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Abstract

This paper is concerned with the problem of how to make inferences

about an agent’s beliefs based on an observation of how that agent

responded to a sequence of revision inputs over time. We collect

and review some earlier results for the case where the observation

is complete in the sense that (i) the logical content of all formulae

appearing in the observation is known, and (ii) all revision inputs

received by the agent during the observed period are recorded in the

observation. Then we provide new results for the more general case

where information in the observation might be distorted due to noise

or some revision inputs are missing altogether. Our results are based

on the assumption that the agent employs a specific, but plausible,

belief revision framework when incorporating new information.

1 Introduction

1.1 Motivation

One of the overall goals of AI research is designing autonomous intelligent
agents that are capable of acting successfully in dynamic environments.
These environments may be artificial or even natural. In any case, it is very
likely that they are “inhabited” by more than one agent. So, an agent will
in general have to interact with (some of) the others. On the one hand,
the agent—if it does not want to be purely reactive—needs a model of its
environment in order to make informed choices of actions that change it in
a way that brings the agent closer to achieving its goal. On the other, it
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also needs to model the other agents, making successful interaction more
likely.

Much research has been done on formalising and reasoning about the
effects of actions on an environment. Research on an agent’s view of the
world usually focuses on a first person perspective. How should the agent
adapt its beliefs about the world in the light of new information? However,
reasoning about other agents’ beliefs or background knowledge is just as
important. This work is intended to contribute to this latter question.

We will adopt a much narrower perspective than reasoning about other
agents in their full complexity which includes goals, intentions, (higher or-
der) beliefs, preferences, etc. and restrict our attention to their (proposi-
tional) beliefs about the world. We will also forget about the dynamic
environment and assume a static world. That is, we will work in a very
traditional belief revision setting. But rather than answering the question
of how an agent should rationally change its beliefs in the light of new in-
formation, we address the question of what we can say about an agent we
observe in a belief change process.

In [10], the authors use observable actions to draw conclusions about
other agents’ mental attitudes. But the beliefs of an agent manifest them-
selves not only in its actions. They may also be observed more directly, e.g.,
in communication. So indirectly we have access to parts of other agents’
belief revision processes. Information they receive is their revision input,
responses to that information are a partial description of their beliefs af-
ter the revision. From this information we may want to reason about the
observed agent. Consider the following scenarios.

• We are directly communicating with another agent, i.e., we are the
source of revision inputs for that agent. The feedback provided by the
agent will not reflect its entire set of beliefs. To get a more complete
picture we may want to infer what else was believed by the agent,
what its background knowledge might be.

• We observe a dialogue between two or more agents. Beliefs one agent
expresses are revision inputs for the others. Due to noise, private mes-
sages etc., we might not have access to the entire dialogue—possibly
missing some inputs completely. So we have to deal with partial in-
formation about the revision inputs.1 As we might have to deal with
the observed agents later, forming a picture of them will be useful.

The information at our disposal for reasoning about another agent A will
be of the following form. We are given a (possibly incomplete) sequence of

1 This is of course possible in the first case, as well. The communication might take place
in several sessions and we do not know which inputs the agent received in between.
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(partially known) revision inputs that were received by A. Further we are
given information on what the agent believed and did not believe after hav-
ing received each input. All this information constitutes an observation of
the agent. First we will briefly recall results for the case where observations
are complete with respect to the revision inputs received by A. These are
then used for dealing with the more general case.

The general approach to reasoning about an agent based on observations
will be as follows. We assume A to employ a particular belief revision
framework for incorporating revision inputs. We will then try to find a
possible initial state of A that best explains the observation. By initial
state we mean A’s epistemic state at the time the observation started. As
we do not know the true initial state, we will have to select a reasonable
one. This state explains the observation if it yields the beliefs and non-
beliefs recorded in the observation given the revision inputs received by the
agent. The meaning of best in this context will be explained later. The
initial state, which can be interpreted as A’s background knowledge, will
allow us to reason about beliefs not recorded in the observation.

Many approaches for reasoning about action, belief revision, etc. assume
the initial belief state being given and deal with the case of progression
through sequences of actions/revision inputs. They say little or nothing
about the case where the initial state is not known. In particular with
respect to the belief revision literature this work is intended to be a step
towards filling this gap.

1.2 Simplifying assumptions

We make several simplifying assumptions which will naturally limit the
applicability of the methods developed in this work but at the same time
allow a focused analysis of the problem we approach.

As mentioned above, we assume a static world in the sense that the
revision inputs and the information about the agent’s beliefs refer to the
same world. However, it is essential for our work that the revision inputs
were received over time. One central point is to exploit having intermediate
steps at our disposal. The observed agent itself may only be interested in
the final picture of the world. We in contrast want to extract information
about the agent from the process of its arriving there.

We restrict ourselves to propositional logic, and all components of an
observation are already provided in propositional logic generated from a
finite language. That is, we assume that revision inputs, beliefs and non-
beliefs are (and are directly observed as) propositional formulae. Agents are
assumed to be sincere, i.e., they are not deceptive about their beliefs, al-
though the information may be partial. The observed agent will be referred
to as A. We will disregard concepts like (preferences for) sources, compe-
tence, context, etc. A will be assumed to employ a particular belief revision
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framework which we describe in detail in Section 2. The only thing that
happens during the time of observation is that A incorporates the revision
inputs. In particular, it does not change its revision strategy or learns in
any other way. In that sense, we consider the observations to be short term.

We do not investigate strategies for extracting as much information about
A as possible. The observing agent simply uses the information provided to
reason along the way, being passive in that sense. That is, our focus is not on
the elicitation of information about other agents; the question of optimising
the reasoning process by putting agents in a setting where observations yield
the most precise results is another interesting topic which we do not pursue.

From the choice of revision framework it will become apparent that we
equate recency with reliability of the information. We are well aware that
this is highly debatable. We will briefly address this issue in the conclusion.

For real world applications many of these assumptions have to be
dropped or weakened. Many of the issues we disregarded will have to be
taken into account. But for the moment we try to keep the number of free
variables low in order to give more precise formal results. We hope to con-
vince the reader that even in this very restricted setting we will be able to
draw interesting, non-trivial conclusions. Also, we will show that even if
these assumptions are correct, there are very strict limitations to what we
can safely conclude about A.

1.3 Preliminaries

As stated above, the observed agent will be denoted by A. L will be used to
denote a propositional language constructed from a finite set of propositional
variables p, q, r, . . . , the connectives ∧,∨,¬,→,↔ and the symbols ⊥ for
some contradiction and ⊤ for some tautology. α, β, δ, θ, λ, ϕ, φ, ψ, and N

(often with subscript) will denote propositional formulae, i.e., particular
elements of L. In Section 3, χ will be used as placeholder for an unknown
formula. ⊢ is the classical entailment relation between a set of formulae
and a formula, where we abbreviate {α} ⊢ β by α ⊢ β for singleton sets.
Cn(S) denotes the set of all logical consequences of a set of formulae S, i.e.,
Cn(S) = {α | S ⊢ α}.

The revision operation ∗ introduced will be left associative and conse-
quently K ∗ ϕ1 ∗ ϕ2 is intended to mean (K ∗ ϕ1) ∗ ϕ2. σ and ρ are used to
denote sequences of formulae, () being the empty sequence. The function ·
denotes concatenation, so σ · ρ and σ · α represents sequence concatenation
and appending a formula to a sequence, respectively.

The structure of the paper will be as follows. Section 2 will introduce
the assumed agent model as well as the formal definition of an observation.
It further recalls the central results for the case where all revision inputs
received by A during the time of observation are completely known, i.e., in
particular the method for calculating the best explaining initial state and its
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properties. The section thus summarises [5, 6, 7]. It extends these papers
by also discussing the question of how safe conclusions we draw about A
are. Section 3 uses these results to deal with the case where the observation
is allowed to be more partial. In particular, some inputs may not have been
recorded in the observation (see also [23]) and the logical content of parts
of the observation may only be partially known. We show how this lack
of information can be represented and dealt with. This paper is intended
to give a broad overview over our proposed method for reasoning about an
observed agent. Hence, we give only short proofs sketches. Full proofs are
available in the first author’s PhD thesis [24].

