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Abstract

Description logic reasoners are able to detect incoherences
(such as logical inconsistency and concept unsatisfiability)
in knowledge bases, but provide little support forresolving
them. We propose to recast techniques forpropositionalin-
consistency management into the description logic setting.
We show that the additional structure afforded by descrip-
tion logic statements can be used to refine these techniques.
Our focus in this paper is on the formal semantics for such
techniques, although we do provide high-level decision pro-
cedures for the knowledge integration strategies discussed.

Introduction
It is becoming clear that high quality ontologies are crucial
for reasoning tasks in a variety of areas. A particularly inter-
esting case is the Semantic Web, a second-generation web
in which resources are amenable to automated processing
(Berners-Lee, Hendler, & Lassila 2001). Description log-
ics (or DLs for short) are proving to be a highly successful
class of knowledge representation languages with which to
represent ontologies. An important issue in ontology man-
agement concerns ways of handling notions ofincoherence,
ranging from logical inconsistency to concept unsatisfiabil-
ity. For example, (Schlobach & Cornet 2003) show the fol-
lowing incoherent ontology specification for the DICE med-
ical terminology:
brainv CentralNervousSystem

brainv BodyPart

CentralNervousSystemv NervousSystem

NervousSystemv ¬BodyPart
According to this, a brain is a body part as well as a central
nervous system, while the latter is a type of nervous system,
which, in turn, is not a body part. Although not logically
inconsistent,brain is nevertheless concept unsatisfiable.
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DL reasoners like RACER (Haarslev & M̈oller 2001) and
FaCT (Horrocks 1998) will detect such problems, but there
is comparatively limited support forresolvingincoherence.
In this paper we propose an approach akin to nonmonotonic
reasoning to determine the consequences of a DL knowl-
edge base. But in the style of classical belief revision the
original knowledge base is alsoweakenedso that its clas-
sical consequences correspond exactly to the nonmonotonic
consequences of the original knowledge base.

Much of the work in the belief revision community over
the past twenty years has focused on dealing with inconsis-
tency, and significant advances have been made (Hansson
1999). However, a serious drawback is that work in this
area, by and large, is based on the propositional aspects of
the logic. These techniques are directly applicable to DLs
but do not exploit the additional expressivity available. We
recast the work of (Benferhatet al. 2004) on knowledge in-
tegration to the DL setup. We demonstrate that our account
generalises the propositional approach in appropriate ways.
In this paper we provide basic strategies for managingincon-
sistency. We focus on the formal semantics for such strate-
gies, but we also provide associated decision procedures.

The rest of the paper is organised as follows. We com-
mence with a brief introduction to description logics. This
is followed by a discussion of propositional knowledge in-
tegration, and some suggested modifications to the proposi-
tional approach. Then we present the knowledge integration
strategies and algorithms for DLs. After a brief look at re-
lated work we conclude with a discussion of future work.

Description Logics
Description Logics are a well-known family of knowledge
representation formalisms (Baader & Nutt 2003). They are
based on the notions of concepts (unary predicates, classes)
and roles (binary relations), and are mainly characterised
by constructors that allow complex concepts and roles to
be built from atomic ones. The expressive power of a DL
system is determined by the constructs available for build-
ing concept descriptions, and by the way these descriptions
can be used in the terminological (Tbox) and assertional
(Abox) components of the system. The logics of interest
to us are all based on an extension of the well-known DL
ALC (Schmidt-Schauß & Smolka 1991). Concept descrip-
tions are built from concept names using the constructors



disjunction (C t D), conjunction (C u D), negation (¬C),
existential restriction (∃R.C) and value restriction (∀R.C),
whereC,D stand for concepts andR for a role name. To
define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as
binary relations over this domain. An interpretationI con-
sists of a non-empty set∆I (the domain ofI) and a function
·I (the interpretation functionof I) which maps every con-
cept nameA to a subsetAI of ∆I , and every role nameR to
a subsetRI of ∆I ×∆I . The interpretation function is ex-
tended to arbitrary concept descriptions as follows. LetC,D
be concept descriptions andR a role name, and assume that
CI andDI are already defined. Then(¬C)I = ∆I \ CI ,

(C tD)I = CI ∪DI , (C uD)I = CI ∩DI ,

(∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI andy ∈ CI},
(∀R.C)I = {x | ∀y, (x, y) ∈ RI impliesy ∈ CI}.

