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Abstract

Many belief change formalisms employ plausibility orderings over the set of possible
worlds to determine how the beliefs of an agent ought to be modified after the receipt
of a new epistemic input. While most such possible world semantics rely on a single order-
ing, we investigate the use of an additional preference ordering—representing, for instance,
the epistemic context the agent finds itself in—to guide the process of belief change. We
show that the resultant formalism provides a unifying semantics for a wide variety of belief
change operators. By varying the conditions placed on the second ordering, different fam-
ilies of known belief change operators can be captured, including AGM belief contraction
and revision, Rott and Pagnucco’s severe withdrawal, the systematic withdrawal of Meyer
et al, as well as the linear liberation andσ-liberation operators of Booth et al. Our approach
also identifies novel classes of belief change operators worthy of further investigation.
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1 INTRODUCTION

Current formalisms in belief change [2,3] typically employeither a plausibility or-
dering [4,5] over the set of possible worlds, or an epistemicentrenchment ordering
[2] over the set of sentences in an agent’s belief set. Operators for change are then
defined by manipulation of these orderings after receipt of anew epistemic in-
put. There are many advantages to these approaches – foremost amongst them the
guarantee that change will be effected in a principled manner, the provision of an
intuitively plausible construction, and a formalism flexible enough to accommodate
alternative change strategies and iteration. However, some nuances of belief change
are not captured in such an approach. For instance, agents donot usually employ
one fixed ordering throughout. Often, different orderings might be used in different
contexts such as those requiring greater caution or skepticism; or different order-
ings might be used based on the assessed reliability of the source of the epistemic
inputs. Such a critique is implicit in the work of Cantwell [6] where the notion of
eligibility adds an extra dimension to belief change. A technical framework that
provides tools for belief change operations based on multiple orderings was pro-
posed by Andreka et al. [7] where combination operations fora class of preference
relationsP are studied in terms of an additional guiding preference relation. In our
current approach, the formalism for belief change (in particular belief removal) we
present can be considered to be a special case of the work of Andreka et al. with
≤ (over the set of interpretations) being the single preference relation inP, and�
(our additional dimension) being the guiding relation.

An intuitive way to understand the second ordering on the setof possible worlds is
to think of it as a more stringent assessment of the plausibility of states of affairs.
Most rational agents are aware of certain contexts within which their reasoning
plays out – certain contexts call for a different assessmentof plausibility. For ex-
ample, while I am moderately sceptical in vetting news reports of the generic kind,
I adopt a more critical stance when vetting news reports of the more serious kind,
say concerning the impending declaration of a war. Such a treatment is reminiscent
of contextualist assessments of epistemic statements [8] where it is understood that
agents make knowledge claims relative to some implicit standard for assessing that
claim and that different standards will induce differing assessments of the truth
of epistemic claims. The contribution of this paper is the unification, in a single
formal framework, of a large class of belief change operators by a method that em-
ploys two preference orderings over the set of possible worlds. It enables us to view
belief change as the manipulation, by the agent, of assessments of plausibility of
epistemic states of affairs in different contexts.

The plan of the paper is as follows. After laying down some technical preliminar-
ies, in Section 2 we establish the foundations of our framework for removal with a
semantic definition and an axiomatic characterisation. Theformal definition of re-
moval provided here allows us to show how this framework can be used to peform
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belief change in different contexts. In Section 3 we study the class of belief removal
operators obtained when the second ordering� is transitive. Section 4 builds up to
a characterisation ofAGM contraction[9] via sub-classes of belief removal oper-
ators satisfying the standard properties known as Vacuity,Inclusion and Recovery.
Section 5 shows that important classes ofbelief liberationoperators [10] can be
captured in our framework. Section 6 isolates various classes of removal opera-
tors related to, and including,systematic withdrawal[11]. Section 7 shows that the
limiting cases correspond toAGM revision[9] and severe withdrawal[12], while
Section 9 concludes with some pointers to future work. Finally, the formal proofs
of all results are collated in an appendix at the end of the paper.

We assume a finitely generated propositional languageL equipped with the usual
constants, boolean operators and a classical Tarskian consequence relationCn. Al-
though the finiteness assumption is a limitation, it is oftenmade in the context of
logic-based Artificial Intelligence (cf. [5,13]) when (i) it does not detract from the
basic principles being investigated, and (ii) it ensures that the proofs are simplified
considerably. Both conditions are applicable here. The interested reader is also re-
ferred to the work of Gabbay and Schlechta [14] where the initial version of the
work presented here [1] is extended to the infinite case.

An interpretation(or possible world) w is a function from the set of propositional
variables ofL to the set{0, 1}, with 0 denoting falsity, and 1 denoting truth.W
denotes the set of all possible worlds/interpretations ofL. Logical entailment is
denoted by⊢ and logical equivalence by≡. For any set of sentencesA ⊆ L, [A]
denotes the set of worlds satisfying all members ofA (writing [φ] rather than[{φ}]
for the singleton case). For a setS ⊆ W, Th(S) is the set of sentences true in all
worlds inS. The object which undergoes change will beK, a consistent belief set
(i.e., a deductively closed, consistent set of sentences).We takeK to be arbitrary
but fixed throughout. For any belief setK ′ andφ ∈ L, K ′ + φ will denote the
expansionofK ′ by φ, i.e.,K ′ +φ = Cn(K ′ ∪ {φ}). Given a total pre-order (i.e., a
transitive, connected relation)≤ onW andS ⊆ W, min(S,≤) will denote the set
of ≤-minimal elements ofS.

1.1 Removal operators

We assume that for all removal operators>,K>φ is only defined for non-tautologous
propositions and refer to the set of non-tautologous members ofL asL∗. The limit-
ing case requires only a minor emendation. We make this choice for ease of techni-
cal presentation. We refer to these asremovaloperators because their use results in
an epistemic inputφ being removed from the belief set. However, as we shall see in
Section 7, the extreme case where the removal of a beliefφ results in the addition
of ¬φ is included in the framework. In this paper, the following four properties will
be considered as fundamental to any reasonable notion of belief removal:
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(B1) K > φ = Cn(K > φ)
(B2) φ 6∈ K > φ
(B3) If φ1 ≡ φ2 thenK > φ1 = K > φ2

(B4) K >⊥ = K

Rules(B1)–(B3) belong to the sixbasic AGM contraction postulates[9]. Rule(B4)
is a weakened version—under our assumption thatK is consistent—of another,
(Vacuity).

Definition 1 A removal operator (forK) is any operator satisfying(B1)–(B4).

2 BASIC REMOVAL

We now set up our most general semantic construction of belief change operators.
Our goal is to takefull AGM contraction as a starting point, i.e. belief contraction
operators adhering to the eight AGM contraction postulates, including the two so-
called supplementaryAGM contraction postulates [9]. In line with this goal we
assume a total pre-order≤ anchoredon [K] i.e., [K] = min(W,≤). 1 As usual we
take≤ to be an ordering of plausibility on the worlds, with worlds lower down in
the ordering assessed as more plausible. In what follows,∼ will always denote the
symmetric closure of≤, i.e.,w1 ∼ w2 iff both w1 ≤ w2 andw2 ≤ w1.

In order to generalise full AGM contraction, we assume we arealso given asecond
binary relation� onW. The only requirement we place on�, at least initially, is
that it is a reflexive sub-relation of≤. These two orderings provide thecontextin
which an agent makes changes to its current beliefs. Intuitively, � is intended to
serve as an aid to the first ordering≤ in the provision of the context in which belief
change should occur. This explains why� is required to be a sub-relation of≤.
In the process of providing such a context, the role of� will be to relate relevant
worlds to one another (see Section 2.2). This justifies the requirement of� to be
reflexive: every world is at least relevant to itself.

Definition 2 (≤,�) is aK-contextiff ≤ is a total pre-order (onW) anchored on
[K], and� is a reflexive sub-relation of≤.

The following picture shows what aK-structure looks like:

1 But see the work by Booth et al. [15] where the assumption that≤ is a total pre-order is
relaxed.
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The dots represent all the possible worlds inW; the dashed rectangles represent
the different∼-equivalence classes, linearly ordered from left to right,with the
lowest, i.e., the set[K], appearing first on the left. Thus, for any two worldsw, w′

appearing in the same rectangle we havew ∼ w′, while if w appears in a rectangle
strictly to the left ofw′ thenw < w′. This is enough to depict≤. The second
ordering� is depicted by the arrows. An arrow fromw′ to w denotesw � w′. 2

For convenience we omit all reflexive arrows. We emphasise here that� is not
assumed to be transitive in general. The one real restriction is that it is not allowed
to have an arrow crossing a dashed boundary from left to right. This is because
�⊆≤.

Given a belief setK and aK-context(≤,�), we use(≤,�) to define aremoval
operator>(≤,�) for K by setting, for allφ ∈ L∗,

K >(≤,�) φ = Th({w | w � w′ for somew′ ∈ min([¬φ],≤)}).

That is, the models of the belief set resulting from a removalof φ are obtained by
locating all the≤-best models of¬φ, and adding to those all worlds that are at least
as�-plausible.

Definition 3 > is abasic removal operator(forK) iff > is equal to>(≤,�) for some
K-context(≤,�).

2.1 Examples

Suppose our languageL contains precisely three propositional variablesp, q and
r. We will denote each possible world by a triplexyz of 0s or 1s, wherex, y and
z denote the truth-value according to that world ofp, q andr respectively. So, for
example,010 denotes that world in which bothp andr are false andq is true. Now
supposeK = Cn(q ∧ (r → p)) (so [K] = {111, 110, 010}) and let the following

2 Observe that arrows therefore point in the direction of the worlds lower down in the
ordering.

5



picture represent a particularK-context(≤,�).

111

110

101 100

011010

001000

Suppose we want to remove sentenceq from K. First we obtain the≤-minimal
models of¬q. These are101 and000, which can be found in the second lowest
≤-rank. Then we add all worlds which are below these accordingto �. Doing this
leads us to the set of worlds covered by the grey area in the picture below:

111

110

101 100

011010

001000

Thus we end up with the set{111, 010, 101, 000}, i.e.,K >(≤,�) q = Cn(p ↔ r).
Observe that the new model set after removal here isnot a superset of the initial
model set[K]. As a consequenceK >(≤,�) q 6⊆ K. Removal ofq has led in this
example to the aquisition ofnewbeliefs (for instancep → r). This shows that the
widely-accepted(Inclusion) rule (K > φ ⊆ K) fails to hold in general for basic
removal.

Another property for removal operators which fails is the(Vacuity) rule (if φ 6∈ K
thenK > φ = K), which says that if the sentence to be removed does not belong
to the initial belief set, then its removal should leave the belief set unchanged.
For suppose in the above example we want to remove¬r rather thanq. Note that
¬r 6∈ K. This time the unique≤-minimal model of¬¬r is 111, appearing in the
lowest level, i.e.,[K]. The only world (other than itself) which is less than or equal
according to� is 110:

111

110

101 100

011010

001000
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Thus we obtainK >(≤,�) ¬r = Th({111, 110}) = Cn(p ∧ q), and we see that
removal of a non-believed sentence has led to changes in the belief set, for instance
the aquisition of the belief inp.

We will shortly see which propertiesare valid for basic removal, but before that
we present the following result, which says that every basicremoval is generated
by a uniqueK-context. Thus there is a one-to-one correspondence between the
K-contexts and the basic removal operators forK.

Proposition 4 Let (≤,�) and(≤′,�′) be twoK-contexts which are not identical.
That is,(≤,�) 6= (≤′,�′). Then>(≤,�) 6= >(≤′,�′).

Before moving on to the promised characterisation of basic removal, we demon-
strate how formalK-contexts can be used to represent a particular context under-
lying the beliefs of an agent.

2.2 Providing Context

In this section we elaborate on the use ofK-contexts as a way of representing the
context in which an agent performs belief change by considering a simple exam-
ple. In particular, we show thatK-contexts can be used to represent contextual
information which may be blocked by the current beliefs of anagent, but that a
belief removal may trigger the unblocking of this information, depending on the
appropriate context.

Consider the well-known case of representing information about Tweety. We are
interested in using aK-context to capture, not only information about what an agent
currently believes about Tweety, but also thecontextualinformation about birds.
More specifically, we require that theK-context should contain the information that
an ostrich is a bird, as well as thedefaultinformation that birds normally fly, but that
ostriches normally don’t fly. The information about ostriches being birds is more
entrenched than the default information about birds being able to fly and ostriches
not being able to fly. Moreover, given the principle ofspecificity, we take the default
information about ostriches not being able to fly to be of a higher precedence than
the default information of birds being able to fly.

Now suppose our agent finds itself in a situation in which it believes that Tweety
is either an ostrich (and therefore a bird) which cannot fly, or that Tweety is a bird
(but not an ostrich) which can fly.

We represent the beliefs of the agent in a languageL containing precisely three
propositional variablesb (Tweety is a bird),o (Tweety is an ostrich) andf (Tweety
can fly). As above, we will denote each possible world by a triple xyz of 0s or
1s, wherex, y andz denote the truth-value according to that world ofb, o andf
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respectively. In this case we haveK = Cn(b ∧ ¬(o ↔ f)) (so [K] = {110, 101})
and we let the following picture represent our chosenK-context(≤,�).

111110

101

100 011

010

001

000

The intuition for the choice of(≤,�) can be explained as follows. Theworst≤-
worlds are those in which the information that an ostrich is abird is violated: the
worlds011 and010 in which Tweety is an ostrich but not a bird. This is followed
by the single world111 which violates the default information about ostriches not
being able to fly. Next is the single world100 which violates the default information
about birds being able to fly. After this we get the two worlds001 and000, both of
which are compatible with all the contextual information, but are not models of the
agent’s current beliefs. So in these worlds Tweety is neither a bird nor an ostrich
and the contextual information therefore has nothing to sayabout its flying abilities
(or lack thereof). Thebest≤-worlds are, of course, the models ofK: the worlds
110 and101.

The second ordering� is now used to capture a context relating to the manner in
which the default assertions apply, as well as how they interact. It indicates explic-
itly that a world in which Tweety is a flying bird, but not an ostrich, is preferred
over the world in which Tweety is a flying bird and also an ostrich, an indication
that the default assertion indicating that ostriches don’tfly is to be preferred over
the default assertion that birds fly.

