
manoeuver is also carried out by Glaister, 1998 and Nayak,
1994. An alternative way of generating tpos from sentences,
based on the Hamming distance between two propositional
worlds, is mentioned by Benferhatet al., 2000.)

Many properties of preference aggregation operators have
been proposed. One well-known property, known as the
Paretocondition, is that, given two alternativesx andy, if
every individual prefersx at least as much asy, and if at
least one individualstrictly prefersx overy, then the group
shouldstrictly preferx over y. In our case, this condition
translates into the following property:



(Pareto) Ifx ≤ y andx ≤α y, and at least one of these
two inequalities is strict, thenx <∗

α y

The case of the above rule where≤α is strict is nothing other
than (∗5), while the case wherex ∼α y andx < y is easily
seen to follow mainly from (∗3) and (∗4). Thus we have:
Proposition 1 Every revision operator∗ generated by some
≤-faithful tpo� overW± satisfies (Pareto).

Another well-known property from preference aggrega-
tion is known asIndependence of Irrelevant Alternatives,
which states that for any two alternativesx andy, the group
preference betweenx andy should depend only on how each
individual ranksx andy. More precisely, if we were to re-
place individuali’s tpo≤i by any other tpo≤′

i which ranks
x andy in exactly the same way as≤, thenx andy would be
ranked in exactly the same way inf(≤1, . . . ,≤′

i, . . . ≤n) as
in f(≤1, . . . ,≤i, . . . ≤n). It turns out that our family of op-
erators satisfy a restricted version of this rule, which we call
Independence of Irrelevant Alternatives in the Input. Given
α, γ ∈ L, andx, y ∈ W , let’s sayα andγ agree onx and
y iff either bothx <α y andx <γ y, or bothx ∼α y and
x ∼γ y, or bothy <α x andy <γ x. In other wordsα andγ
both “say the same thing” regarding the relative plausibility
of x andy.

(IIA-Input) If α andγ agree onx andy
thenx ≤∗

α y iff x ≤∗
γ y

That this is a property of our family of tpo-revision operators
can be straightforwardly shown by considering an arbitrary
≤-faithful tpo � over W±. But in fact we can show the
following:
Proposition 2 Let ∗ be any revision operator for≤ which
satisfies (∗1) and (∗3)–(∗5). Then∗ satisfies (IIA-Input) iff∗
satisfies both (∗6) and (∗7).
Thus, given the “basic” properties (∗1)–(∗5) for tpo-
revision, requiring∗ to satisfy the two “supplementary”
properties (∗6) and (∗7) amounts to enforcing (IIA-Input).
Note this equivalence does not require the presence of the
syntax-irrelevance property (∗2). In fact, since sentences
which are logically equivalent agree onall worldsx andy,
we see that (∗2) actuallyfollows from(IIA-Input). Conse-
quently, we have established that in the list (∗1)–(∗7), prop-
erty (∗2) is redundant.

For more discussion on social choice-like conditions and
their relevance to tpo-revision we refer the reader to the work
of Glaister (1998).

On the sentential level
So far all our properties of tpo-revision operators have
been expressed on the “semantic level”, directly in terms of
worlds. But there is also asententiallevel on which we can
recast our properties. For any tpo≤′ overW and anyβ ∈ L
we letmin(β,≤′) denote the set of≤′-minimal elements of
[β], i.e.,min(β,≤′) = {x ∈ [β] | 6 ∃y ∈ [β] s.t. y <′ x}.
Then we define:

≤′ ◦β = Th(min(β,≤′)).

≤′ ◦β represents what is believed in≤′ on thesupposition
that β is the case. Ifλ ∈ ≤′ ◦β then we might also say

β ֌ λ is a conditional beliefin ≤′. Note that we do not
necessarily assume this is the same thing as sayingλ would
be believed after receivingβ explicitly as evidence. This
is because we want to support non-prioritised revision, so
in particularβ itself might not necessarily be believed after
receiving it as evidence (it might be simply too far-fetched).
Nevertheless, new evidence will have some impact on the
set of conditional beliefs. Note that this notation enablesus
to denote the belief set associated to≤′ by≤′ ◦⊤.

