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Abstract

Most approaches tiberated belief revisiorare accompanied

by some motivation for the use of the proposed revision op-
erator (or family of operators), and typically encode erfoug
information for uniquely determining one-step revisiorutB

in those approaches describing a family of operators, there
is usually little indication of how to proceed uniquely afte
the first revision step. In this paper we take a step towards
addressing that deficiency by providing a formal framework
which goes beyond the first revision step. The framework
is obtained by enriching the preference information stgrti
from the following intuitive idea: we associate to each worl

x two abstract objects™ andz ™, with the intuition thate™
representse “on a good day”, whilex™ representsc “on

a bad day”, and we assume that,addition to preferences
over the set of worlds, we are given preferences over this
set of objects as well. The latter can be considered as meta-
information which enables us to go beyond the first revision
step of the revision operator being applied.

Introduction

Total preorders (hereaftgrog are used to represent prefer-
ences in many contexts. In particular they are a common tool
in belief revision(Grove 1988; Katsuno & Mendelzon 1991;
Rott 2001). In that setting they are taken to stand for plau-
sibility orderings on the set of propositional worlds, whic
are used to encode tléspositiondor change, or theondi-
tional beliefsof an agent. The associatedlief seis taken to
be the set of those sentences true in all the minimal worlds.
When new evidence comes in, the plausibility ordering is
used to calculate the new belief set, usually by setting it to
be the set of those sentences true in all the minimal mod-
els of . This ensures a unique new belief set, but does not
provide enough information to obtain a new tpo, which may
then serve as the target for thextrevision input. Thus the
guestion of modelling the dynamics tpiosis of critical im-
portance to the problem dkrated belief revision

The past ten years has seen a flurry of activity in this
area, with (Darwiche & Pearl 1997) and (Nayak, Pagnucco,
& Peppas 2003) being representative examples. Most ap-
proaches devote considerable effort to motivating the use
of their proposed revision operator (or family of opera}ors
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But in those approaches describing a family of operators,
there is usually little (or no) indication of how to choose
among the available operators. In this paper we make a con-
tribution towards overcoming that deficiency by providing a
formal framework which obtains a uniqto following one
revision step, thereby going beyond just the belief set re-
sulting from the revision input. The framework is obtained
by enriching the preference information encoded in the tpo
starting from the following intuitive idea: when we com-
pare two different worlds: andy according to preference,
often we are able to imagine different contingencies, atcor
ing to whether all goes well im andy or not. For example,
given a choice between spending the day surfing at the beach
and spending it in the office, we might think that even a bad
day surfing is preferable to a good day working. Our idea
is to associate to each worldtwo abstract objects™ and

x~, with the intuition that:™ represents “on a good day”,
while ™ represents: “on a bad day”, and we assume that,
in addition tothe given tpo< over the set of worlds, we are
given a tpo= over this set of objects.

This meta-information allows us to uniquely determine
the new tpo: when new evidenaecomes in it casts a more
favourable light on those worlds in whiehholds. Thus the
evidence signals a “good day” for all those worlds satigfyin
o, and a “bad day” for the:xa-worlds. The revised tpg?, is
obtained by setting < vy iff z¢ < y°, wheree,§ € {+, —}
depending on whether, y satisfy« or not.

As we will see, one commonly assumed rule from belief
revision which will not generally hold for our revision op-
erators is that the input is necessarily an element of the
belief setassociated taC’. Thus, at the belief set level, we
are in the realm of so-calleabn-prioritisedrevision (Hans-
son 1999; Hanssoet al. 2001).

The plan of the paper is as follows. We begin in the next
section by describing our enriched preference state. Then
we show how to use this enrichment to define a unique tpo-
revision operator, and we axiomatically characterise #ie r
sulting family of operators. Initially we describe the pevp
ties of this family on asemantidevel, i.e., in terms of how
the ordering of individual worlds, y undergo change. In the
following section we give an alternativeententiaformula-
tion in terms ofconditional beliefsand introduce the notion
of what it means for one sentencedeerruleanother in the
context of a tpo-revision operator. After this we study some