Suppose now that we want to remove the sentence that Tweety isan ostrich from
the agent’s beliefs. Observe that the agent currently does not believe that Tweety is
an ostrich. Formally, we want to remove the sentenceo fromK. To do so, we first
obtain the≤-minimal models of¬o. This is the world101, found in the lowest≤-
rank (and one of the models ofK). Then we add all worlds which are below these
according to�. In this case, nothing is added, and we end up with the set{101},
i.e.,K >(≤,�) o = Cn(b ∧ ¬o ∧ f). Or more informally, the agent now believes
that Tweety is a bird, but not an ostrich, which can fly. So, theexplicit removal of
the information that Tweety is an ostrich acts as a mechanismfor unblocking the
default information that birds normally fly, and we end up with a belief set in which
Tweety the bird is assumed not to be an ostrich, and is able to fly.

Also, it is easily checked that similar results are obtainedif the negationof o (the
information that Tweety is not an ostrich) is removed fromK. In this case the
default information about ostriches normally flying is unblocked, and our agent
ends up believing that Tweety is an ostrich (and a bird) whichis assumed not to fly.
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Finally, suppose that we want to remove from the agent’s beliefs the (default) as-
sertion that Tweety being an ostrich implies that it cannot fly, an explicit assertion
not currently in the agent’s belief set. Formally we want to remove the sentence
o → ¬f from K. To do so we first obtain the≤-minimal models of¬(o → ¬f),
in this case just the single world111. Then we to add to it all worlds which are
below111 according to� (in this case the world101) and we end up with the set
{111, 101}. From this it follows thatK >(≤,�) (o → ¬f) = Cn(b ∧ f), and the
agent thus ends up believing that Tweety is a flying bird. So the explicit removal of
the more specific default assertion (Tweety being an ostrichimplying that it cannot
fly) frees up the remaining default assertion (Tweety being abird implying that it
can fly) to fire, and we end up with a belief set in which Tweety the bird is assumed
to be able to fly.

To conclude this subsection, observe that belief removal inthese examples satisfy
neither(Inclusion) nor (Vacuity).

2.3 Characterising Basic Removal

Basic removal is characterised by the following postulates, in addition to the fun-
damental rules(B1)–(B4): 3

(B5) If θ ∈ K > (θ ∧ φ) thenθ ∈ K > (θ ∧ φ ∧ ψ)
(B6) If θ ∈ K > (θ ∧ φ) thenK > φ ⊆ K > (θ ∧ φ)
(B7) (K > θ) ∩ (K > φ) ⊆ K > (θ ∧ φ)
(B8) If φ 6∈ K > (θ ∧ φ) thenK > (θ ∧ φ) ⊆ K > φ

The rules above are familiar from the belief change literature. Rules(B7) and(B8)
are the twosupplementaryAGM contraction postulates [9], while(B5) and (B6)
both follow from the AGM postulates (see [9,16,17]). The latter rule is closely
related to the well-known ruleCut from non-monotonic inference [18], while the
former is sometimes known in the literature as Conjunctive Trisection. A slight
reformulation may be found already in [9] under the name Partial Antitony. Another
reformulation of it is the following:

Proposition 5 Let> be any removal operator. Then> satisfies(B5) iff it satisfies:

(B5′) K > θ ⊆ (K > (θ ∧ φ)) + ¬θ

3 The list given in [1] contained one extra rule, viz. ‘K > φ ⊆ K + ¬φ’. It turns out this
rule is derivable from the others (mainly(B5)). See rule(X1) in Lemma B in the appendix.
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The remaining two basic AGM contraction rules, which are both missing from the
list (B1)–(B8), are(Inclusion) (see previous subsections) and(Recovery):

(Recovery) K ⊆ (K > φ) + φ

(Inclusion) has been questioned before by Bochman [19] and Booth et al. [10],
the latter leading to the study ofbelief liberationoperators.(Recovery)has been
questioned in many places in the literature (e.g. [16,3]). Briefly, liberation operators
cater to the intuition that removing a belief from an agent’scorpus can remove the
reasons for not holding others and hence lead to the inclusion of new beliefs.

Theorem 6 Let K be a belief set and> an operator forK. Then> is a basic
removal operator forK iff > satisfies(B1)–(B8).

Given Theorem 6, we see that basic removals seem closely related to the similarly
general approach to removal presented by Bochman [19, Ch. 12]. Like basic re-
moval, Bochman’s operators in their most general form fail to validate(Vacuity),
(Inclusion) and(Recovery), while theydosatisfy(B5)–(B7).

The completeness part of Theorem 6 is proved by using the following construction
of a pair of orderings from a given belief set and basic removal operator.

Definition 7 The structure(≤,�) obtained from a belief setK and a basic removal
operator>, and denoted byC(K,>) is defined as follows, forw1, w2 ∈ W:

(≤) w1 ≤ w2 iff ¬α1 6∈ K > (¬α1 ∧ ¬α2)

(�) w1 � w2 iff ¬α1 6∈ K > ¬α2

whereαi is a sentence whose only model iswi (for i = 1, 2).

In the theorem the structureC(K,>) is used by checking that if> satisfies the
postulates(B1)–(B8), then(≤,�) is aK-context and that> = >(≤,�). We employ
this construction throughout the paper to prove that certain postulates are complete
for certain sub-classes of basic removal. (See the appendixfor full proofs.)

We now investigate how different requirements on the secondordering of plau-
sibility � and its interplay with≤ help us characterise different belief removal
operations.

3 TRANSITIVE REMOVAL

The first two constraints on� may be viewed as necessary extra requirements on
K-contexts. This is because they both lead to plausible properties of removal oper-
ators which, as we shall see later, are common to virtually all the proposed removal
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operators from the literature.

3.1 Transitivity

First we investigate the effect of setting the second order� to be transitive, i.e.,�
becomes a pre-order. We refer to theK-context(≤,�) as transitive if� is transi-
tive.

Definition 8 We call> a transitive removal operator(for K) iff > is equal to
>(≤,�) for some transitiveK-context(≤,�).

Transitive removal operators may be alternatively described as follows. As with any
pre-order, the relation� partitionsW into a setW/≃ of equivalence classes via
the relation≃ defined byw1 ≃ w2 iff both w1 � w2 andw2 � w1. The setW/≃
is partially-ordered by the relation�∗ defined by[w1]≃ �∗ [w2]≃ iff w1 � w2.
Meanwhile, we can also define a relation≤∗ on W/≃ by [w1]≃ ≤∗ [w2]≃ iff
w1 ≤ w2. It is easy to check that≤∗ is well-defined and that≤∗ is a total pre-order
onW/≃ such that�∗⊆≤∗.

We can picture transitiveK-contexts as follows.

.
.
.

.
..
... . ..

..
..

Here, the grey ellipses now represent the≃-equivalence classes from the previous
paragraph. An arrow leading from one ellipse to another means that for all worldsw
in the second class and all worldsw′ in the first class we havew � w′ andw′ 6� w.
The full relation� is obtained by taking the transitive closure of the arrows.

Furthermore we have, for eachφ ∈ L∗,K >(≤,�) φ = Th(
⋃

Υ), where

Υ = {X ∈ W/≃| X �∗ Y for someY ∈ min(¬φ,≤∗)},

and wheremin(¬φ,≤∗) denotes the set of≤∗-minimal elementsY ∈ W/≃ such
thatY ∩ [¬φ] 6= ∅. Note how worlds belonging to the same equivalence class are
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‘indistinguishable’ to the agent using theK-context(≤,�).

.
..
... ..

.
..

.

.
..

.
For example, suppose the≤-minimal models of¬φ are the white dots. The new
model set is then just the union of the dark grey ellipses.

The next result shows how we can axiomatically characterisethe class of transitive
removal operators

Proposition 9 (i). If (≤,�) is transitive then>(≤,�) satisfies4 :

(BTran) If K > θ ⊆ (K > φ) + ¬φ thenK > θ ⊆ K > φ

(ii). If > is a removal operator satisfying(BTran) then the relation� of C(K,>)
is transitive.

The reader familiar with the belief change literature will immediately recognise
the right-hand-side of the antecedent of this rule as theLevi Identity[2], which is
commonly employed to define operators ofrevisionin terms of removal operators.
The goal of a revision operationK × φ is to produce a new belief whichmust
containthe given sentenceφ. Given any removal operator>, let us denote by× =
R(>) the operator defined from> via the Levi Identity, viz.

K × φ = (K > ¬φ) + φ.

Thus(BTran) may be thought of as saying that if the act ofrevisingby¬φ produces
a larger belief set than the act ofremovingθ, then so too will the act of merely
removingφ.

4 (BTran) replaces the more complicated and rather unintuitive postulate which was used
to characterise transitivity in [1], viz:

(BT) If K > θ * K > φ then there existψ, λ ∈ L∗ such that
φ ⊢ ψ ⊢ λ and(K > θ) ∪ (K > λ) ⊢ φ
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Adding (BTran) to the list of rules for basic removal causes some redundancyin
that list, as the next result shows.

Proposition 10 Any removal operator which satisfies(BTran) and(B5′) also sat-
isfies(B6).

So transitive removal operators may be characterised by(B1)–(B5), (B7), (B8) and
(BTran) .

3.2 Priority

Now consider the following property of aK-context(≤,�):

(a) If w1 ∼ w2 andw1 � w2 thenw2 � w1

Given the fact�⊆≤, this is easily seen to be equivalent to:

(a′) If w1 ≺ w2 thenw1 < w2

Thus ifw1 � w2 but not vice versa, thenw1 is strictly more plausible thanw2.

Proposition 11 (i). If (≤,�) satisfies (a) then>(≤,�) satisfies:

(BPriority) If θ ∈ K > φ andφ 6∈ K > θ thenθ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(BPriority) thenC(K,>) satisfies (a).

The property(BPriority) is briefly mentioned under the name ‘Priority’ in [19],
and is also briefly mentioned right at the end of [20]. It can beread as saying that
if φ is excluded following removal ofθ, but not vice versa, thenθ is strictly more
entrenchedthanφ, in the sense that when directed to excludeθ ∧ φ (and thus to
exclude at least one ofθ, φ), θ is included andφ excluded.

As we indicated at the start of this section, the family of removal operators gen-
erated by transitiveK-contexts satisfying (a) remains general enough to include
virtually all of the families described in the rest of this paper. Thus the list of rules
comprising(B1)–(B5), (B7), (B8), (BTran) and(BPriority) can be considered a
‘common core’ of postulates for belief removal. In terms of the alternative descrip-
tion of transitive removal given above in terms of equivalence classes, requiring (a)
of (≤,�) in addition to transitivity has the effect that the relations≤∗ and�∗ on
W/≃ satisfy, for allX, Y ∈ W/≃: X �∗ Y impliesX <∗ Y or X = Y , where
<∗ is the strict part of≤∗. Thus any two distinct classesX, Y which are on the
same ‘level’ according to≤∗ (in that bothX ≤∗ Y andY ≤∗ X) are incomparable
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according to�∗.

.
..
... . ..

..
..

..
.

The picture for transitiveK-contexts satisfying (a) is the same as that for transitive
removals, except it is now disallowed to have an arrow between any two ellipses
lying within the same dashed rectangle.

The next result shows how, for basic removal, the two rules(BTran) and(BPrior-
ity) may be repackaged into an equivalent single rule.

Proposition 12 (i). If (≤,�) is both transitive and satisfies (a) then>(≤,�) satis-
fies:

(BConserv) If K > θ 6⊆ K > φ then there existsλ ∈ L∗ such that

φ ⊢ λ and(K > θ) ∪ (K > λ) ⊢ φ

(ii). If > is a removal operator satisfying(BConserv) thenC(K,>) is transitive
and satisfies (a).

(BConserv) looks like the rules Conservativity and Weak Conservativity, which
were proposed and argued-for by Hansson [21,3] and used to characterise opera-
tions of so-calledbase-generated contraction.

3.3 Strong Conservativity

By going a step further and identifyingλ with φ in (BConserv)we arrive at a yet
stronger postulate:

(BSConserv) If K > θ 6⊆ K > φ then(K > θ) ∪ (K > φ) ⊢ φ

(BSConserv)is known as Strong Conservativity [21], and is used by [10] tohelp
characterise the so-calledσ-liberation operators (see Section 5). Booth et al. [22]
also provide a detailed justification for the use of this rule. For basic removal, we
can capture this property by requiring the following property, in conjunction with
transitivity:
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(b) If w1 ∼ w2 thenw1 � w2

Proposition 13 (i). If (≤,�) is transitive and satisfies (b) then>(≤,�) satisfies
(BSConserv). (ii). If > is a removal operator satisfying(BSConserv)thenC(K,>)
is transitive and satisfies (b).

Condition (b) implies (a). In terms of the above construction in terms ofW/≃,
requiring� to be transitive while strengthening (a) to (b) has the effect that the
relation≤∗ becomes atotal orderonW/ ≃.

.
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In terms of the picture above, this means we are now restricted to just one ellipse
per dashed rectangle. Note that this family will crop up later, turning out to be the
family of σ-liberation operators.

4 TOWARDS AGM CONTRACTION

It was noted in Section 2 that basic removal does not satisfy the three basic AGM
contraction postulates(Vacuity), (Inclusion) and (Recovery). In Section 7 it is
shown that the severe withdrawal operators, which are knownnot to satisfy(Re-
covery) [12], are all basic removal operators, thus proving that(Recovery)fails for
basic removal. ‘One half’ of(Vacuity), however,is valid for basic removal:

Proposition 14 Let> be a basic removal operator forK, then> satisfies: Ifφ 6∈
K thenK ⊆ K > φ

The ‘missing half’ of(Vacuity) is: If φ 6∈ K thenK > φ ⊆ K. Clearly this rule
doubles as a weakened version of(Inclusion). Thus we see that, for basic removal
operators,(Inclusion) actually implies(Vacuity). In the rest of this paper we will
adopt the following notational conventions for describingremoval operators:

• The symbol> will be used to refer to members of the general family of basic
removal operators, when nothing is assumed about whether the operator satisfies
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(Vacuity) or (Inclusion).
• The symbol÷ will be used if the removal operator is intended or known to satisfy

(Vacuity), but not necessarily(Inclusion).
• Symbol−̇ will be used if the operator is intended or known to satisfy(Inclusion)

as well as(Vacuity).

Now let us verify under what conditions on(≤,�) each of these postulates are
satisfied by basic removal operators.