We can give all the properties (∗2)–(∗7) an equivalent for-
mulation in terms of◦, thus giving a set of sound and com-
plete properties for our family of revision operators which
has a different flavour:

(◦2) If α ≡ γ then≤∗
α ◦β =≤∗

γ ◦β

(◦3) If β ⊢ α then≤∗
α ◦β =≤ ◦β

(◦4) If β ⊢ ¬α then≤∗
α ◦β =≤ ◦β

(◦5) If ¬α 6∈ ≤ ◦β thenα ∈ ≤∗
α ◦β

(◦6) If α 6∈ ≤∗
α ◦β thenα 6∈ ≤∗

γ ◦β

(◦7) If ¬α ∈≤∗
α ◦β then¬α ∈≤∗

γ ◦β

(◦2) just says revising by logically equivalent sentences
yields the same set of conditional beliefs. (◦3) and (◦4)
are essentially the well-known (C1) and (C2) of Darwiche
& Pearl (1997), while (◦5) corresponds to rule (P) of Booth
& Meyer (2006), also referred to asIndependenceby Jin
& Thielscher (2005). The correspondences between these
last three rules and their counterparts in the previous sec-
tion were proved in those papers. (Although these papers all
assume the “prioritised” setting for belief revision in which
revision inputs are always believed after revision.) The last
two rules are neatly explained with the help of the following
terminology:

Definition 4 Given any revision operator∗ for ≤ and given
α, β ∈ L, we shall sayβ overrulesα (relative to∗) iff either
β is inconsistent orα 6∈ ≤∗

α ◦β. We shall sayβ strictly
overrulesα (relative to∗) iff ¬α ∈≤∗

α ◦β.

The inclusion of the clause “β is inconsistent” in the defini-
tion of “overrules” allows for a smoother exposition. This
way we get the intuitively expected chain of implications
β ⊢ ¬α implies β strictly overrulesα, which impliesβ
overrulesα. If ∗ satisfies (◦5) then this in turn implies
¬α ∈≤ ◦β. Now suppose that evidenceγ is received and
we then make a further suppositionβ. (◦6) says ifβ over-
rulesα andβ is consistent thenα will not be believed, while
(◦7) says ifβ strictly overrulesα thenα will be rejected.

Proposition 3 Let∗ be a revision operator for≤ which sat-
isfies (∗1). Then for eachi = 2, . . . , 7, ∗ satisfies (∗i) iff ∗
satisfies (◦i).

Corollary 1 Let ∗ be a revision operator for≤. Then∗ is
generated from some≤-faithful tpo� overW± iff ∗ satisfies
(∗1) and (◦2)–(◦7).

This sentential reformulation is useful, since there are
some interesting properties which can be formulated in sen-
tential terms, but for which obvious semantic counterparts
do not exist. For example:



(Disj1) (≤∗
α ◦β) ∩ (≤∗

γ ◦β) ⊆ (≤∗
α∨γ ◦β)

(Disj2) (≤∗
α∨γ ◦β) ⊆ (≤∗

α ◦β) ∪ (≤∗
γ ◦β)

These two properties were essentially first proposed by
Lehmann, Magidor, & Schlechta (2001), and seem to be nat-
ural properties to have. The first one says if a conditional
belief is held both after receiving evidenceα and after re-
ceiving evidenceγ, then it is also held after receiving their
disjunction as evidence. The second one says a conditional
belief is not held after receiving a disjunction as evidence,
without being held after receiving just one of the disjuncts
in isolation.

Proposition 4 Every revision operator∗ generated from
some≤-faithful tpo� overW± satisfies (Disj1) and (Disj2).

We prove this result by considering an arbitrary≤-faithful
tpo �, rather than trying to derive these rules syntacti-
cally from (∗1) and (◦2)–(◦7). A key property used in the
proof is that, for anyα, γ ∈ L andx ∈ W , rα∨γ(x) =
min{rα(x), rγ(x)}.

The next result shows that≤∗
α ◦β falls neatly into one of

three categories. Note we don’t need (◦6) and (◦7) for this.
Proposition 5 Let ∗ be any revision operator for≤ satis-
fying (∗1) and (◦2)–(◦5), and let the overrules relations be
given relative to∗. Then for allα, β ∈ L,

≤∗
α ◦β =











≤ ◦(α ∧ β) if β doesn’t overruleα
(≤ ◦(α ∧ β)) ∩ (≤ ◦β)

if β overrulesα, but not strictly
≤ ◦β if β strictly overrulesα

Thus if β doesn’t overruleα then making the supposition
β after receivingα as evidence is the same as supposingα
andβ togetherin the initial tpo≤. If β strictly overrules
α then evidenceα is just ignored when making the further
suppositionβ. In the intermediate case whereβ overrulesα,
but not strictly, supposingβ following evidenceα results in
a mixture of these two.