2 Belief Revision Framework, Observation and

Explanation

2.1 The assumed belief revision framework

We already mentioned that we will assume the agent to employ a particular
belief revision framework. The first thing we will do is describe it. As we
consider observations of A’s belief revision behaviour over time, it is obvi-
ous that such a framework needs to support iterated revision [12, 17, 21].
Further, an observation may imply that a revision input was in fact not
accepted. For example it might be explicitly recorded that after being in-
formed that Manchester is the home of the Beatles, the agent does not be-
lieve this statement. Consequently, the assumed revision framework should
also account for non-prioritised revision [16, 19], i.e., revision where the
input is not necessarily believed after revising.

We will assume A to employ a belief revision framework [3] that is
conceptually similar to the approaches in [4, 9, 20, 25] but is able to handle
non-prioritised revision as well. The agent’s epistemic state [ρ,N] is made
up of two components: (i) a sequence ρ of formulae and (ii) a single formula
N, all formulae being elements of L. N stands for the agent’s set of core
beliefs—the beliefs of the agent it considers “untouchable”. One main effect
of the core belief is that revision inputs contradicting it will not be accepted
into the belief set. ρ is a record of the agent’s revision history. Revision by
a formula is carried out by simply appending it to ρ. The agent’s full set
of beliefs Bel([ρ,N]) in the state [ρ,N] is then determined by a particular
calculation on ρ and N which uses the function f which maps a sequence σ
of propositional formulae to a formula. This is done by starting off with the
last element of σ and then going backwards through the sequence collecting
those formulae that can be consistently added and forgetting about the
remaining ones.
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Definition 2.1.

f (βk, . . . , β1) =











β1 k = 1

βk ∧ f (βk−1, . . . , β1) k > 1 & βk ∧ f (βk−1, . . . , β1) 0 ⊥

f (βk−1, . . . , β1) otherwise

As hinted at above, iterated revision is handled quite naturally by the
framework. All revision steps are simply recorded and the problem of what
A is to believe after each revision step, in particular whether the input just
received is accepted, i.e., is believed, is deferred to the calculation of the
beliefs in an epistemic state. In order to calculate them the agent starts
with its core belief N and then goes backwards through ρ, adding a formula
as an additional conjunct if the resulting formula is consistent. If it is not,
then the formula is simply ignored and the next element of ρ is considered.
The belief set of A then is the set of logical consequences of the formula
thus constructed.

Definition 2.2. The revision operator ∗ is defined for any epistemic state
[ρ,N] and formula ϕ by setting [ρ,N]∗ϕ = [ρ·ϕ,N]. The belief set Bel([ρ,N])
in any epistemic state [ρ,N] is Bel([ρ,N]) = Cn(f (ρ · N)).

Note, that we do not prohibit the core belief N to be inconsistent in
which case A’s belief set is inconsistent. This is the essential difference of
to the linear base-revision operator in [22]. From the definition, it is easy
to see that Bel([ρ,N]) is inconsistent if and only if N is inconsistent.

Example 2.3. Consider the epistemic state [(),¬p] of an agent. The beliefs
of the agent in this state are Cn(f (¬p)) = Cn(¬p). If q is received as a
new input, we get [(),¬p] ∗ q = [(q),¬p] as the new epistemic state. The
corresponding beliefs are Cn(f (q,¬p)) = Cn(q ∧ ¬p).

A further input q → p changes the epistemic state to [(q, q → p),¬p].
Note, that f (q, q → p,¬p) = (q → p) ∧ ¬p and q cannot be consistently
added, so now the agent believes the logical consequences of ¬q ∧ ¬p.

The revision input p changes the epistemic state to [(q, q → p, p),¬p]
but the beliefs remain unchanged, as p contradicts the core belief.

Given the state [ρ,N] of A and a sequence (ϕ1, . . . , ϕn) of revision inputs
received in that state we can define the belief trace of the agent. This is a
sequence of formulae characterising the beliefs of A after having received
each of the inputs starting with the beliefs in [ρ,N].

Definition 2.4. Given a sequence (ϕ1, . . . , ϕn) the belief trace
(Bel

ρ
0,Bel

ρ
1, . . . ,Bel

ρ
n) of an epistemic state [ρ,N] is the sequence of formulae

Bel
ρ
0 = f (ρ · N) and Bel

ρ
i = f (ρ · (ϕ1, . . . , ϕi,N)), 1 ≤ i ≤ n.

The belief trace in the above example is (¬p, q ∧ ¬p,¬q ∧ ¬p,¬q ∧ ¬p).
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2.2 Observations

After having formalised the assumptions about any observed agent, we now
turn to the specific information we receive about a particular agent A—
some observation on its belief revision behaviour. An observation contains
information about revision inputs A received, what it believed and did not
believe upon receiving them.

Definition 2.5. An observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 is a
sequence of triples (ϕi, θi, Di), where for all 1 ≤ i ≤ n: ϕi, θi, and all δ ∈ Di

(Di is finite) are elements of a finitely generated propositional language L.

The intuitive interpretation of an observation is as follows. After having
received the revision inputs ϕ1 up to ϕi starting in some initial epistemic
state, A believed at least θi but did not believe any element of Di. In
this section, we assume that during the time of the observation A received
exactly the revision inputs recorded in o, in particular we assume that no
input was received between ϕi and ϕi+1, the observation being correct and
complete in that sense. For the θi and Di we assume the observation to
be correct but possibly partial, i.e., the agent did indeed believe θi and did
not believe any δ ∈ Di, but there may be formulae ψ for which nothing
is known. In this case we have both θi 0 ψ and ψ 0 δ for any δ ∈ Di.
Note that complete ignorance about what the agent believed after a certain
revision step can be represented by θi = ⊤ and complete ignorance about
what was not believed by Di = ∅.

The observation does not necessarily give away explicitly whether a re-
vision input was actually accepted into A’s belief set or not. If θi ⊢ ϕi then
the revision input ϕi must have been accepted and if θi ⊢ ¬ϕi or ϕi ⊢ δ
for some δ ∈ Di then it must have been rejected. But if none of these
conditions hold, it is not obvious whether an input has been accepted or
rejected. Often, none of these two cases can be excluded. One of the aims
of our investigation is to draw more precise conclusions with respect to this
question.

A given observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 covers only a
certain length of time of the agent’s revision history. When the observation
started, A already was in some epistemic state [ρ,N]. We will give the formal
conditions for an initial state to explain an observation o. The intuitive
interpretation of o is formally captured by the system of relations in the
second condition of the definition.

Definition 2.6. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. Then [ρ,N] ex-
plains o (or is an explanation for o) if and only if the following two condi-
tions hold.
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1. N 0 ⊥

2. For all i such that 1 ≤ i ≤ n:

Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) ⊢ θi

and

∀δ ∈ Di : Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) 0 δ

We say N is an o-acceptable core iff [ρ,N] explains o for some ρ.

For us, an explanation of a given observation o is an epistemic state that
verifies the information in o and has a consistent core belief. It is (conceptu-
ally) easy to check whether an epistemic state [ρ,N] is an explanation for o.
It suffices to confirm that the conditions in Definition 2.6 are satisfied, i.e.,
that N is consistent and that for all i we have f (ρ · (ϕ1, . . . , ϕi,N)) ⊢ θi and
f (ρ · (ϕ1, . . . , ϕi,N)) 0 δ for all δ ∈ Di. A state with an inconsistent core
belief satisfies the second condition if and only if Di = ∅ for all i, so there
are observations that could be explained by such a state. However, we do
not consider claiming the agent to be inconsistent worthy of being called an
explanation.

Example 2.7. Let o = 〈(p, q,∅), (q, r,∅)〉 which states that A after receiv-
ing p believes q and after then receiving q believes r. It does not inform us
about any non-beliefs of the agent.

[ρ,N] = [(p → q), r] explains o because f (p→ q, p, r) entails q and
f (p→ q, p, q, r) entails r (both are equivalent to p ∧ q ∧ r). [(p → q),⊤]
does not explain o because f (p→ q, p, q,⊤) ≡ p ∧ q 0 r. [(), p ∧ q ∧ r],
[(p → q ∧ r),⊤], [(¬p, q, r), s], and [(q ∧ r),¬p] are some further possible
explanations for o.