4.1 Vacuity

To ensure that>(≤,�) satisfy all of(Vacuity), we require that all≤-minimal ele-
ments (i.e., all elements of[K]) are�-connected, i.e.,

(c) If w1, w2 ∈ min(W,≤) thenw1 � w2

In terms of the picture fortransitiveremoval, this corresponds to the requirement
that there is only one ellipse in the leftmost dashed-rectangle, which represents the
minimal≤-rank.

..

. ..
..

..
...

.
...

Proposition 15 (i). If (≤,�) satisfies (c) then>(≤,�) satisfies(Vacuity). (ii). If >
is a removal operators satisfying(Vacuity) thenC(K,>) satisfies (c).

As is easily verified, (c) is implied by condition (b). Thus wesee that any basic
removal satisfying(BSConserv)satisfies(Vacuity). However, since (c) isnot im-
plied by (a),(Vacuity) is notvalid for transitive removals satisfying (a).

Shouldn’t (Vacuity) be a basic requirement forany rational removal operation?
From a purelyminimal changepoint of view it is certainly hard to contest, but we
would nevertheless argue therearescenarios in which it can fail. Consider an agent
with equally good reasons to believe each ofp and¬p. In this situation the agent
remains cautious and commits to believe neitherp nor ¬p. But if this agent were
then to receive information that underminesp then it would come to believe (or
assign significantly more plausibility to)¬p.
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One could always try andforce a given basic removal> to satisfy(Vacuity) by
defining a new operator÷′ from> by

K ÷′ φ =











K if φ 6∈ K

K > φ otherwise.

It is straightforward to show that÷′ so defined satisfies(B1)–(B8), and so again
forms a basic removal.

Proposition 16 If (≤,�) is theK-context corresponding to>, then theK-context
corresponding to÷′ defined above is(≤,�′), where�′ is obtained from� by
settingw1 �

′ w2 iff w1 � w2 or w1, w2 ∈ [K].

However we run into difficulties in the case oftransitiveremoval, for it turns out
that rule(BTran) isnotpreserved. This is because if� is transitive then�′ need not
be. Indeed it is quite possible to have three modelsw1, w2, w3 such thatw1, w2 ∈
[K], w3 6∈ [K], w1 � w3 andw2 � w3. Thenw1 �′ w2 �′ w3 but w1 �′ w3.
How can we modify a transitive removal operator so that it satisfies(Vacuity)? The
answer is to just take the transitive closure of�′ above. It is easy to see this is the
same thing as settingw1 �′′ w2 iff either w1 � w2 or [w1 ∈ [K] andw′ � w2 for
somew′ ∈ [K]]. In terms of the picture, all we do is coalesce all the ellipses in the
leftmost dashed rectangle into one, and leave all the arrowsas is, so that any arrow
which was previously going intoanyellipse in this rectangle is just pointing now
instead at the unique single ellipse there. (Following thisstep we may remove any
redundant arrows.) If> is the basic removal operator generated by(≤,�), then we
will denote byV(>) the removal operator generated by(≤,�′′) as defined above.

.

.

...
... ..

..

.

.
.
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.. .
.

> V(>)

Obviously�′′ is transitive. So>(≤,�′′) is a transitive removal operator which satis-
fies (Vacuity). Also note that if(≤,�) satisfies (a), then so will(≤,�′′) (because
�′′ does not introduce any arrows between worlds on the same level. Hence if> is
transitive (satisfies(BTran) ) and satisfes(BPriority) then so doesV(>).

The next result shows how we can expressV(>) so constructed directly in terms
of >.

Proposition 17 Let > be a removal operator forK corresponding toK-context
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(≤,�) and let÷ = V(>). Then

K ÷ φ =











K ∩K > φ if K ∪K > φ is consistent

K > φ otherwise

4.2 Inclusion

To obtain(Inclusion) we may add the following condition, stronger than (c):

(d) If w1 ∈ min(W,≤) thenw1 � w2 for all w2

So the≤-minimum worlds are also the�-minimum worlds. In the picture for
transitive removals, this means there is only one ellipse in the leftmost dashed-
rectangle, and furthermore there is a path along the arrows to this ellipse from
everyother ellipse in the picture.

.
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..
...
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...

.

Proposition 18 (i). If (≤,�) satisfies (d) then>(≤,�) satisfies(Inclusion). (ii). If
> is a removal operator satisfying(Inclusion) thenC(K,>) satisfies (d).

Even though basic removal operators do not satisfy(Inclusion) in general, it is
always possible totransforma given basic removal> into an operator whichdoes
satisfy that rule. We simply take theincarceration−̇ of > [10], i.e., the operator
defined from> by using the following slight variant of theHarper Identity[2]:

K −̇ φ = K ∩ (K > φ).

We shall denote the incarceration of> by I(>). It can be shown the incarceration
of a basic removal operator is always itself a basic removal:

Proposition 19 If (≤,�) is theK-context corresponding to>, then theK-context
corresponding toI(>) is (≤,�′′), where�′′ is obtained from� by settingw1 �′′

w2 iff w1 � w2 or w1 ∈ [K]. Furthermore:
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(i). If � is transitive then so is�′′.
(ii) . If � satisfies (a) then so does�′′.
(iii) . If � satisfies (b) then so does�′′.
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..

.
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.
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.

.
> I(>)

Part(i) of the above proposition says that the incarceration of anytransitiveremoval
operator is again transitive, while parts(ii) and(iii) imply that the rules(BPriority) ,
(BConserv)and(BSConserv)are each preserved under taking incarcerations.

4.3 Recovery

To obtain(Recovery)it suffices to require the following condition:

(e) If w1 � w2 thenw1 = w2 orw1 ∈ min(W,≤)

So, apart from itself, nothing but≤-minimal worlds may be below any world in
�. This means that when removal ofφ takes place, the new model set will consist
of the≤-minimal ¬φ-worlds (the white dots in the picture below), together with
some subset ofthe≤-minimal worlds. Note that this subset may be a strict subset
of min(W,≤).

.

.
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Proposition 20 (i). If (≤,�) satisfies (e) then>(≤,�) satisfies(Recovery). (ii). If
> is a removal operator satisfying(Recovery)thenC(K,>) satisfies (e).

The combination of (d) and (e) then states that the worlds below a worldw in � are
exactlyw itself and the≤-minimal worlds. Thus in this casė−(≤,�) is completely
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determined by≤ alone via:

[K −̇(≤,�) φ] = [K] ∪min([¬φ],≤),

which is precisely the AGM contraction operator generated by ≤ [4,5,9].

.

.
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..
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.
.

Proposition 21 The following are equivalent:
(i). −̇ is a full AGM contraction operator (i.e., satisfying the basic and supplemen-
tary AGM postulates).
(ii). −̇ satisfies(B1)–(B8) plus(Inclusion) and(Recovery).
(iii). −̇ = −̇(≤,�) for some(≤,�) which satisfies (d) and (e).

Observe that since (d)+(e) implies transitivity and (a), every full AGM contraction
satisfies(BTran) , (BPriority) and(BConserv).

5 BELIEF LIBERATION

Booth et al. [10] present two models of belief liberation operators, each in terms of
finite sequences of sentences. The second model,linear liberation, is more general
than the first,σ-liberation as the class of liberation operators it generates includes
those generated by the first. The first construction employs alinearly ordered se-
quence of sentences and the second a set of candidate belief sets one of which
corresponds to the agent’s set after belief retraction. They also provide axiomatic
characterisations of each of these classes.
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5.1 Linear liberation

A K-sequence is any sequence of sentencesρ = (β1, . . . , βm) such thatK =
Cn(β1). For anyK-sequenceρ we can define a removal operator÷ρ by setting5

K ÷ρ φ =











Cn(βi) wherei = min{k | βk 6⊢ φ} if
∨

k βk 6⊢ φ

Cn(∅) otherwise

Then an operator÷ for K is a linear liberation operator (forK) iff ÷ = ÷ρ for
someK-sequenceρ.

Linear liberation is characterised by(B1)–(B3) plus (Vacuity) and the following
rule: 6

(Hyperreg) If θ 6∈ K ÷ (θ ∧ φ) thenK ÷ (θ ∧ φ) = K ÷ θ

This is the rule termed Hyperregularity in [21]. The first thing to note about(Hy-
perreg) is that, in the presence of(B1)–(B4), it actually implies(Vacuity) and the
remaining rules for basic removal(B5)–(B8). Thus we see:

Proposition 22 ÷ is a linear liberation operator iff it is a basic removal operator
which satisfies(Hyperreg).

Is there a condition on(≤,�) which corresponds exactly to(Hyperreg)? It turns
out the following condition does the trick:

(f) If w1 ∼ w2 andw3 � w1 thenw3 � w2

Rule (f) says that whether or not a worldw3 is beloww1 according to� depends
only on the≤-plausibility rank ofw1. In terms of the picture, a major effect of this
is that the new model set when removingφ will alwayscontainall worlds which
are in the same≤-rank as the≤-minimal¬φ-worlds. Furthermore the set of models
below this rank which are to be included in the new model set isdetermined entirely
by this rank. Thus the number of possible distinct belief sets which may result from

5 Booth et al. [10] also allowed the removal of tautologies, a difference that may safely be
ignored.
6 Taking into account that here, unlike in [10], we don’t allowthe removal of a tautology.
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an operation of removal is exactly the number of plausibility ranks.
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Proposition 23 (i). If (≤,�) satisfies (f) then÷(≤,�) satisfies(Hyperreg). (ii). If
÷ is a removal operator satisfying(Hyperreg) thenC(K,>) satisfies (f).

Thus we see linear liberation operators may be represented by the class ofK-
contexts which satisfy (f).

Note that (f) doesn’t imply transitivity, but does imply (b)(and therefore (a)). In
the presence of(B1) and (B2), (Hyperreg) implies the following rule known as
Decomposition:

K > (θ ∧ φ) = K > θ orK > (θ ∧ φ) = K > φ

As is noted in [2, p66], this condition is not desirable in general. For this reason (f)
might be too strong to be a general requirement.

5.2 σ-liberation

The definition ofσ-liberation is, like linear liberation, based on sequencesσ =
(α1, . . . , αn) of sentences, although the sequences are used in a differentway. One
natural way to interpret the sequence is as the list of previous revision inputs the
agent has received, withα1 being the first andαn the most recent. The construction
begins by inductively defining, for eachφ ∈ L, an increasing sequence of sets of
sentencesΓi(σ, φ) by settingΓ0(σ, φ) = ∅ and then, for eachi = 0, . . . , n− 1,

Γi+1(σ, φ) =











Γi ∪ {αn−i} if Γi ∪ {αn−i} 6⊢ φ

Γi otherwise.

That is, starting at the end withαn, we work our way backwards through the se-
quence, adding each sentence as we go, provided adding it to the sentences col-
lected up to that point does not lead to the inference ofφ. If Cn(Γn(σ,⊥)) = K

22



then we sayσ is a belief sequencerelative toK. Then every belief sequence relative
toK defines a removal operator÷σ by setting

K ÷σ φ = Cn(Γn(σ, φ)).

Finally, an operator÷ forK is aσ-liberation operator (forK) iff ÷ = ÷σ for some
belief sequenceσ relative toK.

Booth et al. [10] show that theσ-liberation operators are precisely those linear lib-
eration operators which satisfy(BSConserv). Using this fact together with Propo-
sitions 13 and 23 allows us to deduce:

Proposition 24 ÷ is aσ-liberation operator iff÷ is equal to÷(≤,�) for some tran-
sitive(≤,�) satisfying (b) and (f).

However we can simplify here, for as soon as� is transitive, conditions (b) and (f)
becomeequivalent:

Proposition 25 Let (≤,�) be a transitiveK-context. Then(≤,�) satisfies (b) iff
(≤,�) satisfies (f).

This means that in Proposition 24 it is unnecessary to require both (b)and(f) – just
one of them will suffice. Depending on which one we choose to retain, we obtain
two different characterisations ofσ-liberation which provide alternatives to the one
from [10]:

Proposition 26 The following are equivalent:
(i). ÷ is aσ-liberation operator.
(ii). ÷ is a linear liberation operator which satisfies(BTran) .
(iii). ÷ is a basic removal operator which satisfies(BSConserv).

The equivalence(i)⇔(ii) comes from combining Proposition 24 (retaining just (f))
with Propositions 9 and 23, while(i)⇔(iii) comes from combining Proposition
24 (retaining just (b)) with Proposition 13. Surprisingly,(i)⇔(ii) says that, in the
axiomatisation ofσ-liberation in [10],(BSConserv)may be replaced by the seem-
ingly much weaker(BTran) . Meanwhile, since(i)⇔(iii) , σ-liberation operators
inherit the nice description in terms ofW/≃ given for the basic removals which
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satisfy(BSConserv)at the end of Section 3 (where≤∗ is a total order onW/≃).
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Similar characterisations for sub-classes of liberation,such as the class ofdichoto-
mousliberation operators [10], exist. We consider these next.

In [10] the sub-class ofσ-liberation operators known as thedichotomousliberation
operators are characterised by adding the following postulate:

(Dichotomy) (K > θ) ∪K > φ) 6⊢ ⊥ impliesK > θ = K > φ

The following condition on(≤,�) corresponds to(Dichotomy):

(e′) w1 � w2 iff w1 ∼ w2

This condition requires that the worlds below a worldw in � are precisely those
with the same plausibility ranking asw.

.

.

.
.

.

.
..
...

..
..
.

Proposition 27 (i). If (≤,�) satisfies (e′) then>(≤,�) satisfies(Dichotomy). (ii).
If > is a removal operator satisfying(Dichotomy) thenC(K,>) satisfies (e′).

It turns out that adding(Dichotomy) to the postulates for basic removal gives ex-
actly dichotomous liberation.

Proposition 28 The following are equivalent:
(i). > is a dichotomous liberation operator.
(ii). > satisfies(B1)–(B8) plus(Dichotomy).
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(iii). > = >(≤,�) for some(≤,�) which satisfies (e′).

The equivalence(i)⇔(iii) comes from combining Proposition 24 and Proposition
27, while(ii)⇔(iii) comes from combining Theorem 6 and Proposition 27.

6 SYSTEMATIC WITHDRAWAL

An interesting sub-class of basic removal operators, whichincludes both systematic
[11] and severe withdrawal [12] (see below) is obtained by requiring the following
condition on(≤,�):

(g) If w1 < w2 thenw1 � w2

where< is the strict part of≤. When removingφ, the effect is that the new
model set will contain, along with the≤-minimal¬φ-worlds,all worlds considered
strictly more≤-plausible, together with possiblysomeof theφ-worlds appearing
in the same≤-plausibility rank as these≤-minimal¬φ-worlds.
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Proposition 29 (i). If (≤,�) satisfies (g) then>(≤,�) satisfies:

(B9) If θ ∈ K > (θ ∧ φ) thenφ 6∈ K > θ

(ii). If > is a removal operator satisfying(B9) thenC(K,>) satisfies (g).