In particular note what happens whenβ ≡ ⊤. We see that
≤∗

α ◦⊤ equals either(i) ≤ ◦α, or (ii) (≤ ◦α) ∩ (≤ ◦⊤),
or (iii) ≤ ◦⊤. Thus either the evidence is fully incorporated
into the belief set using the AGM revision operator corre-
sponding to≤ (Katsuno & Mendelzon 1991) (case(i)), or
the belief set remains unchanged (case(iii) ), or there is an
intermediate possibility ((ii) ), which amounts to removing
¬α from the initial belief set using the AGM contraction op-
erator corresponding to≤. That is, we don’t commit to be-
lieving the evidence, but we leave open the possibility that
it mighthold. We will have more to say on these notions of
overruling in the next section.

Notions of strict preference
In this section we shall assume a fixed≤-faithful tpo� over
W±. Given� we can define two more interesting prefer-
ence orderings overW :

x ≪ y iff x− � y+, x ≪ y iff x− ≺ y+

In other words,x ≪ y, resp.x ≪ y, is saying thatx, even
on a bad day, is at least as preferred as, resp. strictly pre-
ferred to,y. The next proposition collects some properties
of these two orderings.

Proposition 6
(i) ≪⊆≪⊆< (where recall< is the strict part of the initial
tpo≤).
(ii) ≪ and≪ are both strict partial orders (i.e., irreflexive
and transitive).
(iii) ≪ and≪ both satisfy thefiltered condition (Freund
1991), i.e., for allx, y ∈ W and β ∈ L, if x, y ∈
[β] \ min(β, <′) then there existsz ∈ [β] such thatz <′ x
andz <′ y.

(Recall for a strict partial order<′, min(β, <′) = {x ∈ [β] |
6 ∃ y ∈ [β] s.t.y <′ x}.) By (i) we see<, ≪ and≪ form
progressively more stringent notions of strict preference. If
we let∗ = ∗� then we seex ≪ y impliesrγ(x) ≺ rγ(y)
for all γ ∈ L, and sox <∗

γ y for anyγ. Thus≪ can also
be viewed as a set ofcore, or protectedstrict preferences in
< which are always preserved in any revision. Meanwhile
we havex ≪ y implies x ≤∗

γ y for anyγ. Thus≪ may
be viewed as a set ofweakly protectedstrict preferences, in
the sense that ifx ≪ y then no evidence will ever cause this
preference to bereversed.

It turns out that these relations≪ and≪ are closely re-
lated to the notions of overruling and strict overruling from
Definition 4.

Proposition 7 Let the overrules relations be given relative
to ∗�. Then(i) β overrulesα iff min(β,≪) ⊆ [¬α]. (ii) β
strictly overrulesα iff min(β, ≪) ⊆ [¬α].

For each of the two overrules relations we may consider an
interdefinableinferencerelation. We define:

β ⇒ α iff β overrules¬α

β ⇛ α iff β strictly overrules¬α.

Using fundamental results by Freund (1991) and Kraus,
Lehmann, & Magidor (1990), classifying various families
of nonmonotonic inference relations, Proposition 7 together
with the properties of≪ and≪ now allows us to deduce
many properties of⇒ and⇛, and thereby of the overrules
relations:

Corollary 2 The binary relations⇒ and ⇛ are both
(consistency-preserving)preferentialinference relations, in
the sense of Kraus, Lehmann, & Magidor (1990). Further-
more they both satisfy the rule ofDisjunctive Rationality,
i.e., if β ∨ γ ⇒ α then eitherβ ⇒ α or γ ⇒ α.

The first part is a consequence of the fact that≪ and≪

are strict partial orders (Kraus, Lehmann, & Magidor 1990).
In particular it implies⇒ and⇛ both satisfy the following
rules (among others):

β ⇒ α, α ⊢ γ

β ⇒ γ
(Right Weakening)

β ⇒ α, β ⇒ γ

β ⇒ α ∧ γ
(And)

β ⇒ α, β ⇒ γ

β ∧ γ ⇒ α
(Cautious Monotony)

Switching things around in terms of the corresponding
overrules relations, Right Weakening implies ifβ (strictly)



overrulesα thenβ (strictly) overrules every sentence log-
ically stronger than α. The And-rule tells us that ifβ
(strictly) overrules bothα andγ separately, then it (strictly)
overrules theirdisjunction. While Cautious Monotony trans-
lates into the rule that ifβ (strictly) overrulesα, then so does
β ∧ ¬γ, providedβ (strictly) overrulesγ.

