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Abstract

Imagine the following simple dialogue between an “intelligent” machine and a user:

User: Is Miss Thailand very beautiful? (B?)
Machine: Yes. (B)

User: Then I believe she is Miss Universe. (U )

All the machine explicitly knows from this is that (i) at the start of the dialogue, the user
did not know whether B was true, and (ii) after receiving statement B the user believes U .
But did the user believe U also before receiving B? Does he believe B itself after receiving
it? And will he still believe B if the machine then tells him, “actually, Miss Puerto Rico
is Miss Universe” (i.e., U is false!). Helping the machine find answers to questions like
these is the subject of this paper. Our solution depends on the machine building a plausible
model of the user and how it forms beliefs, which “best explains” the observed dialogue.
Our results will be applicable in the areas of automated dialogue (e.g., chatbots) and user
modelling.1

1 Introduction

Imagine the following simple dialogue between an “intelligent” machine and a user:

User: Is Miss Thailand very beautiful? (B?)
Machine: Yes. (B)

User: Then I believe she is Miss Universe. (U )

All the machine can explicitly reasonably assume from this about the user’s beliefs is that (i)

1This paper is a more informal exposition of ideas presented in [2, 3].
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at the start of the dialogue, the user did not know whether B was true (otherwise he would not
have asked), and (ii) after receiving statement B the user believes U . But did the user believe U
also before receiving B? Does he believe B itself after receiving it? And suppose the dialogue
continues with:

Machine: Actually, Miss Puerto Rico is Miss Universe. (i.e., U is false!)

Will the user still believe B after receiving this information? Helping the machine find answers
to questions like these is the subject of this paper.

Our solution depends on the machine building a plausible model of the user and how it forms
beliefs, which “best explains” the observed dialogue. The plan of the paper is as follows. In
Section 2 we describe the way we take the machine to internally represent a dialogue. The
method of representation is based on propositional logic, a mathematically precise formalism
which is widely used in the field of Knowledge Representation. In Section 3 we describe the
model of the user which the machine should use and define what it means for one such model
to explain a dialogue. Then in Section 4 we investigate what it means for a given model to be a
best explanation for a given dialogue. Throughout the paper we will illustrate our ideas on the
above Miss Thailand example, leading to the best-explaining model for this particular dialogue.
We conclude and mention ideas for future research in Section 5.

2 Representing the dialogue

Automated modelling of natural language dialogues such as the above Miss Thailand dialogue
requires two separate phases:

Phase 1 the use of some natural language processing (NLP) module to transform the
natural language statements into some representation suitable for manipulation
by the machine.

Phase 2 the use of some reasoning mechanism by which the machine can carry out these
manipulations.

Although both phases are equally important, in this paper we will focus entirely on Phase 2.
We will see that already just in this phase some interesting issues emerge. Furthermore we
shall assume the suitable representation mentioned in Phase 1 is the language of propositional
logic. In propositional logic, statements are represented as sentences which are built up from
a set of propositional variables (sometimes also known as atomic sentences) using the logical
connectives &, ∨, ¬ and → standing for “and”, “or”, “not” and “if . . . then . . . ” (or “implies”)
respectively. For example for the purposes of modelling the Miss Thailand example we might
choose propositional variables v beautiful and Miss Universe to stand for the statements
“Miss Thailand is very beautiful” and “Miss Thailand is Miss Universe” respectively. Using the
connectives we can then express more complex sentences such as:
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v beautiful & Miss Universe

“Miss Thailand is very beautiful and she is Miss Universe”
¬v beautiful→ ¬Miss Universe

“If Miss Thailand is not very beautiful then she is not Miss Universe”
v beautiful→ Miss Universe

“If Miss Thailand is very beautiful then she is Miss Universe”
¬v beautiful ∨ Miss Universe

“Either Miss Thailand is not very beautiful or she is Miss Universe (or both)”

(For an introduction to propositional – also sometimes called sentential – logic, see, e.g., [4,
Chapter 1].) We propose that statements provided by both the machine and the user be modelled
internally by the machine as sentences in propositional logic. We do not concern ourselves with
the precise method of how the natural language statements get converted into this representation,
we just assume this process of conversion has already taken place.

