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Abstract

Many belief change formalisms employ plausibility ordgsnover the set of possible
worlds to determine how the beliefs of an agent ought to beifieddafter the receipt
of a new epistemic input. While most such possible world sgiosrely on a single order-
ing, we investigate the use of an additional preferencerimrgle-representing, for instance,
the epistemic context the agent finds itself in—to guide tfeegss of belief change. We
show that the resultant formalism provides a unifying setimaifior a wide variety of belief
change operators. By varying the conditions placed on tbergeordering, different fam-
ilies of known belief change operators can be capturedudiety AGM belief contraction
and revision, Rott and Pagnucco’s severe withdrawal, teesyatic withdrawal of Meyer
et al, as well as the linear liberation amdiberation operators of Booth et al. Our approach
also identifies novel classes of belief change operatorthyaoif further investigation.
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1 INTRODUCTION

Current formalisms in belief change [2,3] typically empleyher a plausibility or-
dering [4,5] over the set of possible worlds, or an episteganicenchment ordering
[2] over the set of sentences in an agent’s belief set. Opesrédr change are then
defined by manipulation of these orderings after receipt aba epistemic in-
put. There are many advantages to these approaches — formasgst them the
guarantee that change will be effected in a principled marhe provision of an
intuitively plausible construction, and a formalism fleeilenough to accommodate
alternative change strategies and iteration. Howeveresamances of belief change
are not captured in such an approach. For instance, agemist dsually employ
one fixed ordering throughout. Often, different orderingghmhbe used in different
contexts such as those requiring greater caution or skeptior different order-
ings might be used based on the assessed reliability of tireessof the epistemic
inputs. Such a critique is implicit in the work of Cantwell @here the notion of
eligibility adds an extra dimension to belief change. A technical framniewhat
provides tools for belief change operations based on neltpderings was pro-
posed by Andreka et al. [7] where combination operationsifdass of preference
relationsP are studied in terms of an additional guiding preferencatica. In our
current approach, the formalism for belief change (in patar belief removal) we
present can be considered to be a special case of the workdsERan et al. with
< (over the set of interpretations) being the single prefegarlation inP, and=<
(our additional dimension) being the guiding relation.

An intuitive way to understand the second ordering on thefspossible worlds is
to think of it as a more stringent assessment of the plaityiloil states of affairs.
Most rational agents are aware of certain contexts withinckvitheir reasoning
plays out — certain contexts call for a different assessmaeptausibility. For ex-
ample, while  am moderately sceptical in vetting news repof the generic kind,
| adopt a more critical stance when vetting news reports ®@htlore serious kind,
say concerning the impending declaration of a war. Suchesntrent is reminiscent
of contextualist assessments of epistemic statementsi@&]ent is understood that
agents make knowledge claims relative to some implicitddeashfor assessing that
claim and that different standards will induce differings@ssments of the truth
of epistemic claims. The contribution of this paper is thdioation, in a single
formal framework, of a large class of belief change opesdbgra method that em-
ploys two preference orderings over the set of possibledsoH enables us to view
belief change as the manipulation, by the agent, of assessroeplausibility of
epistemic states of affairs in different contexts.

The plan of the paper is as follows. After laying down sométecal preliminar-
ies, in Section 2 we establish the foundations of our franmkeviar removal with a
semantic definition and an axiomatic characterisation.féhmal definition of re-
moval provided here allows us to show how this framework canded to peform



belief change in different contexts. In Section 3 we studydlass of belief removal
operators obtained when the second ordeting transitive. Section 4 builds up to
a characterisation AGM contraction[9] via sub-classes of belief removal oper-
ators satisfying the standard properties known as Vaduitjision and Recovery.
Section 5 shows that important classedefief liberationoperators [10] can be
captured in our framework. Section 6 isolates various ess$ removal opera-
tors related to, and includingystematic withdrawdllL1]. Section 7 shows that the
limiting cases correspond #®GM revision[9] and severe withdrawa]12], while
Section 9 concludes with some pointers to future work. Rm#ie formal proofs
of all results are collated in an appendix at the end of thepap

We assume a finitely generated propositional languagguipped with the usual
constants, boolean operators and a classical Tarskiae@oesce relatioo'n. Al-
though the finiteness assumption is a limitation, it is oftegde in the context of
logic-based Atrtificial Intelligence (cf. [5,13]) when (i) does not detract from the
basic principles being investigated, and (ii) it ensures the proofs are simplified
considerably. Both conditions are applicable here. Therasted reader is also re-
ferred to the work of Gabbay and Schlechta [14] where théainversion of the
work presented here [1] is extended to the infinite case.

An interpretation(or possible world w is a function from the set of propositional
variables ofL to the set{0, 1}, with O denoting falsity, and 1 denoting truth’
denotes the set of all possible worlds/interpretationg .ofogical entailment is
denoted by- and logical equivalence bs. For any set of sentences C L, [4]
denotes the set of worlds satisfying all membersl @fvriting [¢] rather tharf{¢}]
for the singleton case). For a setC W, T'h(S) is the set of sentences true in all
worlds inS. The object which undergoes change will K¢ a consistent belief set
(i.e., a deductively closed, consistent set of senten@és)take K" to be arbitrary
but fixed throughout. For any belief s&t’ and¢ € L, K’ + ¢ will denote the
expansiorof K’ by ¢, i.e., K’ + ¢ = Cn(K'U{¢}). Given a total pre-order (i.e., a
transitive, connected relatior) on W and.S C W, min(S, <) will denote the set
of <-minimal elements of.

1.1 Removal operators

We assume that for all removal operater,s/ ¢ is only defined for non-tautologous
propositions and refer to the set of non-tautologous mestigr as ... The limit-

ing case requires only a minor emendation. We make this eloreease of techni-

cal presentation. We refer to theser@sovaloperators because their use results in
an epistemic inpup being removed from the belief set. However, as we shall see in
Section 7, the extreme case where the removal of a beliegults in the addition

of =¢ is included in the framework. In this paper, the followingif@roperties will

be considered as fundamental to any reasonable notionief behoval:



(Bl) K % ¢ = Cn(K * ¢)
B2) p ¢ Kx¢

(B3) If ¢1 = pothenK x ¢ = K % ¢
(B4) Kx 1=K

Rules(B1)«B3) belong to the sivasic AGM contraction postulat¢s]. Rule (B4)
is a weakened version—under our assumption flias consistent—of another,
(Vacuity).

Definition 1 A removal operator (foK) is any operator satisfyinB1)-(B4).

2 BASIC REMOVAL

We now set up our most general semantic construction offaeenge operators.
Our goal is to takdull AGM contraction as a starting point, i.e. belief contraatio
operators adhering to the eight AGM contraction postujatetuding the two so-
called supplementarAGM contraction postulates [9]. In line with this goal we
assume a total pre-orderanchoredon [K]i.e.,[K] = min(W, <).! As usual we
take < to be an ordering of plausibility on the worlds, with worldsver down in
the ordering assessed as more plausible. In what follewsill always denote the
symmetric closure o, i.e.,w; ~ wsy iff both w; < wy, andw, < wy.

In order to generalise full AGM contraction, we assume weadse given asecond
binary relation< on . The only requirement we place of\ at least initially, is
that it is a reflexive sub-relation af. These two orderings provide tleentextin
which an agent makes changes to its current beliefs. Inélyti< is intended to
serve as an aid to the first orderiggn the provision of the context in which belief
change should occur. This explains wRyis required to be a sub-relation &f.

In the process of providing such a context, the role<odvill be to relate relevant
worlds to one another (see Section 2.2). This justifies thairement of< to be
reflexive: every world is at least relevant to itself.

Definition 2 (<, <) is a K-contextiff < is a total pre-order (on/V) anchored on
[K], and = is a reflexive sub-relation of.

The following picture shows what &-structure looks like:

1 But see the work by Booth et al. [15] where the assumption<hiata total pre-order is
relaxed.



The dots represent all the possible world9i)) the dashed rectangles represent
the different~-equivalence classes, linearly ordered from left to righth the
lowest, i.e., the s€ii], appearing first on the left. Thus, for any two worldsw’
appearing in the same rectangle we have w’, while if w appears in a rectangle
strictly to the left ofw’ thenw < w’. This is enough to depict. The second
ordering= is depicted by the arrows. An arrow fromi to w denotesw < w’.?2

For convenience we omit all reflexive arrows. We emphasise tieat< is not
assumed to be transitive in general. The one real resmidithat it is not allowed

to have an arrow crossing a dashed boundary from left to.rifjhs is because
<C<.

Given a belief sef and aK-context(<, <), we use(<, <) to define aremoval
operatorx < <) for K by setting, for allp € L.,

K %< < ¢ =Th({w | w =< w' for somew’ € min([—¢], <)}).

That is, the models of the belief set resulting from a remov¥al are obtained by
locating all the<-best models of¢, and adding to those all worlds that are at least
as=-plausible.

Definition 3 x is abasic removal operatdfor K) iff > is equal tox < <) for some
K-context(<, =<).

2.1 Examples

Suppose our languade contains precisely three propositional variabdeg and
r. We will denote each possible world by a triptez of Os or 1s, where:, y and
z denote the truth-value according to that worldpot; andr respectively. So, for
example010 denotes that world in which boghandr are false and is true. Now
supposes = Cn(qg A (r — p)) (so[K] = {111,110,010}) and let the following

2 Observe that arrows therefore point in the direction of thelds lower down in the
ordering.



picture represent a particular-context(<, <).

— 100
| |
| |
110 000 ' o001
| |
| |

Suppose we want to remove sentegcieom K. First we obtain the<-minimal
models of—¢. These ard01 and 000, which can be found in the second lowest
<-rank. Then we add all worlds which are below these accortting. Doing this
leads us to the set of worlds covered by the grey area in therpibelow:

Thus we end up with the s¢t 11,010,101, 000}, i.e., K < <) ¢ = Cn(p < r).
Observe that the new model set after removal heretsa superset of the initial
model sef K. As a consequenck x< <) ¢ € K. Removal ofg has led in this
example to the aquisition afewbeliefs (for instance — r). This shows that the
widely-acceptedinclusion) rule (K % ¢ C K) fails to hold in general for basic
removal.

Another property for removal operators which fails is {facuity) rule (if ¢ ¢ K
thenK x ¢ = K), which says that if the sentence to be removed does not dpelon
to the initial belief set, then its removal should leave tledid§ set unchanged.
For suppose in the above example we want to remeveather than;. Note that

—r ¢ K. This time the unique<-minimal model of——r is 111, appearing in the
lowest level, i.e.[K]. The only world (other than itself) which is less than or dqua
according to< is 110:

100

001




Thus we obtaink < <y -r = Th({111,110}) = Cn(p A ¢), and we see that
removal of a non-believed sentence has led to changes iretied fet, for instance
the aquisition of the belief ip.

We will shortly see which propertiegre valid for basic removal, but before that
we present the following result, which says that every besicoval is generated
by a unique K-context. Thus there is a one-to-one correspondence bettixee
K-contexts and the basic removal operatorsior

Proposition 4 Let (<, <) and(<’, <) be two K -contexts which are not identical.
Thatis,(<, %) # (<, X'). Thensk < <) # %< <.

Before moving on to the promised characterisation of ba=icaval, we demon-
strate how formal<-contexts can be used to represent a particular contexr-unde
lying the beliefs of an agent.

2.2 Providing Context

In this section we elaborate on the usefoicontexts as a way of representing the
context in which an agent performs belief change by consigex simple exam-
ple. In particular, we show thak’-contexts can be used to represent contextual
information which may be blocked by the current beliefs ofagent, but that a
belief removal may trigger the unblocking of this infornmatj depending on the
appropriate context.

Consider the well-known case of representing informatiooua Tweety. We are
interested in using & -context to capture, not only information about what an agen
currently believes about Tweety, but also twntextualinformation about birds.
More specifically, we require that thié-context should contain the information that
an ostrich is a bird, as well as thdefaultinformation that birds normally fly, but that
ostriches normally don't fly. The information about osteshbeing birds is more
entrenched than the default information about birds bebig & fly and ostriches
not being able to fly. Moreover, given the principlespiecificity we take the default
information about ostriches not being able to fly to be of anbigprecedence than
the default information of birds being able to fly.

Now suppose our agent finds itself in a situation in which lidwes that Tweety
is either an ostrich (and therefore a bird) which cannot flthat Tweety is a bird
(but not an ostrich) which can fly.