notions of strict preference which can be extracted frem
and show how these are closely related to the ‘overrules’ re-
lation. Next we examine two known special cases of our
family and give an example which shows how rigid use of
either of these can sometimes lead to counter-intuitive re-
sults. In the penultimate section we describe and axiomatis
an interesting sub-class of our family which remains genera
enough to include the two special cases, before concluding.
Preliminaries: We work in a propositional language
generated by finitely many propositional variables. We use
F and= to denote classical logical consequence and classi-
cal logical equivalence respectively. We sometimes algo us
Cn to denote the operation of closure under classical logical
consequencelV is the set of propositional worlds. Given
a € L, we denote the set of worlds which satisfyby [«].
Given any setS C W of worlds, Th(S) will denote the set
of sentences true in all the worlds /1 A tpo is a binary
relation < which is both transitive and connected (for any
x,y eitherz < y ory < z). In what follows we assume a
fixed but arbitrary initial tpa< overWW which we wish to re-
vise. < will denote the strict part of, and~ the symmetric
closure of< (i.e. x ~ y iff both x < y andy < z). We are
interested in functions which, for eachyv € L, return a new
ordering<*, and we will refer to any such asa revision

=

operator for<.

Enriching the preference state

We letW#* = {z¢ | x € W ande € {+,—}}. We assume
x¢ = y° only if bothz = y ande = §. We suppose, along
with <, we are given some relation overIW=. We expect

some basic conditions of and its interrelations witk<:

(%1) <=<isatpooveV*
(%2) 2T =<ytiffx<y
(23) 2~ 2y iffx<y
(24) a2t <z™

(%2) and 3) say that the choice between two worlds both

they increase strictly monotonically from top to bottom. An
example assuming just threeranks is shown below:

Ry Ry Rs

Figure 1: A graphical representation-sf

As this example shows, there is nothing to stop the same
number appearing ibotha cell in the 4+” row and a cell
in the “~" row. So in the above we see that if the rank of
world z is R; and the rank of world is R3 thenz~ andy™
appear in thesame=-rank. In other wordsy on a bad day
is equally preferredo y on a good day.

Revision operators defined from=

Now given a<-faithful tpo < over W+ we want to use the
information given by< to define a revision operater= *<

for <. The idea is that the evidenaecasts a favourable light
on those worlds satisfying. In other words, we consider
worlds satisfyinga to be having a “good day”, with those
worlds inconsistent with the evidence having a “bad day”.
We set, foranyy € L andx € W

{

The revised tpa<?, is defined by setting, for eachy € W,

T ifx e |q)

if z € [a]

X
-

ro(x)

z <o yiff ro () 2 ra(y)-

Definition 2 For each <-faithful tpo < over W=, we call
*< as defined above the revision operagenerated by.

on a good day, resp. both on a bad day, should be precisely Example 1 Consider the propositional language generated

the same as that dictated by, (<4) just says that given
the choice between on a good day and on a bad day, we
should choose on a good day.

Definition 1 Let<C W* x W=, If < satisfies £1)-(<4)
we say= is a <-faithful tpo (overiv*).

A <-faithful tpo < can be given a useful graphical rep-
resentation. First recall that any tgg can be equivalently
represented as its linearly ordered setarfks The ranks
of <’ are the equivalence classpg ... modulo the sym-
metric closure’ of </, and they are ordered by the relation
[2] <" [y] iff z <" y. By (%2), resp. &3), if z andy are two
worlds in the same<-rank, thenz* andy™, resp.z— and
y—, are inthe same&-rank. ThusifR; < --- < R,,, are the
ranks of< we can represent as a2 x m table of numbers
whosei*® column corresponds to rank;, and whose top
and bottom rows correspond #eand— respectively. Then
z¢ <y iffthe entryin(e, [z]) is less than or equal to the en-
try in cell (6, [y]). By (%2) and &3) the numbers increase
strictly monotonically from left to right, while€4) decrees

by the atom® andq. We represent worlds as sequences of
Os and 1s, representing the valuationg ahdq respectively
(thus01 represents a world wheyeis false andy is true).
Let < be the ordering on worlds depicted in the following:

10 11 01

00

Let < be the<-faithful tpo depicted in Figure 1. Revision
by ¢ can be represented pictorially as follows:

11 | 01

11 | 10

01

00

10 | 00

In the table on the left, worlds satisfyingare placed in the
top row, with those not satisfyingplaced in the bottom row.



The resulting ordering<;, shown on the right, is obtained
by reading the ranks from the corresponding cell in Figure
1. The resulting belief set, i.e., the set of sentences true i
all the <*-minimal worlds, isCn(p A ¢). The revision of<

by —p A ¢ can be similarly represented as follows:

01

10 11

11
00

01 00

10

This time the resulting belief set associated with,,, , is
Cn(p < —q). Since-p A q € Cn(p < —q), this exam-

ple shows that new evidence is not always in the belief set
associated to the new tpo.

