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Abstract. Many belief change formalisms employ plausibility or-
derings over the set of possible worlds to determine how étiefls
of an agent ought to be modified after the receipt of a new @pist
input. While most such possible world semantics rely on glsin
ordering, we look at using an extra ordering to aid in guidihg
process of belief change. We show that this provides a ungjfgie-
mantics for a wide variety of belief change operators. Byywey
the conditions placed on the second ordering, differenilfasnof
known belief change operators can be captured, includinlyl A8-
lief contraction and revision [1], severe withdrawal [1§}stematic
withdrawal [13], and the linear liberation amdliberation operators
of [4]. Our approach also identifies novel classes of belfeinge
operators that are worth further investigation.

1 INTRODUCTION

Current formalisms in belief change [6, 10] typically empboplau-
sibility ordering [7, 11] over the set of possible worlds or epis-
temic entrenchment ordering over the set of sentences igamt’a
belief set. Operators for change are then defined by manipula
of these orderings after receipt of a new epistemic inpuer&tare
many advantages to these approaches — foremost amongsthem
guarantee that change will be effected in a principled marthe
provision of an intuitively plausible construction, and@rhalism
flexible enough to accommodate alternative change stestegid it-
eration. However there are some nuances that are not cdpture
such an approach. For instance, agents do not usually eropky
fixed ordering throughout — often, different orderings nigé used
in different contexts such as those requiring greater cauti skepti-
cism. Or different orderings might be used based on the smfrthe
epistemic inputs. Such a critique is implicit in [5] wheres thotion

of certain contexts within which their reasoning plays owertain
contexts call for a different assessment of plausibilit: &xample,
| enforce a certain amount of skepticism on verifying newsres —
but will probably fall back on a more critical assessment mvhim
trying to assess news reports in a different situation, lsayrhpend-
ing declaration of a war. Such a treatment is reminiscenbofex-
tualist assessments of epistemic statements — it is underttat the
agent makes any knowledge claim relative to some impliaitdard
for assessing that claim and that different standards mdiice dif-
fering assessments of the truth of epistemic claims. Theibotion
of the paper is the unification, in a single formal framewarka
large class of belief change operators by this method. tlesais to
view belief change as the manipulation by the agent of assads
of plausibility of epistemic states of affairs in differestintexts.

The plan of the paper is as follows. After laying down soméitec
nical preliminaries, in Sect. 2 we establish the foundatioh our
framework for removal with a semantic definition and an axatm
characterisation. In Sect. 3 we study the class of beliebratroper-
ators obtained when the second orderihig transitive. Sect. 4 builds
up to a characterisation &GM contraction[1] via sub-classes of
belief removal operators satisfying the standard progeknown as
Vacuity, Inclusion and Recovery. Sect. 5 shows that impitisses
of belief liberationoperators [4] can be captured in our framework.
Sect. 6 isolates various classes of removal operatoredetat and
including, systematic withdrawa]13]. Sect. 7 shows that the lim-
iting cases correspond #®GM revision[1] and severe withdrawal
[15], while Sect. 8 concludes with some pointers to futurekwo

We assume a finitely generated propositional langudge
equipped with the usual constants, boolean operators atabksi-c
cal Tarskian consequence relation. YV denotes the set of possible

of eligibility adds an extra dimension to belief change. A technicalWorlds/interpretations of. Logical entailment is denoted ly. For

framework that provides tools for belief change operatioaised on
multiple orderings appears in [2] where combination openat for
a class of preference relatiofsare studied in terms of an additional
guiding preference relation. In this study, the formalismn helief
change — in particular for belief removal — that we will praisean
be considered a special case of [2] with— over the set of inter-
pretations — being the single preference relatioPirand < — our
additional dimension — being the guiding relation.