A DL knowledge base consists of two finite and mutually
disjoint sets. ATboxwhich introduces theterminology, and
anAboxwhich contains facts about particular objects in the
application domain. Tbox statements have the formC v D
(inclusions) andC=̇D (equalities) whereC andD are (pos-
sibly complex) concept descriptions. The semantics of Tbox
statements is as follows: an interpretationI satisfiesC v D
iff CI ⊆ DI , I satisfiesC=̇D iff CI = DI . Objects in
the Abox are referred to by a finite number ofindividual
namesand these names may be used in two types of asser-
tional statements:concept assertionsof the typeC(a) and
role assertionsof the typeR(a, b), whereC is a concept de-
scription,R is a role name, anda andb are individual names.
To provide a semantics for Abox statements it is necessary to
add to every interpretation an injectivedenotation functiond
which satisfies theunique names assumption: it maps every
individual namea to a different elementaI of the domain
∆I (we defined separately from the interpretation function
to facilitate the definition of a pre-interpretation later in the
paper). An interpretationI satisfiesthe assertionC(a) iff
aI ∈ CI , and itsatisfiesR(a, b) iff (aI , bI) ∈ RI . I is a
modelof a DL (Tbox or Abox) statementφ iff it satisfies the
statement, and is a model of a DL knowledge baseB iff it
satisfies every statement inB. The models of a statement
φ (or knowledge baseB) are denoted byM(φ) (orM(B)).
Because any equalityC=̇D is equivalent to the set of inclu-
sions{C v D,D v C} we take a Tbox to contain only
inclusions. A DL knowledge baseB entailsa DL statement
φ, written asB � φ, iff every model ofB is a model ofφ.

Propositional knowledge integration
Propositional knowledge integration, as described in (Ben-
ferhat et al. 2004), takes as input astratified knowledge
baseK = (S1, . . . , Sn) where, fori ∈ {1, . . . , n}, Si is
a knowledge base, or finite set of propositional sentences
(of a finitely generated propositional logic). Sentences in
a stratumSi are all judged to be of equal reliability, while
sentences contained in a higher stratum, i.e. in anSj for
j > i, are seen as less reliable. In (Benferhatet al. 2004)
the strategies proposed to minimise the loss of informa-
tion that occurs when a stratified knowledge base is in-

consistent are shown to yield identical results to thelexi-
cographic systemfor knowledge integration (Benferhatet
al. 1993). It is well-known that lexicographic entailment
is a versatile system with desirable theoretical properties.
For example, it has been shown in (Benferhatet al. 1998;
Nebel 1998) that it can be used to model all classical AGM
belief revision operators. We provide here an alternative
semantic characterisation of lexicographic entailment based
on the notion ofexceptions. The advantage of this charac-
terisation is that it makes a clear distinction between the fol-
lowing two distinct principles at work:

(Independence)Sentences in a stratum are assumed to
have been obtained independently

(Precedence)More reliable information should take com-
plete precedence over less reliable information

Independence is used implicitly in the work of (Benferhatet
al. 2004). It is applied to sentences in each stratumSi to ob-
tain the preference ordering over the setV of propositional
valuations associated withSi and is formalised in terms of
exceptions. The number ofSi-exceptions relative to valua-
tion v is the number of sentences inSi false inv; the fewer
Si-exceptions, the more preferredv will be.