The second part of Corollary 2 follows from results by
Freund (1991) and Proposition 6(iii) . It implies a disjunc-
tion β ∨ γ cannot (strictly) overruleα without at least
one of its disjuncts doing so. However it’s possible for
neither⇒ nor ⇛ to satisfy the well-known rule Rational
Monotony (Kraus, Lehmann, & Magidor 1990) (and thus
also Monotony). I.e., ifβ ⇒ α andβ 6⇒ ¬γ thenβ∧γ ⇒ α.
This is because it can be shown that the relations≪ and≪

are not in generalmodular, i.e., they do not verify the prop-
ertyx <′ y implies there existsz such that eitherx <′ z or
z <′ y. (A counterexample for≪ can be found by taking
the initial tpo from Example 1 with the� defined earlier in
Figure 1, and then by takingx = 10 andy = 01.)

Limiting cases
In this section we investigate some special limiting cases of
our family of revision operators. Firstly, suppose we insist
on the following strengthening of property (�4):

(�L) x+ ≺ y−.

In other words, given a choice between any world on a good
day and any world on a bad day, we choose the world on a
good day every time. This is equivalent to the limiting case
where≪ = ∅ (thus also≪ = ∅). Hence this condition
can be thought of as expressing “minimal confidence” be-
hind the initial tpo≤. Note that adding this rule to (�2)
and (�3) is enough to specify a unique tpo overW±, thus
causing (�1) to become redundant. Indeed we are left with
the tpo defined by, for allx, y ∈ W and δ, ǫ ∈ {+,−},
xδ � yǫ iff either (δ = + andǫ = −) or (δ = ǫ andx ≤ y).
In terms of the graphical representation of�, this corre-
sponds to the case where every number in the “+” row is
strictly less thanevery number in the “−” row:

1 2 n

n + 1 n + 2 2n

· · ·

· · ·

· · ·

R1 R2 Rn

+

−

The revision operator∗L defined by this� then reduces to:

x ≤∗
α y iff either x <α y or (x ∼α y andx ≤ y)

This is the well-knownlexicographicrevision operator stud-
ied and axiomatised in the context of iterated belief revision
(Glaister 1998; Spohn 1988; Nayak, Pagnucco, & Peppas
2003). It amounts to≤α being refined by≤. We can char-
acterise∗L within our family in the following way:

Proposition 8 If ∗ is generated from some≤-faithful tpo
overW± satisfying (�L) then∗ satisfies:

(∗L) If x ∈ [α] andy ∈ [¬α] thenx <∗
α y.

Furthermore if∗ is anyrevision operator for≤ which satis-
fies (∗L) then the≤-faithful tpo�∗ defined right after Theo-
rem 1 satisfies (�L).

From this result we see that∗L is axiomatically characterised
by (∗1)–(∗7) plus (∗L). However it is easy to see that (∗L)
implies (∗5)–(∗7). (∗1) also becomes redundant, since (∗3),
(∗4) and (∗L) are enough to force the unique tpo≤∗

α, and
we already established after Proposition 2 that (∗2) can be
removed. Hence (∗3), (∗4) and (∗L) form a sound and com-
plete axiomatisation for∗L. The sentential counterpart of
(∗L) is the ruleRecalcitranceof Nayak, Pagnucco, & Pep-
pas (2003), i.e.,

(◦L) If β 6⊢ ¬α thenα ∈≤∗
α ◦β.

Note also that new evidence is always believed after lexico-
graphic revision. A characterisation of∗L in terms of social
choice-like conditions was given by Glaister (1998), who re-
ferred to it as “J-revision”.

At the other extreme, suppose instead we insist on

(�P) x < y impliesx− ≺ y+.

This rule is equivalent to saying≪ = <. (Thus also≪ =
<.) This property expresses maximal confidence behind the
initial tpo ≤, or skepticism towards new evidence. Adding
this rule to (�2)–(�4) is again enough to specify� com-
pletely. It is not difficult to show this time we are left with
xδ � yǫ iff either x < y or [x ∼ y and(δ = + or ǫ = −)]:

1 3 2n − 1

2 4 2n

· · ·

· · ·

· · ·

R1 R2 Rn

+

−

The associated revision operator∗P is then given by

x ≤∗
α y iff either x < y or (x ∼ y andx ≤α y).