An intuitive way to understand the second ordering on theobet
worlds is to think of it as representing a more stringent sesent
of the plausibility of states of affairs. Most rational ateare aware
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any set of sentenced C L, [A] denotes the set of worlds satisfy-
ing all members ofd (writing [¢] rather thar{{¢}] for the singleton
case). For a sef C W, Th(S) is the set of sentences true in all
worlds inS. The object which undergoes change willlgea consis-
tent belief set (i.e., a deductively closed, consistenbsentences).
We takeK to be arbitrary but fixed throughout. We assume that for
all removal operators:, K < ¢ is only defined for non-tautologous
propositions and refer to the set of non-tautologous mesntifet as

L.. The limiting case requires only a minor emendation. We make
this choice for ease of technical presentation. Finallyegia total
pre-order (i.e., a transitive, connected relatignhn W andS C W,
min(S, <) will denote the set oK-minimal elements of.

2 BASIC REMOVAL

We now set up our most general semantic construction of fbelie
change operators. We refer to thesesasovaloperators because the
nett effect after being presented with an inpuis that¢ is removed
from the belief set. However, as we shall see in Sect. 7, theme



case where the removal of a beligfesults in the addition of¢ is
included in the framework.

Assume a total pre-ordex anchoredon [K]. That is to say,
[K] = min(W, <). As usual we take< to be an ordering of plausi-
bility on the worlds, with worlds lower down in the orderinge as
more plausible. In what followsy will always denote the symmetric
closure of<, i.e., w1 ~ wsz iff both w1 < w2 andwsz < wi. We
assume that we are giversacondinary relation< on W, required
to be a reflexive sub-relation af. These two orderings provide the
contextin which an agent makes changes to its current beliefs.

Definition 1 (<, <) is a K-contextiff <is a total pre-order (onV)
anchored or[ K], and = is a reflexive sub-relation of.

Given a belief sef{ and aK-context(<, <), we use(<, <) to de-
fine aremoval operator= < <) for K by setting, for alkp € L.,

K <<,<) ¢ =Th({w | w < w' for somew’ € min([~¢], <)})

That is, the models of the belief set resulting from a remoiap
are obtained by locating all th€-best models of-¢, and adding to
those, all worlds that are at leastg@splausible.

Definition 2 < is a basic removal operatdfor K) iff =< < <
for someK -context(<, <).

Basic removal is characterised by the following postutates

(Bl) K < ¢ =Cn(K <= ¢)

(B2) ¢ ¢ K< ¢

(B3) If|:<b1<—>q52thenK¢¢1:K¢¢g

B4) K= 1=K

(B5) K <= ¢ C Cn(K U{~¢})

(B6) If 0 € K= (0 Ap)thend € K < (0 AP A1)
BN Ifoe K= (0Ap)thenK = ¢p C K <= (0N @)
B8 (K<dN(K<c¢p) CTK=(0N)

B Ifpg K= (ONP)thenK = (ONP) C K = ¢

Theorem 1 Let K be a belief set anet an operator forK. Then<
is a basic removal operator faK iff < satisfieqB1){(B9).

All the rules above are already familiar from the belief opparit-
erature. Rule$B1)~+(B3) belong to the siXbasic AGM contraction
postulateq1]. Rules(B4) and (B5) are weakened versions — under
our assumption thak is consistent — of another of the basic AGM
postulates, namely the Vacuity rule:

(Vacuity) If o ¢ KthenK = ¢ = K

As we will confirm in Sect. 4, basic removal operators do nat-ge
erally satisfy(Vacuity). The remaining two basic AGM contraction
rules, neither of which are sound for basic removal, are:

(Inclusion) K < ¢ C K
(Recovery) K C Cn((K < ¢) U{¢})

(Inclusion) is questioned in [4], leading to the studylmlief libera-
tion operators, whil¢Recovery)has been questioned in many places
in the literature (e.g. [8, 10]). Briefly, liberation opevet cater to
the intuition that removing a belief from an agent’s corpas ce-
move the reasons for not holding others and hence lead tathe i
sion of new beliefs. Of the other postulates for basic rehalvave,
(B8) and (B9) are the twosupplementaryAGM contraction postu-
lates [1], while(B6) and(B7) both follow from the AGM postulates
(see [1, 8, 14]). The latter rule is closely related to thelakrbwn
rule Cautious Monotonyrom non-monotonic inference [12].