As well as a way to internally represent the statements exchanged in the dialogue, the machine
needs some way, or data structure, to model the dialogue as a whole. We propose the machine
stores the dialogue as a series of stages, or rounds, in each of which the user and machine each
take it in turn to provide an input. Each of these individual stages is assumed to follow a rigid
pattern in which first the machine makes some statement to the user, and then the user provides
some response to the machine’s input. From the user’s response, we assume the machine is
always able to work out a set of propositional sentences which the user is taken to believe at
that moment in time, and also a set of sentences which the user is taken not to believe at that
moment. Formally, each stage of dialogue consists of a triple (ai, Bi, Di), where

• ai is a (propositional) sentence representing the machine’s input to the user.

• Bi and Di are both (finite) sets of sentences which collectively indicate the user’s response
to receiving ai:

– Bi is a set of sentences which the user is taken to believe in response to ai.

– Di is a set of sentences which the user is taken not to believe in response to ai.

The Di can arise quite naturally in the context of a dialogue. For example if, following being
told ai, the user responds with the question “Is b true or not?”, then (assuming the user is being
sincere) the machine may assume the user believes neither b nor ¬b, and so both b and ¬b would
be elements of Di.

Our insistence that the machine always takes the first turn in a round of dialogue might seem too
restrictive. After all, as the Miss Thailand example shows, sometimes it is the user who starts
the dialogue. However, as we will soon see, there is a way of working around this restriction.

We assume the machine then stores the full dialogue as a sequence of such stages

d = 〈(a1, B1, D1), (a2, B2, D2), . . . , (an, Bn, Dn)〉,
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where (a1, B1, D1) is the first round, (a2, B2, D2) is the second round, and so on up to the last
round (an, Bn, Dn).

Example 2.1. Let’s take a look at how the Miss Thailand example might be modelled in this
way. We can use two dialogue rounds. First note the dialogue as it stands doesn’t fit into our
rigid turn-taking pattern of machine-user-machine-user-. . . , since the first contribution is by
the user rather than the machine. However we can easily make it fit by assuming an imaginary
first “dummy” turn by the machine in which the machine provides the user with an empty input
which we denote by >. Formally speaking, in propositional logic > denotes a sentence which
is always true (sometimes called a “tautology”), and therefore provides the user with no useful
information, since the user already knows it is true. The user responds to this empty input by
asking if Miss Thailand is very beautiful. Thus the set of sentences the user doesn’t believe at
this stage can be taken to include v beautiful and ¬v beautiful. The user’s response does
not give the machine any information about what he does believe. Thus the first stage can be
modelled as

(>, ∅, {v beautiful,¬v beautiful}).

Here, ∅ denotes the “empty set”, i.e., the set containing no elements. In the next stage, the
machine provides the user with the information that Miss Thailand is very beautiful, and the
user responds by asserting that Miss Thailand is Miss Universe. Thus the second stage can be
modelled by

(v beautiful, {Miss Universe}, ∅).

This is the end of the dialogue, which we denote by dMiss.

dMiss = 〈(>, ∅, {v beautiful,¬v beautiful}), (v beautiful, {Miss Universe}, ∅)〉.

Now, speaking more generally, the problems we are interested in may be stated as follows:
assume the machine is given some piece of dialogue

d = 〈(a1, B1, D1), (a2, B2, D2), . . . , (an, Bn, Dn)〉.

Then the machine must answer the following questions:

• What did the user believe before the start of the dialogue, i.e., before receiving a1?

• For each i = 1, . . . , n, what apart from the sentences in Bi, did he believe after receiving
ai?

• What will he believe after receiving a given further input an+1?

We make two assumptions about this setting: (i) (a1, . . . , an) represent all the inputs the user
receives between during the course of the dialogue, i.e., the user does not receive any other
information during this time from any other source. (ii) the Bi and the Di are correct (but
possibly incomplete) descriptions of the user’s beliefs and non-beliefs, i.e., following each input
from the machine ai, the user really does believe all the sentences in Bi and really does not
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believe any sentence in Di. In other words the user is being sincere with his responses, and is
not lying or trying to mislead the machine.