We represent the beliefs of the agent in a languagmntaining precisely three
propositional variables (Tweety is a bird)p (Tweety is an ostrich) and (Tweety
can fly). As above, we will denote each possible world by dédrip,z of Os or
1s, wherer, y andz denote the truth-value according to that worldbpb and f



respectively. In this case we ha#e = Cn(b A =(o < f)) (so[K]| = {110,101})
and we let the following picture represent our choséfcontext(<, <).

e e e e e e e - =

| | | | |
110 111 0 011
| | | | |
101 : 010
| | | |
| | | |

e

The intuition for the choice of<, <) can be explained as follows. Theorst <-
worlds are those in which the information that an ostrich ksrd is violated: the
worlds011 and010 in which Tweety is an ostrich but not a bird. This is followed
by the single worldl 11 which violates the default information about ostriches not
being able to fly. Next is the single world0 which violates the default information
about birds being able to fly. After this we get the two woidd$ and000, both of
which are compatible with all the contextual informationt bre not models of the
agent’s current beliefs. So in these worlds Tweety is neighieird nor an ostrich
and the contextual information therefore has nothing tceseut its flying abilities
(or lack thereof). Théest<-worlds are, of course, the models &f. the worlds
110 and101.

The second ordering is now used to capture a context relating to the manner in
which the default assertions apply, as well as how theyateft indicates explic-
itly that a world in which Tweety is a flying bird, but not an osh, is preferred
over the world in which Tweety is a flying bird and also an atrian indication
that the default assertion indicating that ostriches diy'is to be preferred over
the default assertion that birds fly.

Suppose now that we want to remove the sentence that Tweatyastrich from
the agent’s beliefs. Observe that the agent currently doeisetieve that Tweety is
an ostrich. Formally, we want to remove the sentemfrem K. To do so, we first
obtain the<-minimal models of-o. This is the worldl01, found in the lowesk-
rank (and one of the models &f). Then we add all worlds which are below these
according to=. In this case, nothing is added, and we end up with the Kgt},
ie., K %< < 0= Cn(bA—oA f). Or more informally, the agent now believes
that Tweety is a bird, but not an ostrich, which can fly. So,ekplicit removal of
the information that Tweety is an ostrich acts as a mechafosmnblocking the
default information that birds normally fly, and we end uphnatbelief set in which
Tweety the bird is assumed not to be an ostrich, and is ablg.to fl

Also, it is easily checked that similar results are obtaiii¢kde negationof o (the

information that Tweety is not an ostrich) is removed frédm In this case the
default information about ostriches normally flying is umtked, and our agent
ends up believing that Tweety is an ostrich (and a bird) wiia@ssumed not to fly.



Finally, suppose that we want to remove from the agent'sfsethe (default) as-
sertion that Tweety being an ostrich implies that it canngtah explicit assertion
not currently in the agent’s belief set. Formally we wantémpve the sentence
o — —f from K. To do so we first obtain the-minimal models of-(o — —f),

in this case just the single worldl 1. Then we to add to it all worlds which are
below111 according to= (in this case the world01) and we end up with the set
{111,101}. From this it follows thatK' < <) (0 — —f) = Cn(b A f), and the
agent thus ends up believing that Tweety is a flying bird. ®aettplicit removal of
the more specific default assertion (Tweety being an osimgitying that it cannot
fly) frees up the remaining default assertion (Tweety beitigréhimplying that it
can fly) to fire, and we end up with a belief set in which Tweegyltird is assumed
to be able to fly.

To conclude this subsection, observe that belief removiilese examples satisfy
neither(Inclusion) nor (Vacuity).

2.3 Characterising Basic Removal

Basic removal is characterised by the following postulatesddition to the fun-
damental rule¢B1)~(B4): 3

(B5) If 0 € Kx (0 A¢)thend € K % (0N NY)

(B6) If 0 € K % (0 A¢)thenK % ¢ C K % (0N o)
(B7) (Kx0)N (K %¢) C K x (6 A0¢)

B8) If p ¢ K x (0N ¢)thenK % (0N ¢) C K % ¢

The rules above are familiar from the belief change liteatRulegB7) and(B8)
are the twosupplementarAGM contraction postulates [9], whilB5) and (B6)
both follow from the AGM postulates (see [9,16,17]). Thedatrule is closely
related to the well-known rul€ut from non-monotonic inference [18], while the
former is sometimes known in the literature as Conjunctivisettion. A slight
reformulation may be found already in [9] under the namei&akhtitony. Another
reformulation of it is the following:

Proposition 5 Letx be any removal operator. Then satisfiegB5) iff it satisfies:

(B5) K %0 C (K % (0 A¢)) + 0

3 The list given in [1] contained one extra rule, viZ& s ¢ C K + —¢'. It turns out this
rule is derivable from the others (mainlB5)). See rulg’X1) in Lemma B in the appendix.



The remaining two basic AGM contraction rules, which areéhbuotssing from the
list (B1)+(B8), are(Inclusion) (see previous subsections) gikkcovery)

(Recovery) K C (K % ¢) + ¢

(Inclusion) has been questioned before by Bochman [19] and Booth et@l. [1
the latter leading to the study bklief liberationoperators(Recovery)has been
guestioned in many places in the literature (e.g. [16,3jefB, liberation operators
cater to the intuition that removing a belief from an ageotigpus can remove the
reasons for not holding others and hence lead to the includioew beliefs.

Theorem 6 Let K be a belief set anck an operator for K. Thenx is a basic
removal operator fork iff x satisfieqB1)-(B8).

Given Theorem 6, we see that basic removals seem closetgddlathe similarly
general approach to removal presented by Bochman [19, GhLik2 basic re-
moval, Bochman’s operators in their most general form fawvadlidate(Vacuity),
(Inclusion) and(Recovery) while theydo satisfy(B5)(B7).

The completeness part of Theorem 6 is proved by using th@edol construction
of a pair of orderings from a given belief set and basic rerhoparator.

Definition 7 The structuré <, <) obtained from a belief sét and a basic removal
operatorx, and denoted by (K, x) is defined as follows, fap;, wy, € W:

(S) w1 < Wy iff 00 € K % (_|Oé1 N _|Oé2)

(j) w1 = W2 iff e} ¢ K x mle%)

whereq; is a sentence whose only modelis(for i = 1, 2).

In the theorem the structu& K, %) is used by checking that i satisfies the
postulategB1)«(B8), then(<, <) is a K-context and thak = < <). We employ
this construction throughout the paper to prove that aegastulates are complete
for certain sub-classes of basic removal. (See the appé&ordinll proofs.)

We now investigate how different requirements on the secwdéring of plau-
sibility < and its interplay with< help us characterise different belief removal
operations.

3 TRANSITIVE REMOVAL

The first two constraints o may be viewed as necessary extra requirements on
K-contexts. This is because they both lead to plausible ptiegef removal oper-
ators which, as we shall see later, are common to virtudlthalproposed removal

10



operators from the literature.

3.1 Transitivity

First we investigate the effect of setting the second or¢dléw be transitive, i.e. X
becomes a pre-order. We refer to tRecontext(<, <) as transitive if< is transi-
tive.

Definition 8 We call % a transitive removal operatqffor K) iff x is equal to
% (< <) for some transitiveé{-context(<, <).

Transitive removal operators may be alternatively descrds follows. As with any
pre-order, the relatior partitions)V into a setW/~ of equivalence classes via
the relation~ defined byw; ~ wjy iff both w; < ws andw, < w;. The seV/~

is partially-ordered by the relatior™* defined by[w,|~ <* [ws]~ iff w; =< ws.
Meanwhile, we can also define a relatietf on W/ ~ by [w;]~ <* [we]~ iff
wy < wo. Itis easy to check that* is well-defined and that* is a total pre-order
on W/~ such that<*C<*.

We can picture transitiv&-contexts as follows.

r-—--

Here, the grey ellipses now represent thequivalence classes from the previous
paragraph. An arrow leading from one ellipse to another m#zat for all worldso

in the second class and all worldsin the first class we have < «’ andw’ A w.
The full relation= is obtained by taking the transitive closure of the arrows.

Furthermore we have, for eaghe L., K %< <) ¢ = Th(UY), where

T ={X e W/~| X <*Y for someY € min(—¢, <*)},

and wheranin(—¢, <*) denotes the set of*-minimal elementy” € W/~ such
thatY N [-¢] # (. Note how worlds belonging to the same equivalence class are

11



‘indistinguishable’ to the agent using thé-context(<, <).

For example, suppose the-minimal models of-¢ are the white dots. The new
model set is then just the union of the dark grey ellipses.

The next result shows how we can axiomatically characténiselass of transitive
removal operators

Proposition 9 (i). If (<, <) is transitive thenk < <) satisfies :

(BTran) If K %60 C (K x¢)+¢thenK %0 C K % ¢

(i). If x is a removal operator satisfyin@Tran) then the relation< of C(K, x)
Is transitive.

The reader familiar with the belief change literature wifimediately recognise
the right-hand-side of the antecedent of this rule ad_the Identity[2], which is
commonly employed to define operatorg@¥isionin terms of removal operators.
The goal of a revision operatioR” x ¢ is to produce a new belief whicimust
containthe given sentence. Given any removal operate, let us denote by =
R(x) the operator defined from via the Levi Identity, viz.

K x ¢ = (K x%-¢)+ ¢.

Thus(BTran) may be thought of as saying that if the act@fisingby —¢ produces
a larger belief set than the act @fmoving#, then so too will the act of merely
removinge.

4 (BTran) replaces the more complicated and rather unintuitive patstuhich was used
to characterise transitivity in [1], viz:

(BT) If K %6 ¢ K % ¢ then there exisp, A € L, such that
oy Aand(K % 60)U (K % A) F ¢

12



Adding (BTran) to the list of rules for basic removal causes some redundancy
that list, as the next result shows.

Proposition 10 Any removal operator which satisfi@@Tran) and(B5') also sat-
isfies(B6).

So transitive removal operators may be characterisg@by-(B5), (B7), (B8) and
(BTran).

3.2 Priority

Now consider the following property of &-context(<, <):

(a) If w1 ~ W andw1 = Wy thenUJQ =< wy

Given the factxC<, this is easily seen to be equivalent to:

(d) If w1 < Wa thenw1 < W2

Thus ifw; < wy but not vice versa, them, is strictly more plausible tham,.

Proposition 11 (i). If (<, <) satisfies (a) thes < ) satisfies:

(BPriority) 1f 6 € K x ¢pand¢ ¢ K x 0 thend € K x (0 A ¢)

(ii). If x is a removal operator satisfyin@Priority) thenC(K, ) satisfies (a).

The property(BPriority) is briefly mentioned under the name ‘Priority’ in [19],
and is also briefly mentioned right at the end of [20]. It carrdeed as saying that
if ¢ is excluded following removal of, but not vice versa, thefis strictly more
entrenchedhan ¢, in the sense that when directed to excldde ¢ (and thus to
exclude at least one éf ¢), ¢ is included and) excluded.

As we indicated at the start of this section, the family of oeal operators gen-
erated by transitivé(-contexts satisfying (a) remains general enough to include
virtually all of the families described in the rest of thiggea. Thus the list of rules
comprising(B1)«B5), (B7), (B8), (BTran) and(BPriority) can be considered a
‘common core’ of postulates for belief removal. In termsha# alternative descrip-
tion of transitive removal given above in terms of equivakenlasses, requiring (a)

of (<, <) in addition to transitivity has the effect that the relagef and <* on
W/~ satisfy, for allX,Y € W/~ X <* Y impliesX <* Y or X =Y, where

<* is the strict part of<*. Thus any two distinct classes, Y which are on the
same ‘level’ according tec* (in that bothX <* Y andY <* X) are incomparable

13



according to<*.

The picture for transitivé(-contexts satisfying (a) is the same as that for transitive
removals, except it is now disallowed to have an arrow betvwae® two ellipses
lying within the same dashed rectangle.

The next result shows how, for basic removal, the two r(lB3gan) and(BPrior-
ity) may be repackaged into an equivalent single rule.

Proposition 12 (i). If (<, <) is both transitive and satisfies (a) then< < satis-

fies:

(BConserv) If K %0 ¢ K x ¢ then there exists € L, such that
pEXand(K % 0)U (K x\)F¢

(i). If x is a removal operator satisfyin@Conserv) thenC(K, ) is transitive
and satisfies (a).