What are the properties ef;? Consider the following list:

(1) <} isatpooveiV

(*2) a=yimplies<;=<%

(x3) Ifz,y € [a] thenz <! yiff z <y

(x4) Ifx,y € [-a] thenz <! yiff 2 <y

(xB) Ifz € [a], y € [-a] andz < y thenz <% y
(x6) Ifz € [a],y € [na] andy <j, x theny <Xz
(*7) Mz €[a],y € [na]andy <}, z theny <X z

(1) just says revising a tpo ové&F should result in another
tpo overlV, while (x2) is a syntax-irrelevance property. The
nextthree rules are all familiar from the literature onatex
belief change. 3) and &4) appear respectively as (CR1)
and (CR2) in Darwiche and Pearl’s (1997) well-known list
of four postulates. They say that after revisingdyythe rel-
ative ordering between-worlds, respectively-a-worlds,
remains unchanged.«%§) was proposed independently by
Booth & Meyer (2006) and Jin & Thielscher (2005). It is
easily seen to be stronger than the other two rules in the
Darwiche-Pearl list (which can be obtained by replacihg
by < (CR3) and<}, by <! (CR4) respectively). It says if
an a-world = was considered at least as preferred agva
world y beforereceivinga, then after revision it should be
consideredstrictly more preferred. These three rules were
considered characteristic of a family of operators cadldd
missiblerevision operators (Booth & Meyer 2006).

So far each of our rules mention onbne revision in-
put sentencex (modulo logical equivalence). By analogy
with the AGM postulates fabelief setrevision (Alchourron,
Gardenfors, & Makinson 1985), we might consider them as
the set obasicpostulates for tpo-revision. One thing largely
missing from the literature on iterated belief change igha se
ous study osupplementaryationality properties which be-
stow a certain amount @bherenc®n the results of revising
< by differentsentences. The last couple of properties do
this. First, suppose evideneeis received, and let € [a],

y € [-al, but suppose < z. We propose that it is not
more preferred thap, even aftereceiving evidence which
clearly points more tac being the case than it does 40
then there can bao evidence which will lead ta: being
more preferred tg). This is expressed by6). Similarly

(x7) says ifz is deemedbstrictly less preferred thap after
receivinga thenz must be strictly less preferred after re-
ceivinganyinput.

It turns out that these properties provide an exact charac-
terisation of the revision operators we consider.

Theorem 1 Let* be any revision operator fox. Thenx is
generated from some-faithful tpo=< overWW * iff x satisfies
(*1)—(x7).

To show the completeness part of Theorem 1, starting
from any revision operatarfor < we can define an ordering
=, overW¥ as follows. Letr,y € W andé,e € {+,—}.

If 6 = e then we set

x‘;j*y‘;if‘fmgy.

This obviously ensures, complies with £2) and <3).
Now supposé # e. If z = y then we simply set™ <. =™,
to ensure compliance with<4). Otherwise we set

vt =y iff 2 <Xy, x~ j*eriffmg;y.
Here, when we use a world as a subscript i<}, we are
using it to denote any sentenaesuch thafa] = {z} (note
that if x satisfies £2) the precise choice af is irrelevant).
Then if « satisfies £1)—(x7) then=, is a <-faithful tpo and
the revision operator generated frofn is preciselyx.

Some social choice-like conditions

In this subsection we discuss some more properties satis-
fied by our revision operators. These properties are recog-
nisable as versions of properties familiar from the theory
of social choice or preference aggregatio(Arrow 1963).

The problem of preference aggregation is the problem of
finding some functiory’ which, given any list of tpos (over
some given seX of alternative3 <y, ..., <, with the<;s
representing the preferences ovérof the individualsin a
group, will return a new single orderinf<;, ..., <,,) over

X which adequately represents the preferences ajiep

as a whole. Now, we can think of our problem of deter-
mining < as a highly specialised case of this problem. To
do this we need to repackage the new evidence L into
tpo-form. The simplest way to do this is as follows.

Definition 3 For anya € L, the tpo<® generated by is
the tpo ovedV given byx <® yiff € [a] or y € [—al].

In other words<“ is the tpo ovei#V consisting of (at most)
two ranks: the lower one containing all theworlds and the
upper one containing all thea-worlds. Then we can think

of revision of< by « as an aggregation &f with <. (This
manoeuver is also carried out by Glaister, 1998 and Nayak,
1994. An alternative way of generating tpos from sentences,
based on the Hamming distance between two propositional
worlds, is mentioned by Benferhet al,, 2000.)

