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Abstract. We look at iterated non-prioritised belief revision, using as a
starting point a model of non-prioritised revision, similar to Makinson’s
screened revision, which assumes an agent keeps a set of core beliefs
whose function is to block certain revision inputs. We study postulates for
the iteration of this operation. These postulates generalise some of those
which have previously been proposed for iterated AGM (“prioritised”)
revision, including those of Darwiche and Pearl. We then add a second
type of revision operation which allows the core itself to be revised.
Postulates for the iteration of this operator are also provided, as are
rules governing mixed sequences of revisions consisting of both regular
and core inputs. Finally we give a construction of both a regular and core
revision operator based on an agent’s revision history. This construction
is shown to satisfy most of the postulates.

1 Introduction and Preliminaries

The most popular basic framework for the study of belief revision has been the
one due to Alchourrón, Gärdenfors and Makinson (AGM) [1, 10]. This frame-
work has been subjected in more recent years to several different extensions
and refinements. Two of the most interesting of these have been the study of
so-called non-prioritised revision [2, 12, 13, 19], i.e., revision in which the input
sentence is not necessarily accepted, and of iterated revision [3, 5, 7, 8, 17, 21],
i.e., the study of the behaviour of an agent’s beliefs under a sequence of revi-
sion inputs. However, most of the extensions in the former group are concerned
only with single-step revision. Similarly, most of the contributions to the area
of iterated AGM revision are in the setting of normal, “prioritised” revision in
which the input sentence is always accepted. However the question of iterated
non-prioritised revision is certainly an interesting one, as can be seen from the
following example.1

Example 1. Your six-year-old son comes home from school and tells you that
today he had lunch at school with King Gustav. Given your expectations of the

1 Based on an example given in [9–Ch. 7] to illustrate non-prioritised revision.
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King’s lunching habits, you dismiss this information as a product of your son’s
imagination, i.e., you reject this information. But then you switch on the TV
news and see a report that King Gustav today made a surprise visit to a local
school. Given this information, your son’s story doesn’t seem quite so incredible
as it did. Do you now believe your son’s information?

What this example seems to show is that information which is initially re-
jected (such as your son’s information) may still have an influence on the results
of subsequent revisions. In particular if subsequent information lends support to
it, then this could cause a re-evaluation of the decision to reject, possibly even
leading the input to be accepted retrospectively. The main purpose of this paper
is to study patterns of iterated non-prioritised revision such as these.

We will use as a starting point one particular model of non-prioritised revi-
sion, the idea behind which first appeared behind Makinson’s screened revision
[19], and then again as a special case of Hansson et al.’s credibility-limited re-
vision [13]. It is that an agent keeps, as a subset of his beliefs, a set of core
beliefs which he considers “untouchable”. This set of core beliefs then acts as the
determiner as to whether a given revision input is accepted or not: if an input φ
is consistent with the core beliefs then the agent accepts the input and revises
his belief set by φ using a normal AGM revision operator. On the other hand if
φ contradicts the core beliefs then the agent rejects φ rather than give up any
of the core beliefs. In this case his belief set is left undisturbed. We will see that
this quite simple model will already give us a flavour of some of the interesting
issues at stake. For a start, to be able to iterate this operator we need to say
not only what the new belief set is after a revision, but also what the new core
belief set is.

The explicit inclusion in an agent’s epistemic state of a second set of beliefs
to represent the agent’s core beliefs invites the question of what would happen
if this set too were to be subject to revision by external inputs, just like the
normal belief set. This question will also be taken up in this paper. Thus we
will have two different types of revision operator existing side-by-side: the usual
operators described above, which we shall call regular revision operators, and
core revision operators. Again both single-step and iterated core revision will be
looked at. We also look at the particularly interesting possibility of performing
mixed sequences of revisions consisting of both regular and core revisions.

The plan of the paper is as follows. We start in Sect. 2 by briefly describing
the revision operators of AGM and introducing our primitive notions of epis-
temic state and epistemic frame. Then, in Sect. 3, we look at regular revision.
We consider postulates for both the single-step and the iterated case. The latter
will involve adapting some well-known postulates from the literature on iterated
AGM revision – principally those proposed by Darwiche and Pearl [8] – to our
non-prioritised situation. In Sect. 4 we look at some postulates for single-step and
iterated core revision. Some possible rules for mixed sequences of revision inputs
will be looked at in Sect. 5. Then in Sect. 6, using a particular representation of
an agent’s epistemic state, we provide a construction of both a regular and a core
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revision operator. These operators are shown to display most of the behaviour
described by our postulates. We conclude in Sect. 7.

1.1 Preliminaries

We assume a propositional language generated from finitely many propositional
variables. Let L denote the set of sentences of this language. Cn denotes the
classical logical consequence operator. We write Cn(θ) rather than Cn({θ}) for
θ ∈ L and use L+ to denote the set of all classically consistent sentences. For-
mally, a belief set will be any set of sentences K ⊆ L which is (i) consistent, i.e.,
Cn(K) �= L, and (ii) deductively closed, i.e., K = Cn(K). We denote the set of
all belief sets by K. Given K ∈ K and φ ∈ L, we let K + φ denote the expansion
of K by φ, i.e., K + φ = Cn(K ∪ {φ}).

We let W denote the set of propositional worlds associated to L, i.e., the set
of truth-assignments to the propositional variables in L. For any set X ⊆ L of
sentences we denote by [X] the set of worlds in W which satisfy all the sentences
in X (writing [φ] rather than [{φ}] for the case of singletons). Given a set S ⊆ W
of worlds we write Th(S) to denote the set of sentences in L which are satisfied
by all the worlds in S. A total pre-order on W is any binary relation ≤ on W
which is reflexive, transitive and connected (for all w1, w2 ∈ W either w1 ≤ w2
or w2 ≤ w1). For each such order ≤ we let < denote its strict part and ∼ denote
its symmetric part, i.e., we have w1 < w2 iff both w1 ≤ w2 and w2 �≤ w1, and
w1 ∼ w2 iff both w1 ≤ w2 and w2 ≤ w1. Given a total pre-order ≤ on W and
given S ⊆ W we will use min(S, ≤) to denote the set of worlds which are minimal
in S under ≤, i.e., min(S, ≤) = {w ∈ S | w ≤ w′ for all w′ ∈ S}. We will say that
a total pre-order ≤ on W is anchored on S if S contains precisely the minimal
elements of W under ≤, i.e., if S = min(W, ≤).