(BConserv) looks like the rules Conservativity and Weak Conservatiwithich
were proposed and argued-for by Hansson [21,3] and usedataatkrise opera-
tions of so-calledase-generated contraction

3.3 Strong Conservativity

By going a step further and identifyingwith ¢ in (BConserv)we arrive at a yet
stronger postulate:

(BSConserv) If K %60 € K x ¢ then(K % 0)U (K % ¢) - ¢

(BSConserv)is known as Strong Conservativity [21], and is used by [1(hétp
characterise the so-calledliberation operators (see Section 5). Booth et al. [22]
also provide a detailed justification for the use of this rier basic removal, we
can capture this property by requiring the following prdpein conjunction with
transitivity:
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(b) If w1 ~ W2 thenw1 = Wy

Proposition 13 (i). If (<, <) is transitive and satisfies (b) ther< < satisfies
(BSConserv) (ii). If x is a removal operator satisfyin®@SConserv)thenC (K, x)
is transitive and satisfies (b).

Condition (b) implies (a). In terms of the above construttio terms of\V/ ~,
requiring < to be transitive while strengthening (a) to (b) has the ¢fteat the
relation<* becomes #otal orderonV/ ~.

In terms of the picture above, this means we are now redrictgust one ellipse
per dashed rectangle. Note that this family will crop upraigning out to be the
family of o-liberation operators.

4 TOWARDS AGM CONTRACTION

It was noted in Section 2 that basic removal does not sati&ttiree basic AGM
contraction postulate@/acuity), (Inclusion) and (Recovery) In Section 7 it is
shown that the severe withdrawal operators, which are knuetrio satisfy(Re-
covery)[12], are all basic removal operators, thus proving {Ratcovery)fails for
basic removal. ‘One half’ ofVacuity), howeverjs valid for basic removal:

Proposition 14 Let % be a basic removal operator fdc, thenx satisfies: Ifp ¢
KthenK C K % ¢

The ‘missing half’ of(Vacuity) is: If ¢ ¢ K thenK x ¢ C K. Clearly this rule
doubles as a weakened versior(loiclusion). Thus we see that, for basic removal
operators(Inclusion) actually implies(Vacuity). In the rest of this paper we will
adopt the following notational conventions for describiagioval operators:

e The symbolx will be used to refer to members of the general family of basic
removal operators, when nothing is assumed about whethepirator satisfies
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(Vacuity) or (Inclusion).

e The symbok- will be used if the removal operator is intended or known ts$a
(Vacuity), but not necessarilfinclusion).

e Symbol- will be used if the operator is intended or known to sat{#figlusion)
as well agVacuity).

Now let us verify under what conditions dr<, <) each of these postulates are
satisfied by basic removal operators.

4.1 Vacuity

To ensure thak < <) satisfy all of(Vacuity), we require that alk-minimal ele-
ments (i.e., all elements ¢k|) are<-connected, i.e.,

() If wy,ws € min(W, <) thenw; < wy

In terms of the picture fotransitiveremoval, this corresponds to the requirement
that there is only one ellipse in the leftmost dashed-reggéanvhich represents the
minimal <-rank.

Proposition 15 (i). If (<, <) satisfies (c) ther < <) satisfiegVacuity). (ii). If
is a removal operators satisfyiryacuity) thenC( K, x) satisfies (c).

As is easily verified, (c) is implied by condition (b). Thus wee that any basic
removal satisfyindBSConserv)satisfieqVacuity). However, since (c) isotim-
plied by (a),(Vacuity) is notvalid for transitive removals satisfying (a).

Shouldn’t (Vacuity) be a basic requirement f@ny rational removal operation?
From a purelyminimal changepoint of view it is certainly hard to contest, but we
would nevertheless argue thene scenarios in which it can fail. Consider an agent
with equally good reasons to believe eachp@nd—p. In this situation the agent
remains cautious and commits to believe neith@or —p. But if this agent were
then to receive information that undermingshen it would come to believe (or
assign significantly more plausibility tejp.
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One could always try antbrce a given basic removak to satisfy(Vacuity) by
defining a new operatoer’ from x by

K if K
K+ ¢= ¢ &
K x ¢ otherwise.

It is straightforward to show that’ so defined satisfiedB1)+(B8), and so again
forms a basic removal.

Proposition 16 If (<, <) is the K-context corresponding t&, then theK'-context
corresponding to+’ defined above i$<, <’), where <’ is obtained from= by
settingw; =<’ ws iff wy < wq OF wy, wy € [K].

However we run into difficulties in the case wansitiveremoval, for it turns out
that rule(BTran) is notpreserved. This is becausedfis transitive then<’ need not
be. Indeed it is quite possible to have three modelsw,, w3 such thatw,, wy €
[K], W3 Q [K], w1 ﬁ Ws andUJQ =< ws. Thenw1 j/ Wo j/ W3 butw1 ﬁ/ ws.
How can we modify a transitive removal operator so that isfias(Vacuity)? The
answer is to just take the transitive closure-tfabove. It is easy to see this is the
same thing as setting,; <" ws iff either w; < wq or [wy € [K] andw’ < w, for
somew’ € [K]]. In terms of the picture, all we do is coalesce all the edipg the
leftmost dashed rectangle into one, and leave all the arasvis, so that any arrow
which was previously going intany ellipse in this rectangle is just pointing now
instead at the unique single ellipse there. (Following sthép we may remove any
redundant arrows.) k is the basic removal operator generated ¥y=), then we
will denote byV () the removal operator generated (3y, =”) as defined above.

Obviously=" is transitive. Sox < <) is a transitive removal operator which satis-
fies (Vacuity). Also note that if(<, <) satisfies (a), then so will<, <”) (because
<" does not introduce any arrows between worlds on the samk Hece ifx is
transitive (satisfiefBTran)) and satisfe¢BPriority) then so doe¥ (x).

The next result shows how we can expr&gs¢) so constructed directly in terms
of x.

Proposition 17 Let « be a removal operator foi' corresponding toi -context
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(<, =) and let+ = V(). Then

Ko KNKx¢ if KUK x ¢is consistent
' K x¢ otherwise

4.2 Inclusion

To obtain(Inclusion) we may add the following condition, stronger than (c):

(d) If wy € min(W, <) thenw; < ws for all wy

So the <-minimum worlds are also th&-minimum worlds. In the picture for
transitive removals, this means there is only one ellipse in the leftrdashed-
rectangle, and furthermore there is a path along the arrowhis ellipse from
everyother ellipse in the picture.

Proposition 18 (i). If (<, <) satisfies (d) ther < <) satisfiegInclusion). (ii). If
x is a removal operator satisfyingnclusion) thenC (K, x) satisfies (d).

Even though basic removal operators do not satfbfglusion) in general, it is

always possible teransforma given basic remova# into an operator whickoes

satisfy that rule. We simply take thecarceration— of x [10], i.e., the operator
defined froms by using the following slight variant of thdarper Identity[2]:

K=-¢=Kn(K x¢).
We shall denote the incarcerationsefby I(x). It can be shown the incarceration
of a basic removal operator is always itself a basic removal:

Proposition 19 If (<, <) is the K'-context corresponding tg, then thek -context
corresponding td(x) is (<, <), where=" is obtained from< by settingw; <"
wy iff w; < wy orwy € [K]. Furthermore:
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(). If <is transitive then so i”.
(i) . If < satisfies (a) then so doeg’'.
(i) . If < satisfies (b) then so doeg'.

Part(i) of the above proposition says that the incarceration ot@msitiveremoval
operator is again transitive, while paii$ and(iii) imply that the rulegBPriority) ,
(BConserv)and(BSConserv)are each preserved under taking incarcerations.

4.3 Recovery

To obtain(Recovery)it suffices to require the following condition:

(e) If w; < wythenw; = wy orw; € min(W, <)

So, apart from itself, nothing but-minimal worlds may be below any world in
<. This means that when removal ottakes place, the new model set will consist
of the <-minimal —¢-worlds (the white dots in the picture below), together with

some subset dhe <-minimal worlds. Note that this subset may be a strict subset
of min(W, <).

Proposition 20 (i). If (<, <) satisfies (e) ther < <) satisfiegRecovery) (ii). If
x is a removal operator satisfyin@Recovery)thenC( K, x) satisfies (e).

The combination of (d) and (e) then states that the worldsdalworldw in < are
exactlyw itself and the<-minimal worlds. Thus in this case < <) is completely
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determined by alone via:

[K = (<% ¢] = [K] Umin([~¢], <),

which is precisely the AGM contraction operator generatee§4,5,9].

Proposition 21 The following are equivalent:

(). = is a full AGM contraction operator (i.e., satisfying the @and supplemen-
tary AGM postulates).

(ii). — satisfieB1)+B8) plus(Inclusion) and(Recovery)

(iii). = = ~(< <) for some(<, <) which satisfies (d) and (e).

Observe that since (d)+(e) implies transitivity and (agrgvull AGM contraction
satisfieBTran), (BPriority) and(BConserv).

5 BELIEF LIBERATION

Booth et al. [10] present two models of belief liberation igters, each in terms of
finite sequences of sentences. The second miaaedr liberation, is more general
than the firstg-liberation as the class of liberation operators it generates includes
those generated by the first. The first construction empldysearly ordered se-
guence of sentences and the second a set of candidate et$iefree of which
corresponds to the agent’s set after belief retractiony Et&o provide axiomatic
characterisations of each of these classes.
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5.1 Linear liberation

A K-sequence is any sequence of sentences (5i,...,5,) such thatk =
Cn(p). For anyK-sequence we can define a removal operatey, by setting

K-+,0= _
Cn(0) otherwise

Then an operatot- for K is a linear liberation operator (fax) iff = = +, for
somek -sequence.

Linear liberation is characterised §B1)«(B3) plus (Vacuity) and the following
rule: 6

(Hyperreg) If 0 ¢ K+~ (0 AN¢)thenK —~ (0N ¢) =K +0

This is the rule termed Hyperregularity in [21]. The firstrifpito note abouHy-
perreq) is that, in the presence @B1)+(B4), it actually implies(Vacuity) andthe
remaining rules for basic remov@5)—+B8). Thus we see:

Proposition 22 = is a linear liberation operator iff it is a basic removal ofzor
which satisfiegHyperreg).

Is there a condition o<, <) which corresponds exactly {&lyperreg)? It turns
out the following condition does the trick:

(f) If w1 ~ Wa andw3 =< wy thenw3 = Wy

Rule (f) says that whether or not a word is beloww, according to< depends
only on the<-plausibility rank ofw;. In terms of the picture, a major effect of this
is that the new model set when removingvill alwayscontainall worlds which
are in the same&-rank as the<-minimal —¢-worlds. Furthermore the set of models
below this rank which are to be included in the new model s#¢isrmined entirely
by this rank. Thus the number of possible distinct belie sdtich may result from

5 Booth et al. [10] also allowed the removal of tautologiesifecence that may safely be
ignored.
6 Taking into account that here, unlike in [10], we don't alltve removal of a tautology.
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an operation of removal is exactly the number of plausiprinks.

Proposition 23 (i). If (<, X) satisfies (f) ther- (< <) satisfiegHyperreqg). (ii). If
+ is a removal operator satisfyindlyperreg) thenC (K, x) satisfies (f).

Thus we see linear liberation operators may be represemntatiebclass ofK -
contexts which satisfy (f).

Note that (f) doesn’t imply transitivity, but does imply (fgnd therefore (a)). In
the presence ofB1) and (B2), (Hyperreg) implies the following rule known as
Decomposition:

Kx(@Np)=Kx0orKx(0N¢p)=Kx¢

As is noted in [2, p66], this condition is not desirable in geat. For this reason (f)
might be too strong to be a general requirement.

5.2 o-liberation

The definition ofco-liberation is, like linear liberation, based on sequences
(e, ..., ) Of sentences, although the sequences are used in a diffeagnOne
natural way to interpret the sequence is as the list of pusvievision inputs the
agent has received, withy being the first and.,, the most recent. The construction
begins by inductively defining, for each € L, an increasing sequence of sets of
sentences; (o, ¢) by settingl'y(o, ¢) = () and then, for each=0,...,n — 1,

Fi U {Ozn_i} if Fz U {an—i} i7Z QZS
T, otherwise.

Liyi(o,0) = {

That is, starting at the end with,, we work our way backwards through the se-
guence, adding each sentence as we go, provided addinghié teethtences col-
lected up to that point does not lead to the inference.df Cn(I',,(o, L)) = K
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then we say is a belief sequenaelative toK'. Then every belief sequence relative
to K defines a removal operater, by setting

K+, ¢=Cn(T,(0,9)).

Finally, an operatot- for K is ac-liberation operator (foK) iff —~ = +, for some
belief sequence relative to K.