Given Theorem 1, we see that basic removals seem quite glosel
related to the similarly general approach to removal prteseby
Bochman in [3, Ch. 12]. Like basic removal, Bochman'’s opesat
in their most general form fail to validat®acuity), (Inclusion) and
(Recovery) while theydo satisfy(B6)(B8).

The completeness part of Theorem 1 is proved by using the fol-
lowing way to construct a pair of orderings from a given besiet
and basic removal operator.

Definition 3 The structurg <, <) obtained from a belief sgk and
a basic removal operator, and denoted b¢ (K, <) is defined as
follows (cf. [5]), forwi, ws € W:

(S) w1 < wa iff ~a g K < (—‘011 A —‘012)

(j) w1 j w2 |ff Q] € K < Q2

whereq; is a sentence whose only modelis(for i = 1, 2).

In the theoremC (K, <) is used by checking that i satisfieqB1)—
(B9), then(<, <) is a K-context and that-=< (< <. We employ
this construction throughout the paper to prove that ceptastulates
are complete for certain sub-classes of basic removal.

We now proceed to investigate how different requirementthen
second ordering of plausibilit¥ and its interplay with< can help
us characterise different belief removal operations. \& siith one
of the simplest properties there is — transitivity.

3 TRANSITIVE REMOVAL

In this section we see what happens if we let the second etder
be transitive, i.e.X becomes a pre-order. We'll call thig-context
(<, X) transitive if< is transitive.

Definition 4 We call = a transitive removal operatoffor K) iff
o= (<, <) for some transitivei(-context(<, <).

Transitive removal operators may be alternatively descrias fol-
lows. As with any pre-order, the relation partitions)V into a set
W /= of equivalence classes via the relatiardefined byw: = wo
iff both w1 < wy andwz < wi. The setW /= is partially-ordered
by the relation<* defined by[w1]= <* [w2]= iff w1 < w2. Mean-
while, we can also define a relatigfi onW /= by [wi]= <* [w2]=
iff w1 < ws. Itis easyto check that™ is well-defined and that™ is
a total pre-order oWV /= such that<* C<*. Furthermore we have,
foreachg € L., K = (< <y ¢ = Th(UJTY), where

YT ={X eW/=| X X"Y for someY € min(—¢, <*)},

and wheremin(—¢, <*) here denotes the set &f*-minimal ele-
mentsY € W/= such thatY’ N [-¢] # 0. Note how worlds be-
longing to the same equivalence class are ‘indistinguighad the
agent using thé&(-context(<, <). The next result shows how we can
axiomatically characterise the class of transitive rerhoparators .
Proposition 1 (i). If (<, %) is transitive thens < <) satisfies:

(BT) If K =6 ¢ K = ¢then there exist, A € L. such that
pEYE NaANd(K < 0)U (K < A) ¢

(ii). If = satisfieqBT) then the relation< of C(K, <) is transitive.

So transitive removal operators may be characterise(By~(B9)
plus(BT). (BT), as might be noted, is a very weak requirement. One
natural way to strengthen it is to require that ¢:

If K <60 ¢ K < ¢thenthere exista € L. such that
oEXand(K = 0)U (K < \) = ¢

(BConserv)



(BConserv)looks like the rules Conservativity and Weak Conserva-4,1 Va_cuity

tivity, which were proposed and argued-for in [9, 10] anddugere
to characterise operations of so-callebe-generated contraction

It turns out that, for basic removal operatgiBConserv) may be
captured by requiring that, in addition to being transitie, <) sat-
isfies the following property:

(@)

Proposition 2 (i). If (<,=<) is transitive and satisfies (a) then
< (<,<) satisfies(BConserv). (ii). If <= satisfies(BConserv) then
C(K, <) is transitive and satisfies (a).

If w1 ~ wo andw1 < w2 thenwg < w1

In terms of the alternative description of transitive remlogiven
above in terms of equivalence classes, requiring (a)<af<) has
the effect that the relations™ and <* on W/ = satisfy, for all
X,Y e W/=:X <" Y impliesX <* YorX =Y, where
<™ is the strict part oK*. Thus any two distinct classes, Y which
are on the same ‘level’ according t0" (in that bothX <* Y and
Y <* X) are incomparable according t&*.