2 AGM and Epistemic Frames

The original AGM theory of revision is a theory about how to revise a fixed
generic belief set K by any given sentence. In this paper we simplify by assum-
ing all revision input sentences are consistent. (For this reason the usual, but for
us vacuous, pre-condition “if φ is consistent” is absent from our formulation of
AGM postulate (K*5) below.) At the centre of this theory is the list of AGM
revision postulates (relative to K) which seek to rationally constraint the out-
come of such a revision. Using K ∗ φ as usual to denote the result of revising K
by φ ∈ L+, the full list of these postulates is:

(K*1) K ∗ φ = Cn(K ∗ φ)
(K*2) If φ1 ↔ φ2 ∈ Cn(∅) then K ∗ φ1 = K ∗ φ2
(K*3) φ ∈ K ∗ φ
(K*4) If ¬φ �∈ K then K ∗ φ = K + φ
(K*5) K ∗ φ is consistent
(K*6) If ¬φ �∈ K ∗ θ then K ∗ (θ ∧ φ) = (K ∗ θ) + φ
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Note the presence of (K*3) – the “success” postulate – which says that the input
sentence is always accepted. For a given belief set K, we shall call any function
∗ which satisfies the above postulates a simple AGM revision function for K. It
is well-known that requiring these postulates to hold is equivalent to requiring
that, when performing an operation of revision on his belief set K, an agent
acts as though he has a total pre-order ≤ on the set of worlds W representing
some subjective assessment of their relative plausibility, with the worlds in [K]
being the most plausible, i.e., ≤-minimal. Given the input sentence φ, the agent
then takes as his new belief set the set of sentences true in all the most plausible
worlds satisfying φ. Precisely we have:

Theorem 1 ([11, 15]). Let K ∈ K and ∗ be an operator which, for each φ ∈ L+,
returns a new set of sentences K ∗φ. Then ∗ is a simple AGM revision function
for K iff there exists some total pre-order ≤ on W, anchored on [K], such that,
for all φ ∈ L+, K ∗ φ = Th(min([φ], ≤)).

In this paper we will make extensive use of the above equivalence.

2.1 Epistemic Frames

One of the morals of the work already done on attempting to extend the AGM
framework to cover iterated revision (see, e.g. [8, 14, 18, 21]) is that, in order
to be able to formally say anything interesting about iterated revision, it is
necessary to move away from the AGM representation of an agent’s epistemic
state as a simple belief set, and instead assume that revision is carried out on
some more comprehensive object of which the belief set is but one ingredient.
We will initially follow [8] in taking an abstract view of epistemic states. As in
that paper, we assume a set Ep of epistemic states as primitive and assume that
from each such state E ∈ Ep we can extract a belief set �(E) representing the
agent’s regular beliefs in E. Unlike in [8] however, we also explicitly assume that
we can extract a second belief set �(E) ⊆ �(E) representing the agent’s core
beliefs in E. This is all captured by the definition of an epistemic frame:

Definition 1. An epistemic frame is a triple 〈Ep, �, �〉, where Ep is a set,
whose elements will be called epistemic states, and � : Ep → K and � : Ep → K
are functions such that, for all E ∈ Ep, �(E) ⊆ �(E).

For most of this paper we will assume that we are working with some arbitrary,
but fixed, epistemic frame 〈Ep, �, �〉 in the background. Not until Sect. 6 will
we get more specific and employ a more concrete representation of an epistemic
frame. An obvious fact which is worth keeping in mind is that, since �(E) ⊆
�(E), we always have [�(E)] ⊆ [�(E)]. The set �(E) can in general be any
sub(belief)set of �(E). As two special cases, at opposite extremes, we have
�(E) = Cn(∅), i.e., the only core beliefs are the tautologies, and �(E) = �(E),
i.e., all regular beliefs are also core beliefs. One of our main aims in this paper
will be to try and formulate rational constraints on the behaviour of both the
regular beliefs �(E) and the core beliefs �(E) under operations of change to the
underlying epistemic state E. We begin with the case when the operation of
change is triggered by a regular belief input.
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3 Regular Revision Inputs

In this section we consider the usual case where the revision input is a (consis-
tent) sentence to be included in the regular belief set �(E). Given an epistemic
state E ∈ Ep and a regular input φ ∈ L+, we shall let E ◦ φ denote the resulting
epistemic state. We consider the single-step case and the iterated case in turn.

3.1 Single-Step Regular Revision

As indicated in the introduction, we follow the spirit of screened revision and
assume that the new regular belief set �(E ◦ φ) is given by

�(E ◦ φ) =
{�(E) ∗E

� φ if ¬φ �∈ �(E)
�(E) otherwise.

where, for each epistemic state E, ∗E

� is a simple AGM revision function for
�(E). This is also very similar to the definition of endorsed core beliefs revision
in [13]. The difference is that in that paper the function ∗E

� is not assumed to
satisfy the postulate (K*6) from Sect. 2. By Theorem 1, the above method is
equivalent to assuming that for each E there exists some total pre-order ≤E

� on
W, anchored on [�(E)], such that

�(E ◦ φ) =
{

Th(min([φ], ≤E

�)) if ¬φ �∈ �(E)
�(E) otherwise.

(1)

We remark that the subscript on ≤E

� does not actually denote the �-function
itself, but is merely a decoration to remind us that this order is being used to
revise the regular beliefs in E. We now make the following definition:

Definition 2. Let ◦ : Ep×L+ → Ep be a function. Then ◦ is a regular revision
operator (on the epistemic frame 〈Ep, �, �〉) if, for each E ∈ Ep, there exists
a total pre-order ≤E

� on W, anchored on [�(E)], such that �(E ◦ φ) may be
determined as in (1) above. We call ≤E

� the regular pre-order associated to E

(according to ◦).

For some properties satisfied by this general type of construction the reader is
referred to [13, 19]. One intuitive property which is not guaranteed to hold under
the above definition as it stands2 is the following, which essentially corresponds
to the rule (Strong Regularity) from [13]:

(SR) �(E) ⊆ �(E ◦ φ)

2 For a counter-example suppose E is such that �(E) = Cn(p) and �(E) = Cn(p ∨ q)
where p, q are distinct propositional variables, and suppose ∗E

� is the “trivial” simple
AGM revision function for �(E) given by �(E) ∗E

� φ = �(E) + φ if ¬φ �∈ �(E),
�(E) ∗E

� φ = Cn(φ) otherwise. Then �(E) � �(E ◦ ¬p) = Cn(¬p).
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This postulate states that the set of core beliefs are retained as regular beliefs
after revision, while leaving open the question of whether they are again retained
as core beliefs. For this property to hold of a regular revision operator ◦ we require
that the pre-orders ≤E

� associated with each E satisfy an extra condition, namely
that ≤E

� considers all the worlds in [�(E)] as strictly more plausible than all the
worlds not in [�(E)].3

Proposition 1. Let ◦ be a regular revision operator. Then ◦ satisfies (SR) iff,
for each E ∈ Ep, ≤E

� satisfies w1 <E

� w2 whenever w1 ∈ [�(E)] and w2 �∈ [�(E)].

The reader may have noticed that, since inputs which contradict �(E) are simply
rejected, the ≤E

�-ordering of the worlds outside of [�(E)] never plays any role
in determining the new regular belief set. It will, however, play a role later on
when we come to look at core revision.

What effect should performing a regular revision ◦ have on the core belief set?
In this paper we take the position that ◦ is concerned exclusively with changes
to �(E), and so the core belief set does not change at all.