How can the machine answer these questions? Our idea is that the machine needs to somehow
“get inside the mind” of the user, and form some sort of picture, or model, of how the user
forms beliefs and updates his beliefs when he receives new information during a dialogue. The
machine can then use this model to explain the user’s responses during the dialogue, and to
make extra inferences and predictions about the user’s beliefs. The question is: what should
this model look like? What should be the ingredients of such a model? We now look at one
possibility for describing a user’s belief state, originally described in [1].

3 Modelling the user

The model of the user’s belief state needs to be simple yet have a touch of realism, or plausibility.
The idea behind the model we propose can be said to come from two basic observations about
how we, as human beings, form beliefs:

(a) our beliefs depend on the information we have received over time, and

(b) we often have some beliefs which we believe so strongly that we will never give them up,
for example “The capital city of England is London”. We will call these core beliefs.

Consider again the user. For (a) we let a denote a sequence (b1, b2, . . . , bm) of (propositional)
sentences standing for the sequence of inputs the user has received so far (with b1 being the first
input received, and bm the last), while for (b) we let N be a (propositional) sentence standing
for the core beliefs of the user. Then the belief state of the user should contain some record of a
and N. In fact we take a and N together to be the belief state of the user, which we will denote
by [a | N].

Example 3.1. For a simple example suppose the user has received during his life three items of
information: p followed by q and then ¬q, where p and q denote some given (distinct) proposi-
tional variables. Then a = (p, q,¬q). Suppose the user has r (another propositional variable)
as his only core belief, i.e., N = r. Then the user’s belief state is [(p, q,¬q) | r].

We’re not yet finished with our model of the user, we still need to describe (i) given the user is in
state [a | N] what are his actual beliefs in this state (i.e., the sentences the user actually uses when
making decisions)? We also need to describe (ii) how the user changes his belief state whenever
he receives new information. Turning first to (i), an obvious first answer would be to say the
user believes all the information he has received plus the core beliefs. However this might not
always be possible, since it is very likely that the user, during the course of his life, has received
information which is contradictory. Intuitively, this means the user has received two or more
items of information which cannot all be true at the same time. The most typical example would
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be if the user has received an input sentence a, and then at some further point in time receives
the opposite information ¬a. In this case, if the user believes simultaneously all information he
has ever received, then, to use the correct technical term, his beliefs become inconsistent. And
it is a basic instinct of the user to avoid having inconsistent beliefs. Thus in this situation the
user needs to employ some method to choose between contradictory information. The machine
should assume the user is using a very simple mechanism to do this. One such mechanism is
that, if there is an inconsistency, then the user gives priority to more recent information received.
On top of this, the beliefs must include N, since these are the core beliefs. So N receives the
highest priority of all the sentences appearing in the user’s belief state.

One method which takes all this into account can be roughly2 described as follows. For the
moment let us assume a = (b1, b2, . . . , bm). The user calculates his beliefs in stages, starting
with N. First the user looks at sentence bm, i.e., the most recent sentence received. If the
sentence bm & N is consistent, then it’s OK for the user to believe bm. So he updates his beliefs
from N to bm & N and then looks at the next sentence along in the sequence bm−1. If, however
bm & N is inconsistent then the user should not believe bm. In this case the user keeps his beliefs
as just N and then moves along to consider bm−1. Now if bm−1 is consistent with the sentence
collected so far (bm & N in the first case, just N in the second) then it is added, and then the
next sentence bm−2 is considered. If it is inconsistent with the sentence collected so far, then it
is not added, and then the next sentence is considered. The process continues like this, working
backwards through a, until all the sentences in a have been considered. We denote the beliefs
of the user in state [a | N] by Bel([a | N]).

Example 3.2. Assume the user is in the belief state from Example 3.1, i.e., [(p, q,¬q) | r]. Then
the user believes r. Since ¬q & r is consistent we may add ¬q. But at the next stage, since
adding q to ¬q & r would give an inconsistency, q is not added and we move on to consider the
remaining sentence p. Adding p to ¬q & r does not give an inconsistency, so it may be added,
and so we finish with Bel([(p, q,¬q) | r]) = p & ¬q & r.