Booth et al. [10] show that the-liberation operators are precisely those linear lib-
eration operators which satisflSConserv) Using this fact together with Propo-
sitions 13 and 23 allows us to deduce:

Proposition 24 + is ac-liberation operator iff- is equal to+ < <) for some tran-
sitive (<, <) satisfying (b) and (f).

However we can simplify here, for as soon-ass transitive, conditions (b) and (f)
becomesquivalent

Proposition 25 Let (<, <) be a transitive/{-context. Ther{<, <) satisfies (b) iff
(<, X) satisfies (f).

This means that in Proposition 24 it is unnecessary to redpath (b)and (f) — just
one of them will suffice. Depending on which one we choose taimgwe obtain
two different characterisations efliberation which provide alternatives to the one
from [10]:

Proposition 26 The following are equivalent:

(). + is ao-liberation operator.

(ii). = is a linear liberation operator which satisfi¢BTran).
(ii). + is a basic removal operator which satisfi@SConserv)

The equivalencé)<(ii) comes from combining Proposition 24 (retaining just (f))
with Propositions 9 and 23, whil@)<(iii) comes from combining Proposition
24 (retaining just (b)) with Proposition 13. Surprisingly<(ii) says that, in the
axiomatisation ob-liberation in [10],(BSConserv)may be replaced by the seem-
ingly much weaker(BTran). Meanwhile, sincgi)<(iii), o-liberation operators
inherit the nice description in terms &/~ given for the basic removals which
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satisfy(BSConserv)at the end of Section 3 (where" is a total order oW /~).

Similar characterisations for sub-classes of liberatbuch as the class dichoto-
mousliberation operators [10], exist. We consider these next.

In [10] the sub-class aof-liberation operators known as tdechotomoudiberation
operators are characterised by adding the following patsul

(Dichotomy) (K % 0) U K x ¢) I/ L impliesK %0 = K x ¢
The following condition or( <, <) corresponds t¢Dichotomy):

(€) wi 2wy iff wy ~wsy

This condition requires that the worlds below a wotldn < are precisely those
with the same plausibility ranking as.

Proposition 27 (i). If (<, <) satisfies (§ thenx < <) satisfiegDichotomy). (ii).
If x is a removal operator satisfyin@ichotomy) thenC (K, x) satisfies (8.

It turns out that addingDichotomy) to the postulates for basic removal gives ex-
actly dichotomous liberation.

Proposition 28 The following are equivalent:
(1). x is a dichotomous liberation operator.
(ii). % satisfieB1)+B8) plus(Dichotomy).
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(iii). % = %< <) for some(<, <) which satisfies (§.

The equivalencéi) < (iii) comes from combining Proposition 24 and Proposition
27, while(ii) < (iii) comes from combining Theorem 6 and Proposition 27.

6 SYSTEMATIC WITHDRAWAL

An interesting sub-class of basic removal operators, winicludes both systematic
[11] and severe withdrawal [12] (see below) is obtained loyinéng the following
condition on(<, <):

(g) If w1 < Wa thenw1 =< wy

where < is the strict part of<. When removingp, the effect is that the new
model set will contain, along with th€-minimal —¢-worlds,all worlds considered
strictly more<-plausible, together with possibomeof the ¢-worlds appearing
in the same<-plausibility rank as thesg-minimal —¢-worlds.

Proposition 29 (i). If (<, <) satisfies (g) thes < <) satisfies:

(B9) Ifoe Kx(0A¢)thenp ¢ K x0

(i). If x is a removal operator satisfyin@®9) thenC (K, x) satisfies (g).

The class of basic removal operate#g. <y such that(<, <) satisfies (g) still do
not generally satisffInclusion) or (Vacuity), since condition (g) does not rule

out that some<-minimal elements may b&-unconnected. However they do come
veryclose to satisfyinginclusion), in that the following is satisfied:

If 0 € KthenK x0 C K

Using this fact, we see that fahis class of operatorg)nclusion) and (Vacuity)
are equivalent.
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The next condition ori-contexts is, essentially, a requirement for antisymmetry
to hold:

(h) If w; =< wy then eitherv; < wq Or wy = wo

So now, thep-worlds appearing in the new model set after removirage selected
exclusively among those considered strictly more plaesibbn the<-minimal
—¢p-worlds.

Proposition 30 (i). If (<, <) satisfies (h) thes < <) satisfies:
(B10) IfF (0Vv ¢)andl ¢ K x ¢thenp € K x (0 A ¢)

(i). If x is a removal operator satisfyin@®10) thenC( K, x) satisfies (h).

Clearly, by requiring (h) in combination with (g) (and refiaky) we specify <
uniquely:

(g)+(h) wy =X Wy iff eitherw1 < Wo Orwy = wo

Note that< so defined will automatically be transitive and will satigg condition
(a) from Section 3.

Putting together Propositions 29 and 30, we have that tres d&basic removal

operatorsk < <y Wwhere= is defined via (g)+(h) may be axiomatically characterised
by (B1)«{B10). This looks very much like the class of systematic withdriawA
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systematic withdrawal operater can be defined in terms &f as follows [11]:
K - ¢ = KNTh(V<(min([-¢], <)))

whereV<(X) = {v | 3w € X s.t.v = worv < w}. Unlike systematic with-
drawal, the class of removal operators definedB¥)-(B10) fails to satisfy(In-
clusion)(Vacuity), since all the<-minimal elements are necessatilgconnected
according to=. So in fact(Vacuity) will fail as soon as there is more than one
<-minimal element. These operators satisfy instead:

If p ¢ K then—¢p € K % ¢

That s, for these operators, we 9€ex ¢ is an operation which ‘demotes’ the status
of ¢: if its current status is ‘accepted’, i.es,€ K, then its status is ‘demoted’ to
‘undecided’ i.e.p, 7¢ € K x ¢, while if its current status is ‘undecided’ then its
status is ‘demoted’ to ‘rejected’. If its status is alreadgjected’ then no change
occurs. However, if we take the incarcerations of theseaipes then we end up
with precisely the class of systematic withdrawal operator

Systematic withdrawal can also be obtained by weakening (h)

() If wy X wsthenw; < wy, wy = woy, Orw; < w' Vu'

So, unlike (h), (j) allows the models &f to be connected according +q although
it does not force them to be.

Proposition 31 (i). If (<, <) satisfies (j) thenx < <) satisfies:

(B11) IfF(0V ¢)andl € K\ K % ¢thenp € K x (6 A ¢)
(ii). If % is a removal operator satisfyin@®11) thenC(K, x) satisfies (j).

Since the operators obtained from (g) and (h) form a sulsaghe operators
obtained from (g) and (j), the latter class still does nas$a{Vacuity). But adding
(c) (and thereforéVacuity)) to (g) and (j) leads exactly to systematic withdrawal.

Proposition 32 The following are equivalent:

(). — is a systematic withdrawal.

(ii). — satisfieqB1)+B8) plus(Vacuity), (B9) and(B11).

(iii). — = %< <) for some(<, <) which satisfies (c), (g) and (j).

As we shall see in the next section, the class of severe vaivals can be isolated
in a similar manner.
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7 LIMITING CASES

We have seen that the addition of the second ordetipgovides us with consider-
able flexibility when defining removal operators. But whappens when we focus
on the limits imposed ox? In this section we consider the two cases whelis
thesmallestand thdargestreflexive sub-relation of.

7.1 AGM revision

If we take < to be the smallesk, the equality relation, then the operatey< <)
reduces td< x < <) ¢ = Th(min([-¢], <)),

We have the following result.

Proposition 33 (i). If < is the equality relation theex < <) satisfies:
(B12) —¢ € K x ¢.

(i). If x is a removal operator satisfyin@®12) then=< in C(K, %) is the equality
relation.

Thus we see that removinrghere amounts to @evisionby its negation, and in fact
thatx < <) essentially reduces to an AGM revision function (satisfytime full list
of AGM revision postulates [9]). More precisely the operato. <) for K defined
by K x< <) ¢ = K %< <) ¢ is an AGM revision operator. MoreovayeryAGM
revision operator can be obtained in this way. Note that enahove case, since
¢ € K %< <) ¢, the right-hand side here is equal(t& %< <) —¢) + ¢. Thus
what we have is just the Levi Identity [2]. In fact a result mgeneral holds. Recall
that for any removal operate#, we useR () to denote the operator derived from
x via the Levi Identity:

Proposition 34 If x is a basic removal operator theR(x) is an AGM revision
operator.
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7.2 Severe withdrawal

By taking < to be the largest reflexive sub-relation<ofwe get the full relatior<,
and the operatog < <) reduces to:

K-<<¢=Th({w | w < w' for somew’ € min([-¢], <)}).

Thus, from the characterisation of severe withdrawal imgeof total pre-orders
found in [12], we see that setting equal to< gives us the class of severe with-
drawal operators. Note that so defined will be transitive and satisfy condition (b)
from Section 3 (and hence also (f) — see Proposition 25). Rhemmesults above it
turns out we can give an axiomatic characterisation of sewthdrawal different
to the ones found in the literature (see [12]). To do this miagéefollowing:

Proposition 35 Let (<, <) be aK-context. Therx is equal to< iff both (f) and
(9) are satisfied.

Using this fact with Propositions 23 and 29 then yields:

Proposition 36 — is a severe withdrawal operator iff it satisfi¢B1)~(B4), (Hy-
perreg) and(B9).

8 RELATED WORK

It has long been recognised that extra-logical informat®oneeded for a suffi-
ciently general theory of belief change. Indeed, the uselaigibility orderings
< on their own to define belief contraction is testament to tkatisation. Hans-
son [3] was probably the first to point out that, even when veecancerned with
belief sets, and not belief bases, it is useful to draw ardisbn betweerbasic
andderivedbeliefs. His unification of belief base contraction and éfeset con-
traction [21] provides a framework for doing so, but his damstion methods use
belief bases, are not based on plausibility orderings ondspand are therefore
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quite different from what we propose here. It is, of coursesgible to compare his
approach and ours on the abstract level of postulates, o do is not a trivial
matter, and is beyond the scope of this paper.

Cantwell [6] points out that some beliefs do not fit neatlpikkansson’s categories
of basic vs. derived beliefs. In addition to antrenchment orderingn sentences,
he also proposes aligibility relation on sentences. His entrenchment orderings
can be converted to our plausibility orderingson worlds, and he employs the
entrenchment orderings in such a way that it correspond®tbdRd Pagnucco’s
severe withdrawal [12]. His eligibility relation regardgd sentences and¢ as re-
lated iff ¢ is eligible for removal whenever has to be removed. He then uses these
eligibility relations to restrict the sentences removedityiven severe withdrawal
(obtained from a specific entrenchment ordering).

Cantwell’s work is thus similar in spirit to ours in the seriBat he introduces, as
part of the required extra-logical information to performlibf change, a second
ordering on top of the standard entrenchment ordering.ringeof construction,
it is quite different from our work, though. At present, thafoes not seem to be
a link between his eligibility ordering on sentences andsmegond ordering< on
worlds. When comparing the operators generated by/owontexts with those
generated by Cantwell’s eligible contraction, it is uncledat the intersection of
these two classes of removal operators looks like, excephfofact that severe
withdrawal and AGM contraction are special cases of bothsgsa. As is the case
with Hansson’s work, a detailed comparison between our \&ockthat of Cantwell
is possible on the abstract level of postulates. But bed#eseonstruction methods
are so different, this is a non-trivial task, and is beyorelsbope of this paper.

A different approach to the provision of extra-logical infaation to characterise
belief change is that of Bochman'’s [19] general theory ofdbetraction of epis-
temic states, which aims to unify classical belief base remtibn and belief set
contraction. Bochman defines an epistemic state as an drdellection of belief
sets. The contraction of an epistemic state by a senténeelefined as the inter-
section of the minimal belief sets which do not entailSo Bochman’s method
of constructing contraction operators is quite differeid our method for con-
structing belief removal operators based/grcontexts. On the other hand, on an
abstract level his approach is perhaps the closest to oiomot basic removal.
Specifically, Bochman’s general form of contraction sasfB1) and (B3)~(B7)
and, as is the case for basic removal, does not sgi&fguity), (Inclusion) and
(Recovery)
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9 CONCLUSION

In this study we have presented a unified framework for bedigfoval in terms of a
possible world semantics which is distinctive in that itaiagair of orderings over
the set of possible worlds. We argued for the intuitive pilailis/ of this pair and
showed how a large class of belief removal operators sudberation, systematic
and severe withdrawal operators could be characterisedsing them to guide
belief change. This approach makes possible the idenidicat hitherto unstudied
sub-classes of basic removal operators, such as thoseettay requiring o to
be a total pre-order and a partial order. An obvious gersatdin to consider in
future work is the extension to propositional language$ waitcountably infinite
number of propositional variables. Gabbay and Schlecltplave addressed this
case, but in relation to the initial work [1] on which this @aps based.