Definition 1 The number ofφ-exceptionseφ(v) for a valu-
ation v is 0 if v ∈ M(φ) and 1 otherwise. For a finite set of
sentencesX, the number ofX-exceptions for a valuationv
is eX(v) =

∑
φ∈X eφ(v). The ordering�X onV is defined

as: v �X w iff eX(v) ≤ eX(w).
It is only after the Independence principle has been applied
to all strata that the Precedence principle is applied to the
orderings associated with the different strata to obtain a lex-
icographically combined preference ordering.

Definition 2 LetK = (S1, . . . , Sn) be a stratified knowl-
edge base and fori ∈ {1, . . . , n}, let �Si be a total pre-
order onV . Thenv �lex w iff ∀j ∈ {1, . . . , n}, [v �Sj

w
or v ≺Si

w for somei < j].
Definition 2 constructs�lex by starting with�S1 and keeps
on refining it with strata orderings of lower preference. We
use�lex to define lexicographic entailment:

Definition 3 A stratified knowledge baseK lexicographi-
cally entailsφ, written K �lex φ, iff the (�lex)-minimal
models satisfyφ.

The view of lexicographic entailment as an application of
Independence and Precedence is also present in a new strat-
egy for knowledge integration,conjunctive maxi-adjustment
or CMA, that we propose in Algorithm 1. The idea is to
work throughK stratum by stratum in order of decreasing
precedence, and to construct a consistent knowledge base
B, adding as many sentences as possible while maintain-
ing consistency, and weakening those strata responsible for
inconsistencies. In this sense it is similar towhole disjunc-
tive maxi-adjustment(Benferhatet al. 2004), but the way in
which strata are weakened is (syntactically) different. With
CMA, if Si is inconsistent with the part ofB constructed
so far, it is replaced by the disjunction of the cardinality-
maximal conjunctions ofSi-formulas consistent withB.
The following example is a simple demonstration of CMA.



Algorithm 1 Conjunctive maxi-adjustment (CMA)

Input : K = (S1, . . . , Sn)
Output : A consistent knowledge base
B := ∅
for i := 1 to n do
j := |Si|
repeat
φ :=

∨
of all

∧
s of sizej of formulas ofSi

j := j − 1
until B ∪ {φ} is consistent orj = 0
if B ∪ {φ} is consistentthen
B := B ∪ {φ}

end if
end for
return B

Example 1 LetK = (S1, S2), S1 = {¬(p ∧ q), ¬(q ∧ r),
¬(p ∧ r)} andS2 = {p, q, r}. S1 is consistent, soB is set
to S1. S2 is inconsistent withB, soφ is set to(p ∧ q)∨(p ∧
r)∨(q∧r). φ is inconsistent withB, so the latter is weakened
further by setting it top∨ q ∨ r. Nowφ is consistent withB
soB is set to{¬(p ∧ q), ¬(q ∧ r), ¬(p ∧ r), p ∨ q ∨ r}.
It is easily verified that Algorithm 1 always terminates. Fur-
thermore, it produces results that are equivalent to lexico-
graphic entailment, and therefore also to the strategies dis-
cussed in (Benferhatet al. 2004).

Proposition 1 LetK be a stratified knowledge base andB
the knowledge base obtained fromK by Algorithm 1. Then
K �lex φ iff B � φ.

The principal reason for the introduction of CMA is that the
two algorithms for knowledge integration described in the
next section are natural extensions of it.

For the rest of the paper we modify our definition of a
stratified knowledge base so that each stratum is amulti-
set of sentences, denoted by square brackets (so a stratum
has the form[φ1, . . . , φn]). This allows us to prove a result
which does not hold if strata are represented as sets.

Proposition 2 For K = (S1, . . . , Sn), K ′ = (S′1, . . . , S
′
n)

and everyi ∈ {1, . . . , n}, let there be a bijectionfi between
Si andS′i s.t.fi(φ) ≡ φ. ThenK �lex ψ iff K ′ �lex ψ.