There is never a unique explanation for o, in fact there are infinitely
many in case o can be explained. This is why our proposed method for rea-
soning about A is to choose one explanation [ρ,N]. Using N and the belief
trace we then draw our conclusions as follows. Revision inputs consistent
with N will be accepted by A, those inconsistent with N are rejected. A’s
beliefs after receiving the ith input are characterised by Bel

ρ
i . In Section 2.4

we will discuss the quality of these conclusions and present a method for
improving them. But first we have to say how to actually choose one expla-
nation.

2.3 The rational explanation

This section recalls the essential results from [5, 6, 7] for identifying and
justifying the best of all possible explanations. A very important property
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of the framework is that A’s beliefs after several revision steps starting in
an initial state can equivalently be expressed as the beliefs after a single
revision on the same initial state. Intuitively, the agent merges its core
belief and all revision inputs received using f into a single formula and then
conditions its epistemic state using it.

Proposition 2.8. Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi)=Bel([ρ,N] ∗ f (ϕ1, . . . , ϕi,N)).

Proof (Sketch). Note that by Definition 2.4 it suffices to show that

f (ρ · (ϕ1, . . . , ϕi,N)) ≡ f (ρ · (f (ϕ1, . . . , ϕi,N) ,N)) .

One property of f that follows from its recursive definition is f (σ · σ′) ≡
f (σ · f (σ′)). If we can show that f (ϕ1, . . . , ϕi,N) ≡ f (f (ϕ1, . . . , ϕi,N) ,N)
we are done as then in both cases equivalent formulae have been collected
before processing ρ. We can restrict our attention to consistent N, in which
case f (ϕ1, . . . , ϕi,N) is consistent and entails N. Hence

f (f (ϕ1, . . . , ϕi,N) ,N) = f (ϕ1, . . . , ϕi,N) ∧ N ≡ f (ϕ1, . . . , ϕi,N) .

q.e.d.

How does that help to reason about the observed agent A? Recall that
an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 expresses the information
that “revision by ϕ1 in the initial state leads to a new state (where θ1 but
no element of D1 is believed) in which revision by ϕ2 leads to. . . ” That
is, the observation contains bits of information concerning beliefs and non-
beliefs in different (if related) epistemic states. This proposition now allows
us to translate the observation into information about a single state—the
initial epistemic state we are after. Note however, that N needs to be
known for applying the proposition as otherwise f (ϕ1, . . . , ϕi,N) cannot be
calculated. So, given a core belief N, o yields that A would believe θi (and
would not believe any δ ∈ Di) in case it revised its initial epistemic state
by f (ϕ1, . . . , ϕi,N). This is nothing but conditional beliefs held and not
held by A in its initial state [ρ,N]. That is, o is a partial description of A’s
conditional beliefs in [ρ,N]. The proposition further entails that if we had a
full description of its conditional beliefs we could calculate the beliefs after
any sequence of revision inputs.

It turns out that the assumed belief revision framework allows us to
apply existing work ([18] and in particular [8]) on completing partial infor-
mation about conditional beliefs2 and to construct a suitable ρ such that

2 [8] presents a rational closure construction that takes into account both positive and
negative information as is necessary in our case. It extends the case of positive-only
information studied in [18]. These papers also inspired the name rational explanation.



162 A. Nittka, R. Booth

[ρ,N] is indeed an explanation for o in case N is o-acceptable. ρR(o,N)
denotes the sequence thus constructed. The construction even reveals if a
given core belief is o-acceptable.

We further showed that the set of o-acceptable cores is closed under dis-
junction. If N1 and N2 are o-acceptable, then so is N1 ∨ N2.

3 This entails
that—if o can be explained at all—there is a unique logically weakest o-
acceptable core belief, which we denote by N∨(o). Consequently N ⊢ N∨(o)
for any o-acceptable N. The rationale behind choosing N∨(o) for an ex-
planation is that any input we predict to be rejected by A will indeed be
rejected. Furthermore, it can be shown that adding beliefs or non-beliefs
to o by strengthening some θi or enlarging some Di as well as appending
observations to the front or the back of o to get an observation o′ cannot
falsify this conclusion as N∨(o′) ⊢ N∨(o). For any other core belief explain-
ing o, a revision input predicted to be rejected by the agent might in fact
be accepted. In this sense, we consider N∨(o) to be optimal.

The choice of ρR(o,N∨(o)), which we call the rational prefix, as the se-
quence in the agent’s initial epistemic state is justified by showing that it
yields an optimal belief traces. Let ρ = ρR(o,N∨(o)) and σ be the se-
quence of any other explanation [σ,N∨(o)] for o, (Bel

ρ
0,Bel

ρ
1, . . . ,Bel

ρ
n) and

(Bel
σ
0 ,Bel

σ
1 , . . . ,Bel

σ
n) be the corresponding belief traces. Then the following

holds: If Bel
ρ
j ≡ Bel

σ
j for all j < i then Bel

σ
i ⊢ Bel

ρ
i .

4 This tells us that the
formulae we predict the agent to believe initially will indeed be believed
(although some further formulae might be believed as well)—provided the
agent’s core belief really is N∨(o). And if our predicted belief trace exactly
captures the agent’s beliefs up to the ith input then again all beliefs pre-
dicted after the next input will indeed be believed. The assumption that
the two explanations use the same core belief causes this criterion, which
we will refer to as the optimality criterion for the rational prefix, to be a
rather weak one as we will see shortly.

In [7], we defined [ρR(o,N∨(o)),N∨(o)] to be the rational explanation
of an observation o—if there is an explanation at all. That paper and [5]
contain more results about the rational explanation but these are the most
important ones which justify the claim that the rational explanation is the
best explanation for a given observation o. An algorithm which calculates
the rational explanation is given below and described in more detail in [6].
The problem with calculating [ρR(o,N∨(o)),N∨(o)] is that N∨(o) has to be
known, which it is not in the beginning. So the idea is to iteratively refine
the core belief starting with the weakest possible of all ⊤.

3 The proof is constructive and not deep but lengthy.
4 This result, as almost all the others in this section, is proved in [5]. Note also that

Bel
ρ

i
⊢ Bel

σ
i need not hold. Consider [(¬p),⊤] and [(p ∧ q,¬p),⊤]. The belief traces

when assuming a single input p are (¬p, p) and (¬p, p ∧ q). Although the beliefs are
equivalent initially, they need not be after a revision step.
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Algorithm 1: Calculation of the rational explanation.

Input: observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉
Output: the rational explanation for o

N ⇐ ⊤
repeat

ρ⇐ ρR(o,N) /* now ρ = (αm, . . . , α0) */

N ⇐ N ∧ αm

until αm ≡ ⊤
return [ρ,N] if N 6≡ ⊥, “no explanation” otherwise

Having calculated the rational explanation [ρ,N] of an observation
o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, we can make predictions concerning
which inputs A accepts and rejects based on N and our conclusions about
its beliefs after having received each input are summarised by the corre-
sponding belief trace (Bel

ρ
0,Bel

ρ
1, . . . ,Bel

ρ
n).

2.4 Safe conclusions and hypothetical reasoning

In the remainder of this section, we will illustrate some limitations of the
rational explanation. In particular, we will show that predictions based on
it will almost never be safe ones. However, this is inherent in the problem
and not due to our solution to it.

As with many optimisation problems the quality of the solution and the
conclusions we can draw from it depend heavily on the quality of the data
and validity of the assumptions made. In our case, we clearly stated the
assumptions made about the given observation as well as the agent’s being
ruled by the assumed framework. The optimality result for the best ex-
plaining core belief N∨(o), i.e., that N∨(o) is entailed by any o-acceptable
core, depends on those. The optimality of the rational prefix ρR(o,N) and
therefore the conclusions about A′s further beliefs also depend on its actu-
ally employing the assumed core belief. That is, if we cannot be sure of the
agent’s actual core belief then most of what we can say about the agent’s
belief trace based on the rational explanation is merely justified guesses but
not safe bets.

Example 2.9. (i) Let o = 〈(⊤, p,∅), (¬p,⊤,∅), (r ↔ ¬p, r ∨ p,∅)〉. The
rational explanation for o is [(p),⊤] and the corresponding belief trace is
(p, p,¬p, r ∧ ¬p). That is, we conclude that A accepted the input ¬p and
believes r ∧ ¬p after then receiving r ↔ ¬p.