The class of basic removal operators>(≤,�) such that(≤,�) satisfies (g) still do
not generally satisfy(Inclusion) or (Vacuity), since condition (g) does not rule
out that some≤-minimal elements may be�-unconnected. However they do come
veryclose to satisfying(Inclusion), in that the following is satisfied:

If θ ∈ K thenK > θ ⊆ K

Using this fact, we see that forthis class of operators,(Inclusion) and(Vacuity)
are equivalent.
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The next condition onK-contexts is, essentially, a requirement for antisymmetry
to hold:

(h) If w1 � w2 then eitherw1 < w2 orw1 = w2

So now, theφ-worlds appearing in the new model set after removingφ are selected
exclusively among those considered strictly more plausible than the≤-minimal
¬φ-worlds.

.
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Proposition 30 (i). If (≤,�) satisfies (h) then>(≤,�) satisfies:

(B10) If ⊢ (θ ∨ φ) andθ 6∈ K > φ thenφ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(B10) thenC(K,>) satisfies (h).

Clearly, by requiring (h) in combination with (g) (and reflexivity) we specify�
uniquely:

(g)+(h) w1 � w2 iff eitherw1 < w2 orw1 = w2

.

.
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.

..
.

.
.

Note that� so defined will automatically be transitive and will satisfythe condition
(a) from Section 3.

Putting together Propositions 29 and 30, we have that the class of basic removal
operators>(≤,�) where� is defined via (g)+(h) may be axiomatically characterised
by (B1)–(B10). This looks very much like the class of systematic withdrawals. A
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systematic withdrawal operator−̇ can be defined in terms of≤ as follows [11]:

K −̇ φ = K ∩ Th(∇≤(min([¬φ],≤)))

where∇≤(X) = {v | ∃w ∈ X s.t. v = w or v < w}. Unlike systematic with-
drawal, the class of removal operators defined by(B1)–(B10) fails to satisfy(In-
clusion)/(Vacuity), since all the≤-minimal elements are necessarilyunconnected
according to�. So in fact(Vacuity) will fail as soon as there is more than one
≤-minimal element. These operators satisfy instead:

If φ 6∈ K then¬φ ∈ K > φ

That is, for these operators, we seeK>φ is an operation which ‘demotes’ the status
of φ: if its current status is ‘accepted’, i.e.,φ ∈ K, then its status is ‘demoted’ to
‘undecided’ i.e.,φ,¬φ 6∈ K > φ, while if its current status is ‘undecided’ then its
status is ‘demoted’ to ‘rejected’. If its status is already ‘rejected’ then no change
occurs. However, if we take the incarcerations of these operators then we end up
with precisely the class of systematic withdrawal operators.

Systematic withdrawal can also be obtained by weakening (h):

(j) If w1 � w2 thenw1 < w2, w1 = w2, orw1 ≤ w′ ∀w′

So, unlike (h), (j) allows the models ofK to be connected according to�, although
it does not force them to be.

Proposition 31 (i). If (≤,�) satisfies (j) then>(≤,�) satisfies:

(B11) If ⊢ (θ ∨ φ) andθ ∈ K \K > φ thenφ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(B11) thenC(K,>) satisfies (j).

Since the operators obtained from (g) and (h) form a sub-class of the operators
obtained from (g) and (j), the latter class still does not satisfy (Vacuity). But adding
(c) (and therefore(Vacuity)) to (g) and (j) leads exactly to systematic withdrawal.

Proposition 32 The following are equivalent:
(i). −̇ is a systematic withdrawal.
(ii). −̇ satisfies(B1)–(B8) plus(Vacuity), (B9) and(B11).
(iii). −̇ = >(≤,�) for some(≤,�) which satisfies (c), (g) and (j).

As we shall see in the next section, the class of severe withdrawals can be isolated
in a similar manner.
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7 LIMITING CASES

We have seen that the addition of the second ordering� provides us with consider-
able flexibility when defining removal operators. But what happens when we focus
on the limits imposed on�? In this section we consider the two cases where� is
thesmallestand thelargestreflexive sub-relation of≤.

7.1 AGM revision

If we take� to be the smallest�, the equality relation, then the operator>(≤,�)

reduces toK >(≤,�) φ = Th(min([¬φ],≤)),

.

.
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...

.

..
.

.
.

We have the following result.

Proposition 33 (i). If � is the equality relation then>(≤,�) satisfies:

(B12) ¬φ ∈ K > φ.

(ii). If > is a removal operator satisfying(B12) then� in C(K,>) is the equality
relation.

Thus we see that removingφ here amounts to arevisionby its negation, and in fact
that>(≤,�) essentially reduces to an AGM revision function (satisfying the full list
of AGM revision postulates [9]). More precisely the operator ∗(≤,�) for K defined
byK ∗(≤,�) φ = K >(≤,�) ¬φ is an AGM revision operator. Moreover,everyAGM
revision operator can be obtained in this way. Note that in the above case, since
φ ∈ K >(≤,�) ¬φ, the right-hand side here is equal to(K >(≤,�) ¬φ) + φ. Thus
what we have is just the Levi Identity [2]. In fact a result more general holds. Recall
that for any removal operator>, we useR(>) to denote the operator derived from
> via the Levi Identity:

Proposition 34 If > is a basic removal operator thenR(>) is an AGM revision
operator.
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7.2 Severe withdrawal

By taking� to be the largest reflexive sub-relation of≤ we get the full relation≤,
and the operator>(≤,�) reduces to:

K −̇(≤,�) φ = Th({w | w ≤ w′ for somew′ ∈ min([¬φ],≤)}).

.

.
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...
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.
.

Thus, from the characterisation of severe withdrawal in terms of total pre-orders
found in [12], we see that setting� equal to≤ gives us the class of severe with-
drawal operators. Note that� so defined will be transitive and satisfy condition (b)
from Section 3 (and hence also (f) – see Proposition 25). Fromthe results above it
turns out we can give an axiomatic characterisation of severe withdrawal different
to the ones found in the literature (see [12]). To do this notethe following:

Proposition 35 Let (≤,�) be aK-context. Then� is equal to≤ iff both (f) and
(g) are satisfied.

Using this fact with Propositions 23 and 29 then yields:

Proposition 36 −̇ is a severe withdrawal operator iff it satisfies(B1)–(B4), (Hy-
perreg) and(B9).

8 RELATED WORK

It has long been recognised that extra-logical informationis needed for a suffi-
ciently general theory of belief change. Indeed, the use of plausibility orderings
≤ on their own to define belief contraction is testament to thatrealisation. Hans-
son [3] was probably the first to point out that, even when we are concerned with
belief sets, and not belief bases, it is useful to draw a distinction betweenbasic
andderivedbeliefs. His unification of belief base contraction and belief set con-
traction [21] provides a framework for doing so, but his construction methods use
belief bases, are not based on plausibility orderings on worlds, and are therefore
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quite different from what we propose here. It is, of course, possible to compare his
approach and ours on the abstract level of postulates, but doing so is not a trivial
matter, and is beyond the scope of this paper.

Cantwell [6] points out that some beliefs do not fit neatly into Hansson’s categories
of basic vs. derived beliefs. In addition to anentrenchment orderingon sentences,
he also proposes aneligibility relation on sentences. His entrenchment orderings
can be converted to our plausibility orderings≤ on worlds, and he employs the
entrenchment orderings in such a way that it corresponds to Rott and Pagnucco’s
severe withdrawal [12]. His eligibility relation regards two sentencesψ andφ as re-
lated iffψ is eligible for removal wheneverφ has to be removed. He then uses these
eligibility relations to restrict the sentences removed bya given severe withdrawal
(obtained from a specific entrenchment ordering).

Cantwell’s work is thus similar in spirit to ours in the sensethat he introduces, as
part of the required extra-logical information to perform belief change, a second
ordering on top of the standard entrenchment ordering. In terms of construction,
it is quite different from our work, though. At present, there does not seem to be
a link between his eligibility ordering on sentences and oursecond ordering� on
worlds. When comparing the operators generated by ourK-contexts with those
generated by Cantwell’s eligible contraction, it is unclear what the intersection of
these two classes of removal operators looks like, except for the fact that severe
withdrawal and AGM contraction are special cases of both classes. As is the case
with Hansson’s work, a detailed comparison between our workand that of Cantwell
is possible on the abstract level of postulates. But becausethe construction methods
are so different, this is a non-trivial task, and is beyond the scope of this paper.

A different approach to the provision of extra-logical information to characterise
belief change is that of Bochman’s [19] general theory of thecontraction of epis-
temic states, which aims to unify classical belief base contraction and belief set
contraction. Bochman defines an epistemic state as an ordered collection of belief
sets. The contraction of an epistemic state by a sentenceφ is defined as the inter-
section of the minimal belief sets which do not entailφ. So Bochman’s method
of constructing contraction operators is quite different from our method for con-
structing belief removal operators based onK-contexts. On the other hand, on an
abstract level his approach is perhaps the closest to our notion of basic removal.
Specifically, Bochman’s general form of contraction satisfies(B1) and(B3)–(B7)
and, as is the case for basic removal, does not satisfy(Vacuity), (Inclusion) and
(Recovery).
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9 CONCLUSION

In this study we have presented a unified framework for beliefremoval in terms of a
possible world semantics which is distinctive in that it uses a pair of orderings over
the set of possible worlds. We argued for the intuitive plausibility of this pair and
showed how a large class of belief removal operators such as liberation, systematic
and severe withdrawal operators could be characterised by using them to guide
belief change. This approach makes possible the identification of hitherto unstudied
sub-classes of basic removal operators, such as those obtained by requiring of� to
be a total pre-order and a partial order. An obvious generalisation to consider in
future work is the extension to propositional languages with a countably infinite
number of propositional variables. Gabbay and Schlechta [14] have addressed this
case, but in relation to the initial work [1] on which this paper is based.

Also, a detailed study of the connection between basic removal, base-generated
contraction, and sequence-based retraction is of interest. Finally, as in any formal-
ism for belief change, we need to consider iterated removal and how this affects the
adjustment of worlds in both≤ and�, as well as the interplay between≤ and�.
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A Proofs for Section 2

In the proofs contained in this appendix we will sometimes treat a propositional
world w as a sentence and write, e.g.,¬w, w1 ∨ w2 etc. Whenever a worldw ap-
pears in the scope of a propositional connective like this, it should be understood
as standing for any sentenceα such that[α] = {w}. Such a sentence always exists
under our assumption thatL is finitely generated. The finiteness also implies that
for every deductively closed set of sentencesK there exists a single sentenceβ
such thatK = Cn(β), and another useful fact that will be repeatedly used is that
for any two deductively closed setsK1, K2 we haveK1 ⊆ K2 iff [K2] ⊆ [K1].

Proposition 4 Let (≤,�) and (≤′,�′) be twoK-contexts that are not identical.
That is,(≤,�) 6= (≤′,�′). Then>(≤,�) 6= >(≤′,�′).

PROOF. For this proof we will denote>(≤,�) by just> and>(≤′,�′) by >′.
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Suppose first of all that≤6=≤′. Then, without loss, letw1, w2 ∈ W be such that
w1 ≤ w2 butw2 <

′ w1. Now consider the result of removing sentence¬(w1 ∨ w2)
from K using each of> and>′. We will show that¬w1 6∈ K > ¬(w1 ∨ w2) but
¬w1 ∈ K >′ ¬(w1 ∨w2), thus proving> 6= >′ in this case. By definition we know

[K > ¬(w1 ∨ w2)] = {w | w � w′ for somew′ ∈ min([(w1 ∨ w2)],≤)},

and similarly for>′, replacing≤,� by ≤′,�′. Since[(w1 ∨ w2)] = {w1, w2} and
w1 ≤ w2 we knoww1 ∈ min([(w1 ∨ w2)],≤) and so by reflexivity of� we know
w1 ∈ [K>¬(w1∨w2)]. Thus¬w1 6∈ K>¬(w1∨w2) as claimed. Meanwhile for>′,
if it were the case thatw1 ∈ [K>¬(w1∨w2)] then we would havew1 �

′ w′ for some
w′ ∈ min([(w1∨w2)],≤

′). Sincew2 <
′ w1, the only element inmin([(w1∨w2)],≤)

is w2. Hence this would meanw1 �′ w2. Since�′⊆≤′ by definition ofK-context
this would implyw1 ≤′ w2 – contradiction. Hencew1 6∈ [K > ¬(w1 ∨ w2)], i.e.,
¬w1 ∈ K >′ ¬(w1 ∨ w2) as required.

Now suppose�6=�′. Without loss now letw1, w2 be such thatw1 � w2 butw1 6�
′

w2. In this case we can show> and>′ yield different results when removing¬w2.
First note that since[w2] = {w2} thenmin([w2],≤) = min([w2],≤

′) = {w2}.
Sincew1 � w2 andw1 6�

′ w2 we thus knoww1 � w′ for somew′ ∈ min([w2],≤)
andw1 6�

′ w′ for all w′ ∈ min([w2],≤
′). These two in turn implyw1 ∈ [K > ¬w2]

andw1 6∈ [K >′ ¬w2], hence¬w1 6∈ K >¬w2 while¬w1 ∈ K >′ ¬w2, so we have
shown> 6= >′.

Now for many of our proofs the following property, showing how the≤-minimal
elements of[¬φ] can be described directly in terms of>(≤,�), will be key:

Lemma A Let (≤,�) be aK-context. The for anyφ ∈ L∗, min([¬φ],≤) =
[K >(≤,�) φ)] ∩ [¬φ].

PROOF. For the left-to-right inclusion we obviously havemin([¬φ],≤) ⊆ [¬φ],
whilemin([¬φ],≤) ⊆ [K >(≤,�) φ] follows from the reflexivity of�.

For the converse inclusion supposew ∈ [K >(≤,�) φ)] ∩ [¬φ]. Then fromw ∈
[K >(≤,�) φ)] we knoww � w′ for somew′ ∈ min([¬φ],≤). Since�⊆≤ we
havew ≤ w′, and so sincew ∈ [¬φ] and from the minimality ofw′ we must have
w ∈ min([¬φ],≤) as required.