Knowledge integration for description logics
In this section we recast the techniques of propositional
knowledge integration to DLs, with the input being a strat-
ified DL knowledge baseK = (S1, . . . , Sn) where, for
i ∈ {1, . . . , n}, Si is a finite multi-set of DL sentences. We
present versions of lexicographic entailment and the CMA
strategy for DL knowledge integration obtained from a di-
rect conversion of the techniques used in the propositional
case. We argue that these versions do not exploit the expres-
sivity of DLs adequately, and refine both lexicographic en-
tailment and CMA. We show that the refined versions of lex-
icographic entailment and CMA produce identical results.

But before doing so we need to deal with a number of
technical issues. The first one concerns the CMA strategy
and the level of expressivity in DL languages. Recall that

propositional CMA makes use of disjunctions of conjunc-
tions of sentences. But DL languages do not allow disjunc-
tions of Tbox sentences with Abox sentences, and an expres-
sion such as(C v D) t D(a) is thus ill-formed. To deal
with this issue we introduce the notion of adisjunctive DL
knowledge base, or DKB, as a set of DL knowledge bases.
The semantics of DKBs is defined as follows.

Definition 4 A DKBB is satisfiedby an interpretationI (I
is a model ofB) iff I is a model of at least one of the elements
of B. B entailsa DKB Φ (B � Φ) iff every model ofB is a
model ofΦ.

Informally B can be read as the disjunction of its elements,
with a single element ofB viewed as the conjunction of the
sentences contained in it. For example,{[C v D, C(a)],
[C v D, D(a)]} states that bothC v D andC(a) hold, or
that bothC v D andD(a) hold. There are more fundamen-
tal reasons for the use of DKBs as well, which will briefly
be touched on in the conclusion.

The next issue to consider is the comparability of DL in-
terpretations. The semantics of propositional lexicographic
entailment makes use of the fact that all propositional valu-
ations are “possible worlds” that can all be compared with
respect to preference. But the additional structure of DL in-
terpretations makes it impossible to maintain this compara-
bility in the semantics. In particular, whenever two interpre-
tations have different domains or do not map the same indi-
vidual names to the same elements in the domain, it is coun-
terintuitive to insist that they be comparable in terms of pref-
erence. This issue is solved by requiring that only interpre-
tations obtained from the samepre-interpretationbe compa-
rable. A pre-interpretation is an ordered pairπ = (∆π, dπ),
where∆π is a domain anddπ is a denotation function. Let
Π be the class of all pre-interpretations. For every pre-
interpretationπ = (∆π, dπ), let Iπ be the class of inter-
pretationsI with ∆I = ∆π anddI = dπ. We provide a
semantics similar to that of propositional lexicographic en-
tailment. But each ordering�Si

on valuations associated
with a stratumSi will, in the case of DLs, be replaced by a
class of orderings�π

Si
: one for each pre-interpretationπ in

Π. For a fixedπ, the orderings�π
Si

for i ∈ {1, . . . , n} are
then lexicographically combined using Definition 2 to obtain
the ordering�π

lex. Lexicographic entailment is then defined
in terms of the minimal models of all these orderings. That
is, given a preference ordering�π

lex for eachπ ∈ Π, lex-
icographic entailment for stratified DL knowledge bases is
defined as follows:

(�lex) K �lex Φ iff
⋃

π∈Π min�π
lex

⊆M(Φ)

wheremin�π
lex

refers to the(�π
lex)-minimal models. The

one remaining question is how the preference orderings�π
Si

used in the construction of�π
lex should be obtained. A first

attempt is to use the same technique as that used for propo-
sitional lexicographic entailment. That is, for eachI ∈ Iπ

and each stratumSi, let the number ofSi-exceptions w.r.t.
I be the number of sentences inSi falsified byI, and use
these exceptions to generate the ordering�π

Si
.