Note that Bel([a | N]) is always a single propositional sentence, in fact a collection of propo-
sitional sentences connected by “&”. However, when using a single sentence to represent a
user’s beliefs, we are implicitly assuming that the user believes not just that sentence, but in
fact all logical consequences of that sentence. For instance, in the above example the full set
of statements which the user believes contains not just p & ¬q & r, but also sentences like p,
¬q, r, p ∨ q, etc, as well as the tautology > (which is a logical consequence of every sentence).
Thus in the rest of the paper we will sometimes talk about Bel([a | N]) as though it was a set of
sentences. In these cases the understanding is that Bel([a | N]) is the set containing all logical
consequences of the sentence being used to represent it.

This, then, describes how the user calculates his beliefs in any given belief state. But how does
he change his belief state when he receives new information. Given the above model of the
user’s belief state, the procedure is easy. Given his current belief state is [a | N] and he receives
new input sentence b, the user just adds b to the right-hand end of a, i.e., the user’s new belief
state becomes [a · b | N], where “·” is just the “append” operator. Then his new belief set can be
worked out again using the same procedure outlined above.

2For the more formal description see [2, 3].
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Example 3.3. Again suppose the user is in the belief state [(p, q,¬q) | r].
(i) Suppose the user receives new information ¬q → ¬r, so his new belief state is

[(p, q,¬q,¬q → ¬r) | r].

When calculating his new set of beliefs, the user starts with r. Adding ¬q → ¬r to r does
not lead to inconsistency, so it may be added. But adding ¬q to (¬q → ¬r) & r does lead
to inconsistency (since ¬q together with ¬q → ¬r logically implies ¬r, which contradicts the
core belief r). So whereas ¬q was a part of the user’s belief set before, the new information
causes the user to give up this belief. The remaining two sentences in the sequence may both
be added to (¬q → ¬r) & r without causing inconsistency, so the user’s new belief set is
p & q & (¬q → ¬r) & r. Since ¬q → ¬r is actually a logical consequence of the other three
sentences appearing here it may be removed without changing the meaning of the sentence, i.e.,
the user’s belief set here can be equivalently described as just p & q & r. Throughout the rest
of the paper, we will often repeat this trick of removing redundant sentences in order to simplify
the description of the user’s beliefs. In particular note that, since the sentence > is a logical
consequence of any sentence, we are always free to remove >.
(ii) Suppose instead the user receives new information ¬r, so his new belief state becomes
[(p, q,¬q,¬r) | r]. When calculating his new beliefs, the user starts as always with his core
beliefs r. But then since adding ¬r would give inconsistency, the user does not include ¬r in his
beliefs. In fact his beliefs in this new state stay the same as the beliefs in the original state, i.e.,
p & ¬q & r. This example shows there are times when the user does not believe new information
given to him, namely when that information contradicts his core beliefs.

This completes our description of how the user forms and updates his beliefs. We now instruct
the machine to assume the user works like this. Then, given a dialogue

d = 〈(a1, B1, D1), (a2, B2, D2), . . . , (an, Bn, Dn)〉,

the machine knows what the user’s belief state looks like at each step, namely

[a · (a1, . . . , ai) | N],

and his belief set is Bel([a · (a1, . . . , ai), N]), where [a | N] is the user’s initial (i.e., before
receiving a1) belief state. The only problem is the machine does not know what [a | N] is. The
dialogue d gives the machine the following information about the user’s beliefs:

for all i such that 1 ≤ i ≤ n :
Bi ⊆ Bel([a · (a1, . . . , ai) | N]) and
Di ∩Bel([a · (a1, . . . , ai) | N]) = ∅.

(1)

(Here “⊆” denotes the subset relation between sets, and “∩” denotes the operation of taking the
intersection of two sets: X ∩ Y is the set containing all elements which belong to both X and
Y .)

We make the following definition:
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Definition 3.4. We say [a | N] explains a dialogue d (or is an explanation for d) if (and only if)
equation (1) above holds.3

For a given dialogue d and belief state S = [a | N], for each i = 0, 1, . . . , n let us write BelSi as
shorthand for Bel([a · (a1, . . . , ai) | N]) (so BelS0 = Bel([a | N]) is the user’s initial beliefs at
the start of the dialogue). Then we will call the sequence

(BelS0 , BelS1 , . . . , BelSn)

the belief trace of S through d. It gives the evolution of the user’s beliefs through the dialogue
d if the user’s initial belief state is assumed to be [a | N].