Many properties of preference aggregation operators have
been proposed. One well-known property, known as the
Paretocondition, is that, given two alternativesandy, if
every individual preferg at least as much ag, and if at
least one individuastrictly prefersx overy, then the group
shouldstrictly preferxz overy. In our case, this condition
translates into the following property:



(Pareto) Ifx <yandz <y, and at least one of these 3 — X is aconditional beliefin <’. Note that we do not

two inequalities is strict, them <, y necessarily assume this is the same thing as sayimguld
The case of the above rule wheté is strictis nothing other D€ believed after receiving explicitly as evidence This
than (5), while the case where ~@ y andz < y is easily is because we want to support non-prioritised revision, so
seen to fbllow mainly from%3) and ¢4). Thus we have: in particularg itself might not necessarily be believed after

o - receiving it as evidence (it might be simply too far-fetched
Proposition 1 Every revision operator generated by SOme oy ertheless, new evidence will have some impact on the
<-faithful tpo < over W+ satisfies (Pareto). o A ; :

set of conditional beliefs. Note that this notation enabiles
~ Another well-known property from preference aggrega- to denote the belief set associatedtoby <’ o T.
tion is known aslndependence of Irr_elevant Alternatives We can give all the propertiesZ)—(«7) an equivalent for-
which states that for any two alternativesindy, the group mulation in terms ob, thus giving a set of sound and com-

preference betweenandy should depend only onhoweach  plete properties for our family of revision operators which
individual ranksz andy. More precisely, if we were to re- has a different flavour:

place individual’s tpo <, by any other tpo<; which ranks

z andy in exactly the same way as, thenz andy would be (02) If a =ythen<g off =< off
ranked in exactly the same way jif<;,...,<},... <,) as (03) If - athen<? of =< of
in f(<1,...,<;,... <,). ltturns out that our family of op- (04) If BF —athen<? o =< of3

erators satisfy a restricted version of this rule, which ai ¢ *
Independence of Irrelevant Alternatives in the Inp@iven (05)  If = ¢ *S ofi thena € Sj B
o,y € L,andz,y € W, let's saya and~ agree onz and (06) Ifa ¢ < ofthena ¢ <7 off

y iff either bothx <* y andx <7 y, or bothx ~* y and (07) If ma €<}, of then—a €<} of
x ~7 y, or bothy < z andy <7 z. In other wordsy and~y
both “say the same thing” regarding the relative plaudipili
of z andy.

(02) just says revising by logically equivalent sentences

yields the same set of conditional beliefso3) and ¢©4)

are essentially the well-known (C1) and (C2) of Darwiche

(HA-Input)  If « and~ agree one andy & Pearl (1997), while ¢5) corresponds to rule (P) of Booth
thenz <j, yiff z <3 y & Meyer (2006), also referred to dadependencéy Jin

& Thielscher (2005). The correspondences between these

last three rules and their counterparts in the previous sec-

tion were proved in those papers. (Although these papers all

That this is a property of our family of tpo-revision openato
can be straightforwardly shown by considering an arbitrary

e | .
=-faithful tpo =< over W'=. But in fact we can show the assume the “prioritised” setting for belief revision in whi

followm.g.. o ) revision inputs are always believed after revision.) Tt la
Proposition 2 Let « be any revision operator fox which two rules are neatly explained with the help of the following
satisfies £1) and &3)—(x5). Then« satisfies (IIA-Input) iffk terminology:

satisfies both«6) and 7).

Thus, given the “basic” properties«1)—(«x5) for tpo-
revision, requiringx to satisfy the two “supplementary”
properties £6) and (7) amounts to enforcing (I1A-Input).
Note this equivalence does not require the presence of the
syntax-irrelevance property2). In fact, since sentences The inclusion of the clause®‘is inconsistent” in the defini-

Definition 4 Given any revision operatarfor < and given
«, B € L, we shall say3 overrulesx (relative tox) iff either
g is inconsistent o ¢ <! of3. We shall says strictly
overrulesy (relative tox) iff ~a €<} of.

which are logically equivalent agree ail worldsz andy, tion of “overrules” allows for a smoother exposition. This
we see that+2) actuallyfollows from(llA-Input). Conse- way we get the intuitively expected chain of implications
guently, we have established that in the list}-(x7), prop- B F -« implies 8 strictly overrulesa, which implies 8
erty (x2) isredundant overrulesa. If x satisfies ¢5) then this in turn implies

For more discussion on social choice-like conditions and —-a €< o3. Now suppose that evideneeis received and
their relevance to tpo-revision we refer the reader to thekwo ~ we then make a further suppositigh (o6) says if3 over-
of Glaister (1998). rulesa: andg is consistent then will not be believed, while