(X1) �(E ◦ φ) ⊆ �(E) (Core Non-expansion)
(X2) �(E) ⊆ �(E ◦ φ) (Core Preservation)

Thus (X1), respectively (X2), says that no core beliefs are added, respectively
lost, during an operation of regular revision.

Definition 3. Let ◦ be a regular revision operator. Then ◦ is core-invariant
iff ◦ satisfies both (X1) and (X2).

Since clearly (X2) implies (SR), we have that every core-invariant regular revi-
sion operator satisfies (SR). The reasonableness of core-invariance may be ques-
tioned. For example a consequence of (X2) is that we automatically get that if
¬φ ∈ �(E) then φ �∈ �(E ◦ φ ◦ φ ◦ · · · ◦ φ), and this holds regardless of how many
times we revise by φ, be it one or one billion. It might be expected here that re-
peatedly receiving φ might have the effect of gradually “loosening” ¬φ from the
core beliefs until eventually at some point it “falls out”, leading φ to become ac-
ceptable. Similarly, rule (X1) precludes the situation in which repeated input of a
non-core belief eventually leads to the admittance of that belief into the core. On
the other hand there exist situations in which core-invariance does seem reason-
able in these cases. An example is when the regular belief inputs are assumed to
be coming from a single source throughout, i.e., the source is just repeating itself.
Weaker alternatives to the rules (X1) and (X2) which come to mind are:

(wX1) �(E ◦ φ) ⊆ �(E) + φ (Weak Core Non-expansion)
(wX2) �(E) ⊆ �(E ◦ φ) + ¬φ (Weak Core Preservation)

In terms of propositional worlds, (wX1) is equivalent to requiring [�(E)] ∩
[φ] ⊆ [�(E ◦ φ)], while (wX2), which is reminiscent of the “recovery” postulate

3 Due to space limitations, proofs are omitted from this version of the paper.
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from belief contraction [10], is equivalent to requiring [�(E ◦ φ)] ⊆ [�(E)] ∪ [φ].
Thus (wX1) says that, in the transformation of [�(E)] into [�(E ◦ φ)], the only
worlds which can possibly be removed from [�(E)] are those in [¬φ], while (wX2)
says that the only worlds which can possibly be added are those in [φ]. For this
paper, however, we will assume that both (X1) and (X2) hold throughout, and
so we will make no further reference to the above weaker versions.

3.2 Iterating Regular Revision

Now we consider iteration of ◦. How should �(E) and �(E) behave under se-
quences of regular inputs? Clearly since we are accepting both (X1) and (X2)
this question is already answered in the case of �(E) — the core beliefs remain
constant throughout. What about the regular beliefs �(E)? Here we take our
lead from the work on iterated AGM (“prioritised”) revision by Darwiche and
Pearl [8]. They suggest a list of four postulates to rationally constrain the beliefs
under iterated AGM revision (we will write “E ◦ θ ◦ φ” rather than “(E ◦ θ) ◦ φ”
etc.):

(C1)� If φ → θ ∈ Cn(∅) then �(E ◦ θ ◦ φ) = �(E ◦ φ)
(C2)� If φ → ¬θ ∈ Cn(∅) then �(E ◦ θ ◦ φ) = �(E ◦ φ)
(C3)� If θ ∈ �(E ◦ φ) then θ ∈ �(E ◦ θ ◦ φ)
(C4)� If ¬θ �∈ �(E ◦ φ) then ¬θ �∈ �(E ◦ θ ◦ φ)

Briefly, these postulates can be explained as follows: The rule (C1)� says that
if two inputs are received, the second being more specific than the first, then the
first is rendered redundant (at least regarding its effects on the regular belief set).
Rule (C2)� says that if two contradictory inputs are received, then the most
recent one prevails. Rule (C3)� says that an input θ should be in the regular
beliefs after receiving the subsequent input φ if θ would have been believed given
input φ to begin with. Finally (C4)� says that if θ is not contradicted after re-
ceipt of input φ, then it should still be uncontradicted if input φ is preceded by
input θ itself.4 Which of these postulates are suitable for core-invariant regular
revision? While (C3)� and (C4)� seem to retain their validity in our setting,
there is a slight problem with (C1)� and (C2)� concerning the case when φ
is taken to be a core-contravening sentence, i.e., when ¬φ ∈ �(E) = �(E ◦ θ).
Consider momentarily the following two properties:

(wC1)� If ¬φ ∈ �(E) and φ → θ ∈ Cn(∅) then �(E ◦ θ) = �(E)
(wC2)� If ¬φ ∈ �(E) and φ → ¬θ ∈ Cn(∅) then �(E ◦ θ) = �(E)

Then it can easily be shown that any core-invariant regular revision operator ◦
which satisfies (C1)�, respectively (C2)�, also satisfies (wC1)�, respectively
(wC2)�. However one can easily find examples of core-invariant regular revision
operators which fail to satisfy the latter two properties. For example let p and q
be propositional variables and suppose E is such that �(E) = �(E) = Cn(¬p).

4 We remark that these postulates have not been totally immune to criticism in the
literature. In particular (C2)� is viewed by some as problematic (see [5, 7, 17]).
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Then clearly we have ¬p ∈ �(E) and p → (p ∨ q), p → ¬(¬p ∧ q) ∈ Cn(∅). But
�(E ◦ (p ∨ q)) = �(E) + (p ∨ q) = Cn(¬p ∧ q) (contradicting (wC1)�), while
�(E ◦ (¬p∧ q)) = �(E)+ (¬p∧ q) = Cn(¬p∧ q) (contradicting (wC2)�). Thus
we conclude that (C1)� and (C2)� are not suitable as they stand. Instead we
propose to modify them so that they apply only when ¬φ �∈ �(E).

(C1′)� If ¬φ �∈ �(E) and φ → θ ∈ Cn(∅) then �(E ◦ θ ◦ φ) = �(E ◦ φ)
(C2′)� If ¬φ �∈ �(E) and φ → ¬θ ∈ Cn(∅) then �(E ◦ θ ◦ φ) = �(E ◦ φ)

We tend to view (C1′)�, (C2′)�, (C3)� and (C4)� as being minimal con-
ditions on iterated regular revision. An interesting consequence of (C2′)� is
revealed by the following proposition.

Proposition 2. Let ◦ be a core-invariant regular revision operator which sat-
isfies (C2′)�. Then, for all E ∈ Ep and θ, φ ∈ L+, we have that ¬θ ∈ �(E)
implies �(E ◦ θ ◦ φ) = �(E ◦ φ).

The above proposition says that not only does revising by a core-contravening
sentence θ have no effect on the regular belief set, it also has no impact on the
result of revising by any subsequent regular inputs. (As we will see later, this does
not necessarily mean that core-contravening regular inputs are totally devoid of
impact.)