3.1 The Miss Thailand example

Let’s return to our Miss Thailand dialogue

dMiss = 〈(>, ∅, {v beautiful,¬v beautiful}), (v beautiful, {Miss Universe}, ∅)〉.

We will now give one non-explanation and four different explanations for dMiss. According to
Definition 3.4, in order for a given S = [a | N] to explain dMiss we require

(1) v beautiful 6∈ BelS1 (2) ¬v beautiful 6∈ BelS1 (3) Miss Universe ∈ BelS2

(Here, “∈” denotes set-membership, i.e., means “is an element of”, “ 6∈” means “is not an ele-
ment of”.)
(i). Consider the belief state

S1 = [(v beautiful & Miss Universe) | >)],

i.e., a is here taken to be the sequence whose only element is v beautiful & Miss Universe,
and the user has no core beliefs.4 The belief trace of S1 through dMiss is

(v beautiful & Miss Universe,
v beautiful & Miss Universe,
v beautiful & Miss Universe).

(Note that, in all the examples of this subsection, the first two elements of the belief trace will
be the same since the first input the user receives from the machine is the “empty” input >
which has no effect on the user’s beliefs.) This belief state does not explain dMiss, because
v beautiful ∈ BelS1

1 , violating (1) above. The rest of our examples are all explanations for
dMiss.

3In [3] the additional condition “N is consistent” was required in order for [a | N] to qualify as an explanation.
However this is not needed for the purpose of this paper.

4At least no interesting core beliefs. Tautologies, e.g., Miss Universe → Miss Universe are always in-
cluded as core beliefs.
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(ii). Consider
S2 = [() | Miss Universe],

i.e., the user did not receive any previous inputs, but has Miss Universe as a core belief.
Thus the user has a blind conviction that Miss Thailand is Miss Universe (whether she is very
beautiful or not!). The belief trace is

(Miss Universe,
Miss Universe,
v beautiful & Miss Universe).

(iii). Consider
S3 = [(Miss Universe) | >],

i.e, the user again starts off believing Miss Thailand is Miss Universe, but this time it is not a
core belief, i.e., the user is prepared to give up this belief if evidence arrives saying otherwise.
The belief trace of S3 through dMiss is the same as that of S2:

(Miss Universe,
Miss Universe,
v beautiful & Miss Universe).

(iv). Consider

S4 = [(v beautiful→ Miss Universe, (v beautiful & ¬Miss Universe) → fix) | >],

where fix is a variable standing for the statement “The Miss Universe contest is a fix!”. So the
user has learned two prior facts: that Miss Thailand is Miss Universe if she is very beautiful,
and that if Miss Thailand is very beautiful but is not Miss Universe, then the contest must be a
fix. We have for the belief trace

(v beautiful→ Miss Universe,
v beautiful→ Miss Universe,
v beautiful & Miss Universe),

i.e., at the start of the dialogue (and following the empty first input >) the user does not believe
Miss Thailand is Miss Universe, only that she is Miss Universe if she is very beautiful. Fol-
lowing the confirmation by the machine that she is indeed very beautiful, the user believes that
what the machine says is true, and then naturally also believes she is Miss Universe.

(v). Consider the previous example but without the second input concerning the fix, i.e.,

S5 = [(v beautiful→ Miss Universe) | >].

We get the exact same belief trace as in (iv) above. As we will soon see, the difference between
explanations S4 and S5 only reveals itself when we consider their consequences for predicting
what the user will believe following future inputs.

As the Miss Thailand example shows, it is possible for dialogues in general to have more than
one possible explanation. The reader might be wondering whether there are dialogues which
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have no explanation. The following simple example shows that such unexplainable dialogues
do indeed exist.

〈(>, {a}, {a})〉,
where a is any sentence. This dialogue states that the user both believes a and doesn’t believe a
at the same time, which is clearly impossible. Another more subtle example of an unexplainable
observation is

〈(p, ∅, ∅), (q, ∅, {p,¬p})〉,
where p and q are distinct propositional variables. In other words the observation is saying that
after receiving p followed by q, the user is undecided whether to believe p or ¬p. In fact it is
a property of our user model of Section 3 that whenever the user received a new input a, then
after every subsequent input he either believes a or he believes ¬a (although he might oscillate
between the two). So, assuming the particular model of an agent’s belief state being used in
this paper, the above dialogue cannot be explained. Of course that is not to say that it cannot
be explained using some other, perhaps more sophisticated model. In the rest of this paper we
always assume the given dialogue d is explainable.