(o7) says ifg strictly overrulesy thena will be rejected
On the sentential level

So far all our properties of tpo-revision operators have
been expressed on the “semantic level”, directly in terms of

Proposition 3 Letx be a revision operator foK which sat-
isfies &1). Then for each = 2,...,7, x satisfies £i) iff «

worlds. But there is also sententialevel on which we can satisfies ).

recast our properties. For any tgd overW and any3 € L Corollary 1 Let x be a revision operator foK. Thenx is
we letmin(3, <’) denote the set of’-minimal elements of generated from some-faithful tpo=< overiW iff x satisfies
3], i, min(3,<') = {z € [] | Ay € [f]sty < z}.  (+1)and 62)—(7).

Then we define: ) . L. .
This sentential reformulation is useful, since there are

<" o = Th(min(3, <')). some interesting properties which can be formulated in sen-
<’ o represents what is believed #f on thesupposition tential terms, but for which obvious semantic counterparts
that 3 is the case. I\ € <’ of then we might also say do not exist. For example:



(Disi) (<5 o) N (<5 0B) € (Shy o)
(Disi2) (<, o) C (<5 08) U (<% of)

Proposition 6
(i) «CkC< (where recalk is the strict part of the initial
tpo <).

These two properties were essentially first proposed by (jiy < and < are both strict partial orders (i.e., irreflexive
Lehmann, Magidor, & Schlechta (2001), and seem to be nat- gr:d transitive). P e

ural properties to have. The first one says if a conditional (i) << and < both satisfy thdiltered condition (Freund

belief is held both after receiving evidenaeand after re-
ceiving evidencey, then it is also held after receiving their

1991), i.e., for allz,y €¢ Wandpg € L, ifz, y €
[8] \ min(g8, <’) then there exists € [3] such that: <’ x

disjunction as evidence. The second one says a conditional gnq, - y.

belief is not held after receiving a disjunction as evidence
without being held after receiving just one of the disjuncts

in isolation.

Proposition 4 Every revision operator generated from
some<-faithful tpo< over\W * satisfies (Disj1) and (Disj2).

We prove this result by considering an arbitragyfaithful

tpo =<, rather than trying to derive these rules syntacti-

cally from (x1) and 62)—(c7). A key property used in the
proof is that, for anye,y € L andx € W, rov,(z) =
min{r, (x), - (2)}.

The next result shows that’ og falls neatly into one of
three categories. Note we don’t nee@) and ¢7) for this.
Proposition 5 Let x be any revision operator foK satis-
fying (1) and ©2)—(05), and let the overrules relations be
given relative tox. Then for alla, 8 € L,

<o(aAp) if 6 doesn't overrulex
< og— ] (Sel@nB)n(<op)
—o T if 3 overrulesa, but not strictly
< of3 if 3 strictly overrulesx

Thus if 3 doesn’t overrulex then making the supposition
[ after receivingy as evidence is the same as supposing
and g togetherin the initial tpo <. If g strictly overrules
« then evidence is just ignored when making the further
suppositions. In the intermediate case whet®verrulesy,
but not strictly, supposing following evidencex results in
a mixture of these two.

In particular note what happens whére T. We see that
<* oT equals eithe(i) < oa, or (i) (< oa) N (L oT),

[0}

or (iii) < oT. Thus either the evidence is fully incorporated
into the belief set using the AGM revision operator corre-

sponding to< (Katsuno & Mendelzon 1991) (cagg), or
the belief set remains unchanged (césg), or there is an
intermediate possibility({i)), which amounts to removing

=« from the initial belief set using the AGM contraction op-

erator corresponding tg@. That is, we don’t commit to be-

(Recall for a strict partial ordet’, min(8, <") = {z € [7] |
Ay € [f] sty < z}.) By (i) we see<, < and<« form
progressively more stringent notions of strict prefererite
we let+ = x< then we see <« y impliesr, (z) < 4 (y)
forally € L, and sor <7 y for anyy. Thus< can also
be viewed as a set @bre, or protectedstrict preferences in
< which are always preserved in any revision. Meanwhile
we haver < yimpliesz <% y for any~y. Thus< may
be viewed as a set afeakly protectedtrict preferences, in
the sense that if < y then no evidence will ever cause this
preference to beeversed

It turns out that these relatiorg and<k are closely re-
lated to the notions of overruling and strict overrulingrfro
Definition 4.