As in our current set-up, Darwiche and Pearl assume that the new belief set
�(E ◦ θ) resulting from the single revision by θ is determined AGM-style by a
total pre-order ≤E

� anchored on [�(E)]. Likewise the new belief set �(E ◦ θ ◦ φ)
following a subsequent revision by φ is then determined by the total pre-order
≤E◦θ

� anchored on [�(E ◦ θ)]. Thus the question of which properties of iterated
revision are satisfied is essentially the same as asking what the new pre-order
≤E◦θ

� looks like. In a result in [8], Darwiche and Pearl show how each of their
postulates (C1)�–(C4)� regulates a different aspect of the relationship between
≤E

� and the new regular pre-order ≤E◦θ
� . The following proposition, which may

be viewed as a generalisation of Darwiche and Pearl’s result (roughly speaking,
Darwiche and Pearl are looking at the special case when �(E) = Cn(∅)), does
the same for (C1′)�, (C2′)�, (C3)� and (C4)� in our non-prioritised setting.

Proposition 3. Let ◦ be a core-invariant regular revision operator. Then ◦ sat-
isfies (C1′)�, (C2′)�, (C3)� and (C4)� iff each of the following conditions
holds for all E ∈ Ep and θ ∈ L+:

(1) For all w1, w2 ∈ [�(E)] ∩ [θ], w1 ≤E◦θ
� w2 iff w1 ≤E

� w2

(2) For all w1, w2 ∈ [�(E)] ∩ [¬θ], w1 ≤E◦θ
� w2 iff w1 ≤E

� w2

(3) For all w1, w2 ∈ [�(E)], if w1 ∈ [θ], w2 ∈ [¬θ] and w1 <E

� w2, then
w1 <E◦θ

� w2

(4) For all w1, w2 ∈ [�(E)], if w1 ∈ [θ], w2 ∈ [¬θ] and w1 ≤E

� w2, then
w1 ≤E◦θ

� w2

Thus, according to the above proposition, (C1′)� corresponds to the require-
ment that, in the transformation from ≤E

� to ≤E◦θ
� , the relative ordering between
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the [θ]-worlds in [�(E)] remains unchanged. (C2′)� corresponds to the same re-
quirement but with regard to the [¬θ]-worlds in [�(E)]. (C3)� corresponds to
the requirement that if a given [θ]-world in [�(E)] was regarded as strictly more
plausible than a given [¬θ]-world in [�(E)] before receipt of the input θ, then
this relation should be preserved after receipt of θ. Finally (C4)� matches the
same requirement as (C3)�, but with “at least as plausible as” substituted for
“strictly more plausible than”. Note how each property only constrains the trans-
formation from ≤E

� to ≤E◦θ
� within [�(E)]. We will later see some conditions

which constrain the movement of the other worlds.
The Darwiche and Pearl postulates form our starting point in the study of

iterated revision. However, other postulates have been suggested. In particular,
another postulate of interest which may be found in the literature on iterated
AGM revision (cf. the rule (Recalcitrance) in [21]) is:

(C5)� If φ → ¬θ �∈ Cn(∅) then θ ∈ �(E ◦ θ ◦ φ)

Note that this postulate is in fact a strengthening of (C3)� and (C4)�. (This
will also soon follow from Proposition 5.) In fact (C5)� might just have well
have been called “strong success” since it also implies that θ ∈ �(E ◦ θ) for all
θ ∈ L+. (Hint: substitute � for φ.) For this reason the postulate, as it stands,
is obviously not suitable in our non-prioritised setting. However the following
weaker version will be of interest to us:

(C5′)� If φ → ¬θ �∈ �(E) then θ ∈ �(E ◦ θ ◦ φ).

(C5′)� entails that if, having received a regular input θ, we do decide to accept
it, then we do so wholeheartedly (or as wholeheartedly as we can without actually
elevating it to the status of a core belief!) in that the only way it can be dislodged
from the belief set by a succeeding regular input is if that input contradicts it
given the core beliefs �(E). This postulate too can be translated into a somewhat
plausible constraint on the new regular pre-order ≤E◦θ

� .

Proposition 4. Let ◦ be a core-invariant regular revision operator. Then ◦ sat-
isfies (C5′)� iff, for each E ∈ Ep and θ ∈ L+, and for all w1, w2 ∈ [�(E)], if
w1 ∈ [θ] and w2 ∈ [¬θ] then w1 <E◦θ

� w2.

Thus (C5′)� corresponds to the property that all the [θ]-worlds in [�(E)] are
deemed strictly more plausible by ≤E◦θ

� than all the [¬θ]-worlds in [�(E)]. (C5′)�
is related to our previous postulates in the following way:

Proposition 5. Let ◦ be a core-invariant regular revision operator which satis-
fies (C5′)�. Then ◦ satisfies (C3)� and (C4)�.

4 Core Belief Inputs

So far we have assumed that the set of core beliefs in an epistemic state E remains
constant under regular revision inputs. In this section we want to consider the
case when the core beliefs are themselves subject to revision by external inputs.
To do this we shall now assume that we are given a second type of revision
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operator on epistemic states which we denote by •. Given E ∈ Ep and φ ∈ L+,
E • φ will denote the result of revising E so that φ is included as a core belief.5

The operator • is distinct from ◦, though intuitively we should expect some
interaction between the two. Once again we consider single-step revision and
iterated revision in turn.

4.1 Single-Step Core Revision

What constraints should we put on �(E•φ)? Well first of all, in order to simplify
matters and unlike for ◦, we shall assume that every revision using • is
successful, i.e., φ ∈ �(E •φ).6 For example core belief inputs might correspond
to information from a source which the agent deems to be highly reliable or
trustworthy, such as first-hand observations. A reasonable possibility is then to
treat the core beliefs as we would any other belief set in this case and assume that
the new core can be obtained by applying some simple AGM revision function
for �(E). Equivalently, by Theorem 1, we assume, for each E ∈ Ep, the existence
of a total pre-order ≤E

� on W, anchored on [�(E)], such that, for all φ ∈ L+,

�(E • φ) = Th(min([φ], ≤E

�)). (2)

Definition 4. Let • : Ep × L+ → Ep be a function. Then • is a core revision
operator (on the epistemic frame 〈Ep, �, �〉) if, for each E ∈ Ep, there exists a
total pre-order ≤E

� on W, anchored on [�(E)], such that �(E • φ) may be deter-
mined as in (2) above. We call ≤E

� the core pre-order associated to E (according
to •).

So, to have both a regular revision operator and a core revision operator on an
epistemic frame 〈Ep, �, �〉 means to assume that each epistemic state E ∈ Ep
comes equipped with two total pre-orders ≤E

� and ≤E

�, anchored on [�(E)] and
[�(E)] respectively. The interplay between these two orders will be of concern
throughout the rest of the paper.