This is a “reverse” lexicographic method, studied in the con-
text of iterated belief revision (Papini 2001). This time it
corresponds to≤ being refined by≤α. In this case new evi-
dence is not always believed.

Proposition 9 If ∗ is generated from some≤-faithful tpo
overW± satisfying (�P) then∗ satisfies

(∗P) If x ∈ [¬α], y ∈ [α] andx < y thenx <∗
α y.

Furthermore if∗ is anyrevision operator for≤ which satis-
fies (∗P) then the≤-faithful tpo�∗ defined right after The-
orem 1 satisfies (�P).

This result implies∗P may be characterised axiomatically
by (∗1)–(∗7) plus (∗P). However we may significantly sim-
plify this list by observing that, in the presence of the other
rules, (∗6), (∗7) and (∗P) are together equivalent to the sin-
gle short-and-sweet rule

(∗p) < ⊆ <∗
α.

Again (∗1) becomes redundant, and so we arrive at the fol-
lowing characterisation of∗P.



Proposition 10 ∗P is the unique revision operator for≤
which satisfies (∗3)–(∗5) plus (∗p).

It is easy to see the sentential counterpart of (∗p) is the fol-
lowing rule:

(◦p) ≤ ◦β ⊆ ≤∗
α ◦β.

(◦p) states thatall conditional beliefs in≤ are preserved af-
ter revision.

As the following example shows (partly based on one by
Darwiche & Pearl, 1997), rigid use of either of these limiting
cases∗L and∗P can lead to counter-intuitive results.

Example 2 Suppose we have a murder trial with two main
suspects, John and Mary. Letp represent “John is the mur-
derer” andq represent “Mary is the murderer”. Furthermore
let r represent “The victim is an alien from outer-space”.

Initially we believe the murder was committed by one per-
son, either John or Mary. However wewouldn’t be surprised
to discover that either both or neither were involved in the
crime. Whatwouldbe surprising – indeed highly shocking
– would be if we found out the victim was an alien. However
we are still capable of imagining a hypothetical situation in
which this turns out to be the case, and we think this would
not alter our belief that either John or Mary acted alone. If
we were to represent all this using a tpo≤, it seems the fol-
lowing is the best candidate:

000010

100 110

001011

101 111

Now during the trial we receive testimony that John is the
murderer, leading us to revise≤ by p. Supposing we then
receive testimony that Mary is the murderer, the most rea-
sonable conclusion would be that both John and Mary were
involved in the murder. But using the operator∗P gives

≤∗P

p ◦q = Cn(¬p ∧ q ∧ ¬r)

We are forced to drop our belief that John is the murderer.
Now consider the situation where we receive testimony

that John is the murderer, followed by the supposition that
if John is the murderer, then the victim is an alien. In this
case it seems the reasonable thing to do is drop the acquired
belief that John is the murderer. However, using the operator
∗L gives

≤∗L

p ◦(p → r) = Cn(p ∧ ¬q ∧ r)

That is, we end up believing John murdered an alien!
The move to our more general family of tpo-revision op-

erators enables a correct treatment of both these scenarios
simultaneously. Consider the≤-faithful tpo � represented
by:

1 2 5 6

3 4 7 8

R1 R2 R3 R4

+

−

In the first case where we receive evidence pointing towards
John’s guilt followed by the supposition Mary did it, we have

≤∗
p ◦q = Cn(p ∧ q ∧ ¬r)

which is the intuitive result. In the case where we receive
evidence for John being the murderer, followed by suppos-
ing that if John is the murderer then the victim is an alien,
we have

≤∗
p ◦(p → r) = Cn(¬p ∧ q ∧ ¬r)

which is what we would expect.

A further sub-class
Close inspection reveals that both the limiting cases men-
tioned above share something in common – in both cases we
have≪=≪. Writing out this condition in full, the unique
� defined in each case satisfies:

(�5) x− � y+ iff x− ≺ y+.

This condition states that nox− appears in the same�-rank
as ay+. In this section we take a look at the subclass of
our family of revision operators defined by enforcing this
condition.