Also, a detailed study of the connection between basic raimtase-generated
contraction, and sequence-based retraction is of intdfestlly, as in any formal-

ism for belief change, we need to consider iterated remawghaw this affects the
adjustment of worlds in botkl and=, as well as the interplay betweehand <.
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A Proofs for Section 2

In the proofs contained in this appendix we will sometimestra propositional
world w as a sentence and write, e.gw, w; V w, etc. Whenever a world ap-
pears in the scope of a propositional connective like thishould be understood
as standing for any senteneesuch thafa| = {w}. Such a sentence always exists
under our assumption thatis finitely generated. The finiteness also implies that
for every deductively closed set of sentené¢égshere exists a single sentenge
such thatX’ = Cn(3), and another useful fact that will be repeatedly used is that
for any two deductively closed sefs,, K> we havek; C K iff [K5] C [K7].

Proposition 4 Let (<, <) and (<, <’) be two K-contexts that are not identical.
Thatis,(<, %) # (<, =), Thenx < <) # (< <)

PROOF. For this proof we will denotex < <) by justsx andsx < <y by x'.
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Suppose first of all that#£<’. Then, without loss, letv;, w, € W be such that
wy < wy butwy <" wy. Now consider the result of removing sentendev; \V w,)
from K using each ofx andx’. We will show that—w; ¢ K x —(w; V wy) but
—w; € K %' =(w; Vwsy), thus provingx # %’ in this case. By definition we know

[K % —(w; Vwy)] = {w | w = w' for somew’ € min([(w; V wy)], <)},

and similarly fors’, replacing<, < by <’, <. Since[(w; V wy)] = {wy, w2} and
wy < wy We knoww; € min([(w; V we)], <) and so by reflexivity o< we know
wy € [K %= (w;Vwy)]. Thus—w, ¢ Kx—(w;Vw,) as claimed. Meanwhile fog’,
if it were the case that;, € [Kx—(w;Vw,)] thenwe would have); <’ v’ for some
w' € min([(wy Vwy)], <'). Sincew, <’ wy, the only element imin([(w; Vw,)], <)
is wo. Hence this would meam; <’ w,. Since=<'C<’ by definition of K'-context
this would implyw; <" w, — contradiction. Hence; ¢ [K % —(w; V wy)], i.e.,
—w; € K %' —=(w; V wy) as required.

Now suppose<#£='. Without loss now letv,, ws be such thaty; < ws butw; A’
ws. IN this case we can show andx’ yield different results when removinguws.
First note that sincéw,| = {w-} thenmin([ws], <) = min([ws], <) = {w-}.
Sincew; < wy andw; A" wy we thus knoww; < w’ for somew’ € min([ws], <)
andw; 2’ w' for all w’ € min([ws], <'). These two in turn implyv; € [K % —w,]
andw,; ¢ [K %' —w,|, hence~w; ¢ K x —w, while —w; € K %' —w,, SO we have
shownx # x/.

Now for many of our proofs the following property, showingwithe <-minimal
elements of—¢| can be described directly in terms-ef< <), will be key:

Lemma A Let (<, <) be aK-context. The for anyy € L., min([-¢], <) =
(K %(<,) ¢)] N [79].

PROOF. For the left-to-right inclusion we obviously hawein([—¢], <) C [—¢],
while min([—¢], <) C [K %< <) ¢] follows from the reflexivity of<.

For the converse inclusion supposec [K < <y ¢)] N [~¢]. Then fromw €
(K %(<,<) ¢)] we knoww = w’ for somew’ € min([—¢], <). Since<C< we
havew < w', and so sincev € [—¢] and from the minimality ofv” we must have
w € min([—¢], <) as required.

Recall postulate@B1)-B8):

(Bl) K % ¢ = Cn(K % ¢)
(B2) o ¢ K x ¢
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(B3) If ¢p1 = ¢y thenK x ¢y = K % ¢
(B4) K% 1=K

(B5) If 0 € Kx (0 A¢)thend € K x (0N NY)
(B6) If 0 € K % (0N ¢)thenK % ¢ C K % (0 A ¢)
(B7) (K%0)N(K %¢) CKx(0A0¢)

B8) If p ¢ K x (0N ¢)thenK % (0N @) C K % ¢

Note that when using the above postulates in proofs we witletomes not explictly
mention more obvious uses of some of the more fundamentallptss, e.g., by
(B3) we know alwaysk x (0 A ¢) = K x (¢ N 6).

Proposition 5 Let x be any removal operator. Then satisfies(B5) iff it satis-
fies:

(B5) K %0 C (K % (0 A¢)) + 0

PROOF. To show(B5) implies(BY), first letx(0) be any sentence such thgtx

0 = Cn(x(0)). Now, by (B1) we know (-6 — %(0)) € K x% 0. Sinced = (-0 —
x%(0)) A 0 this meands x 6 = K x ((—0 — %(0)) A 0) by (B3) and so we obtain
(-0 — %(0)) € K x ((—-0 — %(0)) A 6). Applying (B5) to this we may deduce
(=0 = %(0)) € K% (-0 — %(0)) NOA@). But(=0 — x(0)) N\ONd =P NE.
Hence by(B3) we get(—0 — %(0)) € K x (¢ A 0), equivalently K x 6 C
(K % (¢ N G)) + —0 as required.

To show(BY') implies(B5), supposé € K x (0 A ¢). Now, (BY') (with a little help
from (B3)) tells usK x (O A ¢) C (K % (0 A p A1) +—(0 A ¢). Hence using this
with the assumptiofi € K x (0 A\ ¢) yieldst € (K x (¢ AOAY))+—(0 A ¢). By
classical logic this is equivalent to the desited K x (¢ A 0 A ).

Next we want to prove:

Theorem 6 Let K be a belief set anek an operator forK. Thenx is a basic
removal operator fok iff x satisfieqB1)~(B8).

First let’s prove the postulates are sound for basic removal

PROOF. [Soundness] We check each postulate in turn:

(B1) K x(< <y ¢ = Cn(K %< <) ¢). Obvious.

(B2) ¢ ¢ K (<< ¢. Sincemin([—¢], <) C [K %< <) ¢)] by Lemma A, we know
there is at leasbneworld in [K < <y ¢)] satisfying—¢. This is enough to show

¢ & K k<) 0.
(B3) If 91 = ¢ thenK x < <y ¢1 = K %< <) ¢2. Obvious.
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(B4) K %< <y L = K.Firstly, since< is anchored ofix'] we know[ K| = min(W, <)
= min([-1], <). By Lemma A, then]K] C [K %< ) L]. Meanwhile, for any
w e W, if w < w for somew’ € [K] then, since< is a sub-relation oK, also
w < w' for somew’ € [K] and so, sinceC is transitivew < w” for all w” € W,
i.e.,w € [K]. Hence[K %< <) 1] C [K] and so we have equality. This means
K %< <) L = K asrequired.

(BS)If 6 € K x(< <) (0 A @) thend € K x< <) (0 Ao A1).Supposd € Kx < <)
(0 N ¢). Choose anyty, € min([=(0 A ¢)],<). Then we first claimw € [6]
for all w < wg. This holds since ifw < wy andw ¢ [0], i.e.,w € [-0],
then alsow € [~(0 A ¢)] and so, using the minimality of,, we must have
w € min([~(0 A ¢)], <). But then sincenin([—~(0 A ¢)], <) C [K %< <) (0 A ¢)]
(by Lemma A) andd € K x< <) (0 A ¢) we must havew € [¢] — contradic-
tion. Hencew € [0] as clalmed Now suppose € [K x < <) (0 Ao AY)]. We
must showw’ € [6]. Butw’ € [K x<<) (0 A ¢ A )] givesw’ < w for some
w € min([~(AApAY)], <) and so, since is a sub-relation ok, w’ < w for some
w € min([~(0 A ¢ A)], <). Fromwy € [=(0 A ¢)] we knowwg € [—(0 A ¢ A )]
and so, by the minimality o, w < wy. Hence, sincec is transitivew’ < wq. We
conclude from the above claim that € [0] as required.

(B6) If 6 € K x(< <) (0 A @) thenK < <) ¢ C K %< <) (0 A p). Supposel €

K %< <) (0 \¢). Then using this with Lemma A gives usin([-(0 A ¢)], <) C [0].
This means it must be the case than([—(0 A ¢)], <) C min([-¢], <), since if
w € min([-(0 A ¢)],<) thenw € [f] so we must havev € [—¢], and, since
w < w forall w € [=(0 A ¢)], we necessarily have < v’ for all w' € [—¢].
So, for anyw’, if w" < w” for somew” € min([-(0 A ¢)], <) then we imme-
diately get alsav’ < w” for somew” € min([—¢], <). This is enough to prove
(K x(< <) (0 A ¢)] C [K %< < ¢], which gives the required conclusion.

(B7) (K %<5 0) N (K %(<,<) ¢) C K ¥(<,<) (0 A §). Since[(Kx (< <)0)N(K¥(< <)
P)] = [K %< <) 0] U[K %< < ¢, it sufﬁces to show K < <) (0 A ¢)] C
[K (< <) 0] U [K %< < ¢|. But this follows from the fact thahin([-(6 A ¢)], <

) € min([—0], <) Umin([—¢], <), which is easy to show.

(B8) If ¢ & K x(< <) (0 A @) thenK x< <) (0 A @) C K x(< <) ¢. Supposep ¢
K x< < (0N 9). Then[K *(< <) (9 A gzﬁ)] [~¢] # (), which means there ex-
istswy € [~¢] such thatw, j w' for somew’ € min([—=(8 A ¢)], <). Since
=Cg, it follows thatw, < w’ for somew’ € min([—=(6 A ¢)], <). Since obvi-
ouslywy € [=(0 A ¢)], this impliesw, € min([=(0 A ¢)], <). The existence of this
wo then impliesmin([—¢], <) € min([=(8 A ¢)], <), for if w € min([-¢], )then
w < wp and so, by transitivity o and the fact that clearly also € [=(0 A ¢)] w
getw € min([—(0 A ¢)], <). Thatmin([—~¢], <) C min([-(0 A ¢)], <) is enough
then to provg K x < <) ¢] C [K %< <) (0 A ¢)], which gives the result.

Now we show(B1)+(B8) are complete. The following derived rules will be useful.
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Lemma B The following four properties follow froniB1)+B8):

X1) Kx ¢ C K+ —¢

X2) foNnpe Kx(ONpNY)thend € K x (0 NY)

X3) Ifog Kx(ONp)andd & K x (0 Ap)thend & K x (0 N o A1)
(X4) If 0 € Kx (0 A ¢)thenK x (0N o) = K % ¢.

PROOF. For (X1) recall that(BY') is equivalent taB5) by Proposition 5. Then
from (BY) we know K % ¢ C (K x (¢ A L)) + —¢. (X1) then follows from
applying to thigB3) (usingy A 1. = 1) followed by (B4) (i.e., K * 1 = K).

For (X2) supposé A ¢ € K % (0 A ¢ A1). By (B1) and(B2) this meand A ¢ ¢

K % (0 Ao A1). Using this with(B8) we getK x (Ao A1) C K % (6 Av). Hence,
sincef € Kx(0ApA) (which follows from the assumptidm¢ € Kx(0AdAY)

and(B1)), we getd € K x (6 A1) as required.

For (X3) supposd ¢ K % (6 A ¢) andd ¢ K % (6 A ¢). From the latter we get
ONo & K x(0NoA1) using(X2) above. Hence, biB8), K x (0 A ¢ A1) C
K % (0 \¢)andsofrond & K x (6 A ¢) we getd ¢ K x (6 A ¢ A1) as required.

(X4) is a straightforward consequence from maifBg) and(B8).

Now let’s give the completeness proof of Theorem 6.

PROOF. [Completeness] Lek” and be given. We need to find sonie-context
(<, =) such thatx = %< <). We use the one from Definition 3 of the paper, which
we denoted b¢ (K, %). Recall we define the two relatiors < on)V from K and

% as follows:

(<) wy < wyiff ~wy & K % (—wy A —ws)
(%) wy S wyiff ~wy & K % —ws

Recall that in—w; etc, worldw; stands for any sentence which hasas its only
model. Note that, here and in what follows, the precise @ofevhichsentence is
irrelevant thanks t¢B1) and(B3).