Recall postulates(B1)–(B8):

(B1) K > φ = Cn(K > φ)
(B2) φ 6∈ K > φ
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(B3) If φ1 ≡ φ2 thenK > φ1 = K > φ2

(B4) K >⊥ = K
(B5) If θ ∈ K > (θ ∧ φ) thenθ ∈ K > (θ ∧ φ ∧ ψ)
(B6) If θ ∈ K > (θ ∧ φ) thenK > φ ⊆ K > (θ ∧ φ)
(B7) (K > θ) ∩ (K > φ) ⊆ K > (θ ∧ φ)
(B8) If φ 6∈ K > (θ ∧ φ) thenK > (θ ∧ φ) ⊆ K > φ

Note that when using the above postulates in proofs we will sometimes not explictly
mention more obvious uses of some of the more fundamental postulates, e.g., by
(B3) we know alwaysK > (θ ∧ φ) = K > (φ ∧ θ).

Proposition 5 Let > be any removal operator. Then> satisfies(B5) iff it satis-
fies:

(B5′) K > θ ⊆ (K > (θ ∧ φ)) + ¬θ

PROOF. To show(B5) implies(B5′), first let>(θ) be any sentence such thatK >
θ = Cn(>(θ)). Now, by(B1) we know(¬θ → >(θ)) ∈ K > θ. Sinceθ ≡ (¬θ →
>(θ)) ∧ θ this meansK > θ = K > ((¬θ → >(θ)) ∧ θ) by (B3) and so we obtain
(¬θ → >(θ)) ∈ K > ((¬θ → >(θ)) ∧ θ). Applying (B5) to this we may deduce
(¬θ → >(θ)) ∈ K > ((¬θ → >(θ)) ∧ θ ∧ φ). But (¬θ → >(θ)) ∧ θ ∧ φ ≡ φ ∧ θ.
Hence by(B3) we get (¬θ → >(θ)) ∈ K > (φ ∧ θ), equivalentlyK > θ ⊆
(K > (φ ∧ θ)) + ¬θ as required.

To show(B5′) implies(B5), supposeθ ∈ K> (θ∧φ). Now,(B5′) (with a little help
from (B3)) tells usK > (θ ∧ φ) ⊆ (K > (θ ∧ φ∧ψ)) +¬(θ ∧ φ). Hence using this
with the assumptionθ ∈ K > (θ∧ φ) yieldsθ ∈ (K > (φ∧ θ∧ψ)) +¬(θ ∧φ). By
classical logic this is equivalent to the desiredθ ∈ K > (φ ∧ θ ∧ ψ).

Next we want to prove:

Theorem 6 Let K be a belief set and> an operator forK. Then> is a basic
removal operator forK iff > satisfies(B1)–(B8).

First let’s prove the postulates are sound for basic removal.

PROOF. [Soundness] We check each postulate in turn:
(B1)K >(≤,�) φ = Cn(K >(≤,�) φ). Obvious.
(B2) φ 6∈ K >(≤,�) φ. Sincemin([¬φ],≤) ⊆ [K>(≤,�) φ)] by Lemma A, we know
there is at leastoneworld in [K >(≤,�) φ)] satisfying¬φ. This is enough to show
φ 6∈ K >(≤,�) φ.
(B3) If φ1 ≡ φ2 thenK >(≤,�) φ1 = K >(≤,�) φ2. Obvious.
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(B4)K >(≤,�) ⊥ = K. Firstly, since≤ is anchored on[K] we know[K] =min(W,≤)

= min([¬⊥],≤). By Lemma A, then,[K] ⊆ [K >(≤,�) ⊥]. Meanwhile, for any
w ∈ W, if w � w′ for somew′ ∈ [K] then, since� is a sub-relation of≤, also
w ≤ w′ for somew′ ∈ [K] and so, since≤ is transitive,w ≤ w′′ for all w′′ ∈ W,
i.e.,w ∈ [K]. Hence[K >(≤,�) ⊥] ⊆ [K] and so we have equality. This means
K >(≤,�) ⊥ = K as required.
(B5) If θ ∈ K >(≤,�) (θ ∧ φ) thenθ ∈ K >(≤,�) (θ ∧ φ ∧ ψ). Supposeθ ∈ K>(≤,�)

(θ ∧ φ). Choose anyw0 ∈ min([¬(θ ∧ φ)],≤). Then we first claimw ∈ [θ]
for all w ≤ w0. This holds since ifw ≤ w0 and w 6∈ [θ], i.e., w ∈ [¬θ],
then alsow ∈ [¬(θ ∧ φ)] and so, using the minimality ofw0, we must have
w ∈ min([¬(θ ∧ φ)],≤). But then sincemin([¬(θ ∧ φ)],≤) ⊆ [K >(≤,�) (θ ∧ φ)]
(by Lemma A) andθ ∈ K >(≤,�) (θ ∧ φ) we must havew ∈ [θ] – contradic-
tion. Hencew ∈ [θ] as claimed. Now supposew′ ∈ [K >(≤,�) (θ ∧ φ ∧ ψ)]. We
must showw′ ∈ [θ]. But w′ ∈ [K >(≤,�) (θ ∧ φ ∧ ψ)] givesw′ � w for some
w ∈ min([¬(θ∧φ∧ψ)],≤) and so, since� is a sub-relation of≤,w′ ≤ w for some
w ∈ min([¬(θ ∧ φ ∧ ψ)],≤). Fromw0 ∈ [¬(θ ∧ φ)] we knoww0 ∈ [¬(θ ∧ φ ∧ ψ)]
and so, by the minimality ofw,w ≤ w0. Hence, since≤ is transitive,w′ ≤ w0. We
conclude from the above claim thatw′ ∈ [θ] as required.
(B6) If θ ∈ K >(≤,�) (θ ∧ φ) thenK >(≤,�) φ ⊆ K >(≤,�) (θ ∧ φ). Supposeθ ∈

K>(≤,�) (θ∧φ). Then using this with Lemma A gives usmin([¬(θ∧φ)],≤) ⊆ [θ].
This means it must be the case thatmin([¬(θ ∧ φ)],≤) ⊆ min([¬φ],≤), since if
w ∈ min([¬(θ ∧ φ)],≤) thenw ∈ [θ] so we must havew ∈ [¬φ], and, since
w ≤ w′ for all w′ ∈ [¬(θ ∧ φ)], we necessarily havew ≤ w′ for all w′ ∈ [¬φ].
So, for anyw′, if w′ � w′′ for somew′′ ∈ min([¬(θ ∧ φ)],≤) then we imme-
diately get alsow′ � w′′ for somew′′ ∈ min([¬φ],≤). This is enough to prove
[K >(≤,�) (θ ∧ φ)] ⊆ [K >(≤,�) φ], which gives the required conclusion.
(B7) (K >(≤,�) θ) ∩ (K >(≤,�) φ) ⊆ K >(≤,�) (θ ∧ φ). Since[(K>(≤,�)θ)∩(K>(≤,�)

φ)] = [K >(≤,�) θ] ∪ [K >(≤,�) φ], it suffices to show[K >(≤,�) (θ ∧ φ)] ⊆
[K >(≤,�) θ] ∪ [K >(≤,�) φ]. But this follows from the fact thatmin([¬(θ ∧ φ)],≤
) ⊆ min([¬θ],≤) ∪min([¬φ],≤), which is easy to show.
(B8) If φ 6∈ K >(≤,�) (θ ∧ φ) thenK >(≤,�) (θ ∧ φ) ⊆ K >(≤,�) φ. Supposeφ 6∈

K >(≤,�) (θ ∧ φ). Then[K >(≤,�) (θ ∧ φ)] ∩ [¬φ] 6= ∅, which means there ex-
ists w0 ∈ [¬φ] such thatw0 � w′ for somew′ ∈ min([¬(θ ∧ φ)],≤). Since
�⊆≤, it follows thatw0 ≤ w′ for somew′ ∈ min([¬(θ ∧ φ)],≤). Since obvi-
ouslyw0 ∈ [¬(θ ∧ φ)], this impliesw0 ∈ min([¬(θ ∧ φ)],≤). The existence of this
w0 then impliesmin([¬φ],≤) ⊆ min([¬(θ ∧ φ)],≤), for if w ∈ min([¬φ],≤) then
w ≤ w0 and so, by transitivity of≤ and the fact that clearly alsow ∈ [¬(θ∧φ)] we
getw ∈ min([¬(θ ∧ φ)],≤). Thatmin([¬φ],≤) ⊆ min([¬(θ ∧ φ)],≤) is enough
then to prove[K >(≤,�) φ] ⊆ [K >(≤,�) (θ ∧ φ)], which gives the result.

Now we show(B1)–(B8) are complete. The following derived rules will be useful.

34



Lemma B The following four properties follow from(B1)–(B8):

(X1) K > φ ⊆ K + ¬φ
(X2) If θ ∧ φ ∈ K > (θ ∧ φ ∧ ψ) thenθ ∈ K > (θ ∧ ψ)
(X3) If θ 6∈ K > (θ ∧ φ) andθ 6∈ K > (θ ∧ ψ) thenθ 6∈ K > (θ ∧ φ ∧ ψ)
(X4) If θ ∈ K > (θ ∧ φ) thenK > (θ ∧ φ) = K > φ.

PROOF. For (X1) recall that(B5′) is equivalent to(B5) by Proposition 5. Then
from (B5′) we knowK > φ ⊆ (K > (φ ∧ ⊥)) + ¬φ. (X1) then follows from
applying to this(B3) (usingφ ∧ ⊥ ≡ ⊥) followed by(B4) (i.e.,K >⊥ = K).

For (X2) supposeθ ∧ φ ∈ K > (θ ∧ φ ∧ ψ). By (B1) and(B2) this meansθ ∧ ψ 6∈
K>(θ∧φ∧ψ). Using this with(B8) we getK>(θ∧φ∧ψ) ⊆ K>(θ∧ψ). Hence,
sinceθ ∈ K>(θ∧φ∧ψ) (which follows from the assumptionθ∧φ ∈ K>(θ∧φ∧ψ)
and(B1)), we getθ ∈ K > (θ ∧ ψ) as required.

For (X3) supposeθ 6∈ K > (θ ∧ φ) andθ 6∈ K > (θ ∧ ψ). From the latter we get
θ ∧ φ 6∈ K > (θ ∧ φ ∧ ψ) using(X2) above. Hence, by(B8), K > (θ ∧ φ ∧ ψ) ⊆
K > (θ ∧ φ) and so fromθ 6∈ K > (θ ∧ φ) we getθ 6∈ K > (θ∧ φ∧ψ) as required.

(X4) is a straightforward consequence from mainly(B6) and(B8).

Now let’s give the completeness proof of Theorem 6.

PROOF. [Completeness] LetK and> be given. We need to find someK-context
(≤,�) such that> = >(≤,�). We use the one from Definition 3 of the paper, which
we denoted byC(K,>). Recall we define the two relations≤,� onW fromK and
> as follows:

(≤) w1 ≤ w2 iff ¬w1 6∈ K > (¬w1 ∧ ¬w2)

(�) w1 � w2 iff ¬w1 6∈ K > ¬w2

Recall that in¬w1 etc, worldw1 stands for any sentence which hasw1 as its only
model. Note that, here and in what follows, the precise choice ofwhichsentence is
irrelevant thanks to(B1) and(B3).

We now need to show several things: (1)≤ is a total pre-order onW, anchored on
[K], (2)� is a reflexive sub-relation of≤, (3)K > φ = K >(≤,�) φ for all φ.

(1)≤ is a total pre-order onW, anchored on[K] To show≤ is a total pre-order we
need to show≤ is transitive and complete. First we show transitivity. So suppose
w1 ≤ w2 andw2 ≤ w3, i.e.,¬w1 6∈ K > (¬w1 ∧ ¬w2) and¬w2 6∈ K > (¬w2 ∧
¬w3). We need to showw1 ≤ w3, i.e.,¬w1 6∈ K > (¬w1 ∧ ¬w3). Equivalently
we can show that if¬w1 ∈ K > (¬w1 ∧ ¬w3) and¬w2 6∈ K > (¬w2 ∧ ¬w3)
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then¬w1 ∈ K > (¬w1 ∧ ¬w2). But from ¬w2 6∈ K > (¬w2 ∧ ¬w3) we get
¬w1 ∧ ¬w2 6∈ K > (¬w1 ∧ ¬w2 ∧ ¬w3) by rule (X2) in Lemma B. Hence, by
(B8), K > (¬w1 ∧ ¬w2 ∧ ¬w3) ⊆ K > (¬w1 ∧ ¬w2). Meanwhile from¬w1 ∈
K > (¬w1 ∧ ¬w3) we deduce¬w1 ∈ K > (¬w1 ∧ ¬w2 ∧ ¬w3) from (B5). Using
this withK > (¬w1 ∧¬w2 ∧¬w3) ⊆ K > (¬w1 ∧¬w2) gives the required¬w1 ∈
K > (¬w1 ∧ ¬w2).

To show≤ is complete we need to show eitherw1 ≤ w2 or w2 ≤ w1, i.e., either
¬w1 6∈ K > (¬w1 ∧ ¬w2) or ¬w2 6∈ K > (¬w2 ∧ ¬w1). This follows easily from
(B1) and(B2).

It remains to show≤ is anchored on[K], i.e.,min(W,≤) = [K]. Letw ∈min(W,≤).
Then¬w 6∈ K > (¬w ∧ ¬w′) for all w′ ∈ W. By repeated use of rule(X3) from
Lemma B we obtain from this¬w 6∈ K >

∧

w′∈W ¬w′. Since⊥ ≡
∧

w′∈W ¬w′ this
gives¬w 6∈ K >⊥ by (B3). Hence, sinceK > ⊥ = K by (B4), this gives in turn
¬w 6∈ K, which is equivalent tow ∈ [K]. Thus we have shownmin(W,≤)⊆ [K].
For the converse direction supposew 6∈ min(W,≤). Then¬w ∈ K > (¬w ∧¬w′)
for somew′ ∈ W. Using this with(X1) gives¬w ∈ K + (w ∨ w′), equivalently
(w∨w′) → ¬w ∈ K. Since¬w ≡ ((w∨w′) → ¬w), this is equivalent to¬w ∈ K,
i.e.,w 6∈ [K] as required.