Proposition 7 Let the overrules relations be given relative
to x<. Then(i) 8 overrulesa iff min(3, <) C [—~al. (i) 3
strictly overrulesq iff min(3, <<) C [—a].

For each of the two overrules relations we may consider an
interdefinablénferencerelation. We define:

8 = «iff 8 overrules-«

0 = «iff g strictly overrules-a.

Using fundamental results by Freund (1991) and Kraus,
Lehmann, & Magidor (1990), classifying various families
of nonmonotonic inference relations, Proposition 7 togeth
with the properties ok and <« now allows us to deduce
many properties ofs- and=>, and thereby of the overrules
relations:

Corollary 2 The binary relations= and = are both
(consistency-preservingyeferentialinference relations, in
the sense of Kraus, Lehmann, & Magidor (1990). Further-
more they both satisfy the rule @fisjunctive Rationality
i.e.,if3V~y= atheneithers = aorvy = a.

The first part is a consequence of the fact thaand <«

lieving the evidence, but we leave open the possibility that are strict partial orders (Kraus, Lehmann, & Magidor 1990).

it mighthold. We will have more to say on these notions of

overruling in the next section.

Notions of strict preference
In this section we shall assume a fixeefaithful tpo < over
W=,
ence orderings ovéi:
<L yiff 2= <y™, < yiff 27 <y*
In other wordsy < y, resp.x < v, is saying that:, even

on a bad day, is at least as preferred as, resp. strictly pre-
ferred to,y. The next proposition collects some properties

of these two orderings.

Given < we can define two more interesting prefer-

In particular it implies= and=> both satisfy the following
rules (among others):

B=a, atkxy

Right Weakenin
B=r (R .
B=a B=7v
[ et B A A
8=aNy (And)
B=o B=1 (Cautious Monotony)
BAY =« ’

Switching things around in terms of the corresponding
overrules relations, Right Weakening impliessif(strictly)



overrulesa then 3 (strictly) overrules every sentence log-
ically strongerthan «. The And-rule tells us that ifs
(strictly) overrules botln and~ separately, then it (strictly)
overrules theidisjunction While Cautious Monotony trans-
lates into the rule that i (strictly) overrulesy, then so does
8 A —y, providedg (strictly) overrulesy.

The second part of Corollary 2 follows from results by
Freund (1991) and Propositiot{ii . It implies a disjunc-
tion 8 v v cannot (strictly) overrulen without at least
one of its disjuncts doing so. However it's possible for
neither=- nor = to satisfy the well-known rule Rational
Monotony (Kraus, Lehmann, & Magidor 1990) (and thus
also Monotony). l.e., iff = a«andg A —ythengAy = «a.
This is because it can be shown that the relatienand <k
are not in generahodular, i.e., they do not verify the prop-
ertyz <’ y implies there exists such that eithex <’ > or
z <’ y. (A counterexample fox can be found by taking
the initial tpo from Example 1 with thes defined earlier in
Figure 1, and then by taking= 10 andy = 01.)

Limiting cases
In this section we investigate some special limiting cades o

our family of revision operators. Firstly, suppose we ihsis
on the following strengthening of property4):

(=)

In other words, given a choice between any world on a good
day and any world on a bad day, we choose the world on a
good day every time. This is equivalent to the limiting case
where< = () (thus also< = (). Hence this condition
can be thought of as expressing “minimal confidence” be-
hind the initial tpo<. Note that adding this rule to<2)

and (<3) is enough to specify a unique tpo ovér*, thus
causing 1) to become redundant. Indeed we are left with
the tpo defined by, for alk,y € W andd,e € {+,-},

x° < yeiff either (§ = + ande = —) or (6 = e andz < y).

In terms of the graphical representation ®f this corre-
sponds to the case where every number in thé fow is
strictly less tharevery number in the*" row:

zt <y,

Ry Ry R,
+ 1 2 n
— |n+1l|{n+2 2n

The revision operatot, defined by this< then reduces to:
x <% yiff eitherz < y or (x ~“ y andz < y)

This is the well-knownexicographiaevision operator stud-
ied and axiomatised in the context of iterated belief rewisi
(Glaister 1998; Spohn 1988; Nayak, Pagnucco, & Peppas
2003). It amounts te<® being refined by<. We can char-
acterisexy, within our family in the following way:

Proposition 8 If x is generated from somg-faithful tpo
overW# satisfying L) thenx satisfies:

(xL) Ifz € [o] andy € [~a] thenz < y.

Furthermore ifx is anyrevision operator for< which satis-
fies é&L) then the<-faithful tpo <., defined right after Theo-
rem 1 satisfies{L).