As we will see, althougkBConserv)is more restrictive tha(BT),
the class of basic removals satisfying it remains generaligm to
include many other important sub-classes of basic removal.

By going a step further and identifying with ¢ in (BConserv)
we arrive at a yet stronger postulate:

(BSConserv) If K < 0 Z K < ¢then(K < 0) U (K < ¢) = ¢

To ensure that- < <) satisfy all of(Vacuity), we require that alc-
minimal elements (i.e., all elements|df]) are<-connected, i.e.,

(©

Proposition 5 (i). If (<, =) satisfies (c) thenc(< <) satisfies
(Vacuity). (ii). If = satisfieqVacuity) thenC (K, <) satisfies (c).

If (for eachi = 1,2) w; < w' for all w’, thenw; < wo

As is easily verified, (c) is implied by condition (b). Thus see that
any basic removal satisfyin®SConserv)satisfieqVacuity). How-
ever, our counter-example above shows (Watuity) is not valid for
transitive removals satisfying (a).

Shouldn’t (Vacuity) be a basic requirement fany rational re-
moval operation? From a purefginimal changepoint of view it is
certainly hard to contest, but we would nevertheless argaiethere
are plausible scenarios in which it can fail. Consider an agemb w
has equally good reasons to believe eagharid—p. In this situation
the agent remains cautious and commits to believe neither —p.
But if this agent were then to receive information that untees
p then it seems plausible that it would come to believe (orgassi
significantly more plausibility to}p.

Of course one could always try affidrce a given basic removal
< to satisfy (Vacuity) by defining a new operatot from < by
K=¢=Kif¢o ¢ K, K=¢ =K = ¢ otherwise. It is straight-
forward to show that= so defined satisfigB1)+(B9), and so again
forms a basic removal. However we run into difficulties in tase

(BSConserv)is known as Strong Conservativity [9], and is used in of transitive removal, for it turns out that ru{BT) is not preserved.

[4] to help characterise the so-callediberationoperators (see Sect.
5). [4] also contains a detailed justification for the usehif tule. For
basic removal, we can capture this property by requiringdhew-
ing property, in conjunction with transitivity:

(b)

Proposition 3 (i). If (<,=) is transitive and satisfies (b) then
< (<,<) satisfiegBSConserv) (ii). If < satisfiegBSConserv)then
C(K, <) is transitive and satisfies (b).

If wy ~ wa thenw1 =< w2

Condition (b) implies (a). In terms of the above construtiioterms
of W/ =, having that=< is transitive while strengthening (a) to (b)
has the effect that the relatieh* becomes #otal orderon W/ =.

4 TOWARDS AGM CONTRACTION

It was mentioned in Sect. 2 that basic removal does not gatisf
three basic AGM contraction postulat@#acuity), (Inclusion) and

(Recovery) In Sect. 7 it is shown that the severe withdrawal OPEIfrthermore if< satisfies any of the three postulates from Sect. 3

ators, which are known not to satisflRecovery)[15], are all basic
removal operators, thus proving th@ecovery) fails for basic re-
moval. For the failure of the other two rules, suppdse= Cn(0)

and consider the<-context (<, <) where < is the full relation

Exploring ways out of this problem will be left for future wor

4.2 Inclusion

To obtain(Inclusion) we may add the following condition, stronger
than (c):

(d)

So the<-minimum worlds are also th&-minimum worlds.

If w1 < ws for all we thenw; < ws for all ws

Proposition 6 (i). If (<, X) satisfies (d) them> < <) satisfies(In-
clusion). (ii). If < satisfieInclusion) thenC (K, <) satisfies (d).

Note that, even though basic removal operators do not gatisf
clusion) in general, it is always possible tansforma given basic
removal< into an operator whicldoessatisfy that rule. We simply
take theincarceration= of < [4], i.e., the operator defined from

by K = ¢ = K N (K < ¢). It can be shown that the incarceration
of a basic removal operator is always itself a basic remavhile

then= will satisfy the same ones as well.