(2)� is a reflexive sub-relation of≤ First, to show� is reflexive we need to show
¬w 6∈ K > ¬w for all w ∈ W. This is immediate from(B2). To show� is a
sub-relation of≤ we need to showw1 � w2 implies w1 ≤ w2. We show the
contrapositive. So supposew1 6≤ w2. Since we have already shown above that≤
is connected, this means we must havew2 ≤ w1, i.e.,¬w2 6∈ K > (¬w1 ∧ ¬w2).
Hence, by(B8), K > (¬w1 ∧ ¬w2) ⊆ K > ¬w2. Our assumptionw1 6≤ w2 yields
¬w1 ∈ K > (¬w1 ∧ ¬w2), and so using this withK > (¬w1 ∧ ¬w2) ⊆ K > ¬w2

gives¬w1 ∈ K > ¬w2, i.e.,w1 6� w2 as required.

(3)K > φ = K >(≤,�) φ for all φ Let φ ∈ L. We will show[K > φ] = {w | w �

w′ for somew′ ∈ min([¬φ],≤)}. Let [¬φ] = {x1, . . . , xm} and letS = {i | xi ∈
min([¬φ],≤)}. We will first show

K > φ = K >
∧

i∈S

¬xi.

To see this first note thatK > φ = K >
∧m

i=1 ¬xi = K > (
∧

i∈S ¬xi) ∧ (
∧

j 6∈S ¬xj)
by (B3). Now let j 6∈ S. Then we know there existsi ∈ S such thatxi < xj
(otherwisej ∈ S), so¬xj ∈ K > (¬xi ∧ ¬xj) for somei ∈ S. Using this with
(B5) gives¬xj ∈ K > (

∧

i∈S ¬xi) ∧ (
∧

i 6∈S ¬xi). Since this holds for eachj 6∈ S
we obtain

∧

j 6∈S ¬xj ∈ K > (
∧

i∈S ¬xi) ∧ (
∧

j 6∈S ¬xj) by (B1). Hence, from rule
(X4) in Lemma B, we getK > (

∧

i∈S ¬xi) ∧ (
∧

j 6∈S ¬xj) = K >
∧

i∈S ¬xi, i.e.,
K > φ = K >

∧

i∈S ¬xi as required.
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Now supposew ∈ [K > φ]. We must show there existsi ∈ S such thatw � xi.
But fromw ∈ [K > φ] we get¬w 6∈ K > φ. From the above, this is the same as
¬w 6∈ K >

∧

i∈S ¬xi. By (B7) this means we must have¬w 6∈ K > ¬xi for some
i ∈ S, i.e.,w � xi as required.

For the converse direction, choosei ∈ S such thatw � xi. Then¬w 6∈ K > ¬xi.
Now, for all i′ ∈ S such thati′ 6= i we havexi ≤ xi′ , i.e.,¬xi 6∈ K > (¬xi ∧
¬xi′). By repeated application of rule(X3) from Lemma B we obtain¬xi 6∈ K >
∧

i′∈S ¬xi′ . Hence, from(B8), K >
∧

i′∈S ¬xi′ ⊆ K > ¬xi. Since¬w 6∈ K > ¬xi,
this gives us¬w 6∈ K >

∧

i′∈S ¬xi′ = K > φ, and sow ∈ [K > φ] as required.

B Proofs for Section 3

Proposition 9 (i). If (≤,�) is transitive then>(≤,�) satisfies:

(BTran) If K > θ ⊆ (K > φ) + ¬φ thenK > θ ⊆ K > φ

(ii). If > is a removal operator satisfying(BTran) then the relation� of C(K,>)
is transitive.

PROOF. (i). SupposeK>(≤,�)θ ⊆ (K>(≤,�)φ)+¬φ, equivalently[K>(≤,�)φ]∩
[¬φ] ⊆ [K >(≤,�) θ], and letw ∈ [K >(≤,�) φ]. We must showw ∈ [K >(≤,�) θ].
But from w ∈ [K >(≤,�) φ] we knoww � w′ for somew′ ∈ min([¬φ],≤). By
reflexivity of � we knoww′ ∈ [K >(≤,�) φ] and obviously alsow′ ∈ [¬φ]. From
the assumption[K >(≤,�) φ] ∩ [¬φ] ⊆ [K >(≤,�) θ] we deducew′ ∈ [K >(≤,�) θ],
i.e.,w′ � w′′ for somew′′ ∈ min([¬θ],≤). Then by transitivity of� we get also
w � w′′ and sow ∈ [K >(≤,�) θ] as required.

(ii) . Suppose¬w 6∈ K > ¬w′ and¬w′ 6∈ K > ¬w′′. Using(B1) this is equivalent
tow ∈ [K > ¬w′] andw′ ∈ [K > ¬w′′]. We must showw ∈ [K > ¬w′′]. But from
w′ ∈ [K >¬w′′] and the fact[w′] = {w} we know[K >¬w′]∩ [w′] ⊆ [K >¬w′′].
Applying (BTran) to this yields[K > ¬w′] ⊆ [K > ¬w′′] (with a little help from
(B1)) from which we obtain the requiredw ∈ [K > ¬w′′] fromw ∈ [K > ¬w′].

Proposition 10Any removal operator which satisfies(BTran) and(B5′) also sat-
isfies(B6).

PROOF. Supposeθ ∈ K > (θ ∧ φ). To showK > φ ⊆ K > (θ ∧ φ) it suffices by
(BTran) to showK > φ ⊆ (K > (θ ∧ φ)) + ¬(θ ∧ φ). But from the assumption
θ ∈ K > (θ∧φ) we know(K> (θ∧φ)) +¬(θ∧φ) = (K > (θ∧φ))+¬φ, which
containsK > φ by (B5′) as required.
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Recall the condition (a) on(≤,�):

(a) If w1 ∼ w2 andw1 � w2 thenw2 � w1

Proposition 11(i). If (≤,�) satisfies (a) then>(≤,�) satisfies:

(BPriority) If θ ∈ K > φ andφ 6∈ K > θ thenθ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(BPriority) thenC(K,>) satisfies (a).

PROOF. (i). Supposeθ ∈ K >(≤,�) φ, φ 6∈ K >(≤,�) θ and, for contradiction,θ 6∈
K>(≤,�) (φ∧θ). Then fromφ 6∈ K>(≤,�)θ we know from(B1) that[K>(≤,�)θ] *
[φ] and so there existw1, w2 such thatw1 ∈ [¬φ],w1 � w2 andw2 ∈ min([¬θ],≤),
while from θ 6∈ K >(≤,�) (φ ∧ θ) we know there existz, w such thatz ∈ [¬θ],
z � w andw ∈ min([¬(φ ∧ θ)],≤). We have the following inequalities:

w ≤ w1 � w2 ≤ z � w.

To see this, notew1 � w2 and z � w are both given,w ≤ w1 follows since
w1 ∈ [¬φ] and the minimality ofw, while w2 ≤ z follows from z ∈ [¬θ] and
the minimality ofw2. Since�⊆≤ this yieldsw ≤ w1 ≤ w2 ≤ z ≤ w, thus
w ∼ w1 ∼ w2 ∼ z, and in particularw1 ∼ w2. Using this withw1 � w2 and
property (a) yieldsw2 � w1. Now, the above proved inequality also givesw1 ≤ w,
which using the minimality ofw is enough to showw1 ∈ min([¬φ],≤). Hence
w2 ∈ [K >(≤,�) φ]. Butw2 ∈ [¬θ], contradictingθ ∈ K >(≤,�) φ.

(ii) . We will showw1 � w2 andw2 6� w1 impliesw1 < w2. So supposew1 � w2

andw2 6� w1, i.e., by definition ofC(K,>),¬w1 6∈ K>¬w2 and¬w2 ∈ K>¬w1.
Then applying(BPriority) (and(B3)) to this gives¬w2 ∈ K > (¬w1 ∧ ¬w2),or
i.e.,w1 < w2 as required.

Proposition 12(i). If (≤,�) is both transitive and satisfies (a) then>(≤,�) satisfies:

(BConserv) If K > θ 6⊆ K > φ then there existsλ ∈ L∗ such that

φ ⊢ λ and(K > θ) ∪ (K > λ) ⊢ φ

(ii). If > is a removal operator satisfying(BConserv) thenC(K,>) is transitive
and satisfies (a).

PROOF. (i). Let(≤,�) be a transitive context which satisfies (a). SupposeK>(≤,�)

θ * K >(≤,�) φ. Then since>(≤,�) satisfies(BTran) by Proposition 9(i) we know
K >(≤,�) θ * (K >(≤,�) φ) + ¬φ. Now let>(φ) ∈ L, resp.>(θ), denote some

38



sentence such thatK >(≤,�) φ = Cn(>(φ)), resp.K >(≤,�) θ = Cn(>(θ)).
So fromK >(≤,�) θ * (K >(≤,�) φ) + ¬φ we know>(φ) ∧ ¬φ 6⊢ >(θ). Let
λ = ¬(>(φ) ∧ ¬φ ∧ ¬ > (θ)). Then we knowλ ∈ L∗ andφ ⊢ λ. We will show
>(λ) ∧ >(θ) ⊢ φ, which will suffice. Letw1 ∈ [>(λ) ∧ >(θ)]. We must show
w1 ∈ [φ]. But fromw1 ∈ [>(λ)] we knoww1 � w2 for somew2 ∈ min([¬λ],≤).
Sincew2 ∈ [¬λ] and by definition ofλ we knoww2 ∈ [>(φ) ∧ ¬φ] = [K >(≤,�)

φ]∩ [¬φ] and so,w2 ∈ min([¬φ],≤) by Lemma A. Now suppose for contradiction
w1 ∈ [¬φ]. Then the minimality ofw2 givesw2 ≤ w1. Using this withw1 � w2

and (a) yieldsw2 � w1. Now since alsow1 ∈ [>(θ)] we knoww1 � w3 for some
w3 ∈ min([¬θ],≤). So from this and transitivity we obtainw2 � w3 and thus
w2 ∈ [>(θ)]. But, looking at the definition ofλ, this contradictsw2 ∈ [¬λ]. Hence
w1 ∈ [φ] as required.

(ii) . To show� is transitive we need to show that if¬w1 6∈ K > ¬w2 and¬w2 6∈
K > ¬w3 then¬w1 6∈ K > ¬w3. Equivalently, if¬w1 6∈ K > ¬w2 and¬w1 ∈
K > ¬w3 then¬w2 ∈ K > ¬w3. But if ¬w1 6∈ K > ¬w2 and¬w1 ∈ K > ¬w3

thenK > ¬w3 6⊆ K > ¬w2. Hence, by(BConserv), there existsλ ∈ L∗ such that
¬w2 ⊢ λ and(K > ¬w3) ∪ (K > λ) ⊢ ¬w2. Now, sinceλ is not a tautology, it
follows from ¬w2 ⊢ λ that in fact¬w2 ≡ λ (because the only sentences strictly
weaker than¬w2 are the tautologies). So, using(B3), K > λ = K > ¬w2. Hence
we may rewrite(K >¬w3)∪ (K > λ) ⊢ ¬w2 as(K >¬w3)∪ (K >¬w2) ⊢ ¬w2,
which in turn is equivalent to:

[K > ¬w3] ∩ [K > ¬w2] ⊆ [¬w2]. (B.1)

Clearlyw2 6∈ [¬w2], which from the above meansw2 cannot be an element of both
[K>¬w3] and[K>¬w2]. By (B2) we know¬w2 6∈ K>¬w2, i.e.,w2 ∈ [K>¬w2].
Hence it must be thatw2 6∈ [K > ¬w3], i.e.,¬w2 ∈ K > ¬w3 as required.

It remains to show condition (a) is satisfied. So supposew1 ∼ w2 andw1 � w2.
We must showw2 � w1. In fact we will show that [w1 ∼ w2 andw2 6� w1] implies
w1 6� w2. So supposew1 ∼ w2 andw2 6� w1, i.e.,¬w1 6∈ K > (¬w1 ∧ ¬w2),
¬w2 6∈ K > (¬w2 ∧ ¬w1) and¬w2 ∈ K > ¬w1. Then since¬w2 ∈ (K > ¬w1) \
(K > (¬w2 ∧ ¬w1)) we knowK > ¬w1 6⊆ K > (¬w2 ∧ ¬w1), so we may apply
(BConserv) to deduce the existence ofλ ∈ L∗ such that¬w2 ∧ ¬w1 ⊢ λ and
(K > ¬w1) ∪ (K > λ) ⊢ ¬w2 ∧ ¬w1. Since obviouslyw1 6∈ [¬w2 ∧ ¬w1], this
latter implies in particular thatw1 6∈ [K > ¬w1] ∩ [K > λ]. And since we know
w1 ∈ [K > ¬w1] by (B2), we deduce from thisw1 6∈ [K > λ], i.e.,¬w1 ∈ K > λ.
Now, since¬w2 ∧ ¬w1 ⊢ λ andλ is not a tautology, it must be the case that either
(i) λ ≡ ¬w1 ∧ ¬w2, or (ii) λ ≡ ¬w1, or (iii) λ ≡ ¬w2. We show(i) and(ii) lead
to contradictions, leaving(iii) as the only possibility, from which we then deduce
¬w1 ∈ K > ¬w2 (using (B3)), i.e.,w1 6� w2 as required. But if(i) holds then
¬w1 ∈ K > (¬w1 ∧ ¬w2), contradicting our initial assumptionw1 ∼ w2, while if
(ii) holds then¬w1 ∈ K > ¬w1, contradicting(B2). This completes the proof.
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Recall the postulate(BSConserv):

(BSConserv) If K > θ 6⊆ K > φ then(K > θ) ∪ (K > φ) ⊢ φ

and the condition (b) on(≤,�):

(b) If w1 ∼ w2 thenw1 � w2

Proposition 13 (i). If (≤,�) is transitive and satisfies (b) then>(≤,�) satisfies
(BSConserv). (ii). If > is a removal operator satisfying(BSConserv)thenC(K,>)
is transitive and satisfies (b).