Now assume the agent’s real initial belief state was [(), p]—note that
the core belief does not correspond to the one calculated by the rational
explanation—and thus the belief trace in truth is (p, p, p,¬r ∧ p). That is,
it did not accept the input ¬p and believed ¬r ∧ p after receiving r ↔ ¬p .
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So except for the beliefs before the observation started and after receiving
the tautology (where we are informed that the agent believes p and hence
must have believed it initially) most of the conclusions about beliefs held
by A we draw from the belief trace are wrong!

(ii) Let o = 〈(p, p,∅), (q, q,∅), (r ↔ p,⊤,∅)〉. The rational expla-
nation for o is [(),⊤] and the belief trace implied by that explanation is
(⊤, p, p∧ q, p∧ q ∧ r). Assuming that [(), q → ¬p] was A’s true initial state,
the belief trace in truth is (q → ¬p, p ∧ ¬q, q ∧ ¬p, q ∧ ¬p ∧ ¬r). Again, for
large parts the conclusions we draw about the agent’s beliefs based on the
rational explanation are wrong. For example, we conclude that agent con-
tinues to believe p once it has been received. This is clearly not the case.

This strong dependence on the core belief can be easily explained. There
are two main effects due to the core belief. First, it causes revision inputs to
be rejected immediately. This is why the conclusions based on the rational
explanation are off the mark in case (i) in the above example. Secondly,
the core also accounts for interactions between revision inputs. An earlier
input is eliminated from the belief set in the light of the core and some
later inputs. This effect is illustrated in case (ii). For one choice of the core
belief, after having received the input ϕi+j , the agent may still believe the
input ϕi received earlier, while for another core it may believe ¬ϕi.

Even if we got the core belief right and hence the agent really employs
N∨(o), conclusions based on the rational explanation of o should not be
used without care. The optimality result for the rational prefix does not
exclude mistakes. Correct conclusions about beliefs are guaranteed only up
to the point in the belief trace where the beliefs we calculate and the agent’s
actual ones first fail to be equivalent. This can easily be the case already
for the initial beliefs.

Consider o = 〈(p, q,∅), (r,⊤,∅)〉 for which the rational explanation is
[(p → q),⊤], the corresponding belief trace being (p → q, p ∧ q, p ∧ q ∧ r).
So we would conclude the agent to keep believing in q. If the agent’s real
initial epistemic state was [(¬q,¬r ∧ q),⊤] then the real belief trace would
be (¬r ∧ q, p∧¬r ∧ q, r ∧¬q). Although the correct core was calculated, we
would still be wrong about q whose negation is in fact believed after having
received the input r.

As stated above, using the rational explanation [ρ,N∨(o)] we conclude
that A believed Bel

ρ
i = f (ρ · (ϕ1, . . . , ϕi,N∨(o))) after having received the

first i revision inputs recorded in o. How safe is this conclusion? The above
example showed that it is not very safe. So what can we do to further
improve the results?

Here, we will consider only one very strong notion. We call the con-
clusion that A believes ψ after receiving the ith revision input recorded
in o safe if and only if for all explanations for o we have Beli ⊢ ψ, where
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Beli is the element of the belief trace corresponding to that input. In other
words, every possible explanation predicts that belief (so in particular the
one corresponding to the agent’s real initial state). Analogously, we call the
conclusion that the agent did not believe ψ at a certain point safe when-
ever no explanation predicts that formula to be believed. Note that a safe
conclusion about an agent’s belief does not mean that this belief is correct.
The agent may have received and accepted unreliable information, but it
means that given the observation, the agent must have held this belief.

We will now describe a way to calculate whether a conclusion of that
form is safe, a method we call hypothetical reasoning. By this we mean mod-
ifying the given observation according to some conjecture and rerunning the
rational explanation construction on the observation thus obtained. Note
that any explanation for

o′ = 〈(ϕ1, θ1, D1), . . . , (ϕi, θi ∧ ψ,Di), . . . , (ϕn, θn, Dn)〉 or

o′ = 〈(ϕ1, θ1, D1), . . . , (ϕi, θi, Di ∪ {ψ}), . . . , (ϕn, θn, Dn)〉

will also explain o = 〈(ϕ1, θ1, D1), . . . , (ϕi, θi, Di), . . . , (ϕn, θn, Dn)〉. This
follows directly from Definition 2.6. If θi ∧ψ belongs to the beliefs after the
ith revision step then so does θi and if none of the elements of Di ∪ {ψ} is
believed at that point, the same holds for any subset.

So in order to check whether the conclusion of A believing ψ after re-
ceiving the ith revision input is a safe one, we simply add ψ to Di and
test whether the observation thus obtained has an explanation.5 If so, then
the conclusion is not safe as there is an explanation where ψ is in fact not
believed. However, if no such explanation exists then ψ must indeed be be-
lieved by A. The non-belief of a formula ψ can be verified by replacing the
corresponding θi by θi ∧ ψ. If the observation thus obtained has an expla-
nation then the agent may have believed ψ and consequently the conclusion
is not safe.

With a small modification this method works also for hypothetical rea-
soning about the agent’s initial beliefs, i.e., before receiving the first input.
It does not work directly, as the observation does not contain an entry for
the initial state. By appending 〈(ϕ0, θ0, D0)〉 = 〈(⊤,⊤,∅)〉 to the front of
the observation o we create this entry. The point is that receiving a tau-
tology as input leaves the beliefs unchanged. We can now add a formula ψ
to D0 or θ0 as described above to verify conclusions about the initial state.
Further, there is no restriction which formulae ψ can be used for hypothet-
ical reasoning. It is even possible to add several ψj simultaneously to o to
get a modified observation o′.

5 The rational explanation algorithm always finds an explanation if there is one, and
returns “no explanation” if there is none.
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Hypothetical reasoning can also be used in order to improve the con-
clusions about A’s core belief N. We already know that N ⊢ N∨(o), i.e.,
all inputs we predict to be rejected by A will indeed be rejected. This is
because any o-acceptable core entails N∨(o). But what about the other in-
puts, must they really have been accepted? Can we be sure that ϕi really
was accepted if it is consistent with N∨(o)? Rejecting ϕi is equivalent to
not believing the input after having received it. So, we simply add ϕi to
Di, i.e., replace (ϕi, θi, Di) in o by (ϕi, θi, Di ∪ {ϕi}) to get o′. If there is
an o′-acceptable core, then A may in fact have rejected ϕi. However, if o′

does not have an explanation then we know that A must have accepted that
input.

It might be nice to be able to check whether conclusions about A’s beliefs
are safe, but can we ever be sure to have the correct core belief in order to
apply the optimality results we gave for the rational prefix? The answer to
this question is almost exclusively negative. Usually, there is more than one
o-acceptable core. In a different context Sébastien Konieczny6 suggested the
additional assumption that the last belief θn recorded in the observation
o is in fact complete. This assumption gives us an upper bound on the
actual core belief N as then θn ⊢ N ⊢ N∨(o) must hold and we can use
the hypothetical reasoning methodology in order to get an improved core
belief. As we know the exact belief θn at the end of the observation, we
can iteratively add to Dn those formulae ψ which the rational explanation
predicts to be believed but which are not entailed by θn. This method will
yield an improved lower bound for the core belief of the agent, but it cannot
guarantee uniqueness of the core.

Even if we assumed that every θi completely characterises the beliefs of
the agent after receiving ϕi, we would not be guaranteed to get the real core
belief. Consider o = 〈(p, p,∅), (q, p∧ q,∅), (r, p∧ q∧ r,∅)〉 to illustrate this.
The rational explanation for o is [(),⊤]. However, p is also an o-acceptable
core, [(), p] being one possible explanation. That is, the conclusion that an
input ¬p will be accepted by the agent is not safe. This illustrates that even
using much more severe assumptions about a given observation, identifying
the agent’s real core belief is impossible.