We now need to show several things: €)s a total pre-order oiV, anchored on
(K], (2) = is areflexive sub-relation of,, (3) K % ¢ = K %< <) ¢ for all ¢.

(1) < is a total pre-order ohV, anchored onk’|] To show< is a total pre-order we
need to showk is transitive and complete. First we show transitivity. Sp@ose
wy < we andwy < ws, .., ~wy € K % (-wy A —wy) and—wy € K % (—wy A
—ws). We need to show; < ws, i.e.,~w; ¢ K x* (—w; A —ws). Equivalently
we can show that ifw; € K % (—w; A ~w3) and —wy ¢ K % (—wy A —ws)
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then—w; € K % (—~w; A —wy). But from —wy, ¢ K x (-wy A —~ws) we get
—wy; A —we € K % (—wy A —wy A —ws) by rule (X2) in Lemma B. Hence, by
(B8), K x (—wy A mwy A ~w3) C K % (—w; A —wsy). Meanwhile from—w,; €
K x (—w; A ~w3) we deduce-w; € K % (—w; A ~ws A —ws) from (B5). Using
this with K x (—w; A —ws A —w3) € K % (—w; A ~wsg) gives the requireehw; €
K x (—|w1 N —|w2).

To show< is complete we need to show either < w, or wy < wy, i.€., either
—wy € K % (-wy A ~wy) Of ~we € K % (—wy A —wy). This follows easily from
(B1) and(B2).

It remains to show« is anchored ofi], i.e.,min(W, <) = [K]. Letw € min(W, <).
Then—w ¢ K % (—w A —w') for all w' € W. By repeated use of rulg3) from
Lemma B we obtain from thisw ¢ K x A, < —w'. Sincel = A, e —w' this
gives—~w ¢ K x 1 by (B3). Hence, sincd( x | = K by (B4), this gives in turn
—w ¢ K, which is equivalent taw € [K]. Thus we have showmin(W, <) C [K].
For the converse direction suppasez min(W, <). Then—-w € K % (—w A ~w')
for somew’ € W. Using this with(X1) gives—w € K + (w V w’), equivalently
(wVw') —» —w € K. Since~w = ((wVw') — —w), thisis equivalenttew € K,
i.e.,w ¢ [K] as required.

(2) < is a reflexive sub-relation of First, to show< is reflexive we need to show
—w ¢ K % —w for all w € W. This is immediate fron{B2). To show= is a
sub-relation of< we need to showr; < w, impliesw; < wy. We show the
contrapositive. So suppose £ ws. Since we have already shown above that
is connected, this means we must haye< wy, i.e.,~wy & K % (—w; A —wy).
Hence, by(B8), K x (—w; A —wy) C K % —w,y. Our assumptiom; £ w, yields
—w; € K % (—w; A —wsq), and so using this with' x (—w; A —wy) C K % —w,
gives—w; € K % —wo, i.e.,w; A wy as required.

(B) K % ¢ = K x(< <) ¢forall ¢ Let ¢ € L. We will show[K x ¢] = {w | w =
w' for somew’ € min([—¢], <)}. Let[-¢| = {x1,...,x,} and letS = {i | x; €
min([—¢], <)}. We will first show

Kx¢=Kx ) .

ieS

To see this first note that x ¢ = K x AiL, —2; = K % (Ajes 72i) A (Ajgs —75)
by (B3). Now letj ¢ S. Then we know there exists € S such thatr; < z;
(otherwisej € S), so—z; € K % (—x; A —x;) for somei € S. Using this with
(B5) gives—z; € K % (Ajes 7Ti) A (Aigs —2;). Since this holds for each ¢ S
we obtain/;zs —x; € K % (Aies 7)) A (Ajzs —x;) by (B1). Hence, from rule
(X4) in Lemma B, we get x (A;jcs —7i) A (Ajgs 715) = K % Nies 715, 1€,
K % ¢ = K % \;cs —x; @s required.
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Now supposev € [K x ¢]. We must show there exisisc S such thatw < x;.
But fromw € [K x ¢] we get—w ¢ K x ¢. From the above, this is the same as
—w & K % M\;cg ;. By (B7) this means we must havew ¢ K % —ux; for some
1€ S, l.e.,w = x; as required.

For the converse direction, choose S such thatw < x;. Then—w ¢ K % —uz;.
Now, for all i € S such that’ # i we haver; < x;, i.e.,—~z; & K % (-x; A
-z ). By repeated application of ruX3) from Lemma B we obtainz; ¢ K x
Nires ~xi. Hence, fromB8), K x Ajcg ~zy C K % —x;. Since~w ¢ K % -,
this gives us-w ¢ K % N\, ~xy = K % ¢, and sow € [K x ¢] as required.

B Proofs for Section 3

Proposition 9 (i). If (<, <) is transitive thenk < ) satisfies:

(BTran) If K %0 C (K % ¢)+ -¢thenK %0 C K x ¢

(i). If % is a removal operator satisfyi@Tran) then the relation< of C(K, x)
is transitive.

PROOF. (i). Supposes s < <0 C (K < <)¢)+¢, equivalently K x < <y ¢]N

[—¢] C [K %< < 0], and letw € [K < <) ¢]. We must show € [K < <) 0].

But fromw € [K %< <) ¢] we knoww < w’ for somew’ € min([—¢], <). By

reflexivity of < we knoww’ € [K %< <) ¢] and obviously alsa’ € [—¢]. From
the assumptiofs” s < <y ¢] N [=¢] C [K %< < 0] we deducev’ € [K < < 0],

i.e.,w < w” for somew” € min([—0], <). Then by transitivity of< we get also
w < w” and sow € [K %< < 0] as required.

(i) . Supposew ¢ K % —w' and—w' ¢ K x —w”. Using(B1) this is equivalent
tow € [K % —w'| andw’ € [K % —w"]. We must showv € [K x —w"]. But from
w' € [K % —w"] and the factw’] = {w} we know[K % —w'| N[w'] C [K % —w"].
Applying (BTran) to this yields|K % —w'] C [K % —w"] (with a little help from
(B1)) from which we obtain the required € [K % —w"] fromw € [K % —uw/].

Proposition 10 Any removal operator which satisfi¢BTran) and(B%') also sat-
isfies(B6).

PROOF. Supposé € K x (0 A ¢). To showK x ¢ C K x (0 A ¢) it suffices by
(BTran) to showK x ¢ C (K x (8 A ¢)) + (6 A ¢). But from the assumption
6 e Kx(0N¢p)weknow(K x (0AP))+-(0N¢) = (K x(0A¢@))+ ¢, which
containsk x ¢ by (BY) as required.
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Recall the condition (a) o<, =<):

(a) If w1 ~ W2 andw1 =< wq thenU)2 =< wy
Proposition 11(i). If (<, <) satisfies (a) thesx < <) satisfies:

(BPriority) 1If 0 € K % ¢ andg ¢ K x 0 thend € K x (0 A ¢)

(i). If % is a removal operator satisfyir{gPriority) thenC(K, ) satisfies (a).

PROOF. (i). Supposé € K x< <) ¢, ¢ € K %< <) ¢ and, for contradictior ¢
K%< <)(¢A0). Thenfromp ¢ K x(< <0 we know from(B1) that[K s < <) 6] €
[¢] and so there exist;, w, such thatw; € [—¢], w; < wy andwy € min([-6], <),
while from 6 ¢ K < <y (¢ A §) we know there exist, w such that: € [—6)],
z 2= wandw € min([=(¢ A 0)], <). We have the following inequalities:

w<w; RTwy <z w.

To see this, noter; < wy andz < w are both givenw < w; follows since
w; € [—¢] and the minimality ofw, while w, < z follows from z € [-6] and
the minimality ofw,. Since <C< this yieldsw < w; < wy < z < w, thus
w ~ w; ~ wy ~ z and in particularv; ~ wy. Using this withw; < wy and
property (a) yieldsv, < w;. Now, the above proved inequality also gives < w,
which using the minimality ofw is enough to showv; € min([—¢], <). Hence
wy € [K %< <) ¢. Butw, € [-0], contradictingd € K < <) ¢.

(i) . We will showw; =< wy andws £ w; impliesw; < wsy. SO suppose; = wsp
andw, A wy, i.e., by definition o (K, %), ~w; ¢ K % —wy; and—ws € K % —w;.
Then applyingBPriority) (and(B3)) to this gives—w, € K % (—w; A —wsy),0r
I.e., w1 < wsy as required.

Proposition 12(i). If (<, <) is both transitive and satisfies (a) thep <) satisfies:

(BConserv) If K %0 < K x ¢ then there exists € L, such that
pFXxand(K % 0)U (K % \) F ¢

(). If x is a removal operator satisfyif@Conserv) thenC(K, x) is transitive
and satisfies (a).

PROOF. (i). Let(<, =) be atransitive context which satisfies (a). Suppgse < <)
0 ¢ K %< < ¢. Then sincex < <) satisfieBTran) by Proposition @) we know
K %< <0 & (K %<<) ¢)+ . Now letx(¢) € L, resp.x(6), denote some
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sentence such that x < <) ¢ = Cn(x(9)), resp.K x< <y 0 = Cn(x(0)).
So fromK x< <) 0 € (K %<<) ¢) + ¢ we knowx(¢) A ¢ I/ x(0). Let
A = =(x(¢) A =g A= x (). Then we knowh € L, and¢ = A. We will show
%(A\) A %(0) F ¢, which will suffice. Letw; € [%(\) A %(6)]. We must show
wy € [¢]. But fromw; € [%()\)] we knoww; < w, for somew, € min([—\], <).
Sincew, € [-A] and by definition of\ we knoww, € [x(¢) A @] = [K %< <)
¢] N [—¢] and sow, € min([—¢], <) by Lemma A. Now suppose for contradiction
wy € [¢]. Then the minimality ofw, giveswy < wy. Using this withw; < ws
and (a) yieldsw, < w;. Now since alsav; € [%(0)] we knoww; < ws for some
ws € min([—-0],<). So from this and transitivity we obtaim, < w3 and thus
wy € [%(0)]. But, looking at the definition ok, this contradictsu, € [-)]. Hence
wy € [¢] as required.

(ii). To show= is transitive we need to show that+fw, ¢ K % —w, and—wy &

K % —ws3 then—w; € K % —ws. Equivalently, if—w, ¢ K % —w, and—w; €

K x —ws then—wy € K % —ws. Butif —w; € K % —~wy and—w; € K % —w;3
then K % —w3 € K % —w,. Hence, by(BConserv), there exists\ € L, such that
—~we F A and (K % —ws) U (K % \) = —ws. Now, since) is not a tautology, it
follows from —w, = A that in fact—wy; = X\ (because the only sentences strictly
weaker than-w, are the tautologies). So, usifB3), K % A = K x —w,. Hence
we may rewritg K x —ws) U (K % \) F —wy as(K % ~ws) U (K % —wsq) F —ws,
which in turn is equivalent to:

[ % —ws] N [K % —ws] C [-ws). (B.1)

Clearlyw, ¢ [—w,], which from the above means, cannot be an element of both
[K x—ws] and[K x—ws)]. By (B2) we know—w, ¢ K %—ws, i.e.,ws € [K %—ws).
Hence it must be that, ¢ [K % —ws], i.e.,~wy € K % —ws3 as required.

It remains to show condition (a) is satisfied. So suppose- w, andw; =< ws.
We must showws < w;. In fact we will show that{y; ~ wy andwy A w] implies

w; A wy. SO sSUpposey; ~ wy andws A wy, i.e.,~w; € K % (—~wy; A —w,),
—we & K % (—we A —wy) and—ws € K % —w;. Then since-w, € (K % —wy) \

(K % (—wg A —wy)) we knowK x —wy € K % (-wy A —w;), SO we may apply
(BConserv) to deduce the existence af € L, such that-w, A —w; - A\ and
(K % —wp) U (K % \) B —wy A —wy. Since obviouslyw; € [—wy A —wy], this
latter implies in particular that, ¢ [K % —w;| N [K % A]. And since we know
wy € [K % —w] by (B2), we deduce from this, ¢ [K % A, i.e.,—w; € K % A.
Now, since—~wy; A —w; F A and\ is not a tautology, it must be the case that either
() A = —wy A —we, or (i) A = —wyq, or (i) A = —w,. We show(i) and(ii) lead

to contradictions, leavingii) as the only possibility, from which we then deduce
—w; € K % —wy (using(B3)), i.e.,w; A wy as required. But i{i) holds then
—w; € K % (—w; A —wy), contradicting our initial assumptian ~ w,, while if

(i) holds thenmw, € K % —wy, contradicting[B2). This completes the proof.
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Recall the postulatBSConserv)
(BSConserv) If K %60 € K x ¢then(K % 0) U (K x¢)F ¢
and the condition (b) o<, <):

(b) If w1 ~ W thenw1 =< Wy

Proposition 13 (i). If (<, <) is transitive and satisfies (b) then< < satisfies
(BSConserv) (ii). If % is a removal operator satisfyifBSConserv)thenC (K, x)
is transitive and satisfies (b).