4.3 Recovery

W x W and =< is just the equality relation. Then it is easy to check To obtain(Recovery)it suffices to require the following condition:

that, for any consistent € L., we getK << <y ¢ = Th([~¢]) =
Cn(—¢). ThusK << <y ¢ € K, even thoughp ¢ K. ‘One half’
of (Vacuity), however,s valid for basic removal:

Proposition 4 Let < be a basic removal operator fok, then <
satisfies: Ifp ¢ K thenK C K < ¢

The ‘missing half’ of(Vacuity) is: If ¢ ¢ K thenK < ¢ C K.
Clearly this rule doubles as a weakened versiofiraflusion). Thus
we see that, for basic removal operatghsclusion) actually implies
(Vacuity). Now let’s verify under what conditions (i, <) each of
these postulates are satisfied by basic removal operators.

If w1 < we thenw; = ws orw; < w’ for all w’

(e)

So, apart from itself, nothing but-minimal worlds may be below
any world in=<.

Proposition 7 (i). If (<, <) satisfies (e) ther-(< < satisfiesRe-
covery). (ii). If < satisfiegRecovery)thenC(K, <) satisfies (e).

The combination of (d) and (e) then states that the worldsvbel
world w in < are exactlyw itself and the<-minimal worlds. And
this gives us precisely AGM contraction (satisfying theibgsus
supplementary AGM contraction postulates).



Proposition 8 The following are equivalent:

(i). = is a full AGM contraction operator.

(ii). = satisfieyB1)}{B9) plus(Inclusion) and (Recovery)
(iii). === (< <) for some(<, <) which satisfies (d) and (e).

Observe that since (d)+(e) implies transitivity and (a)ergvfull
AGM contraction is a basic removal satisfyi(i§Conserv).

5 BELIEF LIBERATION

In [4] two models of belief liberation operators are presentach in
terms of finite sequences of sentences. The second nhiogelr, lib-

eration, is more general than the first;liberation. The class of lib-
eration operators it generates includes that generatduetfirst. The
first construction employs a linearly ordered sequence wiesees
and the second a set of candidate belief sets one of whichspunds
to the agent’s set after belief retraction. Axiomatic cletgdsations
of each of these classes are also provided in [4]. Lineardiimn

is characterised bfB1)B3) plus(Vacuity) and the following rule:
(Hyperreg) If0 g K < (0Nnd)thenK < (ONP) =K <=0

This is the rule originally known as Hyperregularity from].[The
first thing to note aboufHyperreg) is that, in the presence ¢B1)-
(B4), it actually implies(Vacuity) andthe remaining rules for basic
removal(B5)+B9). Thus we see:

Proposition 9 < is a linear liberation operator iff it is a basic re-
moval operator which satisfig¢slyperreg).

Is there a condition ofi<, <) which corresponds exactly {blyper-
reg)? It turns out that the following condition does the trick:

(®

Rule (f) says that whether or not a worlg is beloww, according
to < depends only on thg-plausibility rank ofw .

If wi ~ w2 andws < w; thenws < we

Proposition 10 (i). If (<, %) satisfies (f) ther- (< <) satisfiegHy-
perreq). (ii). If < satisfiegHyperreg) thenC (K, <) satisfies (f).

Thus we see that linear liberation operators may be repiesdday
the class of{-contexts which satisfy (f).

In [4] it is shown that ther-liberation operators are precisely those
linear liberation operators which satisfBSConserv) Using this
fact together with Props. 3 and 10 allows us to deduce:

Proposition 11 < is ac-liberation operator iffc=< (< <) for some
transitive (<, <) satisfying (b) and (f).

However, we can simplify here, for as soon-ass transitive, condi-
tions (b) and (f) becomequivalent

Proposition 12 Let (<, <) be a transitive/{ -context. Ther{<, <)
satisfies (b) iff <, <) satisfies (f).