From this result we see that is axiomatically characterised
by (x1)—(x7) plus éL). However it is easy to see thatl(
implies ¢5)—(«7). (x1) also becomes redundant, sing8)(
(+4) and L) are enough to force the unique tpg,, and
we already established after Proposition 2 th&) can be
removed. Hencex@), (x+4) and &L) form a sound and com-
plete axiomatisation fox;,. The sentential counterpart of
(xL) is the ruleRecalcitranceof Nayak, Pagnucco, & Pep-
pas (2003), i.e.,

(o) If Bt/ - thena €< of.

Note also that new evidence is always believed after lexico-
graphic revision. A characterisation ef in terms of social
choice-like conditions was given by Glaister (1998), who re
ferred to it as “J-revision”.

At the other extreme, suppose instead we insist on

(XP) =z < yimpliesz™ <y™.

This rule is equivalent to sayingg = <. (Thus alsok =

<.) This property expresses maximal confidence behind the
initial tpo <, or skepticism towards new evidence. Adding
this rule to (£2)—(=4) is again enough to specify com-
pletely. It is not difficult to show this time we are left with
x° <y iff eitherz < yor[z ~yand(d = +ore = —)J:

Ry Ry R,
+ 1 3 2n — 1
— 2 4 2n

The associated revision operaitgr is then given by
x <} yiffeitherz < yor (z ~ y andz <% y).

This is a “reverse” lexicographic method, studied in the-con
text of iterated belief revision (Papini 2001). This time it
corresponds t& being refined by<®. In this case new evi-
dence is not always believed.

Proposition 9 If x is generated from somg-faithful tpo
overW+ satisfying &P) thenx satisfies

(+P)

Furthermore ifx is anyrevision operator for< which satis-
fies &P) then the<-faithful tpo <. defined right after The-
orem 1 satisfies{P).

This result implieskp may be characterised axiomatically
by (x1)—(x7) plus é&P). However we may significantly sim-
plify this list by observing that, in the presence of the othe
rules, &6), (x7) and &P) are together equivalent to the sin-
gle short-and-sweet rule

(+p)

Again (x1) becomes redundant, and so we arrive at the fol-
lowing characterisation ofp.

Ifz € [-al,y € [o] andz < y thenz <}, y.

< C <.



Proposition 10 *p is the unique revision operator fox
which satisfies«(3)—(5) plus &p).

It is easy to see the sentential counterpart«p (s the fol-
lowing rule:

(op) <o S <f of.

(op) states thaall conditional beliefs in< are preserved af-
ter revision.

As the following example shows (partly based on one by
Darwiche & Pearl, 1997), rigid use of either of these linttin
casest;, andxp can lead to counter-intuitive results.

Example 2 Suppose we have a murder trial with two main
suspects, John and Mary. Letepresent “John is the mur-
derer” andg represent “Mary is the murderer”. Furthermore
let r represent “The victim is an alien from outer-space”.
Initially we believe the murder was committed by one per-
son, either John or Mary. However wuldn’t be surprised
to discover that either both or neither were involved in the
crime. Whatwouldbe surprising — indeed highly shocking
—would be if we found out the victim was an alien. However
we are still capable of imagining a hypothetical situation i
which this turns out to be the case, and we think this would
not alter our belief that either John or Mary acted alone. If
we were to represent all this using a tgoit seems the fol-
lowing is the best candidate:

100
010

110
000

101
011

111
001

Now during the trial we receive testimony that John is the
murderer, leading us to revise by p. Supposing we then
receive testimony that Mary is the murderer, the most rea-
sonable conclusion would be that both John and Mary were
involved in the murder. But using the operaiergives

<P eq=Cn(-pAgA-r)

We are forced to drop our belief that John is the murderer.
Now consider the situation where we receive testimony

that John is the murderer, followed by the supposition that

if John is the murderer, then the victim is an alien. In this

case it seems the reasonable thing to do is drop the acquired

belief that John is the murderer. However, using the operato
*, gives

<prop—r)=Cn(pA—qAr)
That is, we end up believing John murdered an alien!

simultaneously. Consider the-faithful tpo < represented
by:

Ry R: Rz Ry

In the first case where we receive evidence pointing towards
John's guilt followed by the supposition Mary did it, we have

<poq=Cn(pAgn-r)

which is the intuitive result. In the case where we receive
evidence for John being the murderer, followed by suppos-
ing that if John is the murderer then the victim is an alien,
we have

<polp—r)=Cn(-pAgA-r)

which is what we would expect.