What constraints should we be putting on �(E • φ)? This question isn’t so
easy to answer. Here we need to keep in mind that we must have �(E • φ) ⊆
�(E•φ) and so, since we are assuming we always have φ ∈ �(E•φ), we necessarily
require φ ∈ �(E • φ). Hence if φ �∈ �(E) then some changes to the regular be-
liefs will certainly be necessary. In the case when ¬φ �∈ �(E) it seems reasonable
to expect that �(E) should be revised just as if φ was a regular belief input, i.e,:

(Y1) If ¬φ �∈ �(E) then �(E • φ) = �(E ◦ φ) (Cross-Vacuity)

5 To put it another way in terms of revising epistemic states by conditional beliefs [4,
16]: whereas a regular revision by φ may be equated with a revision by the conditional
� ⇒ φ, a core revision by φ may be equated with a revision by the conditional
¬φ ⇒ ⊥.

6 An interesting alternative could be to reject φ from the core belief set, but include
it instead merely as a regular belief.
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This postulate gives us our basic point of contact between core revision and
regular revision.

What should we do if ¬φ ∈ �(E)? In this case we can’t set �(E•φ) = �(E◦φ)
since φ is not contained in the right-hand side. One possibility could be to just
throw away the distinctions between core belief and regular belief in this case
by setting

(sY2) If ¬φ ∈ �(E) then �(E • φ) = �(E • φ). (Regular Collapse)

However this seems a bit drastic. A more interesting possibility which we intend
to explore in future work could be to adopt a Levi-style approach (cf. the Levi
Identity [10]) and decompose the operation into two steps: first remove ¬φ from
�(E) using some sort of “core contraction” operation, and then revise by φ using
◦. For now, though, we take a different approach. Note that (Y1) says that, in
the case when ¬φ �∈ �(E), we should just use the pre-order ≤E

� to determine the
new regular belief set. Why not just use ≤E

� also in the case when ¬φ ∈ �(E)?
That is we just set, in all cases

�(E • φ) = Th(min([φ], ≤E

�)). (3)

However we need to be careful here, for remember we must have �(E • φ) ⊆
�(E • φ). This will be ensured if we require the two pre-orders ≤E

� and ≤E

� to
cohere with one another in a certain respect. Namely if we require

≤E

� ⊆ ≤E

�,

i.e., that ≤E

� is a refinement of ≤E

�. This is confirmed by the following result.

Proposition 6. Let E ∈ Ep and let ≤E

�, ≤E

� be two total pre-orders on W an-
chored on [�(E)] and [�(E)] respectively. If ≤E

� ⊆ ≤E

� then, for all φ ∈ L+, we
have Th(min([φ], ≤E

�)) ⊆ Th(min([φ], ≤E

�)).

As we will shortly see in Theorem 2, defining �(E • φ) as in (3) above has the
consequence that, in addition to (Y1), the following two properties are satisfied.

(Y2) If ¬φ �∈ �(E • θ) then �(E • (θ ∧ φ)) = �(E • θ) + φ
(Cross-Conjunction 1)

(Y3) If φ1 ↔ φ2 ∈ Cn(∅) then �(E • φ1) = �(E • φ2) (Cross-Extensionality)

The first property above is similar to the AGM postulate (K*6) from Sect.
2. It says that the new regular belief set after core-revising by θ ∧ φ should be
obtainable by first core-revising by θ and then simply expanding the resultant
regular belief set �(E • θ) by φ, provided φ is consistent with �(E • θ). It is
easy to see that, for core-revision operators, (sY2) implies (Y2). The second
property above expresses the reasonable requirement that core-revising by logi-
cally equivalent sentences should yield the same regular belief set. We make the
following definition:
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Definition 5. Let ◦ and • be a core-invariant regular revision operator and a
core revision operator on the epistemic frame 〈Ep, �, �〉 respectively. If ◦ and •
together satisfy (Y1) and • satisfies (Y2) and (Y3) then we call the pair 〈◦, •〉
a revision system (on 〈Ep, �, �〉).
The next theorem is one of the main results of this paper. It gives a characteri-
sation for revision systems.

Theorem 2. Let 〈Ep, �, �〉 be an epistemic frame and let ◦, • : Ep×L+ → Ep
be two functions. Then the following are equivalent:
(i). 〈◦, •〉 is a revision system on 〈Ep, �, �〉.
(ii). For each E ∈ Ep there exist a total pre-order ≤E

� on W anchored on [�(E)],
and a total pre-order ≤E

� on W anchored on [�(E)] such that ≤E

�⊆≤E

� and, for
all φ ∈ L+,

�(E • φ) = Th(min([φ], ≤E

�)) �(E • φ) = Th(min([φ], ≤E

�))

�(E ◦ φ) =
{

Th(min([φ], ≤E

�)) if ¬φ �∈ �(E)
�(E) otherwise

�(E ◦ φ) = �(E)

Proof (Sketch). To show that (i) implies (ii), let 〈◦, •〉 be a revision system on
〈Ep, �, �〉. Then, by definition, ◦ is a core-invariant regular revision operator.
Hence there exists, for each E ∈ Ep, a total pre-order ≤E

r on W anchored on
[�(E)] such that, for all φ ∈ L+,

�(E ◦ φ) =
{

Th(min([φ], ≤E
r )) if ¬φ �∈ �(E)

�(E) otherwise

and �(E ◦ φ) = �(E). We also know that • is a core revision operator. Hence,
for each E ∈ Ep there also exists a total pre-order ≤E

� on W anchored on [�(E)]
such that, for all φ ∈ L+ we have �(E • φ) = Th(min([φ], ≤E

�)). It might be
hoped now that ≤E

r and ≤E

� then give us our required pair of pre-orders, however
we first need to make some modification to ≤E

r . We define a new ordering ≤E

�
which agrees with ≤E

r within [�(E)] and likewise makes all [�(E)]-worlds more
plausible than all non-[�(E)]-worlds. However, ≤E

� orders the non-[�(E)]-worlds
differently from ≤E

r . Precisely we set, for w1, w2 ∈ W,

w1 ≤E

� w2 iff w1, w2 ∈ [�(E)] and w1 ≤E

r w2

or w1 ∈ [�(E)] and w2 �∈ [�(E)]
or w1, w2 �∈ [�(E)] and ¬α1 �∈ �(E • (α1 ∨ α2))

In the last line here, αi is any sentence such that [αi] = {wi} (i = 1, 2). (By
(Y3) the precise choice of αi is irrelevant.) It can then be shown that ≤E

� is a
total pre-order anchored on [�(E)] and that ≤E

� and ≤E

� then give the required
pair of pre-orders.