Definition 5 Letπ ∈ Π, I ∈ Iπ, φ a DL statement, andX
a multi-set of DL statements. The number ofφ-exceptions



eφ(I) for I is 0 if I satisfiesφ and1 otherwise. The number
ofX-exceptions forI is: eX(I) =

∑
φ∈X eφ(I). The order-

ing�π
X onIπ is defined as:I �π

X J iff eX(I) ≤ eX(J).
The DL version of CMA is presented in Algorithm 2. It is a
compilation of DL lexicographic entailment.

Algorithm 2 CMA for DLs (CMA-DL)
Input : K = (S1, . . . , Sn)
Output : A consistent DKB
B := {∅}
for i := 1 to n do
C := B
for all B ∈ C do
j := |Si|
repeat
X := {X | X ⊆ Si and|X| = j}
j := j − 1

until B ∪ X is consistent for someX ∈ X
B := (B \ {B}) ∪

{B ∪X | (X ∈ X ) &(B ∪X) is consistent}
end for

end for
return B

Proposition 3 LetK be a stratified DL knowledge base,B
the DKB obtained fromK by CMA-DL in Algorithm 2, let
lexicographic entailment for DLs be defined in terms of Def-
inition 5, and letΦ be a DKB. ThenK �lex Φ iff B � Φ.

To see that Algorithm 2 always terminates, note that ele-
ments ofC are always consistent by construction. Ifj is
ever set to0 in the repeat loop,X will be set to{∅}, and
thenB ∪X hasto be consistent, sinceB ∈ C. The follow-
ing example demonstrates how Algorithm 2 works.

Example 2 LetK = (S1, S2), S1 = [C v ¬D, C v ¬E,
D v ¬E] andS2 = [C(a), D(a), E(a)]. S1 is consistent,
soB (andC) is set to{S1}. NowB is set to the only element
of C: [C v ¬D, C v ¬E, D v ¬E]. S2 is inconsistent
withB so, during the second iteration of therepeat loop,X
is set to{[C(a), D(a)], [C(a), E(a)], [D(a), E(a)]}. Every
element ofX is inconsistent withB, and the next iteration of
therepeat loop setsX to {[C(a)], [D(a)], E(a)]}. Now all
elements ofX are consistent withB, soB is removed from
B and replaced with three multi-sets, yielding:

B = {[C v ¬D,C v ¬E,D v ¬E,C(a)],
[C v ¬D,C v ¬E,D v ¬E,D(a)],
[C v ¬D,C v ¬E,D v ¬E,E(a)]}.

ThusB states that the three statementsC v ¬D, C v ¬E,
andD v ¬E hold, and that, in addition, at least one of
C(a),D(a) orE(a) holds. A consequence of all these state-
ments is thatexactlyone ofC(a),D(a) or E(a) holds.

Lexicographic entailment for DLs and the CMA-DL strat-
egy are both faithful translations of their propositional coun-
terparts. It is precisely because of this that they do not take
the structure of DL statements into account. The following
example illustrates this deficiency.

Example 3 LetK = (S1, S2), whereS1 = [bird(tweety),
¬flies(tweety), bird(chirpy)], andS2 = [bird v flies].
S1 is consistent, and soB is set to{S1}. S2 is inconsis-
tent withS1, the only element ofB, and soB is returned as
{[bird(tweety), ¬flies(tweety), bird(chirpy)]}.
When Algorithm 2 is applied toK from Example 3, it con-
cludes, correctly, that Tweety is a non-flying bird and that
Chirpy is a bird. But it doesnot conclude that Chirpy flies
since it has discarded the statementbird v flies. It there-
fore does not exploit the structure ofbird v flies appropri-
ately. Ideally we should be able to conclude that Tweety is
anexceptionand that all birds other than Tweety (including
Chirpy) can fly. For this to be possible we need to weaken
Tbox statements such asbird v flies, something that is not
possible in the propositional case. Semantically we effect
such a weakening by modifying the definition of exceptions
in Definition 5. For Abox statements the definition stays un-
changed, but for Tbox statements the number of exceptions
will be the number of elements in the domain violating the
statement. An element in the domain of an interpretationI
violates a statement of the formC v D if it is in CI but not
in DI , i.e. if it is in CI ∩ (¬DI).
Definition 6 Letπ ∈ Π, I ∈ Iπ, φ a DL statement, andX
a multi-set of DL statements. Ifφ is an Abox statement, the
number ofφ-exceptionseφ(I) for an interpretationI is 0 if
I satisfiesφ and1 otherwise. Ifφ is a Tbox statement of the
formC v D, the number ofφ-exceptions forI is:

eφ(I) =
{∣∣CI ∩ (¬D)I

∣∣ if CI ∩ (¬D)I is finite,
∞ otherwise.

The number ofX-exceptions forI is eX(I) =
∑

φ∈X eφ(I).
The ordering�π

X onIπ is: I �π
X J iff eX(I) ≤ eX(J).

So �π
X is a version of cardinality-based circumscription

(Liberatore & Schaerf 1995): the more exceptions, the less
preferred an interpretation, while interpretations with an in-
finite number of exceptions are all equally bad.

Using Definition 6 in our construction of lexicographic
entailment will ensure that we will be able to conclude,
in Example 3, that Chirpy can fly. However, we are still
not able to express the conclusion thatall birds, except for
Tweety, can fly. The problem is that the notion of an ex-
ception is not expressible in a DL. We cannot state that all
birds, with the exception of one, can fly. It is necessary to
extend the level of expressivity of the DL languages we are
interested in. An appropriate extension, addingcardinality
restrictionson concepts, was proposed in (Baader, Buchheit,
& Hollander 1996). There, its introduction was motivated by
the use of DL systems for solving configuration tasks. These
restrictions are statements in the Tbox, allowing one to ex-
press restrictions on the number of elements a concept may
have: (≥ m C) and(≤ n C) respectively express that the
conceptC has at leastm elements and at mostn elements.
For our purposes it is sufficient to consider cardinality re-
strictions of the form(≤ n C).

An interpretationI is said tosatisfya restriction of the
form (≤ n C) iff

∣∣CI
∣∣ ≤ n. The statementC v D is equiv-

alent to stating that the conceptC u ¬D is empty, i.e. that
(≤ 0 C u ¬D). This demonstrates that the Tbox statements



we have considered thus far can all be expressed as cardi-
nality restrictions. Therefore, a Tbox will from now on be
a finite multi-set of cardinality restrictions. An interpreta-
tion I is a modelof such a Tbox iff it satisfies each of its
restrictions. Other semantic notions such as entailment are
extended in the obvious way. With the inclusion of cardi-
nality restrictions we can now rephraseS2 in Example 3 as
{(≤ 0 birdu¬flies)}. And, using Definition 6,K now lex-
icographically entails that Tweety is a non-flying bird, that
Chirpy is a flying bird, and that there is at most one non-
flying bird, (1 ≤ bird u ¬flies), which is aweakeningof
S2. So it follows that, barring Tweety, all birds can fly.

The next step is to refine the CMA-DL strategy to co-
incide with the modified version of lexicographic entail-
ment for DLs. This strategy, referred to asrefined CMA-
DL, is described in Algorithm 3. The main difference be-
tween the two algorithms is in the construction ofX . Abox
sentences are treated exactly as in Algorithm 2: thej-
weakeningW j(BA) of the AboxBA of a DL knowledge
baseB (wherej ≤