Now, returning to the general problem, if the machine could find some explanation S = [a | N]
for d, then it would be able to answer all the questions from page 4: before the dialogue began
the user believed BelS0 , after receiving each ai the user believed BelSi , while given any further
input an+1 the user will be predicted to believe Bel([a · (a1, . . . , an, an+1) | N]). But, as we’ve
just seen, several explanations might exist. How does the machine choose between them? The
short answer is that it should choose the best one. But what does “best” mean here? What makes
one explanation “better than” another? The guiding intuition that we follow in this work is that,
when making inferences and predictions about the user’s beliefs, the machine should try and
stick to forming conclusions which are justified on the basis of the given dialogue alone. We
consider a good explanation to be one which goes as little as possible beyond the information
given explicitly by the dialogue. To put it another way, the machine should be cautious in the
inferences it makes, it should not be too quick to jump to bold conclusions about the user. (This
same philosophy is behind the familiar maximum entropy approach to probabilistic inference
[6].) However this is still a rather vague description. How can we formalise this precisely? In
the next section we look some ways in which we can do this.

4 Finding the best explanation

When given a collection X of possible options over which we want to make a choice (in our
case the collection of possible explanations for the given dialogue d), a mathematically standard
way to proceed is to formally define a preference relation over X , that is, define some binary
relation � among the options in X with the intuition that, given any two options x and y, x � y
holds precisely when “y is at least as good (or preferred) as x”. A best (or maximally preferred)
option in X is then any option which is at least as good as all other options, i.e., any option z
such that x � z for all other options x. If x � y but y 6� x then we say y is strictly better than x
and write this as x ≺ y, while if both x � y and y � x, then this means x and y are considered
equally good. We write this as x ∼ y. We will now define a series of three different possible
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preference relations over the collection of explanations for d, and we will illustrate each one on
the explanations for the Miss Thailand example from Section 3.1.

4.1 First preference relation �1

As we said earlier, we want to prefer explanations which make the fewest assumptions about
the user. This applies in particular to the core beliefs of the user. We prefer explanations which
lead the machine to infer the user has as few core beliefs as possible. Indeed the user’s set of
(non-tautologous) core beliefs should be take to be empty if possible. This leads us to define
the following preference relation, given any two explanations [a1 | N1] and [a2 | N2] for d:

[a1 | N1] �1 [a2 | N2] ⇔ N2 ⊆ N1.

We propose that the best explanation for d should at the very least be a best explanation accord-
ing to �1.

Example 4.1. Looking at the explanations from the Miss Thailand example, we have the set
core beliefs of explanation S2 is Miss Universe, while the core of explanations S3, S4 and S5

is empty. Thus we have S2 ≺1 Si for each i = 3, 4, 5 and Si ∼1 Sj for each i, j = 3, 4, 5 such
that i 6= j. In other words S3, S4 and S5 are all equally good and are all strictly better than S2

according to �1. This means S2 cannot be regarded as a best explanation. Furthermore S3, S4

and S5 clearly can’t be bettered according to �1 – they are all best explanations according to
�1 – so we need some further criteria to sort these.

Note the best explanations (according to �1) in the Miss Thailand example all have the empty
core. This is because there is nothing in the dialogue dMiss which forces the user to have any
core beliefs. In other words core beliefs are not necessary to explain this dialogue. For an
example of a dialogue which is explainable but nevertheless only assuming a non-empty set of
core beliefs on the part of the user take 〈(p, ∅, ∅), (q, ∅, {p})〉 (where, again, p and q are distinct
propositional variables), i.e., after receiving p followed by q, the user does not believe p. In fact
any explanation for this observation must include at least q → ¬p as a core belief.