PROOF. (i). Suppose(≤,�) is transitive and satisfies (b), and supposeK >(≤,�)

θ 6⊆ K >(≤,�) φ. Since>(≤,�) satisfies(BTran) by Proposition 9(i) this implies
K >(≤,�) θ * (K >(≤,�) φ) + ¬φ. Hence there existsw′ such thatw′ ∈ [K >(≤,�)

φ]∩ [¬φ] butw′ 6∈ [K >(≤,�) θ]. We must show[K >(≤,�) θ] ∩ [K >(≤,�) φ] ⊆ [φ].
Suppose for contradiction there existsw ∈ [K>(≤,�) θ]∩ [K>(≤,�)φ]∩ [¬φ]. Then
bothw andw′ are elements of[K>(≤,�)φ]∩ [¬φ] = min([¬φ],≤) by Lemma A, so
w ∼ w′ which impliesw′ � w by (b). Meanwhile fromw ∈ [K >(≤,�) θ] we know
w � w′′ for somew′′ ∈ min([¬θ],≤). By transitivity of� we deducew′ � w′′ and
sow′ ∈ [K >(≤,�) θ], giving the required contradiction.

(ii) : Suppose> satisfies(BSConserv). Since(BSConserv)clearly implies(BCon-
serv), we know(≤,�) is transitive by Proposition 12(ii) . It remains to show (b)
holds. To showw1 ∼ w2 implies w1 � w2 we need to show that if¬w1 6∈
K > (¬w1 ∧ ¬w2) and¬w2 6∈ K > (¬w2 ∧ ¬w1) then¬w1 6∈ K > ¬w2. But if
¬w1 ∈ (K>¬w2)\(K>(¬w1∧¬w2)) thenK>¬w2 6⊆ K>(¬w1∧¬w2), so we
may apply(BSConserv)to deduce(K>¬w2)∪(K>(¬w1∧¬w2)) ⊢ ¬w1∧¬w2.
Sincew2 6∈ [¬w1 ∧¬w2], this gives usw2 6∈ [K >¬w2]∩ [K > (¬w1 ∧¬w2)]. But
we knoww2 ∈ [K >¬w2] by (B2), hence we must havew2 6∈ [K > (¬w1 ∧¬w2)],
i.e.,¬w2 ∈ K > (¬w1 ∧ ¬w2).

C Proofs for Section 4

Proposition 14Let> be a basic removal operator forK, then> satisfies: Ifφ 6∈ K
thenK ⊆ K > φ

PROOF. First note that by(B3) and(B4),K = K>(⊥∧φ). The rule then follows
as an instance of(B8) (substitute⊥ for θ there).

Proposition 15 (i). If (≤,�) satisfies (c) then>(≤,�) satisfies(Vacuity). (ii). If >
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is a removal operator satisfying(Vacuity) thenC(K,>) satisfies (c).

PROOF. (i): Suppose(≤,�) satisfies (c). We only need to show the ‘missing half’
of (Vacuity): If φ 6∈ K thenK>(≤,�)φ ⊆ K. So supposeφ 6∈ K. Then there exists
w0 ∈ [K]∩ [¬φ]. Since≤ is anchored on[K],w0 ∈ min([¬φ],≤). Sincew0 ∈ [K],
we know by (c) thatw � w0 for all w ∈ [K]. Thus every world in[K] is �-below
some element ofmin([¬φ],≤) (namelyw0). Hence[K] ⊆ [K>(≤,�)φ] which gives
the required conclusion.

(ii) : Suppose> satisfies(Vacuity), and supposew1, w2 ∈ [K]. w2 ∈ [K] gives
¬w2 6∈ K. Hence, from(Vacuity),K>¬w2 ⊆ K, i.e.,[K] ⊆ [K>¬w2]. Using this
with w1 ∈ [K] yieldsw1 ∈ [K>¬w2], which entails the required¬w1 6∈ K>¬w2.

Recall the definition of÷′ from>:

K ÷′ φ =











K if φ 6∈ K

K > φ otherwise.

Proposition 16If (≤,�) is theK-context corresponding to>, then theK-context
corresponding to÷′ defined above is(≤,�′), where�′ is obtained from� by
settingw1 �

′ w2 iff w1 � w2 orw1, w2 ∈ [K].

PROOF. First consider the caseφ 6∈ K. In this case by Proposition 14 we already
knowK ⊆ K >(≤,�′) φ, so we just need to showK >(≤,�′) φ ⊆ K, i.e., [K] ⊆
[K >(≤,�′) φ]. So letw ∈ [K]. Sinceφ 6∈ K there existsw′ ∈ [K] ∩ [¬φ]. Clearly
since≤ is anchored on[K] we must havew′ ∈ min([¬φ],≤), while sincew,w′ ∈
[K] we havew �′ w′ from the definition of�′. Hencew ∈ K>(≤,�′)φ as required.

Now consider the caseφ ∈ K. In this case we must show[K>(≤,�′)φ] = [K>(≤,�)

φ]. The right-to-left inclusion is immediate from the fact�⊆�′ by definition of�′.
For the left-to-right inclusion supposew ∈ [K >(≤,�′) φ]. Thenw �′ w′ for some
w′ ∈ min([¬φ],≤). Sincew′ ∈ [¬φ] andφ ∈ K we knoww′ 6∈ [K], so by
definition of�′ we must havew � w′. Hencew ∈ [K >(≤,�) φ] as required.

Recall the definition of�′′ from �: w1 �
′′ w2 iff eitherw1 � w2 or [w1 ∈ [K] and

w′ � w2 for somew′ ∈ [K]], and recall that if> is the operator corresponding to
(≤,�), thenV(>) is the operator corresponding to(≤,�′′).
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Proposition 17 Let > be a removal operator forK corresponding toK-context
(≤,�) and let÷ = V(>). Then

K ÷ φ =











K ∩K > φ if K ∪K > φ is consistent

K > φ otherwise

PROOF. First consider the caseK ∪K > φ is consistent, i.e.,[K]∩ [K > φ] 6= ∅.
We must showK ÷ φ = K ∩ K > φ, equivalently[K ÷ φ] = [K] ∪ [K > φ].
For the left-to-right inclusion supposew ∈ [K ÷ φ] andw 6∈ [K]. Thenw �′′ w′

for somew′ ∈ min([¬φ],≤). Sincew 6∈ [K] the definition of�′′ givesw � w′

and sow ∈ [K > φ] as required. For the right-to-left inclusion, the fact[K ÷ φ] ⊇
[K > φ] is immediate from the fact�⊆�′′ by definition of�′′. It remains to prove
[K ÷ φ] ⊇ [K]. So supposew ∈ [K]. Since we assume[K] ∩ [K > φ] 6= ∅ there
existsw0 ∈ [K]∩ [K>φ], i.e.,w0 ∈ [K] andw0 � w′ for somew′ ∈ min([¬φ],≤).
By definition of�′′ all this givesw �′′ w′ and sow ∈ [K ÷ φ] as required.

Now consider the case[K] ∩ [K > φ] = ∅. We must show[K ÷ φ] = [K > φ].
Once more the right-to-left inclusion is immediate from�⊆�′′. For the converse
direction supposew ∈ [K ÷ φ]. Thenw �′′ w′ for somew′ ∈ min([¬φ],≤). By
definition of�′′ we know eitherw � w′ or [w ∈ [K] andw′′ � w′ for some
w′′ ∈ [K]]. But this latter case would givew′′ ∈ [K] ∩ [K > φ], contrary to our
assumption[K] ∩ [K > φ] = ∅. Hence we must be in the former casew � w′,
which impliesw ∈ [K > φ] as required.

Proposition 18 (i). If (≤,�) satisfies (d) then>(≤,�) satisfies(Inclusion). (ii). If
> is a removal operator satisfying(Inclusion) thenC(K,>) satisfies (d).

PROOF. (i): Suppose(≤,�) satisfies (d). Then since every element of[K] is �-
below every world inW, it is clear that[K] ⊆ [K>(≤,�) φ] for all φ, i.e.,K >(≤,�)

φ ⊆ K as required.

(ii) : Suppose> satisfies(Inclusion) and supposew1 ∈ [K]. Let w2 ∈ W. Then
[K] ⊆ [K > ¬w2] by (Inclusion) sow1 ∈ [K > ¬w2], i.e.,¬w1 6∈ K > ¬w2. Thus
w1 � w2 as required.

Recall that the incarceratioṅ− of a removal operator> is defined by setting, for
eachφ ∈ L∗,

K −̇ φ = K ∩K > φ.
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Proposition 19If (≤,�) is theK-context corresponding to>, then theK-context
corresponding tȯ− is (≤,�′′), where�′′ is obtained from� by settingw1 �

′′ w2

iff w1 � w2 orw1 ∈ [K]. Furthermore:
(i). If � is transitive then so is�′′.
(ii) . If � satisfies (a) then so does�′′.
(iii) . If � satisfies (b) then so does�′′.

PROOF. First we show[K >(≤,�′′) φ] = [K] ∪ [K >(≤,�) φ]. We have thatw is an
element of the left-hand-side iffw �′′ w′ for somew′ ∈ min([¬φ],≤). But from
the definition of�′′ this latter is the same as saying that eitherw ∈ [K] orw � w′

for somew′ ∈ min([¬φ],≤), i.e.,w ∈ [K] ∪ [K >(≤,�) φ] as required.

(i). Suppose� is transitive and thatw1 �′′ w2 andw2 �′′ w3. We must show
w1 �

′′ w3. If w1 ∈ [K] then we get the required conclusion, so supposew1 6∈ [K].
Then fromw1 �′′ w2 we knoww1 � w2. Sincew1 6∈ [K] we must also have
w2 6∈ [K] (because�⊆≤ so fromw1 � w2 we knoww1 ≤ w2), and so from
w2 �

′′ w3 we getw2 � w3. Hence we obtain the desiredw1 � w3 by applying the
transitivity of�.

(ii) . Suppose� satisfies (a) and supposew1 ∼ w2 andw1 �′′ w2. We must show
w2 �

′′ w1. Note that, sincew1 ∼ w2, we havew1 ∈ [K] iff w2 ∈ [K]. If w2 ∈ [K]
then we obtainw2 �

′′ w1 immediately, while ifw2 6∈ [K] then alsow1 6∈ [K], and
then the desired conclusion follows from the assumption that � satisfies (a).

(iii) . Follows from similar reasoning to part(ii) above.

Proposition 20 (i). If (≤,�) satisfies (e) then>(≤,�) satisfies(Recovery). (ii). If
> is a removal operator satisfying(Recovery)thenC(K,>) satisfies (e).

PROOF. For this proof, first note the(Recovery)rule is equivalent to[K > φ] ∩
[φ] ⊆ [K].

(i): Suppose(≤,�) satisfies (e). Letw ∈ [K > φ] ∩ [φ]. Then, sincew ∈ [K > φ],
w � w′ for somew′ ∈ min([¬φ],≤). Sincew ∈ [φ] andw′ ∈ [¬φ] we cannot have
w = w′. Hence, by (e),w ∈ [K] as required.

(ii) : Suppose> satisfies(Recovery)and supposew1 � w2. Thenw1 ∈ [K >¬w2].
We need to show eitherw1 = w2 or w1 ∈ [K]. But if w1 6= w2 thenw1 ∈ [¬w2],
and so we can concludew1 ∈ [K] using(Recovery).

Proposition 21The following are equivalent:
(i). > is a full AGM contraction operator (i.e., satisfying the basic and supplemen-
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tary AGM postulates).
(ii). > satisfies(B1)–(B8) plus(Inclusion) and(Recovery).
(iii). > = >(≤,�) for some(≤,�) which satisfies (d) and (e).

PROOF. Recall that (d) + (e) specifies� uniquely in terms of≤. Then equivalence
(i)⇔(ii) follows from the well-established representation resultsrelating full AGM
contraction to total pre-orders over worlds [4,5]. The equivalence(ii)⇔(iii) follows
from Theorem 6 and Propositions 18 and 20.

D Proofs for Section 5

Proposition 22> is a linear liberation operator iff it is a basic removal operator
which satisfies(Hyperreg).

PROOF. We need to show the list of postulates for linear liberation is equivalent to
(B1)–(B8) plus(Hyperreg). So first suppose(B1)–(B3) hold together with(Vacu-
ity) and(Hyperreg). Then(B4) holds since it is implied by(Vacuity). To see(B5)
holds we show the contrapositive. So supposeθ 6∈ K > (θ∧φ∧ψ). Then, by(B1),
θ∧φ 6∈ K>(θ∧φ∧ψ). HenceK>(θ∧φ∧ψ) = K>(θ∧φ) by (Hyperreg), and so
the desiredθ 6∈ K > (θ ∧ φ) follows. (B6) and(B8) follow straightforwardly using
(Hyperreg), while (B7) also holds easily, once it is noticed that the Decomposition
property holds for all linear liberation operators eitherK > (θ ∧ φ) equals either
K > θ orK > φ.

For the other direction it amounts to showing that the addition of (Hyperreg) to
the basic removal postulates allows the derivation of(Vacuity). This follows by
noticingK = K > (⊥ ∧ φ) by (B3) and(B4). (Vacuity) is then seen to be just an
instance of(Hyperreg).

Proposition 23 (i). If (≤,�) satisfies (f) then>(≤,�) satisfies(Hyperreg). (ii). If
> is a removal operator satisfying(Hyperreg) thenC(K,>) satisfies (f).

PROOF. (i): Suppose(≤,�) satisfies (f) and supposeθ 6∈ K>(≤,�) (θ∧φ). Since
>(≤,�) satisfies(B8), we already knowK>(≤,�) (θ∧φ) ⊆ K>(≤,�)θ, so it remains
to showK>(≤,�)θ ⊆ K>(≤,�) (θ∧φ), equivalently[K>(≤,�) (θ∧φ)] ⊆ [K>(≤,�)

θ]. But by the proof of(B8) in Theorem 6, we know ifθ 6∈ K>(≤,�)(θ∧φ) then there
exists somew0 ∈ [¬θ]∩min([¬(θ∧φ)],≤). Clearly thenw0 ∈ min([¬θ],≤). Now
letw ∈ [K >(≤,�) (θ ∧ φ)]. Thenw � w′ for somew′ ∈ min([¬(θ ∧ φ)],≤). Since
w′ ∼ w0 we may apply (f) to deducew � w0, and so sincew0 ∈ min([¬θ],≤) we
getw ∈ [K >(≤,�) θ]. Hence[K >(≤,�) (θ ∧ φ)] ⊆ [K >(≤,�) θ] as required.
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(ii) : Suppose> satisfies(Hyperreg) and supposew1 ∼ w2. This translates into
¬w1,¬w2 6∈ K>(¬w1∧¬w2). From this we know, using(Hyperreg), thatK>¬w1

andK > ¬w2 are both equal toK > (¬w1 ∧ ¬w2). Hence for anyw3 ∈ W,
¬w3 6∈ K > ¬w1 iff ¬w3 6∈ K > ¬w2, i.e.,w3 � w1 iff w3 � w2. ThusC(K,>)
satisfies (f).