∣∣BA
∣∣), contains all those sub multi-

sets ofBA wherej elements have beenremoved. That is,
W j(BA) = {BA \ Y | Y ⊆ BA and |Y | = j}. So,
for BA = [C(a), D(a), E(a)], W 1(BA) = {[C(a), D(a)],
[C(a), E(a)], [D(a), E(a)]}. For a Tbox sentenceτ of the
form (≤ n C), let W (τ) = {(≤ (n + j) C) | j ≥ 0}.
That isW (τ) is the set of all weakened versions ofτ . Fur-
thermore, for a Tbox sentenceτ of the form(≤ n C) and
τ ′ ∈ W (τ) of the form(≤ m C), we letwτ (τ ′) = m − n.
Sowτ (τ ′) measures the extent to whichτ ′ is a weakening of
τ . Forj ≥ 0, thej-weakeningW j(BT ) of the TboxBT of a
DL knowledge baseB contains all those weakened versions
ofBT for which the sum of the extent of the weakening isj.
That is, forBT = [τ1, . . . , τn], W j(BT ) = {[τ ′1, . . . , τ ′n] |∑n

i=1 w
τi(τ ′i) = j}. For example, forBT = [(≤ 0 C),

(≤ 0 D)], W 2(BT ) = {[(≤ 0 C), (≤ 2 D)], [(≤ 1 C),
(≤ 1 D)], [(≤ 2 C), (≤ 0 D)]}. And for j ≥ 0, the j-
weakeningWj(B) of a DL knowledge baseB contains all
combinations ofi-weakenings ofBA andk-weakenings of
BT for which i andk add up toj. That is,

Wj(B) =
{
A ∪ T

∣∣∣∣ A ∈W i(BA), T ∈W k(BT ),
i ≤

∣∣BA
∣∣ , andj = i+ k}

}
.

For example, ifB = [(≤ 0 C), C(a), C(b)], then

W2(B) =
{

[(≤ 1 C), C(a)] , [(≤ 1 C), C(b)] ,
[(≤ 0 C)] , [(≤ 2 C), C(a), C(b)]

}
.

SoW2(B) contains those weakenings ofB in which exactly
two exceptions occur. Thej-weakenings of DL knowledge
bases are used in therepeat loop of Algorithm 3 whereX is
set to thej-weakening ofSi. As required, RCMA-DL is a
compilation of lexicographic entailment using Definition 6.

Proposition 4 LetK be a stratified DL knowledge base,B
the DKB obtained fromK by RCMA-DL in Algorithm 3,
let lexicographic entailment for DLs be defined in terms of
Definition 6, and letΦ be a DKB. ThenK �lex Φ iff B � Φ.

The proof that Algorithm 3 terminates hinges on the fact that
weakenings of Tbox sentences allow formore exceptions,
and the fact that the maximum number of exceptions to cater

Algorithm 3 Refined CMA-DL (RCMA-DL)
Input : K = (S1, . . . , Sn)
Output : A consistent DKB
B := {∅}
for i := 1 to n do
C := B
for all B ∈ C do
j := 0
repeat
X := Wj(Si)
j := j + 1

until B ∪ X is consistent for someX ∈ X
B := (B \ {B}) ∪

{B ∪X | (X ∈ X ) &(B ∪X) is consistent}
end for

end for
return B

for is bounded by the number of individual names occurring
inK. The example below demonstrates Algorithm 3 (where
b, f , t andc abbreviatebird, flies, tweety andchirpy).

Example 4 LetK = (S1, S2), S1 = [b(t), b(c)], andS2 =
[¬f(t), ¬f(c), (≤ 0 bu¬f)]. S1 is consistent so RCMA-DL
setsB (and C) to {S1}. NowB is set to the only element
of C: [b(t), b(c)]. S2 is inconsistent withB, soX is set
to W1(S2) = {[¬f(t), ¬f(c), (≤ 1 b u ¬f)], [¬f(t), (≤
0 b u ¬f)], [¬f(c), (≤ 0 b u ¬f)]}. Every element ofX is
inconsistent withB, and soX is set toW2(S2) = {[¬f(t),
¬f(c), (≤ 2 b u ¬f)], [¬f(t), (≤ 1 b u ¬f)], [¬f(c), (≤
1 b u ¬f)], [(≤ 0 b u ¬f)]}. Now all the elements ofX
are consistent withB, resulting in aB containingB ∪ X
for everyX in X . Combined, the four elements of the DKB
B show that exactly one of the following four cases hold:
a) Tweety and Chirpy are the only two non-flying birds; b)
Tweety is the only non-flying bird; c) Chirpy is the only non-
flying bird; d) All birds fly, including Tweety and Chirpy.