4.2 Second preference relation �2

As we see from the above example, �1 still leaves a lot of choice in the search for a best
explanation. It can happen that there are still quite a large number of explanations which are
“best” according to �1. How can we narrow down the possibilities a bit further? We now bring
in a second preference relation �2 which will be used to do this. This relation will be defined
by comparing the belief traces through d of two given explanations. The basic idea is that a
belief should be ascribed to the user as late in the dialogue as possible. In particular, given
two explanations S and T , we should prefer that which leads the machine to infer the user has
fewer beliefs at the commencement of the dialogue. In case they both give the same beliefs
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at this stage, i.e., BelS0 = BelT0 , we prefer that explanation which leads the machine to infer
the user has fewer beliefs after the first input a1. In case also BelS1 = BelT1 we then prefer
that explanation which gives fewer beliefs after the next input a2, and so on. All this can be
expressed by defining �2 as follows:

[a1 | N1] �2 [a2 | N2] ⇔ Bel
[a2|N2]
k ⊆ Bel

[a1|N1]
k

where k is least such that Bel
[a2|N2]
k 6= Bel

[a1|N1]
k

Example 4.2. Having already discarded S2 as a candidate for best explanation of dMiss on
the basis of �1, let us compare the remaining explanations S3, S4 and S5 with respect to
�2. Looking at the initial beliefs, we have BelS3

0 = Miss Universe and BelS4
0 = BelS5

0 =
v beautiful → Miss Universe. Since Miss Universe logically implies (v beautiful →
Miss Universe) we have BelS4

0 ⊆ BelS3
0 and BelS5

0 ⊆ BelS3
0 . However BelS3

0 contains a
belief, namely Miss Universe, which is not in BelS4

0 (and BelS5
0 ). Hence BelS3

0 6⊆ BelS4
0

and BelS3
0 6⊆ BelS4

0 . This means we have both S3 ≺2 S4 and S3 ≺2 S5, i.e., S4 and S5 are
strictly preferred to S3 according to �2. S3 cannot be considered a best explanation according
to �2 since it unjustifiably leads the machine to infer an initial belief on the user’s part, namely
Miss Universe. Since the belief traces of S4 and S5 are the same, these two explanations
clearly cannot be distinguished on the basis of �2. Some further criterion is necessary in order
to do this.

4.3 Third preference relation �3

A third possibility to compare explanations is to look at their consequences for predicting what
the user would believe following a further input an+1 from the machine. Recall that we want
the machine to be cautious in the predictions it makes. This means we should prefer those
explanations which always lead to fewer beliefs being predicted. This is the precisely the idea
behind our third preference relation �3:

[a1 | N1] �3 [a2 | N2] ⇔ for all possible further inputs an+1,
Bel([a2 · (a1, . . . , an, an+1) | N2])⊆

Bel([a1 · (a1, . . . , an, an+1) | N1]).

Example 4.3. In the Miss Thailand example we have found that we cannot split explanations
S4 and S5 according to �1 and �2. Let’s see if we can separate them according to �3. First, to
make things easier to read, let us write

a4 = (v beautiful→ Miss Universe, (v beautiful & ¬Miss Universe) → fix)

and
a5 = (v beautiful→ Miss Universe).

So S4 = [a4 | >] and S5 = [a5 | >]. Now suppose the dialogue continues with the machine
telling the user that Miss Thailand is not Miss Universe, i.e., ¬Miss Universe. We have

Bel(a4 · (>, v beautiful,¬Miss Universe) | >) =
v beautiful & ¬Miss Universe & fix
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i.e., explanation S4 predicts that, after being informed that Miss Thailand is not Miss Universe,
the user will believe the Miss Universe contest is fixed! Meanwhile we have

Bel(a5 · (>, v beautiful,¬Miss Universe) | >) = v beautiful & ¬Miss Universe,

i.e., explanation S5 predicts that after this extra information, the user will simply believe that
Miss Thailand is still very beautiful, but is not Miss Universe. According to this explanation,
the user will not believe the contest is fixed. Thus we see that

Bel(a5 · (>, v beautiful,¬Miss Universe) | >) ⊆
Bel(a4 · (>, v beautiful,¬Miss Universe) | >),

but

Bel(a4 · (>, v beautiful,¬Miss Universe) | >) 6⊆
Bel(a5 · (>, v beautiful,¬Miss Universe) | >).

Now in fact it can be proved that, for any possible further input a3 (not just ¬Miss Universe),
we have

Bel(a5 · (>, v beautiful, a3) | >) ⊆ Bel(a4 · (>, v beautiful, a3) | >),

Hence S4 ≺3 S5, i.e., S5 is strictly preferred to S4 according to �3.