The proof that (ii) implies (i) is straightforward. ��
For the rest of this section we assume 〈◦, •〉 to be an arbitrary but fixed revision
system.
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4.2 Iterating Core Beliefs Revision

What should be the effect on �(E) and �(E) of iterated applications of •? For
the former, since we are assuming • behaves just like an AGM revision operator
with regard to �(E), the iterated AGM revision postulates mentioned in Sect.
3.2 are again relevant. Rephrased in terms of core revision, they are:

(C1)� If φ → θ ∈ Cn(∅) then �(E • θ • φ) = �(E • φ)
(C2)� If φ → ¬θ ∈ Cn(∅) then �(E • θ • φ) = �(E • φ)
(C3)� If θ ∈ �(E • φ) then θ ∈ �(E • θ • φ)
(C4)� If ¬θ �∈ �(E • φ) then ¬θ �∈ �(E • θ • φ)
(C5)� If φ → θ �∈ Cn(∅) then θ ∈ �(E • θ • φ)

We take (C1)�–(C4)� to be minimal requirements. We remind the reader that
(C5)� implies both (C3)� and (C4)�. The characterisation result of Darwiche
and Pearl already tells us how each of (C1)�–(C4)� regulates a certain aspect
of the relationship between ≤E

� and the new core pre-order ≤E•θ
� . (C5)� also

corresponds to a constraint on ≤E•θ
� . The proof of this correspondence is implicit

in [21].

Proposition 7 ([8, 21]). Let • be a core revision operator. Then • satisfies
(C1)�–(C5)� iff each of the following conditions hold for all E ∈ Ep and
θ ∈ L+:

(1) For all w1, w2 ∈ [θ], w1 ≤E•θ
� w2 iff w1 ≤E

� w2
(2) For all w1, w2 ∈ [¬θ], w1 ≤E•θ

� w2 iff w1 ≤E

� w2
(3) For all w1, w2 ∈ W, if w1 ∈ [θ], w2 ∈ [¬θ] and w1 <E

� w2, then w1 <E•θ
� w2

(4) For all w1, w2 ∈ W, if w1 ∈ [θ], w2 ∈ [¬θ] and w1 ≤E

� w2, then w1 ≤E•θ
� w2

(5) For all w1, w2 ∈ W, if w1 ∈ [θ] and w2 ∈ [¬θ] then w1 <E•θ
� w2

For the case of �(E) we expect that the behaviour of the regular belief set under
a sequence of core inputs should be connected in some way with the behaviour
of the core itself. But how? Here we present one idea, which is perhaps best
motivated directly in terms of the two pre-orders ≤E

� and ≤E

� which we take to
underlie a given epistemic state E. First note that the question of how �(E)
should behave under sequences of core inputs essentially reduces to the question
of what the new regular pre-order ≤E•θ

� following the core input θ should look
like. One constraint on ≤E•θ

� is already in place, namely that ≤E•θ
� ⊆≤E•θ

� . Our
idea is to carry over as much of the structure of ≤E

� to ≤E•θ
� as possible, while

obeying this constraint. This can be achieved by defining ≤E•θ
� simply to be the

lexicographic refinement of ≤E•θ
� by ≤E

�, i.e., for all w1, w2 ∈ W,

w1 ≤E•θ
� w2 iff either w1 <E•θ

� w2

or w1 ∼E•θ
� w2 and w1 ≤E

� w2.

We remark that the idea of combining pre-orders using lexicographic refinement
crops up several times in the literature on belief revision, e.g. [20]. It turns out
that this behaviour may be characterised here by the following property:
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(Z1) If �(E • θ • φ) ⊆ �(E • φ) then �(E • θ • φ) = �(E • φ) (Coupling)

This property says that if a core input φ can be preceded by another core input
θ without increasing the set of core beliefs, then preceding φ by θ should lead to
precisely the same set of regular beliefs.

Proposition 8. • satisfies (Z1) iff, for each E ∈ Ep and θ ∈ L+, ≤E•θ
� is equal

to the lexicographic refinement of ≤E•θ
� by ≤E

�.

The appearance of “⊆” rather than “=” in the antecedent of (Z1) may seem
surprising. However, as the next proposition shows, if • satisfies certain other
properties then there is no difference.

Proposition 9. Let • be a core revision operator which satisfies (C1)�, (C2)�
and (C5)�. Then, for all E ∈ Ep and θ, φ ∈ L+, we have �(E•θ •φ) ⊆ �(E•φ)
iff �(E • θ • φ) = �(E • φ).

Finally in this section we have the following result, which attests to the strength
of (Z1).

Proposition 10. If • satisfies (Z1) and (C1)�, (C2)� and (C5)�, then • also
satisfies (C1)�, (C2)� and (C5)� (with • in place of ◦).

5 Mixing Regular and Core Revision

In this section we explore the possibility of performing mixed sequences of re-
visions, containing both regular and core inputs. We give a number of possible
properties, relating each one to a condition in terms of the underlying regular
and core pre-orders, and also showing how they relate to the postulates of the
previous sections. In the following section we will give a concrete pair of revision
operators which in fact satisfies all the postulates from this section. The intuitive
simplicity of these constructed operators will lend some support to the reason-
ableness of these postulates. Throughout this section we again assume 〈◦, •〉 is
an arbitrary but fixed revision system.

Recall that we have assumed regular revision to be core-invariant, i.e., a reg-
ular belief input leaves the core belief set unchanged. Our first property seeks
to lessen the impact of regular inputs on the core even further. It says that a
regular input also has no influence on what the core beliefs should look like after
the next core input.

(M0) �(E ◦ θ • φ) = �(E • φ) (Core-Conditional-Invariance)

Since ◦ is core-invariant, the right-hand-side here is equal to �(E•φ◦ θ). Hence,
for a revision system, (M0) is equivalent to the following property which says
that when receiving two consecutive inputs, one of which is a regular input and
the other a core input, the resulting core belief set is actually independent of the
order in which these two inputs are received.
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(Comm)� �(E ◦ θ • φ) = �(E • φ ◦ θ)

In terms of the underlying pre-orders, the property (M0) corresponds to the
simple requirement that the entire core pre-order remains unchanged under reg-
ular revision. Thus (M0) can be seen as a kind of “scaling-up” of the property
of core-invariance to apply to the iterated case.

Proposition 11. 〈◦, •〉 satisfies (M0) iff, for all E ∈ Ep and θ ∈ L+, we have
≤E◦θ

� =≤E

�.

For the next batch of postulates, we consider again Darwiche and Pearl’s
original postulates (C1)�–(C4)� for iterated regular revision listed at the be-
ginning of Sect. 3.2. The postulates (C1)� and (C2)� provide conditions under
which the effects of a regular input on the regular belief set should be “over-
ruled” by a succeeding regular input. Namely when the second is more specific
than the first ((C1)�), or when it contradicts it ((C2)�). Since core inputs can
be viewed as carrying more “weight” than regular inputs, it seems reasonable
to suggest that in both cases this overruling should also occur when the second
input is upgraded from being a regular input to being a core input:

(M1) If φ → θ ∈ Cn(∅) then �(E ◦ θ • φ) = �(E • φ)
(M2) If φ → ¬θ ∈ Cn(∅) then �(E ◦ θ • φ) = �(E • φ)

We propose similar modifications to (C3)� and (C4)�. If θ would be a regular
belief after receiving the core input φ then preceding this core input with the
regular input θ should not change this fact. Similarly if θ is not discounted as
a regular belief after receiving the core input φ then preceding this core input
with the regular input θ should not change this fact.