A further sub-class

Close inspection reveals that both the limiting cases men-
tioned above share something in common —in both cases we
have<=<. Writing out this condition in full, the unique

=< defined in each case satisfies:

(=9)

This condition states that no~ appears in the same-rank

as ay™. In this section we take a look at the subclass of
our family of revision operators defined by enforcing this
condition.

Firstly, in terms of the graphical representation-othe
effect of (x5) is simple: it just means that no number is al-
lowed to appeawicein the array of numbers. Another thing
to notice is that if< =<« then the distinction between the
overrules relation and thtrictly overrules relation relative
to =< disappears — they collapse into the same binary rela-
tion. As for an axiomatic characterisation of this subfamil
the next result points the way:

Proposition 11 If x is generated from some-faithful tpo
overW# satisfying £5) thenx satisfies

(x8)

x” =ytiff a7 <y,

Forz € [a] andy € [—a], eitherz <}, yory <% .

Furthermore if « is any revision operator for< which
satisfies £8) then the<-faithful tpo <. defined right after
Theorem 1 satisfies<b).

Condition ¢&8) means that after revising lay there is a sep-
aration betweem-worlds and-«-worlds, in the sense that
each<Z-rank containseither only a-worlds or only —a-
worlds. This property is called (UR) by Booth & Meyer
(2006), where it is shown that its sentential counterpart is

(08) If ma & <} off thena €<?, of.

The postulateq8) does have a certain amount of intuitive
appeal. It says that after receiviagas evidence and then

Smaking the suppositiofi, « should be believed as long as it

is consistent to do so.

(x8), alias £8), is quite a strong rule, and adding it to the
list (x1)—(x7) causes some redundancies. Sin@ {mplies
the equivalence of <! y with z <} y for z £ y, we
see (6) now follows from (7). Meanwhile ¢5) becomes
equivalent to “ifz <* y andz < y thenz <} y” (i.e.,
(CR4) proposed by Darwiche & Pearl, 1997). But using the
fact that<=<+ (which follows from (3)), this is seen as
just the instance of«7) in whichy = T. Hence §5) also



disappears. Thus the class of tpo-revision operators gener
ated by those<-faithful tpos overiV * satisfying (<5) may
be characterised as follows:

Theorem 2 Let x be a revision operator foK. Thenx
is generated from some-faithful tpo overiv+ satisfying
(=5) iff * satisfies £1), (x3), (x4), (x7) and &8).

Of course we can if we wish replace the last four rules above
with their sentential equivalents.

Conclusion and future work

We have introduced a new family of operators for revising
total preorders by sentences based on the simple intuitive
idea that when we compare possibilities, we are often able
to imagine these possibilities with regard to “best casel’ an
“worst case” scenarios. We have placed this family firmly
in the context of the problem of iterated belief revisiondan
have shown that our results significantly extend currenkwor
on this topic.

On the level of belief sets, our operators fall within the
realm of non-prioritised revision, in that revision inpai®
not necessarily elements of the belief set associated tethe
vised preorder. This is in contrast to most works on iterated
belief change, which are usually given in the “prioritised”
setting (with the work of Booth, 2005 being an exception).
We envisage prioritised revision layas a two-stage process,
with the first stage being carried out by one of the operators

in this paper, and then the second stage consisting of an ap-

plication of Boutilier'snatural revision(1996) of the result-
ing tpo bya, i.e., the most preferred-worlds are simply
brought if necessary to the front of the new tpo. For the spe-
cial case of the operatep, this was already done by Booth
& Meyer (2006), leading to theestrained revisioroperator
(see Section 5 of that paper). For future work we plan to
apply this to the more general family.

Another direction for future research is the investigation
of larger families of revision operators, such as those ob-
tained by weakening one, or both, 0fZ) and 3). Ob-
serve that this is equivalent to weakenin@) and &4), or
(o3) and 4). The weakening of«(4) will be of particular in-
terest, since itis essentially equivalent to the muchiecsid
postulate (C2) proposed by Darwiche & Pearl (1997).

Conversely, it would be interesting to consider special
subclasses of our general family. We considered one in the
last section. Another example could be the family obtained
by taking <« or <« to be modular orderings. Finally note
that our operators do not conform to the principlecafe-
gorical matching- from an initial tpo< together with a<-
faithful tpo < over W+ they return a new tpe?, but give
no help on defining a new * -faithful tpo overi* which
can then be used to further revisg. One way of rectifying
this might be to preserve as much«f and< as possible.
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