Thus we see that applying the preference criteria �1, �2 and �3 in that order, S5 emerges over-
all as the best explanation among the explanations given in Section 3.1 for the Miss Thailand
dialogue. In fact it is shown in [2, 3] that, given any dialogue d, such a best explanation always
exists (assuming d is explainable at all):

Theorem 4.4 ([2, 3]). Suppose there exists an explanation for d. Then there exists an explana-
tion [aR | NR] such that, for any other explanation [a | N] for d, the following hold:
(i) [a | N] �1 [aR | NR].
(ii) If [aR | NR] ∼1 [a | N] then [a | N] �2 [aR | NR].
(iii) If [aR | NR] ∼1 [a | N] and [aR | NR] ∼2 [a | N] then [a | N] �3 [aR | NR].
An algorithm to construct such an explanation is given in [2, 3]. This constructed explanation
is called the rational explanation there.

In [2, 3] we propose that the rational explanation of d should be considered as a best explanation
for d. If we run the algorithm mentioned in Theorem 4.4 on the Miss Thailand dialogue dMiss

then it returns explanation S5 as output. Thus S5 is the rational explanation for dMiss, and thus
can be considered a best explanation for dMiss. So the machine can use S5 as the basis on which
to make inferences and predictions about the user’s beliefs. Recall the belief trace of S5 through
dMiss is

(v beautiful→ Miss Universe,
v beautiful→ Miss Universe,
v beautiful & Miss Universe).

Thus, using the rational explanation for dMiss, the machine infers that the user did not be-
lieve that Miss Thailand was Miss Universe at the start of the dialogue, only that she is Miss
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Universe if she is very beautiful. After being informed by the machine that she is indeed
very beautiful, the user believes what the machine says is true and then believes Miss Thai-
land is Miss Universe. If the machine were to then inform the user that Miss Thailand is not
Miss Universe, the machine predicts (using the rational explanation) that the user will believe
v beautiful & ¬Miss Universe, i.e., the user will believe the new information but will still
keep the belief that Miss Thailand is very beautiful. Finally note what happens if, instead
of informing the user that ¬Miss Universe, the machine informs the user that Miss Thai-
land is not very beautiful. Then, again using a5 to denote the sequence (v beautiful →
Miss Universe), we have

Bel([a5 · (>, v beautiful,¬v beautiful) | >]) =
(v beautiful→ Miss Universe) & ¬v beautiful.

So in this case the user will be predicted to believe that Miss Thailand is not very beautiful (i.e.,
will believe the input given to him by the machine), but will no longer have any opinion on
whether she is Miss Universe, since neither Miss Universe nor ¬Miss Universe are logical
consequences of the above belief set.

5 Conclusion

We described how a machine, engaged in some dialogue with a user, might plausibly model
that dialogue internally and make inference and predictions about the user’s beliefs during the
course of the dialogue by building some model of how the user forms and updates his beliefs.

There are several potential extensions of this work. One regards the assumption we made about
the given dialogue d that between receiving the first input from the machine a1 and the last an,
the user did not receive any other information apart from the inputs ai for i = 2, 3, . . . , n − 1.
There are situations where it seems quite natural to relax this assumption. A good example is
if the dialogue is conducted by the machine with the user over the course of more than one
session. Between sessions, while the user is away from the machine, it is quite likely he will go
about his life, absorbing extra information from other sources. Giving the machine the ability to
guess what these “missing” inputs might be would give the machine an extra degree of freedom
with which to explain d. Some initial results on this can be found in [5].

Also, recall that in this paper we concentrated entirely on phase 2 in our two-phase description
of automated dialogue modelling from the start of Section 2. Obviously a satisfactory treatment
of phase 1 is crucial, i.e., precisely how does the machine extract the sets Bi and Di of propo-
sitional sentences from the user’s natural language responses. Finally the focus of this work so
far has been very much theoretical. However, as we said in Theorem 4.4, we do already have
an algorithm which computes the rational explanation for an arbitrary dialogue d, although we
have not yet implemented it. It would be nice to get an implementation of this algorithm up and
running.
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