(M3) If θ ∈ �(E • φ) then θ ∈ �(E ◦ θ • φ)
(M4) If ¬θ �∈ �(E • φ) then ¬θ �∈ �(E ◦ θ • φ)

Recall Proposition 3 which showed how each of the postulates (C1′)�, (C2′)�,
(C3)� and (C4)� corresponded to a constraint on the new regular pre-order
≤E◦θ

� within [�(E)]. The following result shows how each of (M1)–(M4) cor-
responds to the same constraints on ≤E◦θ

� , but extended to apply to the whole
of W.

Proposition 12. 〈◦, •〉 satisfies (M1)–(M4) iff the following hold, for each
E ∈ Ep and θ ∈ L+:

(1) For all w1, w2 ∈ [θ], w1 ≤E◦θ
� w2 iff w1 ≤E

� w2

(2) For all w1, w2 ∈ [¬θ], w1 ≤E◦θ
� w2 iff w1 ≤E

� w2

(3) For all w1, w2 ∈ W, if w1 ∈ [θ], w2 ∈ [¬θ] and w1 <E

� w2, then w1 <E◦θ
� w2

(4) For all w1, w2 ∈ W, if w1 ∈ [θ], w2 ∈ [¬θ] and w1 ≤E

� w2, then w1 ≤E◦θ
� w2

It is then easy to see:

Proposition 13. The postulates (M1)–(M4) imply (C1′)�, (C2′)�, (C3)�
and (C4)� respectively.
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Now suppose the agent receives a regular input θ followed by a core input φ.
Then our next property says θ should be in the regular beliefs as long as it is
consistent with the resultant core beliefs.

(M5) If ¬θ �∈ �(E ◦ θ • φ) then θ ∈ �(E ◦ θ • φ) (Retro-success)

Moreover this should hold even if θ is not believed after the first revision. Thus
this property allows a regular input which may initially have been rejected to
be accepted retrospectively as long as it does not contradict the new core beliefs.
To roughly illustrate, let us return to Example 1 from the introduction. Suppose
your initial epistemic state is E and let θ and φ stand for the information “your
son ate lunch at school with King Gustav” and “King Gustav was at a local
school” respectively. Assume that your expectations of the King’s behaviour are
such that you very strongly believe that, of all the places where the King might
be, a local school is not one of them, i.e., ¬φ ∈ �(E). You also strongly believe
that no-one can be in two places at the same time, i.e., ¬φ → ¬θ ∈ �(E), and
so you deduce ¬θ ∈ �(E). Assuming you always treat information provided to
you by your son as a regular input, your epistemic state after your son provides
you with θ is E ◦ θ. However, since ¬θ ∈ �(E), we have θ �∈ �(E ◦ θ) = �(E).
Now suppose you receive the information φ from the TV news. Since you take
the TV news to be highly reliable, you treat this as a core input, and so your
epistemic state after this input is E ◦ θ • φ. Now, because ¬φ is necessarily re-
moved from the core at this point, your grounds for deducing that ¬θ is a core
belief have been taken away. If this was really your only argument for deducing
¬θ ∈ �(E) then you should now have ¬θ �∈ �(E ◦ θ • φ). (M5) says that, in this
case, θ ∈ �(E ◦ θ • φ), i.e., you should now believe your son’s information.

In terms of pre-orders (M5) corresponds to the following property:

Proposition 14. 〈◦, •〉 satisfies (M5) iff, for all E ∈ Ep and θ ∈ L+ and for
all w1, w2 ∈ W such that w1 ∈ [¬θ] and w2 ∈ [θ], we have w1 ≤E◦θ

� w2 implies
w1 <E◦θ

� w2.

The above property says that after a regular revision by θ, and for each [θ]-
world w2, the only [¬θ]-worlds considered at least as plausible as w2 by the new
regular pre-order are those considered strictly more plausible than w2 by the new
core pre-order. (Recall that we always have ≤E◦θ

� ⊆ ≤E◦θ
� and so we necessarily

have that w1 <E◦θ
� w2 implies w1 ≤E◦θ

� w2.) The following proposition reveals
(M5) to be quite a strong property.

Proposition 15. Let 〈◦, •〉 be a revision system which satisfies (M5). Then ◦
satisfies (C5′)�. If, in addition, 〈◦, •〉 satisfies (M0) then 〈◦, •〉 also satisfies
(M3) and (M4).

Our next postulate is inspired by similar considerations to those behind the
AGM revision postulate (K*6) (see [10]). Suppose an agent receives a core input
θ followed by a regular input φ. Then if φ is consistent with the core beliefs after
the first revision, then the regular belief set after the second revision should be
just the same as if the agent had received θ and φ together as a core input.
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(M6) If ¬φ �∈ �(E • θ) then �(E • θ ◦ φ) = �(E • (θ ∧ φ))
(Cross-Conjunction 2)

It is easy to see that, for a revision system, this postulate implies (Y2) (i.e.,
(Cross-Conjunction 1)). In terms of pre-orders (M6) can be understood as fol-
lows:

Proposition 16. 〈◦, •〉 satisfies (M6) iff, for all E ∈ Ep and θ ∈ L+ and for
all w1, w2 ∈ [�(E • θ)], we have w1 ≤E•θ

� w2 iff w1 ≤E

� w2.

The above condition places a constraint on the new regular pre-order ≤E•θ
� which

follows a core input θ. It says that within [�(E • θ)] the old regular ordering ≤E

�
is preserved. It is quite easy to see that if ≤E•θ

� is taken to be the lexicographic
refinement of ≤E•θ

� by ≤E

� as in Proposition 8 then this constraint is satisfied.
Thus, using propositions 8 and 16, we see that

Proposition 17. If • satisfies (Z1) then 〈◦, •〉 satisfies (M6).

Our last property is the regular-belief analogue of (Comm)�:

(Comm)� �(E ◦ θ • φ) = �(E • φ ◦ θ)

Rather surprisingly it turns out that, in the presence of (M0), this rule is equiv-
alent to the conjunction of some of our previous postulates:

Proposition 18. Let 〈◦, •〉 be a revision system which satisfies (M0). Then
〈◦, •〉 satisfies (Comm)� iff 〈◦, •〉 satisfies (M1), (M2), (M5) and (M6).

We remark that the derivations of (M1) and (M2) from (Comm)� do not
require (M0). Figure 1 summarises the postulates from this section, together
with their inferential interrelations and their relations with some of our previous
postulates. A dashed line indicates a derivation which requires the presence of
the postulate (M0).