3 Extension to Unknown Subformulae

Up to this point we considered observations that were complete with respect
to the revision inputs received. We knew exactly which inputs were received
during the time of observation. The scenarios in the introduction suggested
that it is well possible that some of the inputs might have been missed. Fur-
ther, the observer may not understand the complete logical content of all the
revision inputs, A’s beliefs and non-beliefs. Consider the following example

6 Personal communication.
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where the agent is observed to receive exactly two inputs p and q. After
hearing p, the agent believed something we cannot understand, but after
then hearing q, it did not believe that anymore. In the original framework
this cannot be formalised as there is no means to represent the unknown
belief. However, we should be able to conclude that A believed ¬q after
having received p. This is because the assumed belief revision framework
satisfies (most of) the AGM postulates [1]. In particular, if the input is
consistent with the current beliefs they have to survive the revision process
(cf. the “Vacuity” postulate from AGM) which is clearly not the case in
the example. The current section investigates how the previous results can
still be used to reason about A if the observations are allowed to be less
complete in this sense.

We want to emphasise that there is a big difference between knowing
there was a revision input while being ignorant about its logical content
and not even knowing whether there were one or more revision inputs. We
will first deal with the former case which will provide results to deal with
the latter one in Section 3.3.

3.1 Modelling unknown logical content

We will model partial information by allowing formulae appearing in the
observation to contain unknown subformulae which are represented by n
placeholders χj . λ(χ1, . . . , χn)[(χi/φi)i] denotes the result of replacing in λ
every occurrence of χi by φi.

Definition 3.1. Let L be a propositional language and χ1, . . . , χn be place-
holders not belonging to L.

A “formula” λ(χ1, . . . , χn) possibly containing χ1, . . . , χn is called a
parametrised formula based on L iff λ(χ1, . . . , χn)[(χi/φ)i] ∈ L whenever
φ ∈ L. o = 〈(ϕ1, θ1, D1), . . . , (ϕl, θl, Dl)〉 is a parametrised observation
based on L iff all ϕi, θi, δ ∈ Di are parametrised formulae based on L.
We denote by L(o) the smallest language L a parametrised observation o is
based on.

To put it differently, a parametrised formula based on L is a formula from
L in which some subformulae have been replaced by placeholders χi. This
allows hiding parts of the logical content of a formula. So in order to model
(even more) partial knowledge, we will consider parametrised observations.
The example from the introductory paragraph can now be represented by
o = 〈(p, χ,∅), (q,⊤, {χ})〉. We will often write λ rather than λ(χ1, . . . , χn)
to denote a parametrised formula in order to ease reading.

Unknown subformulae χi are allowed to appear in all components of
an observation—revision inputs, beliefs and non-beliefs. The same χi can
appear several times. In fact, this is when it contributes to the reasoning
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process. It is not unreasonable to assume that this can happen. For ex-
ample, the meaning of an utterance in a dialogue might not be understood
as part of the language may not be known to the observing agent, but the
utterance might be recognised when it appears again later. Analogous to
a learner of a foreign language, the observer may be familiar with (parts
of) the structure of the language while being ignorant about the meaning
of certain “phrases”. In case we are completely ignorant about the logical
content the entire parametrised formula will simply be a placeholder.

Let o be a parametrised observation. o[χ1/φ1, . . . , χn/φn] and equiva-
lently o[(χi/φi)i] denote the observation obtained by replacing in o every
occurrence of the placeholder χi by a formula φi.

We still assume correctness of the information contained in the parame-
trised observation o, i.e., we assume the existence of instantiations φi of all
unknown subformulae χi such that the observation o[(χi/φi)i] is a correct
observation in the sense of Section 2—in particular, there must be an entry
for every revision input received. The agent indeed received exactly the
inputs recorded and beliefs and non-beliefs are correct if partial. Note that
this implies that we are not yet able to deal with missing inputs. These will
be considered in Section 3.3. One important technical restriction is that
the instantiations of unknown subformulae χi must not contain unknown
subformulae χj themselves, i.e., the instantiations must be elements of the
underlying language—however, not necessarily elements of L(o). That is,
the true meaning of χi is not assumed to be expressible in the language of
the known part of o. Abusing notation we will write that o has an expla-
nation, meaning that there exist instantiations φ1, . . . , φn for the unknown
subformulae such that o[(χi/φi)i] has an explanation; similarly that N is
o-acceptable if N is o[(χi/φi)i]-acceptable.

3.2 Finding an acceptable core belief

In this section, we will present results on what can be said about A’s core
belief given a parametrised observation o. If an explanation exists at all,
once more there will be a unique weakest o-acceptable core N. This may
be surprising as there are many different possible instantiations for the un-
known subformulae. But this will also allow us to choose them such that any
o-acceptable core entails N. If we knew the instantiations of the unknown
subformulae we could simply use the rational explanation algorithm, as in
that case a parametrised observation could be transformed into a regular
one. As we do not know them, we have to guess. The trick is to extend the
language and treat every χi as a new propositional variable xi.

Proposition 3.2. If [ρ,N] explains o[(χi/φi)i] and x1, . . . , xn are prop-
ositional variables not appearing in o, N, ρ or any φi then o[(χi/xi)i] is
explained by [ρ,N ∧

∧

1≤i≤n(xi ↔ φi)].
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Proof (Sketch). λ[(χi/φi)i] ⊢ ⊥ iff
∧

1≤i≤n(xi ↔ φi) ∧ λ[(χi/xi)i] ⊢ ⊥ for
any parametrised formula λ not containing xi is the key to this result. As
the xi are not contained in [ρ,N] or o[(χi/φi)i], requiring

∧

(xi ↔ φi) en-
sures that the different instantiations have the same logical consequences—
modulo entailment of irrelevant formulae containing the xi. The (relevant)
beliefs are the same for both explanations. q.e.d.

The proposition formalises that given there is some instantiation for
the unknown subformulae in o such that the resulting observation has an
explanation, we can also replace them by new variables and still know that
there is an explanation. However, this tells us that we can apply the rational
explanation algorithm to o[(χi/xi)i] and be guaranteed to be returned an
explanation if there is one. If this fails, i.e., we are returned an inconsistent
core belief, then no explanation can exist using any instantiation of the
unknown subformulae in o. The core belief N ∧

∧

1≤i≤n(xi ↔ φi) ensures
that the new variables xi behave exactly as the “correct” instantiations φi

for the unknown subformulae in o.
In general, N∨(o[(χi/xi)i])—the core belief returned by the rational ex-

planation algorithm—will not be that particular formula. Note that this
would be impossible as there can be several suitable instantiations such
that o[(χi/φi)i] has an explanation. The core belief calculated will in gen-
eral be weaker but may still contain (some of) the additional variables xi.
We will now go on to show that it is possible to eliminate these variables
from the core belief by choosing different instantiations for the unknown
subformulae.

The idea is to split the core N calculated by the rational explanation
construction into two parts, one N

′ that talks only about L(o) and not
at all about the additional variables and one ψ part that talks also about
those. Formally, we choose N

′ and ψ such that N ≡ N
′ ∧ ψ and Cn(N′) =

Cn(N) ∩ L(o), which is possible as we are in a finite setting.7 Instead of xi

we then use xi ∧ ψ to instantiate the placeholders. This shifting of parts of
the core to the new variables is possible because the part of the core belief
that talks about the xi becomes relevant in the calculation of the beliefs of
an agent only when those variables themselves appear.

Proposition 3.3. If [ρ,N] explains o[(χi/xi)i] then there exist N
′ and ψ

such that N
′ contains no xi and [ρ · ψ,N′] explains o[(χi/xi ∧ ψ)i] .

Proof (Sketch). Let ψ = N and N
′ such that Cn(N′) = Cn(N) ∩ L(o). It

can now be shown that f (ϕ1[(χi/xi)i], . . . , ϕj [(χi/xi)i],N) is equivalent to
f (N, ϕ1[(χi/xi ∧ N)i], . . . , ϕj [(χi/xi ∧ N)i],N

′). Again, the proof of that is

7 We can trivially choose ψ = N and N
′ to represent all logical consequences of N in

L(o).
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not deep but lengthy. The intuition is that N
′ makes sure that with respect

to L(o) all formulae are treated correctly and using xi∧N rather than just xi,
the effect of N with respect to new variables is maintained. Consequently,
before processing ρ when calculating the beliefs, in both cases equivalent
formulae have been constructed and the beliefs will thus be equivalent.

q.e.d.