This means that in Prop. 11 it is unnecessary to require Hgth (
and (f) — just one of them will suffice. Depending on which one
we choose to retain, we obtain two different charactensatiofo-
liberation which provide alternatives to the one from [4]:

Proposition 13 The following are equivalent:

(i). = is aco-liberation operator.

(i)). = is a linear liberation operator which satisfi€BT).

(iii). = is a basic removal operator which satisfi@SConserv)

The equivalencéi) < (ii) comes from combining Prop. 11 (retaining
just (f)) with Props. 1 and 10, whil@)<(iii) comes from combining
Prop. 11 (retaining just (b)) with Prop. 3. Surprisindiys=(ii) says
that, in the axiomatisation af-liberation in [4], (BSConserv)may
be replaced by the seemingly much wealF). Meanwhile, since

()<= (iii) , o-liberation operators inherit the nice description in term
of W/= given for the basic removals which satiggSConserv)at
the end of Sect. 3 (whereé* is a total order oW /=).

Similar characterisations for sub-classes of liberatsmch as the
class ofdichotomoudiberation operators [4], exist. However, space
considerations prevent us here from embroidering furthrethis
theme.

6 SYSTEMATIC WITHDRAWAL

An interesting sub-class of basic removal operators, winicludes
both systematic [13] and severe withdrawal [15] (see beisvob-
tained by requiring the following condition gix, <):

(9) If w1 < w2 thenwi < w2

where< is the strict part oK.

Proposition 14 (i). If (<, X) satisfies (g) ther- < < satisfies:
(B10) If6c K < (0 A¢)thenp ¢ K < 6

(ii). If = satisfiegB10)thenC (K, <) satisfies (g).

The class of basic removal operatars< <) such that(<, <) satis-
fies (g) still do not generally satisfifnclusion) or (Vacuity), since
condition (g) does not rule out that sordeminimal elements may
be <-unconnected. However they do coméghtyclose to satisfying
(Inclusion), in that the following is satisfied:

Ifoe KthenK - C K

Using this fact we can see that fitnis class of operatorginclusion)
and(Vacuity) are equivalent.

The next condition ork’-contexts is, essentially, a requirement for
antisymmetry to hold:

(h)
Proposition 15 (i). If (<, X) satisfies (h) ther- < < satisfies:
(B11) If=(0Vv¢)andd & K < ¢thenp € K < (0 A ¢)
(ii). If = satisfiegB11)thenC (K, <) satisfies (h).

If w1 < w2 then eitherw; < ws orwi = we

Clearly, by requiring (h) in combination with (g) (and refixy) we
specify< uniquely:

(@)+(h)

Note that=< so defined will automatically be transitive and will sat-
isfy the condition (a) from Sect. 3. Putting together Prdp%.and
15, then, we have that the class of basic removal operatprs-,
where= is defined via (g)+(h) may be axiomatically characterised
by (B1)}{B11). This looks very much like the class of systematic
withdrawals. A systematic withdrawal operatercan be defined in
terms of< as follows [13]:

wy = wo iff either wi < ws orwy = we

K + ¢ = K NTh(V<(min([-¢], <)))

whereV<(X) = {v | 3w € X s.t.v < w}. Unlike systematic with-
drawal, the class of removal operators definedii)+(B11) fails to
satisfy (Inclusion)/(Vacuity), since all the<-minimal elements are
necessarilyunconnectedaccording to=<. So in fact(Vacuity) will
fail as soon as there is more than gaeninimal element. These op-
erators satisfy instead:

If ¢ ¢ Kthen—¢ € K < ¢

That is, for these operators, we see tRat- ¢ is an operation which
‘demotes’ the status af: if its current status is ‘accepted’, i.e, €



K, then its status is ‘demoted’ to ‘undecided’ i.8,~¢ € K < ¢,
while if its current status is ‘undecided’ then its statu&ismoted’
to ‘rejected’. If its status is already ‘rejected’ then n@aobe occurs.
However, if we take the incarcerations of these operatans we end
up with precisely the class of systematic withdrawal opeeat
Systematic withdrawal can also be obtained by weakening (h)

() If w1 < wathenwy < we, w1 = wa, orw; < w’ V'

So, unlike (h), (j) allows the models @f to be connected according
to =, although it does not force them to be.