6 A Construction

We now give an explicit construction of a pair of operators ◦ and • which display
much of the behaviour described in the previous sections. For this construction
we will use a specific representation of an epistemic frame. For the set of epistemic
states the basic idea is that the agent keeps two separate lists of sentences, one
which records all the regular inputs he receives, and one which records all the core
inputs he receives. We take an agent’s epistemic state simply to be this record.
More precisely we take for the set of epistemic states the set seq(L+)2 of all
pairs of finite sequences of consistent sentences E = 〈(β1, . . . , βm), (α1, . . . , αn)〉,
where the βi are the regular inputs which the agent has so far received, and the
αi are the core inputs.7 Revision of such an epistemic state is then a trivial affair

7 In the literature on iterated AGM revision, the idea of taking an epistemic state
to be a single sequence of sentences reflecting the revision history has already been
suggested in, e.g., [6, 17, 18].
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Fig. 1. The inferential interrelations of the postulates for a revision system

– we obtain our new epistemic state by simply adding the sentence received as
input to the end of the appropriate list, depending on whether the sentence is
received as a regular input or a core input. More precisely, given E = 〈b, a〉
where b = (β1, . . . , βm) and a = (α1, . . . , αn), we define

E ◦ φ = 〈b · φ, a〉 and E • φ = 〈b, a · φ〉

where · denotes sequence concatenation. The properties of the revision operators
are then determined entirely by the particular ways we choose to extract the
belief set �(E) and the core belief set �(E) from any given E ∈ seq(L+)2.8

However there are some things we can say immediately about • and ◦ without
referring to �(E) or �(E), for clearly we have E ◦ θ •φ = 〈b · θ, a ·φ〉 = E •φ ◦ θ.
Hence we already have:

Proposition 19. • and ◦ defined above together satisfy the rules (Comm)�
and (Comm)�.

Hence, once we have shown that 〈◦, •〉 is a revision system on the epistemic
frame 〈seq(L+)2, �, �〉, it will immediately follow that 〈◦, •〉 satisfies many of
the postulates we have considered, including all those of the previous section (cf.
Fig. 1 and recall that, for a revision system, (Comm)� is equivalent to (M0)).

8 The general approach of leaving all the work in performing revision to some operation
of retrieval on epistemic states is known as the vertical approach to belief revision
[22].
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Now let’s determine �(E) and �(E). Here we again assume E is of the form
〈(β1, . . . , βm), (α1, . . . , αn)〉. Turning first to �(E), we first form an increasing
sequence of sets of sentences Γi starting with Γ0 = ∅ by setting, for each i =
1, . . . , n,

Γi =
{

Γi−1 ∪ {αn+1−i} if this is consistent
Γi−1 otherwise

In other words we form the set of sentences Γn by taking the sequence (α1, . . . , αn)
and, starting at the end with αn, working our way backwards through the se-
quence and adding each sentence as we go, provided it is consistent with the
sentences already collected up to that point. We then define

�(E) = Cn(Γn).

Note that �(E) so defined is bound to be consistent. Also note that in the
construction of �(E) no mention is made of the first sequence (β1, . . . , βm) of
E , i.e., �(E) depends only the second sequence (α1, . . . , αn). This is all that is
needed to show:

Proposition 20. ◦ satisfies (X1) and (X2).

We also have

Proposition 21. • is a core revision operator (on the epistemic frame
〈seq(L+)2, �, �〉) according to Definition 4. Furthermore • satisfies (C1)�, (C2)�
and (C5)�.

We now turn to our definition of �(E). This is a matter of just picking up from
where we left off in the construction of �(E). We define an increasing sequence
of sets of sentences Θi, starting with Θ0 = Γn, by setting, for i = 1, . . . , m,

Θi =
{

Θi−1 ∪ {βm+1−i} if this is consistent
Θi−1 otherwise

We then set
�(E) = Cn(Θm).

Clearly, since Γn ⊆ Θm, we get �(E) ⊆ �(E). Also since Γn is consistent we also
have �(E) is consistent. We would now like to show that ◦ forms a core-invariant
regular revision operator on the epistemic frame 〈seq(L+)2, �, �〉. As a first step
we show the following:

Proposition 22. For all E ∈ seq(L+)2 and all φ ∈ L+ we have

�(E ◦ φ) =
{�(E • φ) if ¬φ �∈ �(E)

�(E) otherwise

(In particular ◦ and • together satisfy (Y1).)

Next we have the following result:
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Proposition 23. For each E ∈ seq(L+)2 there exists some simple AGM revision
function ∗ for �(E) such that �(E • φ) = �(E) ∗ φ for all φ ∈ L+.

Combining propositions 20, 22 and 23 then allows us to prove:

Proposition 24. ◦ is a core-invariant regular revision operator (on the epis-
temic frame 〈seq(L+)2, �, �〉) according to Definitions 2 and 3.

Meanwhile, as a corollary to Proposition 23 we have:

Corollary 1. • satisfies (Y2) and (Y3).

We remark, however, that • does not satisfy (sY3), i.e., core-revising E by a
core-contravening sentence will not necessarily erase the distinctions between
core belief set and regular belief set. To see this let E = 〈(p ∧ q), (¬q)〉. Then
�(E) = �(E) = Cn(¬q). Consider core-revising by q. Then obviously ¬q ∈ �(E)
but E •q = 〈(p∧q), (¬q, q)〉, leading to �(E •q) = Cn(q) �= Cn(p∧q) = �(E •q).

We are now finally in a position to show:

Theorem 3. The pair 〈◦, •〉 forms a revision system (on the epistemic frame
〈seq(L+)2, �, �〉).

As a final piece in our jigsaw we have the following result regarding the
behaviour of �(E) under iterated core revision.

Proposition 25. • satisfies (Z1). Hence • satisfies (C1′)�, (C2′)� and (C5′)�
(with • in place of ◦).
The second part of this proposition follows from propositions 10 and 21.

7 Conclusion

We have taken a close look at iterated non-prioritised revision, using as a start-
ing point a basic model of non-prioritised revision which makes use of a set of
core beliefs amongst the set of regular beliefs. We considered two types of revi-
sion operator on epistemic states: a normal, regular revision corresponding to a
direction to include a given sentence in the regular beliefs, and a core revision
operator. We presented some postulates for the iteration of both these operators,
including some for the particularly interesting case of mixed iterated sequences
of revisions consisting of both types of revision operations. In many cases we
have shown how these postulates correspond to conditions on the dynamics of
the plausibility orderings on worlds which underlie an agent’s epistemic state.
Finally we provided a construction which illustrated some of the ideas.

As further work we would like to examine also operations of contraction in
this context. Of particular interest would be an operation of “core contraction”
in which a sentence is removed from the core beliefs. What effect should such
an operation have on the regular belief set? For instance, should the sentence
removed from the core be retained as a regular belief? Also, in this paper we
considered revision systems consisting of just two revision operators 〈◦, •〉 with ◦
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being, in a sense, dominated by •. A possible extension would be to consider an
extended family of revision operators 〈◦1, ◦2, . . . , ◦n〉 of increasing “strength”,
perhaps with each ◦i corresponding to a different source of information. Finally
we would like to investigate other natural ways of constructing a revision system
〈◦, •〉 which perhaps do not satisfy some of the stronger postulates considered
here (such as (Comm)�).
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