Firstly, in terms of the graphical representation of� the
effect of (�5) is simple: it just means that no number is al-
lowed to appeartwicein the array of numbers. Another thing
to notice is that if≪=≪ then the distinction between the
overrules relation and thestrictly overrules relation relative
to ∗� disappears – they collapse into the same binary rela-
tion. As for an axiomatic characterisation of this subfamily,
the next result points the way:

Proposition 11 If ∗ is generated from some≤-faithful tpo
overW± satisfying (�5) then∗ satisfies

(∗8) For x ∈ [α] andy ∈ [¬α], eitherx <∗
α y or y <∗

α x.

Furthermore if ∗ is any revision operator for≤ which
satisfies (∗8) then the≤-faithful tpo�∗ defined right after
Theorem 1 satisfies (�5).

Condition (∗8) means that after revising byα, there is a sep-
aration betweenα-worlds and¬α-worlds, in the sense that
each≤∗

α-rank containseither only α-worlds or only¬α-
worlds. This property is called (UR) by Booth & Meyer
(2006), where it is shown that its sentential counterpart is:

(◦8) If ¬α 6∈ ≤∗
α ◦β thenα ∈≤∗

α ◦β.

The postulate (◦8) does have a certain amount of intuitive
appeal. It says that after receivingα as evidence and then
making the suppositionβ, α should be believed as long as it
is consistent to do so.

(∗8), alias (◦8), is quite a strong rule, and adding it to the
list (∗1)–(∗7) causes some redundancies. Since (∗8) implies
the equivalence ofx ≤∗

α y with x <∗
α y for x 6∼α y, we

see (∗6) now follows from (∗7). Meanwhile (∗5) becomes
equivalent to “ifx <α y andx ≤ y thenx ≤∗

α y” (i.e.,
(CR4) proposed by Darwiche & Pearl, 1997). But using the
fact that≤=≤⊤ (which follows from (∗3)), this is seen as
just the instance of (∗7) in whichγ = ⊤. Hence (∗5) also



disappears. Thus the class of tpo-revision operators gener-
ated by those≤-faithful tpos overW± satisfying (�5) may
be characterised as follows:

Theorem 2 Let ∗ be a revision operator for≤. Then∗
is generated from some≤-faithful tpo overW± satisfying
(�5) iff ∗ satisfies (∗1), (∗3), (∗4), (∗7) and (∗8).

Of course we can if we wish replace the last four rules above
with their sentential equivalents.

Conclusion and future work
We have introduced a new family of operators for revising
total preorders by sentences based on the simple intuitive
idea that when we compare possibilities, we are often able
to imagine these possibilities with regard to “best case” and
“worst case” scenarios. We have placed this family firmly
in the context of the problem of iterated belief revision, and
have shown that our results significantly extend current work
on this topic.

On the level of belief sets, our operators fall within the
realm of non-prioritised revision, in that revision inputsare
not necessarily elements of the belief set associated to there-
vised preorder. This is in contrast to most works on iterated
belief change, which are usually given in the “prioritised”
setting (with the work of Booth, 2005 being an exception).
We envisage prioritised revision byα as a two-stage process,
with the first stage being carried out by one of the operators
in this paper, and then the second stage consisting of an ap-
plication of Boutilier’snatural revision(1996) of the result-
ing tpo byα, i.e., the most preferredα-worlds are simply
brought if necessary to the front of the new tpo. For the spe-
cial case of the operator∗P, this was already done by Booth
& Meyer (2006), leading to therestrained revisionoperator
(see Section 5 of that paper). For future work we plan to
apply this to the more general family.

Another direction for future research is the investigation
of larger families of revision operators, such as those ob-
tained by weakening one, or both, of (�2) and (�3). Ob-
serve that this is equivalent to weakening (∗3) and (∗4), or
(◦3) and (◦4). The weakening of (◦4) will be of particular in-
terest, since it is essentially equivalent to the much-criticised
postulate (C2) proposed by Darwiche & Pearl (1997).

Conversely, it would be interesting to consider special
subclasses of our general family. We considered one in the
last section. Another example could be the family obtained
by taking≪ or ≪ to be modular orderings. Finally note
that our operators do not conform to the principle ofcate-
gorical matching– from an initial tpo≤ together with a≤-
faithful tpo� overW± they return a new tpo≤∗

α, but give
no help on defining a new≤∗

α-faithful tpo overW± which
can then be used to further revise≤∗

α. One way of rectifying
this might be to preserve as much of≪ and≪ as possible.
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