PROOF. (i). Supposé <, =) is transitive and satisfies (b), and suppéSex < )
0 € K %< <) ¢. Sincex < ) satisfies(BTran) by Proposition @) this implies
K %< < 0 € (K %< ¢)+ . Hence there exists’ such that' € [K (< <)
@] N [—¢] butw’ € [K (< <) 0]. We must showk < <y 0] N [K (< <) ¢] C [@].
Suppose for contradiction there existss [K < <) 0] N[K %< <) ¢ N[=¢]. Then
bothw andw’ are elements dfs’ < <) #] N [~¢] = min([—¢], <) by Lemma A, so
w ~ w’ which impliesw’ < w by (b). Meanwhile fromw € [K < <) §] we know
w = w” for somew” € min(|—0], <). By transitivity of < we deducev’ < w” and
sow’ € [K < <) 0], giving the required contradiction.

(i) : Supposex satisfiefBSConserv) Since(BSConserv)clearly implies(BCon-
serv), we know (<, <) is transitive by Proposition 1R). It remains to show (b)
holds. To showw; ~ ws impliesw; < w, we need to show that ifw, &
K % (—~wy A ~wy) and—wy € K % (—we A —wy) then—w, € K % —w,. But if
—wy € (K % —wy) \ (K % (—wy A—w,)) thenK x —wy € K % (—w; A—w,y), SOwWe
may apply(BSConserv)to deduce K s —ws ) U (K x (—wy A—ws)) F —wy A —ws.
Sincews & [~w; A —wsy), this gives usuv, & [K x —wy| N [K % (—w;y A —ws)]. But
we knoww, € [K % —ws] by (B2), hence we must haue, ¢ [K x (—w; A —ws)],
i.e.,—wy € K % (—wy A —ws).

C Proofs for Section 4

Proposition 14Let x be a basic removal operator far, thenx satisfies: Ifp ¢ K
thenK C K % ¢

PROOF. First note that byB3) and(B4), K = K % (_LA¢). The rule then follows
as an instance ¢B8) (substitutel for 6 there).

Proposition 15(i). If (<, <) satisfies (c) ther < <) satisfiegVacuity). (ii). If
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is a removal operator satisfyirfyacuity) thenC (K, %) satisfies (c).

PROOF. (i): Supposé <, <) satisfies (c). We only need to show the ‘missing half’
of (Vacuity): If ¢ € K thenK x < <y¢ C K. So suppose ¢ K. Then there exists
wy € [K]N[~¢]. Since< is anchored ofiX|, wy € min([—~¢], <). Sincew, € [K],
we know by (c) thatv < w, for all w € [K]. Thus every world ifK] is <-below
some element ahin([—¢], <) (namelyw,). Hence K] C [K %< <)¢] which gives
the required conclusion.

(i): Supposex satisfies(Vacuity), and supposev;, w, € [K|. wy € [K] gives
—wq ¢ K. Hence, fromVacuity), K x—wy, C K, i.e.,[K] C [K%—w,]. Using this
with w, € [K]yieldsw, € [K % —w,], which entails the requiretlw; ¢ K x —ws.

Recall the definition of’ from x:

K:’d){K if ¢ & I

K x ¢ otherwise.

Proposition 161f (<, <) is the K -context corresponding t&, then the/ -context
corresponding to:-’ defined above ig<, <’), where=’ is obtained from= by
settingw; =<’ ws iff w; < wy Orwy, ws € [K].

PROOF. First consider the case¢ K. In this case by Proposition 14 we already
know K C K < < ¢, SO we just need to show x < <y ¢ C K, i.e., [K] C

[K %< < ¢]. So letw € [K]. Since¢ ¢ K there existsy’ € [K] N [—¢]. Clearly
since< is anchored ofK’] we must havev’ € min([—¢], <), while sincew, w’ €
(K] we havew <" w' from the definition of<’. Hencew € K x < </ ¢ as required.

Now consider the casg e K. In this case we must Shol( s < <) @] = [K x(<

¢]. The right-to-left inclusion is immediate from the fagt_ <’ by definition of<’.

For the left-to-right inclusion suppose € [K < < ¢]. Thenw <" w’ for some
w' € min([~¢],<). Sincew’ € [~¢] and¢ € K we knoww' ¢ [K], so by
definition of <’ we must havev < w’. Hencew € [K %< <) ¢] as required.

Recall the definition ofk” from =<: w; <" w, iff either w; < w, or [wy € [K] and
w' = wy for somew’ € [K]], and recall that ifx is the operator corresponding to
(<, X), thenV(x) is the operator corresponding g, <”).
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Proposition 17 Let % be a removal operator fak corresponding td<-context
(<, <) and let+ = V(x). Then

K= {KﬂKe:ub if KUK % ¢ is consistent

K x¢ otherwise

PROOF. First consider the casE U K x ¢ is consistent, i.e[K] N [K x ¢] # 0.
We must showK +~ ¢ = K N K x ¢, equivalently[K + ¢] = [K] U [K * ¢].
For the left-to-right inclusion suppose € [K + ¢] andw ¢ [K]. Thenw <" w'
for somew’ € min([—¢], <). Sincew ¢ [K] the definition of<” givesw < w’
and sow € [K x ¢] as required. For the right-to-left inclusion, the fakt - ¢| O
[K x ¢] is immediate from the fackC <" by definition of <”. It remains to prove
[K + ¢] D [K]. So suppos& € [K]. Since we assumé] N [K x ¢] # (0 there
existswy € [K|N[K % ¢],i.e.,wy € [K] andw, =< w’ for somew’ € min([-¢], <).
By definition of <” all this givesw <" v’ and sow € [K =+ ¢| as required.

Now consider the case(] N [K x ¢| = (. We must showK = ¢] = [K x ¢].
Once more the right-to-left inclusion is immediate frena<”. For the converse
direction suppose € [K + ¢|. Thenw <" v’ for somew’ € min([-¢], <). By
definition of <” we know eitherw < w’ or [w € [K] andw” < w' for some
w” € [K]]. But this latter case would give” € [K] N [K x ¢|, contrary to our
assumptiorfK] N [K % ¢] = 0. Hence we must be in the former case< v/,
which impliesw € [K x ¢] as required.

Proposition 18(i). If (<, <) satisfies (d) ther < <) satisfiegInclusion). (ii). If
x is a removal operator satisfyirftnclusion) thenC (K, %) satisfies (d).

PROOF. (i): Suppos€ <, <) satisfies (d). Then since every element®f is <-
below every world inV, itis clear tha{ K| C [K x (< < ¢] for all ¢, i.e., K %< <)
¢ C K as required.

(i) : Supposex satisfies(Inclusion) and supposey; € [K]. Letws € W. Then

[K] C [K % —wy| by (Inclusion) sow; € [K x —ws), i.e.,~w; & K % —wy. Thus
wy = wq as required.

Recall that the incarceration of a removal operatox is defined by setting, for
each¢ € L,,

K-¢=KnNK % ¢.
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Proposition 191f (<, <) is the K -context corresponding t&, then the/ -context
corresponding te- is (<, =<”), where=<" is obtained fromx by settingw; <" ws
iff w; < wy orw; € [K]. Furthermore:

(). If X is transitive then so ix”.

(i) . If < satisfies (a) then so does¥'.

(iii) . If < satisfies (b) then so does§’.

PROOF. Firstwe show K s < <) ¢] = [K] U [K %< <) ¢]. We have thatv is an
element of the left-hand-side iff <" w’ for somew’ € min([—¢], <). But from
the definition of<” this latter is the same as saying that eitles [K] orw < v’
for somew’ € min([—¢], <), i.e.,w € [K] U [K %< <) ¢| as required.

(). Supposex is transitive and thaty; <" w, andw, <" ws. We must show
wy =" ws. If wy € [K] then we get the required conclusion, so suppos¢ [K].
Then fromw; <" wy, we knoww; =< ws. Sincew; ¢ [K] we must also have
wy ¢ [K] (because<C< so fromw; < wy we knoww; < ws), and so from
we X" w3 we getw, < ws. Hence we obtain the desired < w3 by applying the
transitivity of <.

(i) . Supposex satisfies (a) and supposg ~ w, andw; =" w,. We must show
wy =" wy. Note that, sincev; ~ w,, we havew; € [K] iff wy € [K]. If wy € [K]
then we obtainu, <" w; immediately, while ifw, ¢ [K]| then alsow; ¢ [K], and
then the desired conclusion follows from the assumptiohthsatisfies (a).

(iii) . Follows from similar reasoning to pd(it) above.

Proposition 20(i). If (<, <) satisfies (e) ther < <) satisfies(Recovery) (ii). If
x is a removal operator satisfyirfecovery)thenC(K, x) satisfies (e).

PROOF. For this proof, first note théRecovery)rule is equivalent toK x ¢| N
9] C [K].

(i): Supposé <, <) satisfies (e). Letv € [K % ¢] N [¢]. Then, sincav € [K % ¢,
w = w' for somew’ € min([—~¢], <). Sincew € [¢] andw’ € [—~¢] we cannot have
w = w'. Hence, by (e)w € [K] as required.

(i) : Supposex satisfie{Recovery)and suppose; < ws. Thenw; € [K x —w,].

We need to show either; = wy, or wy € [K]. Butif wy # we thenw; € [—wy),
and so we can conclude, € [K] using(Recovery)

Proposition 21 The following are equivalent:
(i). x is a full AGM contraction operator (i.e., satisfying the lzaand supplemen-
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tary AGM postulates).
(if). x satisfiedB1)+B8) plus(Inclusion) and(Recovery)
(iii). % = %< <) for some(<, <) which satisfies (d) and (e).

PROOF. Recall that (d) + (e) specifies uniquely in terms oK. Then equivalence
()< (i) follows from the well-established representation reswating full AGM
contraction to total pre-orders over worlds [4,5]. The gglance(ii) < (iii) follows
from Theorem 6 and Propositions 18 and 20.

D Proofs for Section 5

Proposition 22 x is a linear liberation operator iff it is a basic removal cgier
which satisfiegHyperreg).

PROOF. We need to show the list of postulates for linear liberataquivalent to
(B1)HB8) plus(Hyperreg). So first supposéB1)-(B3) hold together with{\Vacu-

ity) and(Hyperreg). Then(B4) holds since it is implied byVacuity). To seg[B5)
holds we show the contrapositive. So suppbgeK x (0 A ¢ A). Then, by(B1),

OND & Kx(ONpA1Y). HenceK x (OApAY) = Kx(0A¢) by (Hyperreg), and so
the desired ¢ K x (0 A ¢) follows. (B6) and(B8) follow straightforwardly using
(Hyperreg), while (B7) also holds easily, once it is noticed that the Decomposition
property holds for all linear liberation operators eitérx (6 A ¢) equals either

K x60orK x ¢.

For the other direction it amounts to showing that the additf (Hyperreg) to
the basic removal postulates allows the derivatiorf\Matcuity). This follows by
noticing K = K x (L A ¢) by (B3) and(B4). (Vacuity) is then seen to be just an
instance ofHyperreg).

Proposition 23(i). If (<, <) satisfies (f) thenk < <) satisfiesHyperreg). (ii). If
x is a removal operator satisfyirfglyperreg) thenC( K, x) satisfies (f).

PROOF. (i): Supposé <, <) satisfies (f) and supposeZ K x < <) (0 A ¢). Since

% (< <) SatisfiedB8), we already knows s < <y (0 A¢) C K < <0, soitremains
to ShowK s (< <)0 C K x(< <) (0N ), equwalently[Kee <<) (0/\<;5)] (K (< <)
6]. But by the proof ofB8)in Theorem 6, we know if ¢ K* (<,=<) (1) then there
exists somev, € [-0] Nmin([-(6 A ¢)], <). Clearly thenw, € mm([ﬁe] <). Now
letw € [K %< < (0 A¢)]. Thenw < v’ for somew’ € min([—(0 A ¢)], <). Since
w' ~ wo we may apply (f) to deduce < wy, and so sinceyy, € min([—-6], <) we
getw € [K < <) 0]. HencelK x< <) (0 A ¢)] C [K %< < 0] as required.
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(ii): Supposex satisfies(Hyperreg) and supposes; ~ ws. This translates into
—wy, ~wy € K3 (—w; A—wy). From this we know, usinfHyperreg), that K s —w,
and K x —wy are both equal td< x (—w; A —ws). Hence for anyw; € W,
—ws & K % —wy iff ~wz € K % —ws, i.e.,ws < wy iff ws < we. ThusC(K, %)
satisfies (f).