Proposition 24> is a σ-liberation operator iff> = >(≤,�) for some transitive
(≤,�) satisfying (b) and (f).

PROOF. By results in [10] (see Corollary 3.19, p.62 there),> is aσ-liberation op-
erator iff it is a linear liberation operator satisfying(BSConserv). From Proposition
22 this is the same as saying> is a basic removal operator satisfying(Hyperreg)
and(BSConserv). The result then follows by combining Theorem 6 with Proposi-
tions 13 and 23.

Proposition 25Let (≤,�) be a transitiveK-context. Then(≤,�) satisfies (b) iff
(≤,�) satisfies (f).

PROOF. Suppose(≤,�) satisfies (f) and supposew1 ∼ w2. Then sincew1 � w1

by reflexivity of �, we may apply (f) to deducew1 � w2. Thus (b) holds. Note
this implication (f)⇒ (b) holds even without assuming(≤,�) is transitive. This
assumptionis required for the converse implication: Supposew1 ∼ w2 andw3 �
w1. From the former we getw1 � w2 using (b) and so the desiredw3 � w2 follows
from transitivity.

Proposition 26The following are equivalent:
(i). > is aσ-liberation operator.
(ii). > is a linear liberation operator which satisfies(BTran) .
(iii). > is a basic removal operator which satisfies(BSConserv).

PROOF. As stated in the text.

Proposition 27 (i). If (≤,�) satisfies (e′) then>(≤,�) satisfies(Dichotomy). (ii).
If > is a removal operator satisfying(Dichotomy) thenC(K,>) satisfies (e′).

PROOF. For (i), observe firstly that if(≤,�) satisfies (e′) then for everyφ, it
follows that for everyw1, w2 ∈ [K > φ], w1 ∼ w2. Now suppose that(K > θ) ∪
(K > φ) 6⊢ ⊥. That means there is aw such thatw ∈ [K > θ] andw ∈ [K > φ].
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From the observation above it follows that for everyw′ ∈ [K > θ], w′ ∼ w and for
everyw′′ ∈ [K > φ], w′′ ∼ w. And sow′ ∼ w′′ for everyw′ ∈ [K > θ] and every
w′′ ∈ [K > φ]. From (e′) it then follows that[K > θ] = [K > φ], which means that
K > θ = K > φ.

For (ii), considerC(K,>) = (≤,�) as defined in Definition 7. We need to show
thatw1 � w2 iff w1 ∼ w2. So, suppose first thatw1 � w2. That is,¬w1 /∈ K>¬w2.
From this it follows thatw1 ∈ [K >¬w2]. By (B2) it follows thatw1 ∈ [K >¬w1].
From the combination of these two results it follows that(K>¬w1)∪K>w2) 6⊢ ⊥,
and by(Dichotomy) we then have thatK > ¬w1 = K > ¬w2. We can distinguish
between two cases:

(Case 1)K>¬w1 = K>¬w2 = K> (¬w1 ∧¬w2): In this case we immediately
get that¬w1 /∈ K > (¬w1 ∧ ¬w2), from which it follows thatw1 ≤ w2, and we
get that¬w2 /∈ K > (¬w1 ∧ ¬w2), from which it follows thatw2 ≤ w1. This
meansw1 ∼ w2, which is what we wanted to prove.

(Case 2) (K > ¬w1 = K > ¬w2) 6= K > (¬w1 ∧ ¬w2): In this case it follows by
(Dichotomy) that(K>¬w1)∪ (K> (¬w1∧¬w2)) ⊢ ⊥ and(K>¬w2)∪ (K>
(¬w1 ∧ ¬w2)) ⊢ ⊥. Since we know thatw1 ∈ [K > ¬w1] andw2 ∈ [K > ¬w2]
it follows thatw1 /∈ [K > ¬w1 ∧ ¬w2] andw2 /∈ [K > ¬w1 ∧ ¬w2]. So¬w1 ∈
K > (¬w1 ∧ ¬w2) and¬w2 ∈ K > (¬w1 ∧ ¬w2), and by(B1) we then have
¬w1 ∧ ¬w2 ∈ K > (¬w1 ∧ ¬w2), which contradicts(B2).

So, we have shown that in Case 1 the desired results follow, and that Case 2 cannot
occur, which means we have shown that ifw1 � w2 thenw1 ∼ w2.

Now suppose thatw1 ∼ w2. That is,¬w1 /∈ K > (¬w1 ∧ ¬w2) and¬w2 /∈ K >
(¬w1 ∧ ¬w2). Sow1 ∈ [K > (¬w1 ∧ ¬w2)] andw2 ∈ [K > (¬w1 ∧ ¬w2)]. By
(B2) it also follows thatw1 ∈ [K > ¬w1] andw2 ∈ [K > ¬w2]. This means that
(K>¬w1)∪(K>(¬w1∧¬w2)) 0 ⊥ and that(K>¬w2)∪(K>(¬w1∧¬w2)) 0 ⊥,
and by (Dichotomy) it then follows thatK > ¬w1 = K > (¬w1 ∧ ¬w2) and
K > ¬w2 = K > (¬w1 ∧ ¬w2). Therefore¬w1 /∈ K > ¬w2, which means that
w1 � w2.

Proposition 28The following are equivalent:
(i). > is a dichotomous liberation operator.
(ii). > satisfies(B1)–(B8) plus(Dichotomy).
(iii). > = >(≤,�) for some(≤,�) which satisfies (e′).

PROOF. As stated in the text.
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E Proofs for Section 6

Proposition 29(i). If (≤,�) satisfies (g) then>(≤,�) satisfies:

(B9) If θ ∈ K > (θ ∧ φ) thenφ 6∈ K > θ

(ii). If > is a removal operator satisfying(B9) thenC(K,>) satisfies (g).

PROOF. (i). Suppose(≤,�) satisfies (g) and supposeθ ∈ K >(≤,�) (θ ∧ φ).
Let w0 ∈ min([¬(θ ∧ φ)],≤). Then, as we saw in the proof of(B5), this means
w ∈ [θ] for all w ≤ w0. This implies(1) w0 ∈ [¬φ] and (2) w0 < w′ for all
w′ ∈ min([¬θ],≤). Using (g), this latter impliesw0 � w′ for all w′ ∈ min([¬θ],≤)
and so in factw0 ∈ [K >(≤,�) θ]. From this and(1) we concludeφ 6∈ K >(≤,�) θ.

(ii) . Suppose> satisfies(B9) and supposew1 < w2. Then¬w2 ∈ K>(¬w1∧¬w2).
Applying (B9) to this gives¬w1 6∈ K > ¬w2, i.e.,w1 � w2 as required.

Proposition 30(i). If (≤,�) satisfies (h) then>(≤,�) satisfies:

(B10) If ⊢ (θ ∨ φ) andθ 6∈ K > φ thenφ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(B10) thenC(K,>) satisfies (h).

PROOF. (i). Suppose(≤,�) satisfies (h) and suppose⊢ (θ∨φ) andθ 6∈ K>(≤,�)

φ. Then[¬θ] ∩ [K >(≤,�) φ] 6= ∅ so there existw ∈ [¬θ] andw′ ∈ min([¬φ],≤)
such thatw � w′. Since⊢ (θ ∨ φ) andw′ ∈ [¬φ] we knoww′ ∈ [θ]. Hencew 6= w′

so, by (h),w < w′. Now letw0 ∈ [K >(≤,�) (θ ∧ φ)]. We will showw0 ∈ [φ]. But
w0 ∈ [K >(≤,�) (θ ∧ φ)] impliesw0 � w′′ – and hencew0 ≤ w′′ – for somew′′ ∈
min([¬(θ ∧ φ)],≤). Sincew ∈ [¬(θ ∧ φ)] this givesw0 ≤ w and so, sincew < w′,
w0 < w′. We concludew0 ∈ [φ] from this usingw′ ∈ min([¬φ],≤). Hence we have
shown[K>(≤,�)¬(θ∧φ)] ⊆ [φ], which gives the requiredφ ∈ K>(≤,�)¬(θ∧φ).

(ii) . Suppose> satisfies(B10) and letw1 � w2, i.e.,¬w1 6∈ K > ¬w2. If w1 = w2

we are done, so supposew1 6= w2. Then⊢ (¬w1 ∨ ¬w2), so we may apply(B10)
to deduce¬w2 ∈ K > (¬w1 ∧ ¬w2), i.e.,w1 < w2 as required.

Proposition 31(i). If (≤,�) satisfies (j) then>(≤,�) satisfies:

(B11) If ⊢ (θ ∨ φ) andθ ∈ K \K > φ thenφ ∈ K > (θ ∧ φ)

(ii). If > is a removal operator satisfying(B11) thenC(K,>) satisfies (j).
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PROOF. (i). Suppose⊢ (θ ∨ φ) andθ ∈ K \K >(≤,�) φ. Fromθ 6∈ K >(≤,�) φ
we know there existsw0 ∈ [¬θ] such thatw0 � w for somew ∈ min([¬φ],≤).
We now claimw0 < w. Firstly, sincew0 ∈ [¬θ] and⊢ (θ ∨ φ) we knoww0 ∈ [φ]
and so, sincew ∈ [¬φ], we knoww0 6= w. Secondly, sinceθ ∈ K we know
[K] ⊆ [θ] and sow0 6∈ [K]. Applying (j) to these two withw0 � w proves the
desiredw0 < w. From this we deduce the≤-minimal¬θ-worlds must be strictly
below the≤-minimal ¬φ-worlds in≤, which impliesmin([¬(θ ∧ φ)],≤) ⊆ [φ].
This is enough to implyφ ∈ K >(≤,�) (θ ∧ φ).

(ii). Suppose> satisfies(B11). To show (j) supposew1 � w2, i.e.,¬w1 6∈ K>¬w2.
Suppose alsow1 6= w2 and that it is not the case thatw1 ≤ w′ for all w′, i.e.,w1 6∈
[K]. We must show thenw1 < w2. But fromw1 6= w2 we get⊢ (¬w1 ∨¬w2) while
fromw1 6∈ [K] we get¬w1 ∈ K. Applying (B11) to these two and¬w1 6∈ K>¬w2

gives¬w2 ∈ K > (¬w1 ∧ ¬w2), i.e.,w1 < w2 as required.

Proposition 32The following are equivalent:
(i). −̇ is a systematic withdrawal.
(ii). −̇ satisfies(B1)–(B8) plus(Vacuity), (B9) and(B11).
(iii). −̇ = >(≤,�) for some(≤,�) which satisfies (c), (g) and (j).

PROOF. To prove(i)⇔(iii) recall from [11] that−̇ is a systematic withdrawal iff
there is some total pre-order≤ overW such that

K −̇ φ = K ∩ Th(∇≤(min([¬φ],≤))),

where∇≤(X) = {v | ∃w ∈ X s.t.v = w or v < w}. Now observe that (c)+(g)+(j)
are enough to specify� uniquely in terms of≤ via

w1 � w2 iff w1 ∈ [K] orw1 = w2 orw1 < w2.

To see this note that the left-to-right implication is exactly (j). For the converse we
havew1 = w2 impliesw1 � w2 by reflexivity of� andw1 < w2 impliesw1 � w2

by (g). It remains to showw1 ∈ [K] impliesw1 � w2. But if w2 ∈ [K] then the
desired conclusion follows from (c), while ifw2 6∈ [K] thenw1 < w2 and it follows
from (g). Given this, item(iii) of the proposition is the same as saying there exists
some total pre-order≤ overW such that

[K −̇ φ] = [K] ∪ {v ∈ W | ∃w ∈ min([¬φ],≤) s.t.v = w or v < w}

= [K] ∪∇≤(min([¬φ],≤)),

from which we can see that(i) and(iii) are saying the same thing.
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The equivalence(ii)⇔(iii) follows from Theorem 6 along with Propositions 15, 29
and 31.

F Proofs for Section 7

Proposition 33(i). If � is the equality relation then>(≤,�) satisfies:

(B12) ¬φ ∈ K > φ.

(ii). If > is a removal operator satisfying(B12) then� in C(K,>) is the equality
relation.

PROOF. (i). If � is the equality relation then clearly[K>(≤,�) φ] = min([¬φ],≤)
and so¬φ ∈ K >(≤,�) φ as required.

(ii). Suppose> satisfies(B12). To show� in C(K,>) is the equality relation we
need to show¬w1 6∈ K > ¬w2 impliesw1 = w2. But we know by(B12) that
[K > ¬w2] = {w2}. Hence ifw1 6= w2 thenw1 6∈ [K > ¬w2] which means
¬w1 ∈ K > ¬w2 as required.

Proposition 34 If > is a basic removal operator thenR(>) is an AGM revision
operator.

PROOF. Suppose> is generated byK-context(≤,�). ThenK×φ is determined
entirely by the total pre-order≤ via [K × φ] = min([φ],≤). The fact that× is
an AGM revision operator then follows from well-established results linking AGM
revision with total pre-orders over the set of worlds [4,5].

Proposition 35 Let (≤,�) be aK-context. Then�=≤ iff both (f) and (g) are
satisfied.

PROOF. Let (≤,�) be aK-context. Suppose�=≤. Then (f) reduces to the prop-
erty “[w1 ∼ w2 andw3 ≤ w1] impliesw3 ≤ w2”, which clearly holds by transitivity
of ≤, while (g) reduces to the property “w1 < w2 impliesw1 ≤ w2”, which holds
trivially. Conversely suppose(≤,�) satisfies both (f) and (g). We want to show
�=≤. By definition ofK-context we already have�⊆≤. For the converse inclu-
sion supposew1 ≤ w2. If in fact w1 < w2 then we obtain the desiredw1 � w2 by
(g). So supposew1 ∼ w2. Since� is reflexive we knoww1 � w1. Applying (f) to
these two givesw1 � w2 as required.
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Proposition 36 −̇ is a severe withdrawal operator iff it satisfies(B1)–(B4), (Hy-
perreg) and(B9).

PROOF. By results in [12] we know−̇ is a severe withdrawal operator ifḟ− =
>(≤,�) where�=≤. Then the result follows from combining Theorem 6 and Propo-
sitions 23, 29 and 35. (Recall(Hyperreg) implies(B5)–(B8) given the fundamental
rules(B1)–(B4).)
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