Related work
One of the first attempts to deal with inconsistency in logic-
based terminological systems can be found in (Nebel 1990),
where it is phrased as a belief revision problem. More re-
cently the solution of (Schlobach & Cornet 2003) is to pro-
vide support for inconsistency by correcting it. They pro-
pose a non-standard reasoning system for debugging incon-
sistent terminologies. The idea is to provide an explanation
by pinpointing the source of the inconsistency, while correc-
tion is left to human experts. In contrast, the approach taken
in (Huanget al. 2005) assumes that ontology reparation will
be too difficult. They propose to tolerate inconsistency and
apply a non-classical form of inference to obtain meaning-
ful results. Our approach is a hybrid of these. We employ
a version of lexicographic entailment to determine the con-
sequences of an inconsistent DL knowledge base, but the
original knowledge base is alsoweakenedso that its clas-
sical consequences correspond exactly to the nonmonotonic
consequences of the original knowledge base.

In (Quantz & Royer 1992) a technique is described for



assigning a preference semantics for defaults in terminolog-
ical logics which uses exceptions, and therefore has some
similarities to our work. They draw a distinction between
strict inclusions (Tbox statements of the formA v B) and
defaultswhich is interpreted as “soft” inclusions. In our
framework this distinction can be modelled with two strata
in which all strict inclusions occur inS1 and all soft inclu-
sions inS2. In this sense our framework is more expres-
sive than theirs. More importantly, their formal semantics
is not cardinality-based, and therefore yields quite different
results from ours. And finally, unlike us, they do not provide
a weakening of the original knowledge base.

An altogether different approach is the explicit introduc-
tion of nonmonotonicity into DLs, usually some variant of
default logic. See (Baader, Küsters, & Wolter 2003) for an
overview. While it is difficult to draw direct comparisons
with our work, similar intuitions might be identified and ex-
ploited.

Conclusion

We have proposed knowledge integration strategies for DLs
based on techniques developed in the propositional case, and
provided corresponding algorithms with disjunctive knowl-
edge bases (DKBs) as output. It can be shown that the ele-
ments of a DKB produced as the output of Algorithm 2 or
3 are always pairwise inconsistent (modulo logical equiv-
alence), a property which is useful (i) when inconsistency
management is an iterative process and (ii) as part of sup-
port provision for ontology engineers. This forms the basis
of an argument that the structure of DKBs are important and
ought to be retained as outputs of our algorithms.

We have shown how the structure of DL languages can
be exploited to define basic knowledge integration strate-
gies. Our focus was on the formal semantics of knowledge
integration strategies, although we also provided high-level
decision procedures. The next step is the development of
tableaux-based algorithms for implementing the strategies
outlined in the paper. Some initial results suggest that the
complexity of the integration strategies may be no worse
than consistency checking in the DL under consideration.

An obvious question to consider is whether any additional
structure, such as the specification of role hierarchies and
transitivity of roles, can be exploited further to modify the
knowledge integration strategies in appropriate ways. Such
additional structure might also be used to ameliorate other
problems. For example, DKBs can be exponential in size,
which will severely affect their use in practice. But it might
be possible to limit the size of strata in stratified KBs using
the structure of sentences contained in it. A simple example
is the use of principles such asspecificity: if the sentences
bird v flies (all birds fly) andpenguin v ¬flies (all pen-
guins don’t fly) occur in the same stratum, an application
of specificity will ensure thatpenguin v ¬flies is given
precedence overbird v flies, provided thatpenguin v
bird takes precedence over both. Finally, the management
of other notions of incoherence, such as concept unsatisfia-
bility, is currently the topic of further investigation.
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