To summarise what we know so far. Given a parametrised observation
o has an explanation, we can construct one for o[(χi/xi)i]. However, the
corresponding core belief N∨(o[(χi/xi)i]) may still contain variables that
are not contained in L(o) and thus we cannot claim that the agent had
contact with them. The last proposition now showed that we can construct
instantiations for the unknown subformulae such that the explaining core
belief N

′ is in L(o). We can even go one step further and show that any
o[(χi/φi)i]-acceptable core N

′′ must entail the core N
′ constructed as de-

scribed above.

Proposition 3.4. Let [ρ′′,N′′] be an explanation for o[(χi/φi)i] and [ρ,N]
be the rational explanation for o[(χi/xi)i], where xi are additional propo-
sitional variables not appearing in any φi, N

′′ or the language L = L(o).
Further let N

′ such that Cn(N′) = Cn(N) ∩ L. Then N
′′ ⊢ N

′.

Proof. By Proposition 3.2 N
′′ ∧

∧

(xi ↔ φi) is o[(χi/xi)i]-acceptable and
hence entails N (any o-acceptable core entails N∨(o)). Obviously N ⊢ N

′,
so N

′′ ∧
∧

(xi ↔ φi) ⊢ N
′. Now assume N

′′ does not entail N
′ which implies

there is a model for N
′′ ∧ ¬N

′. Neither N
′′ nor N

′ contain any xi so we can
extend that model to one for N

′′ ∧
∧

(xi ↔ φi) ∧ ¬N
′ by evaluating xi just

as φi—contradicting N
′′ ∧

∧

(xi ↔ φi) ⊢ N
′. q.e.d.

There is an important consequence of that result. As in the original case
there is a unique weakest o-acceptable core for a parametrised observation o.
This follows directly from the last two propositions. N

′, being constructed as
described above, is o-acceptable and is entailed by any o-acceptable core, so
in particular by the agent’s real core belief. Hence, all formulae inconsistent
with N

′ will be rejected by A. That is, N
′ yields a safe conclusion with

respect to which formulae must be rejected by A—no matter what the
instantiations of the unknown subformulae really are.

Example 3.5. Consider o = 〈(χ, χ,∅), (p, q ∧ ¬χ,∅)〉. This parametrised
observation expresses that the observed agent accepted an input whose
meaning is unknown to us. After then receiving p, it believed q and the
negation of the unknown input. The observation constructed according to
Proposition 3.2, where χ is replaced by a new variable x, is
o[χ/x] = 〈(x, x,∅), (p, q ∧ ¬x,∅)〉. The rational explanation for o[χ/x] is
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[(p ∧ ¬x → q), p → ¬x] and (p → (¬x ∧ q), x ∧ ¬p, p ∧ q ∧ ¬x) is the
corresponding belief trace.

This indicates that after receiving the unknown input the agent believes
¬p. In order to test whether this is necessarily the case, we investigate the
parametrised observation o′ = 〈(χ, χ, {¬p}), (p, q ∧ ¬χ,∅)〉. According to
the hypothetical reasoning methodology, ¬p was added to the non-beliefs.
Applying the rational explanation algorithm yields that o′[χ/x] has no ex-
planation. Proposition 3.2 now tells us that there cannot be an explanation
for o′—no matter how χ is instantiated. That is, if the parametrised obser-
vation correctly captures the information about the agent, it must believe
¬p after receiving the first input.

o is based on the language L constructed from the variables p and q
and Cn(p → ¬x) ∩ L = Cn(⊤). To illustrate Propositions 3.3 and 3.4
note that o[χ/x ∧ (p → ¬x)] = 〈(x ∧ ¬p, x ∧ ¬p,∅), (p, q ∧ (¬x ∨ p),∅)〉 is
explained by [(p∧¬x → q, p→ ¬x),⊤], the corresponding belief trace being
(p→ (¬x∧ q), x∧¬p, p∧ q∧¬x). ⊤ is trivially entailed by any o-acceptable
core.

In order to find an acceptable core for a parametrised observation o,
we extended the language L(o) with new variables. In [23], we gave an
example—which we will not repeat here—illustrating that there are param-
etrised observations that have an explanation when language extension is
allowed but which cannot be explained restricting the language to L(o). In
other words, the proposed algorithm of replacing each χi by a new vari-
able xi, running the rational explanation construction and then eliminating
the xi from the core belief (the result being N

′) may yield an explanation,
although none exists when restricting the instantiations of the χi to L(o).
Although we know that each acceptable core will entail N

′, we cannot gener-
ally say that restricting the instantiations to L(o) will allow the same core,
a strictly stronger one or none at all to explain o.

Note that Proposition 3.2 makes no assumption about the language of
the instantiations φi of the unknown subformulae. They may or may not
belong to L(o). They may contain arbitrarily (but finitely) many propo-
sitional variables not belonging to L(o). However, that proposition has
an interesting implication. It says if o[(χi/φi)i] has an explanation then
so does o[(χi/xi)i], but o[(χi/xi)i] contains only variables from L(o) and
n additional variables xi, one for each placeholder. As that observation
has an explanation, the rational explanation construction will return one.
However, that construction uses only formulae present in the observation.
Consequently, it does not invent new variables. So, no matter how many
variables not appearing in L(o) were contained in the φi, n additional vari-
ables suffice for finding an explanation for the parametrised observation o.
This yields an upper bound on additional variables needed.
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In Section 2.4 we showed that assuming the wrong core belief greatly
affects the quality of the conclusions about A’s other beliefs. And even if
the core is correct, the belief trace implied by the rational explanation does
not necessarily yield only safe conclusions with respect to the beliefs of the
agent during the observation.

These problems are obviously inherited by the current extension to par-
tial information about the logical content of the formulae in an observation.
They cannot be expected to become less when not even knowing what in-
puts the agent really received or when information about the beliefs and
non-beliefs becomes even more vague. Much depends not only on the core
belief but also on the instantiation of the unknown subformulae. So rather
than just having to calculate a best initial epistemic state, we now would
also have to find an optimal instantiation of the unknown subformulae.
However, the limitations illustrated in Section 2.4 prevent us from even at-
tempting to look for them. Instead, we propose to investigate the belief
trace implied by the rational explanation of an observation o[(χi/xi)i] and
reason hypothetically about beliefs and non-beliefs from L(o) in that belief
trace.

3.3 Intermediate inputs

Up to now, we assumed the (parametrised) observation o to contain an entry
(ϕ, θ,D) for every revision input received by A, even if some of the formulae
are only partially known. This corresponds to the assumption of having
an eye on the agent at all times during the observation. In this section,
we want to drop this assumption. That is, we will allow for intermediate
inputs between those recorded in o. In real applications this will be the
norm rather than an exceptional case. A or the observing agent may leave
the scene for a time, and if the observing agent is the source of information
then o might have been gathered over several sessions between which A may
have received further input.

Using our notation for observations, an intermediate input is one we
have no information about, i.e., we do not know what the revision input
is or what is believed or not believed after receiving it. Hence, we can
represent it by 〈(χ,⊤,∅)〉; χ again represents an unknown formula. Note
that this is different from 〈(χ, χ,∅)〉 as here the input would be required to
be accepted by A. In other words, the agent’s core belief would have to be
consistent with the instantiation of χ.

Example 3.6. Consider the following observation without intermediate in-
puts: o = 〈(p, q,∅), (p,¬q,∅)〉. Assume N was o-acceptable and thus con-
sistent. Then either it is consistent or inconsistent with p. In both cases,
the belief set does not change upon receiving the second input p. Either
the first p was accepted and hence already believed or p was rejected (both
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times) in which case the belief set never changes. So ¬q must have been
believed already after the first p was received. But it is not possible to
believe q ∧ ¬q consistently (the belief set is inconsistent if and only if the
core belief is inconsistent). Consequently, there is no o-acceptable core.

Assuming a single intermediate input 〈(χ,⊤,∅)〉, there is only one rea-
sonable position yielding o′ = 〈(p, q,∅), (χ,⊤,∅), (p,¬q,∅)〉. Instantiating
the unknown formula χ with p → ¬q, [(p → q),⊤] is an explanation. Be-
fore receiving the first input the agent believes p → q, after receiving the
first p it believes p∧ q and after receiving the (assumed) intermediate input
as well as after receiving the last input p it believes p ∧ ¬q. Hence ⊤ is
o′-acceptable. That is, while o does not have an explanation, assuming an
intermediate input allows the observation to be explained.