Proposition 24 x is a o-liberation operator iffx = x < <) for some transitive
(<, <) satisfying (b) and (f).

PROOF. By results in [10] (see Corollary 3.19, p.62 there)is ac-liberation op-
erator iff itis a linear liberation operator satisfyi@SConserv) From Proposition
22 this is the same as sayingis a basic removal operator satisfyiftdyperreg)
and(BSConserv) The result then follows by combining Theorem 6 with Proposi
tions 13 and 23.

Proposition 25Let (<, <) be a transitiveil -context. Then <, <) satisfies (b) iff
(<, <) satisfies (f).

PROOF. Suppos€ <, <) satisfies (f) and suppose ~ ws. Then sincav; < w,
by reflexivity of <, we may apply (f) to deduce; =< ws. Thus (b) holds. Note
this implication (f)=- (b) holds even without assumineg, <) is transitive. This
assumptions required for the converse implication: Suppese~ w; andws <
wy. From the former we get; < w, using (b) and so the desired < w- follows
from transitivity.

Proposition 26 The following are equivalent:

(i). * is ac-liberation operator.

(ii). % is alinear liberation operator which satisfi@ilran).
(iii). > is a basic removal operator which satisfiBSConserv)

PROOF. As stated in the text.

Proposition 27 (i). If (<, <) satisfies (§ thenx < <) satisfiegDichotomy). (ii).
If % is a removal operator satisfyir{@ichotomy) thenC (K, x) satisfies (§.

PROOF. For (i), observe firstly that i{ <, <) satisfies (§ then for everyg, it
follows that for everyw;, ws € [K % ¢], w1 ~ wy. Now suppose thatk x 6) U
(K % ¢) / L. That means there isw@a such thatv € [K x 0] andw € [K % ¢].
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From the observation above it follows that for everye [K x 6], w’ ~ w and for

everyw” € [K % ¢], w" ~ w. And sow’ ~ w" for everyw’ € [K x 6] and every
w” € [K % ¢]. From (@) it then follows thaf K" x 6] = [K % ¢], which means that
K x%0=K % ¢.

For (ii), considerC (K, %) = (<, <) as defined in Definition 7. We need to show
thatw; < wsy iff w; ~ wy. SO, suppose first that; < w,. Thatis,~w; ¢ K x—w,.
From this it follows thatv; € [K % —ws|. By (B2) it follows thatw; € [K % —w;].
From the combination of these two results it follows thatx —w, )UK s ws) /L,
and by(Dichotomy) we then have thak % —w; = K % —w,. We can distinguish
between two cases:

(Case 1) K x ~w; = K % —~ws = K % (—w; A —~ws): In this case we immediately
get that-w; ¢ K % (—w; A —wy), from which it follows thatw; < w,, and we
get that—w, ¢ K % (—w; A —wy), from which it follows thatws < w,. This
meansw; ~ wsy, Which is what we wanted to prove.

(Case 2) (K % ~w; = K % —ws) # K % (—w; A —w,): In this case it follows by
(Dichotomy) that (K x —wq ) U (K % (—w; A—we)) F L and (K x —wy) U (K *
(—wy A —wq)) F L. Since we know thai; € [K % —w;] andw; € [K % —wy]
it follows thatw, ¢ [K % —w; A ~ws] @andwy ¢ [K x —w; A —ws]. SO—w; €
K % (—w; A —~wy) and—wy € K x (—w; A —wy), and by(B1) we then have
—wy A ~wy € K % (—w; A —~ws), which contradictgB2).

So, we have shown that in Case 1 the desired results follahthat Case 2 cannot
occur, which means we have shown thabif < ws thenw; ~ ws.

Now suppose thaib; ~ ws. Thatis,~w; ¢ K % (—w; A ~wy) and—wy ¢ K x
(_|UJ1 VAN _|U}2). Sow; € [K * (—|w1 A _QUQ)] andw2 € [K * (—|w1 A _QUQ)]. By
(B2) it also follows thatw;, € [K % —w;] andws € [K % —ws]. This means that
(K{é_'wl)U(K%(_'wl/\_'wg)) ¥ 1 and tha‘(K%ﬁwg)U(K%(ﬁwl/\_‘wg)) ¥ 1,
and by (Dichotomy) it then follows thatK x —w; = K % (—w; A —ws) and
K % ~wy = K % (—w; A —w,). Therefore-w; ¢ K x —w,, which means that
wh j wy.

Proposition 28 The following are equivalent:

(). % is a dichotomous liberation operator.

(ii). % satisfieB1)+B8) plus(Dichotomy).

(iii). * = x(< <) for some(<, <) which satisfies (§.

PROOF. As stated in the text.
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E Proofs for Section 6

Proposition 29(i). If (<, <) satisfies (g) ther < <) satisfies:

(B9) Ifde Kx(0AN¢)thenp & K x 6

(i). If % is a removal operator satisfyir{B9) thenC (K, x) satisfies (g).

PROOF. (i). Supposg <, <) satisfies (g) and suppogec K x< <) (0 A ).
Let wy € min([—(0 A ¢)], <). Then, as we saw in the proof (BS) thls means
w € [A] for all w < wg. This implies(1) wy € [~¢] and(2) wy < w’ for all
w" € min([—0], <). Using (@), this latter implies, < w’ for all w’ € min([-6], <)
and so in facty, € [K (< <) 0]. From this and1) we concludep ¢ K < <) 0.

(i) . Supposex satisfiedB9) and suppose; < ws. Then—w, € K 3 (—wy A—ws).
Applying (B9) to this gives—w, ¢ K % —ws, i.e.,w; =< w, as required.

Proposition 30(i). If (<, <) satisfies (h) ther < <) satisfies:

(B10) If - (0V ¢)andd ¢ K % ¢thenp € K x (0 A ¢)
(ii). If % is a removal operator satisfyir{g10) thenC (K, x) satisfies (h).

PROOF. (i). Supposég<, <) satisfies (h) and suppose(f V ¢) andfd & K x (<
¢. Then[-6] N [K *(<,<) ¢] # 0 so there existv € [-6] andw’ € min([—¢], <)
such thatw < w’. Sincet- (6 V ¢) andw’ € [-¢] we knoww’ € [0]. Hencew # w’
so, by (h),w < w’. Now letw, € [K %< <) (0 A ¢)]. We will showw, € [¢]. But
wo € [K %<<) (0N ¢)] impliesw, < w” —and hencevy < w” —for somew” €
min([—=(6 A ¢)] <). Sincew € [~(0 A ¢)] this givesw, < w and so, sincer < w/,
wo < w'. We concludey, € [¢] from this usingy’ € min([—¢], <). Hence we have
shown[K x< <y ~(6 A ¢)] C [¢], which gives the required € K s < <) (0 A¢).

(i) . Supposex satisfieqB10) and letw; < ws, i.e.,~w; & K % —w,. If w; = wy

we are done, SO supposg # ws. Thenk (—w; V —w,), SO we may applyB10)
to deduce-w, € K % (—w; A —~ws), i.e.,w; < wq as required.

Proposition 31(i). If (<, <) satisfies (j) thenx < <) satisfies:

(B11) If- (Vv ¢)andd € K\ K % ¢ thenp € K x (6 A ¢)
(ii). If x is a removal operator satisfyir{B11) thenC (K, x) satisfies (j).
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PROOF. (i). Suppose- (6 V ¢) andf € K \ K %< <) ¢. Fromf & K x< <) ¢
we know there existay, € [-6] such thatv, < w for somew € min([—¢], <).
We now claimw, < w. Firstly, sincew, € [-6] and (6 vV ¢) we knoww, € [¢]
and so, sincev € [~¢|, we knoww, # w. Secondly, sincd € K we know
[K] C [0] and sow, ¢ [K]. Applying (j) to these two withw, < w proves the
desiredw, < w. From this we deduce th€-minimal —#-worlds must be strictly
below the<-minimal ~¢-worlds in <, which impliesmin([=(6 A ¢)], <) C [¢].
This is enough to imply € K x < <) (0 A ¢).

(ii). Supposex satisfie{B11). To show (j) suppose; < ws, i.e.,~w; & K % —ws.
Suppose alsa;; # w, and that it is not the case that < «’ for all v/, i.e.,w; &
[K']. We must show thety; < w,. But fromw,; # w, we get- (—w; V —~ws) while
fromw, ¢ [K]|we get-w; € K. Applying(B11)to these two anehw; ¢ K 3 —w
gives—w, € K x (—wy A —wy), i.e.,w; < wsy as required.

Proposition 32 The following are equivalent:

(). = is a systematic withdrawal.

(i1). — satisfiedB1)+B8) plus(Vacuity), (B9) and(B11).

(iii). — = x(< <) for some(<, <) which satisfies (c), (g) and (j).

PROOF. To prove(i)<(iii) recall from [11] that- is a systematic withdrawal iff
there is some total pre-orderover)V such that

K = ¢ = KNTh(V<(min([-¢], <))),
whereV(X) = {v | 3w € X s.t.o = w orv < w}. Now observe that (c)+(g)+(j)
are enough to specifg uniquely in terms oK via

wy = wy iff wy € [K] orw; = wy Orwy < w.
To see this note that the left-to-right implication is exa). For the converse we
havew; = w, impliesw; < wy by reflexivity of < andw; < ws impliesw; < ws
by (g). It remains to show; € [K]| impliesw; = w,. But if wy € [K] then the
desired conclusion follows from (c), whileif, ¢ [K] thenw; < w, and it follows

from (g). Given this, itenfiii) of the proposition is the same as saying there exists
some total pre-ordex over)V such that

(K =~ ¢]=[K]U{veW|Iw € min([-¢|,<)s.t.v =worv < w}
= [K] U V<(min([-¢], <)),

from which we can see th&) and(iii) are saying the same thing.
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The equivalencéi) < (iii) follows from Theorem 6 along with Propositions 15, 29
and 31.

F Proofs for Section 7

Proposition 33(i). If < is the equality relation thes < ) satisfies:

(B12) —¢ € K % .

(i). If x is a removal operator satisfyin@®12) then=< in C(K, %) is the equality
relation.

PROOF. (i). If < is the equality relation then clearli” s < <) ¢] = min([—¢], <)
and so—¢ € K x (<< ¢ as required.

(il). Supposex satisfiegB12). To show= in C(K, %) is the equality relation we
need to showw,; ¢ K x —wy impliesw; = ws. But we know by(B12) that
[K % —wy] = {wy}. Hence ifw; # wy thenw; ¢ [K % —ws] which means
—w; € K % —w, as required.

Proposition 34 If x is a basic removal operator th&{x) is an AGM revision
operator.

PROOF. Supposex is generated by'-context(<, <). ThenK x ¢ is determined
entirely by the total pre-ordex via [K x ¢] = min([¢], <). The fact thatx is
an AGM revision operator then follows from well-establidiresults linking AGM
revision with total pre-orders over the set of worlds [4,5].

Proposition 35 Let (<, <) be a K-context. Then<x=< iff both (f) and (g) are
satisfied.

PROOF. Let(<, <) be aK-context. Suppos&=<. Then (f) reduces to the prop-
erty “[w; ~ ws andws < wq] impliesws < w,y”, which clearly holds by transitivity
of <, while (g) reduces to the property] < w, impliesw; < w,”, which holds
trivially. Conversely supposé<, <) satisfies both (f) and (g). We want to show
<=<. By definition of K-context we already haveC<. For the converse inclu-
sion suppose; < ws. Ifin fact w; < w, then we obtain the desirad; < w, by
(9). So suppose); ~ w,. Since= is reflexive we knowwv; < w;. Applying (f) to
these two gives; < w, as required.
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Proposition 36 — is a severe withdrawal operator iff it satisfi@l)«(B4), (Hy-
perreg) and(B9).

PROOF. By results in [12] we know- is a severe withdrawal operator iff =
%(<,<) Wherex=<. Then the result follows from combining Theorem 6 and Propo-
sitions 23, 29 and 35. (RecdHlyperreg) implies(B5)+B8) given the fundamental
rules(B1)~+B4).)
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