Proposition 16 (i). If (<, %) satisfies (j) ther- (< < satisfies:

(B12) If¢pe K,E=(0V¢)andd € K < ¢ptheng € K < (0 A ¢)
(ii). If = satisfieqB12)thenC (K, <) satisfies (j).

Since the operators obtained from (g) and (h) form a sulsabds
the operators obtained from (g) and (j), the latter cladlsdgies not
satisfy(Vacuity). But adding (a) (and therefo(®acuity)) to (g) and
(j) leads exactly to systematic withdrawal.

Proposition 17 The following are equivalent:

(i). < is a systematic withdrawal.

(ii). = satisfiegB1)}{B9) plus (Vacuity), (B10)and(B12).

(iii). === (< <) for some(<, <) which satisfies (a), (g) and (j).
As we shall see in the next section, the class of severe vaivals
can also be isolated in a similar manner.

7 LIMITING CASES

We have seen that the addition of the second ordeximpgovides us
with considerable flexibility when defining removal operatoBut
what happens when we focus on the limits imposeek@rin this sec-
tion we consider the two cases whetés thesmallestand thdargest
reflexive sub-relation oK. If we take < to be the smallesk, the
equality relation, then the operator < <) reduces tak << <) ¢

= Th(min([-¢], <)). and we have the following result.

Proposition 18 (i). If < is the equality relation ther- < <, satis-
fies:

(B13) —¢ € K < ¢.
(ii). If = satisfieqB13)then=in C(K, <) is the equality relation.

Thus we see that removing here amounts to @vision by its
negation, and in fact that- < <) essentially reduces to an AGM
revision function (satisfying the full list of AGM revisiopostu-
lates [1]). More precisely the operatey< <) for K defined by
K *x<.<y ¢ = K &< <) ~¢is an AGM revision operator. More-

over,everyAGM revision operator can be obtained in this way. Note

that in the above case, singec K << <) —¢, the right-hand side
here is equal t&'n((K <(<,<) @) U {¢}). Thus what we have is
just the Levi Identity [6]. In fact a result more general holdhen-
ever (<, %) is a K-context and« < <) is defined froms < <) via
the Levi Identity therx < <) is an AGM revision operator.

By taking < to be the largest reflexive sub-relation ©fwe get
the full relation<, and the operator < <) reduces to:

K << <) ¢=Th({w | w < w' for somew’ € min([~¢], <)}).

Thus, from the characterisation of severe withdrawal im&eof to-
tal pre-orders found in [15], we see that settig-< gives us the
class of severe withdrawal operators. Note thato defined will be
transitive and satisfy condition (b) from Sect. 3 (and healse (f) —
see Prop. 12). From the results above it turns out that we igarag
axiomatic characterisation of severe withdrawal difféterthe ones
found in the literature (see [15]). To do this note the foliloge

Proposition 19 Let (<, <) be aK-context. Thenk=< iff both (f)
and (g) are satisfied.

Using this fact with Props. 10 and 14 then yields:

Proposition 20 < is a severe withdrawal operator iff it satisfies
(B1)+(B4), (Hyperreg) and (B10).

8 CONCLUSION

In this study we have presented a unified framework for begef
moval in terms of a possible world semantics which is disiec
in that it uses a pair of orderings over the set of worlds. Vried
for the conceptual plausibility of this pair and showed hovarge
class of belief removal operators such as liberation, syastie and
severe withdrawal operators could be characterised. Tipsoach
opens the door for identifying hitherto unstudied sub-s#asf basic
removal operators, such as those obtained by requiring tf be a
total pre-order and a partial order.An obvious generatigab con-
sider in future work is the extension to propositional laages with
a countably infinite number of propositional variables. dla de-
tailed study of the connection between basic removal, haserated
contraction, and sequence-based retraction is of intdfeslly, as
in any formalism for belief change, we need to consider ieatae-
moval and how this affects the adjustment of worlds in betaAnd
=, as well as the interplay betweehand <.
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