In the general case we do not know how many intermediate inputs were
received at which points in a given (parametrised) observation o. In [23]
we showed that number and positions of the intermediate inputs have an
impact on the possible explanations of o. If number and positions are
fixed then we deal with a parametrised observation (containing an entry
for every revision input received) and can hence use the results of Sec-
tion 3.2 in order to calculate the weakest acceptable core belief. To rep-
resent the intermediate inputs we simply have to introduce further un-
known subformulae not contained in o. Assume we have the partial ob-
servation o = 〈(p, q ∧ χ1,∅), (r,¬q,∅), (p, q, {χ1})〉 and the information
that exactly two intermediate inputs have been received immediately af-
ter r. In order to reason about A, we consider the partial observation
o′ = 〈(p, q ∧ χ1,∅), (r,¬q,∅), (χ2,⊤,∅), (χ3,⊤,∅), (p, q, {χ1})〉 which now
contains an entry for every input received. At this point we want to em-
phasise once more that intermediate inputs and partial information about
inputs are related but distinct cases.

In the following we want to indicate what can be said about the agent’s
core belief depending on how much information we have concerning possible
intermediate inputs. Naturally, the more specific our knowledge concerning
number and positions, the more informative the conclusions can be. We will
start with the case where we have no information at all, which means that
any number of intermediate inputs may have been received any time. Then
we will turn to the cases where the positions or the number are restricted.

Any number of intermediate inputs at any time. Consider an ob-
servation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. Assume [ρ,N] explains the
observation o′ which is obtained from o by putting some arbitrary number
of intermediate inputs at any position in o. It can be proved that then there
are a sequence σ and n− 1 intermediate inputs such that [σ,N] explains o′′

obtained from o by putting exactly one intermediate input between any two
inputs ϕi and ϕi+1 in o. Note that both explanations use the same core
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belief. Intuitively, the intermediate input from o′′ before the input ϕi+1 is
the conjunction of all relevant intermediate inputs from o′ before that input.

Proposition 3.2 tells us that we can also use new variables xi instead of
those intermediate inputs8 and the observation o′′′ thus obtained is guar-
anteed to have an explanation. However, o′′′ does not contain any un-
known subformulae, so we can apply the rational explanation construc-
tion which will return some epistemic state with core belief N

′. We can
now construct the weakest possible core belief by taking N

′′ such that
Cn(N′′) = Cn(N′)∩L(o). Any o′-acceptable core belief—o′ being constructed
as described above—will entail N

′′. That is from N
′′ we can safely conclude

which formulae are rejected by A, no matter how many intermediate inputs
it received at any point during the observation.

What happens if we have further information about the positions or
the number of intermediate inputs? The following proposition implies that
we should always assume the maximal number of intermediate inputs. It
says that an additional intermediate input, which we instantiate with a new
variable for calculating the weakest possible core belief, can only make the
core logically weaker. Conversely, not assuming the maximal number of
intermediate inputs may lead to the conclusion that A rejects a formula
which it actually does not reject simply because an additional intermediate
input allows A’s core belief to be logically weaker.

Proposition 3.7. If Cn(N) = Cn(N∨(o1 · 〈(x,⊤,∅)〉 · o2)) ∩ L(o1 · o2) and
x 6∈ L(o1 · o2) then N∨(o1 · o2) ⊢ N.

Proof (Sketch). By showing N∨(o1 · o2) ≡ N∨(o1 · 〈(⊤,⊤,∅)〉 · o2), which
holds because a tautologous input has no impact, we introduce the extra
input which allows us to compare the cores. By Proposition 3.2,
N∨(o1 · 〈(⊤,⊤,∅)〉 · o2) ∧ x is o1 · 〈(x,⊤,∅)〉 · o2-acceptable and hence en-
tails N∨(o1 · 〈(x,⊤,∅)〉 · o2). We can now show that any formula from
L(o1 · o2) entailed by that core as already entailed by N∨(o1 · o2). q.e.d.

Fixed positions of intermediate inputs. Now assume we know the po-
sitions where intermediate inputs may have occurred. This is imaginable,
for example, in scenarios where the observing agent gathers o in several ses-
sions, but does not know if A receives further inputs between those sessions.
How many intermediate inputs should be assumed at each of those points?
We cannot allow an arbitrary number as this is computationally infeasible,
so it would be helpful to have an upper bound which we could then use. We
claim that it suffices to assume j intermediate inputs at a particular posi-
tion in o, where j is the number of revision inputs recorded in o following

8 That is, we put an entry 〈(xi,⊤,∅)〉 with a new variable xi between any two entries
〈(ϕi, θi,Di)〉 and 〈(ϕi+1, θi+1, Di+1)〉 in o.
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that position, i.e., ignoring possible intermediate inputs appearing later.9

The intuition is as above. For every recorded revision input, we assume one
intermediate input which collects all the relevant intermediate inputs that
have really occurred.

If this claim is correct, we can introduce into o one entry (χi,⊤,∅) for ev-
ery intermediate input. Thus we get a parametrised observation containing
an entry for every revision input received. We can then construct a weakest
acceptable core belief by instantiating each χi by xi, calculating the rational
explanation of the observation thus obtained and then eliminating the addi-
tional variables from the core belief. For example, given an observation o=
〈(ϕ1, θ1, D1), . . . , (ϕ5, θ5, D5)〉 and the information that intermediate inputs
have been received only after ϕ2 and ϕ4, we can calculate the weakest pos-
sible core starting with o′ = 〈(ϕ1, θ1, D1), (ϕ2, θ2, D2), (x1,⊤,∅), (x2,⊤,∅),
(x3,⊤,∅), (ϕ3, θ3, D3), (ϕ4, θ4, D4), (x4,⊤,∅), (ϕ5, θ5, D5)〉 and eliminating
the xi from N∨(o′). Again, all xi are propositional variables not contained
in L(o).

The above claim for limiting the number of assumed intermediate inputs
follows almost immediately from the following proposition.

Proposition 3.8. Let ρ = (ϕ1, . . . , ϕn) and σ = (ψ1, . . . , ψm). Then there
exists a σ′ = (ψ′

1, . . . , ψ
′
n) such that for all 1 ≤ i ≤ n

f (σ · (ϕ1, . . . , ϕi,N)) ≡ f (σ′ · (ϕ1, . . . , ϕi,N)) .

Proof (Sketch). The proof of this result uses the fact that for every sequence
σ there is a logical chain σ′ (a sequence of formulae where each formula is
entailed by its successor) that behaves exactly like σ. That is f (σ · ρ′) ≡
f (σ′ · ρ′) for all sequences ρ′. However, for this result it suffices that σ and
σ′ behave equivalently for all prefixes of ρ. We then show that a suitable
σ′ exists, in fact using the rational explanation algorithm and hypothetical
reasoning. q.e.d.

Note that this result is not trivial, as m can be (much) greater than
n and in this case we have to find a shorter sequence yielding equivalent
formulae for all 1 ≤ i ≤ n. This proposition tells us that we can replace
one block of intermediate inputs σ by one of the proposed length and be
guaranteed an equivalent formula being constructed in the calculation for
each recorded revision input ϕi coming later in the observation.

We want to remark that some care has to be taken when considering the
general case, where several blocks of intermediate inputs exist. Then ρ in
the proposition may contain more elements than just the recorded revision

9 The above result—that one intermediate input between any two recorded ones is
enough—is not applicable here. Intermediate inputs may not be allowed at every
position.
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inputs; it also contains intermediate ones. And thus we have to find a
sequence σ′ not of length n but j ≤ n where j is the number of recorded
inputs. We are currently investigating whether the number of intermediate
inputs that have to be assumed can be reduced further without effect on
the core belief calculated.

Fixed number of intermediate inputs. If we are given a maximal (or
exact) number n of intermediate inputs that may have occurred we can draw
conclusions about the core belief of the agent using the following method.
Due to Proposition 3.7 we should indeed assume the maximal number of
intermediate inputs—n. So let o be the observation containing only recorded
inputs. If o has less than n+2 recorded inputs and there are no restrictions
as to the positions of the intermediate inputs, we can use the result that
one intermediate input between any two recorded ones suffices to explain
o; otherwise, there are not enough intermediate inputs for this result to be
applicable. In this case, we create the set of all possible observations o′

where n intermediate inputs have been inserted in o:

O′ = {o1 · 〈(x1,⊤,∅)〉 · o2 · . . . · 〈(xn,⊤,∅)〉 · on+1 | o = o1 · . . . · on+1}.

Here we have already replaced the unknown formulae by new variables. If
we have information about the positions of the intermediate inputs we can
also take this into account when constructing O′. The observation oj may be
empty, so consecutive intermediate inputs are explicitly allowed. Now any
possible core belief will entail

∨

{N | Cn(N) = Cn(N∨(o′)) ∩ L(o), o′ ∈ O′}.
Note that this formula itself need not be an o′-acceptable core, i.e., it may
not really explain the observation using n intermediate inputs. Conclusions
about beliefs and non-beliefs can only be safe if they are safe for every
observation in O′.

3.4 Summary

In this section, we showed what can still be said about A if some of the com-
pleteness assumptions about the observation o are weakened. We started
by allowing unknown subformulae χi to appear in o. This can happen as
the logical content of the revision inputs or the beliefs need not be com-
pletely known. In case the observation still contains a record for every in-
put received, the calculation of an optimal core belief is still possible. The
proposed method for dealing with such parametrised observations was to
instantiate the unknown subformulae χi with new variables and apply the
rational explanation construction to the observation thus obtained. From
this explanation we can safely conclude which beliefs must belong to the
agents core belief no matter what the real instantiation of the χi was.

We showed in [23] that although we can construct a core belief from
L(o) this does not guarantee that o can be explained without extending the
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language. The unknown subformulae may still have to contain variables
not belonging to L(o). We claim that it is not useful to look for an optimal
instantiation of the unknown subformulae. Weakest core belief and belief
trace heavily depend on the choice of the instantiation of the χi and even
if we had the correct ones, Section 2.4 showed that the conclusions drawn
from the belief trace implied by our explanation are of limited use. Instead
we argue that the χi should be instantiated with xi and reasoning be done
based on the rational explanation. This allows us to draw correct conclu-
sions about the actual core belief of the agent, which must entail the one
calculated that way. Further, we can use hypothetical reasoning to verify
other beliefs and non-beliefs (restricted to L(o)) implied by the explanation
thus obtained.

The additional assumption that the belief corresponding to the last re-
vision input in the (parametrised) observation completely characterises A’s
beliefs at that point once more need not help. It might not even convey
additional information about the language of the agent’s epistemic state
or of the unknown subformulae. Consider the parametrised observation
〈(p ∧ χ,⊤,∅), (¬p,¬p,∅)〉. It might not be very interesting but it illus-
trates the point. As ¬p is inconsistent with the first input, χ could be
instantiated with any formula and still ¬p would completely characterise
the agent’s final beliefs.

We then further allowed intermediate inputs, i.e., the original observa-
tion does not contain a record for every input received. Some observations
can be explained only when assuming that intermediate inputs have oc-
curred. When fixing their number and positions, the problem is reduced to
partially known inputs. If the observing agent does not have this informa-
tion, we sketched procedures for drawing conclusions about what A’s core
belief must entail.

4 Conclusion, Future and Related Work

In this paper, we departed from the traditional belief revision setting of
investigating what an agent should believe after receiving (a sequence of
pieces of) new information in a given initial state. Instead, we place our-
selves in the position of an observer trying to reason about another agent in
the process of revising its beliefs. Coming up with models of other agents
is useful in many application areas as informed decisions may improve the
personal or group outcome of interactions.

The basic and admittedly oversimplified setting we consider is that we
are given an observation containing propositional information about the re-
vision inputs received by an agent A and about its beliefs and non-beliefs
following each input. We investigated several degrees of incompleteness of
the information provided. From such an observation we try to get a clearer
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picture of A. Assuming A to employ a particular belief revision frame-
work, the general approach for reasoning about the agent is to “regress”
the information contained in the observation to arrive at a possible initial
state of the agent. This state completely determines the revision behaviour
and therefore allows to draw conclusions about A’s beliefs at each point in
time during the observation as well as future beliefs. Even under the very
strict assumptions we impose, hardly any safe conclusions can be drawn.
Intuitively, this is because coming up with A’s true initial state is virtually
impossible. The observing agent can only try to extend and refine the ob-
servation and reason hypothetically in the sense of testing conjectures about
A in order to improve the model.

It should be clear that the general question does not require the use of
the belief revision framework we assumed. For future work, it might be
interesting to see if similar results can be obtained when assuming A to
employ a different framework. It would be interesting to see how differ-
ent revision frameworks compare with respect to their power to explain an
observation and whether there is a significant difference in the quality of
the conclusions that can be drawn. Another important question is whether
there is a way to actually find out which revision framework an observed
agent employs or whether other assumptions can be verified. We claimed
that it is not reasonable to look for the optimal instantiation of the un-
known subformulae but rather do hypothetical reasoning restricted to L(o).
However, in some applications it might be interesting to know what the
actual revision input was that triggered a certain reaction in the agent. So
comparing potential instantiations (possibly from a fixed set of potential
formulae) could be a topic for future research.

We want to remark that the methodology illustrated in this paper can
also be applied in slightly modified settings. It is possible to construct an
initial state that explains several observations in the sense that different
revision sequences start in the same state. This is reasonable, e.g., when
thinking about an expert reasoning about different cases (the initial state
representing the expert’s background knowledge) or identical copies of soft-
ware agents being exposed to different situations. Our work is focused on
reasoning using observations of other agents, but observing oneself can be
useful as well. By keeping an observation of itself an agent may reason
about what other agents can conclude about it, which is important when
trying to keep certain information secret. The results can also be applied
for slight variations of the assumed belief revision framework. For example,
it is possible to allow the core belief to be revised or to relax the restriction
that new inputs are always appended to the end of ρ in an epistemic state
[ρ,N]. The interested reader is referred to [24].

Our work has contact points to many other fields in AI research. Most
obvious is its relation to belief revision. The intuitive interpretation we
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used for the assumed revision framework is incorporation of evidence [13].
However, the representation of the epistemic state as a sequence of formulae
does not distinguish between background knowledge and evidence. When
applying the results, a more detailed analysis of the intended meaning of the
concepts involved and a corresponding interpretation of the results would
be needed. Reasoning about other agents is central for many areas, e.g.,
multi-agent systems, user modelling, goal and plan recognition, etc. Here
we investigated one specific aspect. In reasoning about action and change,
the question is often to find an action sequence that would cause a particular
evolution of the world—either to achieve some goal (planning), or to find
out what happened (abduction). Often, the initial state and the effects of
an action are specified. In our setting, the effect of a revision input is not
quite clear. It might be accepted by the agent or not and beliefs triggered
by the input heavily depend on the initial state. Trying to come up with
hypotheses about the inner mechanisms of an observed system, which could
be interpreted as its initial state that determines its future behaviour, is a
topic treated also in induction.

We are not aware of work that investigates reasoning about the evolution
of an observed agent’s beliefs matching our setting. So we want to conclude
by mentioning some papers that investigate similar questions. [11] considers
a much richer belief revision framework in a dialogue context. However, the
focus is on progressing beliefs through a sequence of speech acts starting in
a given initial state of the agents. This and many other publications utilise
modal logics for representing agents’ beliefs, [14] being another example
also handling the dynamics of these beliefs. Often there are proof systems
or model checkers for the logics presented, but model generation, which
is what we are doing in this paper, generally seems to be a problem. This
means that if the initial state is not given, hypotheses can only be tested (via
proofs) but not systematically generated. However, this is what calculating
a potential initial state and the corresponding belief trace is.

The papers [2, 26], which are dealing with update rather than belief re-
vision, start from a sequence of partial descriptions of an evolving world and
try to identify preferred trajectories explaining this sequence. [2] intends to
sharpen the information about the last state of the world and concentrates
on a particular preference relation, giving a representation result. [26] com-
pares different possible preference relations among trajectories, positioning
the approach with respect to revision and update. However, both allow for
arbitrary changes at any point in time, i.e., they do not allow to integrate
information about which actions were performed nor reason about possible
outcomes of an action. Recall that although our observation contains the
revision input received, this does not mean that it is actually accepted.
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